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Computationally Efficient Carrier Integer Ambiguity

Resolution in Multiepoch GPS/INS:

A Common-Position-Shift Approach
Yiming Chen, Member, IEEE, Sheng Zhao, and Jay A. Farrell, Fellow, IEEE

Abstract— Integer ambiguity resolution is a challenging
technical issue that exists in real-time kinematic (RTK) global
positioning system (GPS) navigation. Once the integer vector is
resolved, centimeter-level positioning estimation accuracy can be
achieved using the GPS carrier phase measurements. Recently,
a real-time sliding window Bayesian estimation approach to RTK
GPS and inertial navigation was proposed to provide reliable
centimeter accurate-state estimation, via integer ambiguity reso-
lution utilizing a prior along with all inertial measurement unit
and GPS measurements within the time window. One challenge to
implementing that approach in practice is the high computation
cost. This paper proposes a novel implementation approach with
significantly lower computational requirements and includes a
thorough theoretical analysis. The implementation results show
that the proposed method resolves an integer vector identical to
that of the original method and achieves state estimation with
centimeter global positioning accuracy.

Index Terms— Global positioning system (GPS), inertial
navigation, inertial navigation system (INS), integer ambiguity,
real-time kinematic (RTK), sliding window estimation.

I. INTRODUCTION

I
NTEGRATION of GPS and aided inertial navigation

system (INS) has proven useful due to their comple-

mentary nature [1]. The INS provides a continuous high-

bandwidth state vector estimate. GPS aiding corrects errors

accumulated by the integrative INS process and calibrates

the inertial measurement unit (IMU). The overall accuracy

of GPS aided INS depends on the accuracy, frequency, and

reliability of the GPS measurements. A well-designed GPS

receiver can typically reach a stand-alone positioning accuracy

of 3–8 m [2]. To reliably achieve higher accuracy positioning,

differential GPS (DGPS) is required. With a base station
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within a range of a few tens of kilometers, DGPS accu-

racy is on the order of 1 m, growing at the rate of 1 m

per 150 km of separation [3]. A user can either set up

a base station on their own or utilize publicly available

correction services: Continuously Operating Reference Station

(CORS) [4], nationwide DGPS [5], and European Geodetic

Reference Systems [6]. As mobile communication networks

(4G or Wi-Fi) become available, DGPS techniques will

become ubiquitous. In this paper, all GPS measurements are

assumed to be processed differentially.

GPS receivers provide carrier phase measurements that are

biased by an unknown integer number of wavelengths. While

the phase-locked loop (PLL) of a receiver channel maintains

phase lock, the unknown integer for the satellite being tracked

remains constant. When loss of lock eventually happens (i.e.,

a cycle-slip occurs), the new integer is most likely to be differ-

ent. The fundamental ideas underlying integer ambiguity res-

olution rely on reformulating the problem into an integer least

squares (ILS) approach, e.g., LAMBDA [7], MLAMBDA [8],

or MILES [9]. Real-time kinematic (RTK) applications solve

the ILS and position estimation problems simultaneously in

real time [10]–[12] and may involve multiple GPS epochs,

but without IMU constraints between epochs. The solu-

tion of the RTK problem is simplified, yet still challeng-

ing when dual-frequency receivers are available, because the

integers can be resolved by forming the wide-lane phase

measurements [11]. When the integer vector can be resolved,

centimeter positioning accuracy is achievable in real time on

moving platforms [13]. The performance of the conventional

single-epoch resolution is strongly influenced by the number

of available satellites, the geometry of the received satellite

constellation, and the quality of the measurements. If noisy

or faulty measurements exist, the integer resolution can be

wrong, without sufficient measurement redundancy to detect

the error. For single-frequency receivers, integer ambiguity

resolution is even more challenging due to the inability to form

the wide-lane measurement and the smaller number (i.e., half)

of measurements.

In [14], a contemplative real-time (CRT) approach was

proposed to provide a reliable DGPS/INS solution. Within

the CRT framework [14]–[19], the full nonlinear maximum

a posteriori (MAP) estimation problem is solved considering

all the information (e.g., prior, kinematics, GPS, and IMU

sensor data) available within a multiepoch window [20]–[23].

The CRT approach provides a large enough set of residuals to

1063-6536 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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extend Receiver Autonomous Integrity Monitoring techniques

[24], [25] to reduce the effects of the outlier measurements on

the estimation and to detect incorrect integers. In [17], integer

ambiguity resolution is considered within the CRT framework

for the RTK GPS/INS application.

One challenge to implementing integer ambiguity resolution

using GPS and IMU is the high computation load, especially

when the multiepoch data window is long to enhance relia-

bility or the IMU sampling rate is high. This paper considers

an alternative solution with a significantly lower computational

cost. The validity of the approach is demonstrated theoretically

and the performance is demonstrated experimentally. The

implementation results demonstrate that the proposed method

can achieve centimeter-level position accuracy on moving plat-

forms in challenging GPS environments and estimate integers

identical to those from the original CRT method.

The outline of this paper is as follows. Section II states the

RTK GPS/INS problem. Section III revisits the CRT integer

ambiguity resolution proposed in [17]. Section IV presents

the proposed common-position-shift (CPS) method. Section V

analyzes the CPS method mathematically. Section VI presents

the implementation results. Section VII concludes this paper.

II. PROBLEM STATEMENT

This section presents DGPS [26] and aided INS [1]

background and notation.

A. Aided Inertial Navigation

Let x ∈ R
ns denote the rover state vector. For example,

the state vector at time t

x(t) =
[

p⊺(t), v⊺(t), q⊺(t), b
⊺
a (t), b

⊺
g (t)

]⊺ ∈ R
ns

is composed of the position, velocity, attitude (e.g., quater-

nion), accelerometer bias, and gyroscope bias vectors.

The kinematic equations for the rover state are

ẋ(t) = f (x(t), u(t)) (1)

where f : R
ns × R

6 �→ R
ns represents the kinematics and

u ∈ R
6 is the vector of specific forces and angular rates. The

function f is accurately known (see [1, Ch. 11]).

Given a distribution for the initial state x(t1) ∼ N (x1, P1),

where x1 ∈ R
ns and P1 ∈ R

ns×ns , and measurements ũ of u,

the INS propagates the estimate of the rover state between

aiding measurement time instants by solving

˙̂x(t) = f (x̂(t), ũ(t)) (2)

where x̂(t) denotes the estimate of x(t).

For the convenience of later discussion, we define

s(t) =
[

v⊺(t), q⊺(t), b
⊺
a (t), b

⊺
g (t)

]⊺ ∈ R
(ns−3) (3)

as the state vector excluding the position. Then, we have

x(t) = [ p⊺(t), s⊺(t)]⊺. Similarly, x1 = [ p
⊺

1 , s
⊺

1 ]⊺ for the prior

and x̂(t) = [ p̂
⊺(t), ŝ

⊺(t)]⊺ for the state estimate.

Due to prior errors, system calibration errors, and measure-

ment noise, the state estimation error δx(t) = x(t) − x̂(t)

develops over time. The dynamics and stochastic properties

of this estimation error are derived from (1) and (2).

When aiding measurements

z̃(t) = h(x(t)) + nz(t) (4)

are available, various methods (e.g., the extended Kalman

filter and particle filter) are available to use the initial state,

inertial measurements, and aiding measurement information to

estimate the rover state vector [1], [27].

B. DGPS Measurements

Throughout this paper, double-differenced GPS measure-

ments are considered. For notational simplicity, it is assumed

that the double-difference approach completely removes all

common-mode errors (e.g., ionosphere, troposphere, satellite

clock, and ephemeris) as well as the receiver clock biases,

which allows these terms to be dropped throughout this paper.

This is done only to simplify the notation of the presentation,

and these errors will still affect the experimental results;

therefore, outlier measurements may exist due to multipath

error, heavy foliage, receiver failure, and so on.

The double-differenced pseudorange (i.e., code) measure-

ment for the i th satellite are modeled as

ρi (tk) = hi
k(x(tk)) + ni

ρ(tk) (5)

where hi
k(x(tk)) = ‖ p(tk)− pi (tk)‖2 is the Euclidean distance

at tk between the rover position p ∈ R
3 and the position

of the i th satellite pi ∈ R
3, and ni

ρ ∼ N (0, σ 2
ρ ) represents

the (noncommon mode) measurement noise with standard

deviation σρ = 0.5 ∼ 3m, depending on receiver design,

environmental factors, and the performance of multipath miti-

gation techniques [28]. In practice, the noise level σρ will vary

temporally and spatially for each satellite.

The double-differenced carrier phase measurement for the

i th satellite is modeled as

ϕi (tk) = hi
k(x(tk)) + λN i (tk) + ni

ϕ(tk) (6)

where λ is the carrier phase wavelength and N i is the unknown

integer ambiguity. The measurement noise has distribution

ni
ϕ ∼ N (0, σ 2

ϕ ). The noise standard deviation σϕ is millimeter

to centimeter level (<0.01σρ).

The unknown integer N i represents the number of carrier

wave cycles between the satellite and the receiver at the time

that phase lock is achieved. If the PLL in the receiver for

the i th satellite maintains lock without cycle slips during

a time interval [t1, tn], then this integer is constant over

this time interval, i.e., N i (t1) = · · · = N i (tn) = N i .

The receiver reports the lock status to enable detection of

such time intervals. The unknown integer must be estimated

exactly to enable the use of the carrier phase measurement

for precise position estimation. Note that the carrier phase

measurement model does not match the standard measure-

ment model in (4), because there is an unknown integer

variable N i .

C. Technical Problem Statement

This paper investigates integer ambiguity resolution and

trajectory estimation over a time interval [t1, tK ] that we will
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Fig. 1. Illustration of the CRT window measurement timeline. The window
contains a prior for the initial state, K GPS measurements, and many IMU
measurements between each pair of GPS measurements. IMU measurement
times are indicated as dots on the timeline. All of these items yield constraints

on the estimated trajectory X̂ during the CRT window.

refer to as the CRT window. This window contains K GPS

measurement epochs, where K can be designer specified,

time varying, or data dependent. A typical but simplified

measurement scenario is shown in Fig. 1. The dots on the

timeline indicate IMU measurement times τn . Typically, the

number of IMU measurements between GPS measurements

is very high (i.e., ti+1 − ti ≫ τ j+1 − τ j ). This is because

the IMU sample frequency (e.g., 200 Hz) is at least twice

the IMU bandwidth (e.g., 60 Hz), which is higher than the

vehicle motion bandwidth (e.g., 10 Hz). The GPS sample

rate is usually much lower (e.g., 1.0 Hz). The state transition

between these times is constrained by the kinematic model

of (2) and the IMU data. Additional constraints are imposed

by the initial estimate (x1, P1) depicted above the initial state

and GPS measurements depicted below the timeline. Each

of these constraints is quantified by a probability density

that enables a Bayesian estimation formulation for the CRT

estimation problem. The computation for the CRT estimation

process considering all the information over the CRT window

starts at tK and completes its computation at t∗ = tK + �K ,

where �K > 0 is a small fraction of a second using standard

off-the-shelf computers. The time interval (tK , t∗) is shown

in Fig. 1 marked in red. For t ∈ (tK , t∗), the real-time

state estimate is maintained by the INS. At t∗, the CRT

estimation result x̂(tK ) is propagated by the INS with the

IMU data over (tK , t∗] and used to update the real-time

estimate. Therefore, the INS is effectively free integrating

without corrections, from tK−1 + �K−1 to tK + �K , which

is about 1 s, as in the standard EKF approach. For 1-Hz

GPS epochs, the INS error accumulation is at the centimeter

level.

To simplify the presentation of the novel ideas in this paper,

the following assumptions are made.

Assumption 1: Within the CRT window, the receiver

provides valid carrier phase measurements for m satellites,

without loss of lock. △
Assumption 2: The prior distribution for s(t1) is

N(s1, Ps1). △
Assumption 3: The GPS measurement rate is 1 Hz. △
With Assumption 1, the unknown integers in the carrier

phase measurements from these m satellites are constants

over [t1, tK ]. This assumption will be relaxed in the example

section. Assumption 2 allows the system to be initialized at

an unknown location, while the partial state estimate ŝ(t1) is

initialized with the prior (s1, Ps1) based on other information

sources, while the position is estimated in the CRT window

based on GPS. The GPS sampling rate stated in Assumption 3

facilitates the presentation. The entire derivation goes through

for other sample rates. Under Assumptions 1–3, the CRT

estimation problem considered in this paper can be stated as

follows.

For a system described by (1), we have the following.

1) An initial distribution for the state s(t1) ∼ N (s1, Ps1).

2) IMU measurements U = {Uk}K−1
k=1 , where

Uk = {ũ(τn), tk ≤ τn ≤ tk+1}.

3) DGPS code and carrier phase measurements Y =
{Yk}K

k=1, where

Yk = {ρi (tk)}mk

i=1

⋃

{ϕi (tk)}m
i=1.

Note that t1, . . . , tk ∈ (τ1, τκ ]. The set {τn}κn=1 contains the

high-frequency IMU measurement time instants. The integer

mk is the total number of valid pseudorange measurements

at time tk . For simplicity of discussion in this paper, it is

assumed that mk ≡ m. The method presented in this paper

can be extended to more complicated mixes of measurements.

Then, the objective is as follows.

Objective 1: Estimate the optimal state trajectory X �

[x⊺(t1), . . . , x⊺(tK )]⊺ ∈ R
K ns and integers N �

[N1, . . . , Nm ]⊺ ∈ Z
m with the given sensor measurements

U and Y, and the prior state density ps(s(t1)). △
In [17], the above objective is achieved by formulating

and solving the corresponding MAP estimation problem.

The accuracy and reliability of the solution is achieved

by the nonlinear mixed ILS (MILS) method and faulty

data removal scheme. This CRT integer ambiguity resolu-

tion method is revisited in Section III to make this paper

self-contained.

III. CRT INTEGER AMBIGUITY RESOLUTION

Let X+ � {x(t) for t = t2, . . . , tK }, then the joint

probability p(X, N, Y, U) can be factored as

p(X, N, Y, U) = p(X, U, N)p(Y|X, U, N)

= p(X+, x(t1), U)p(Y|X, N)

= p(x(t1), U)p(X+|x(t1), U)p(Y|X, N)

= p(x(t1))p(X+|x(t1), U)p(Y|X, N)

= p(s(t1))p(X+|x(t1), U)p(Y|X, N). (7)

For a given prior (s1, Ps1) and data sets Y and U, the MAP

trajectory estimate is the X and N maximizing the right-hand

side of (7)

max
X∈Rns K ,N∈Zm

p(s(t1))p(X+|x(t1), U)p(Y|X, N). (8)
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With a Gaussian noise assumption, the negative

log-likelihood of the right-hand side of (7) is

‖v(X, N)‖2
W = ‖s(t1) − s1‖2

Ps1

+
∑

k

‖φ(x(tk), Uk) − x(tk+1)‖2
Qk

+
∑

k

∑

i

∥

∥hi
k(x(tk)) − ρi (tk)

∥

∥

2

σ 2
ρ

+
∑

k

∑

i

∥

∥hi
k(x(tk)) + λN i − ϕi (tk)

∥

∥

2

σ 2
ϕ

(9)

where ‖v‖2
W = v⊤W−1v is the squared Mahalanobis distance

with matrix W. All terms on the right-hand side also use this

notation. The vector v is the concatenation of each of the

vectors summed in the right-hand side of (9). The operator

φ and the covariance matrix Qk used in (9) are defined

in Appendix I. The matrix W is the positive definite block

diagonal matrix formed by the positive definite submatrices

Qk , Ps1 , σ 2
ρ I, and σ 2

ϕ I. Using MATLAB syntax, W can be

represented as W = blkdiag
(

Ps1, Q0, . . . , QK−1, σ
2
ρ I, σ 2

ϕ I
)

.

Let 
W
⊺
W = W−1, then

r � 
W v (10)

is the weighted residual and ‖v‖2
W = ‖r‖2. For notation

simplicity, herein we denote the tuple (X, N) = [X⊺, N⊺]⊺ ∈
R

ns K × Z
m . With this notation, the MAP problem is trans-

formed into the nonlinear NMILS problem

(X∗, N∗) = arg min
X∈Rns K ,N∈Zm

‖r(X, N)‖2 (11)

where r is the vector

r(X, N) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣


Ps1
(s(t1) − s1)

- – – – – – – – – – – – – – – – – – – – – -


Q1(φ(x(t1), U1) − x(t2))
...


QK−1(φ(x(tK−1), UK−1) − x(tK ))

- – – – – – – – – – – – – – – – – – – – – -

σ−1
ρ

(

h1
1(x(t1)) − ρ1(t1)

)

...

σ−1
ρ

(

hm
K (x(tK )) − ρm(tK )

)

σ−1
ϕ

(

h1
1(x(t1)) + λN1 − ϕ1(tK )

)

...

σ−1
ϕ

(

hm
K (x(tK )) + λNm − ϕm(tK )

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The dashed lines separate the residuals into three sets:

prior, INS, and GPS. This is only to facilitate discussion

in Remark 2.

The CRT integer ambiguity resolution and trajectory estima-

tion approach from [17] can be summarized with the following

three steps.

1) Obtain the float solution by neglecting the integral nature

of the ambiguity N

(X̌, Ň) = arg min
(X,N)∈Rns K+m

‖r(X, N)‖2. (12)

Standard outlier rejection techniques [14], [25],

[29], [30] can be executed to detect and remove outliers.

2) Starting from (X̌, Ň), solve the NMILS problem in (11)

to obtain the optimal solution (X∗, N∗).
3) Check the validity of integer estimates with integer

validation techniques [31].

The second step of this approach is computationally expensive,

especially with relinearization, which requires reintegration.

An alternative to the second step is the main focus herein.

To solve the optimization in (11) in an iterative man-

ner, the residual r(X, N) is linearized around the current

estimates (X̂, N̂)

r(X, N) ≈ r(X̂, N̂) + J(X̂, N̂)(δX, δN) (13)

where J(X̂, N̂) is the Jacobian matrix of r(X, N) evaluated

at (X̂, N̂) and (δX, δN) = (X, N) − (X̂, N̂) is the estimation

error. Furthermore, J(X̂, N̂) can be decomposed as

J(X̂, N̂) = [A, B]
where A contains the columns of J(X̂, N̂) that are partial with

respect to X and B contains the partial with respect to N.

Thus, (13) can be rewritten as

r(X, N) ≈ r(X̂, N̂) + AδX + BδN.

The next step solves the MILS problem

min
δX∈Rns K ,δN∈Zm

‖r(X̂, N̂) + AδX + BδN‖2. (14)

Solution methods are well presented in [7]–[9]

and [32]–[34]. Any of these methods could be used to

solve the MILS problem embedded in Step 2) of the problem

of interest. For the presentation of this paper, we choose

to use MILES framework [9] for both the presentation and

solution. The CPS algorithm could also be implemented

using LAMBDA [7] and MLAMBDA [8]. The performance

is expected to be similar.

Remark 1: Note that the major contribution of this paper is

not a method for MILS solution; instead, it is to present an

innovative way to reconstruct the cost function in (9) into two

parts that can be solved independently and efficiently. △
Remark 2: Note that the vector defining r(X, N) is divided

by horizontal lines into three parts. Standard multiepoch RTK

would only address the residuals in the bottom portion of the

vector. The residuals from that portion of the vector come

from nonlinearities (i.e., range measurements) with a very

small curvature [i.e., 1/(20 × 106) m] so that the problem

is essentially linear and a single MILS iteration is sufficient.

The method herein also considers the prior and the IMU

constraints. Many important applications contain an IMU

to attain a high-frequency and high-bandwidth state vector

estimate. The nonlinearities in the INS are strong, having

curvature that is significant relative to the state uncertainty,

especially at startup or during maneuvers; therefore, multiple

iterations of the MILS may be required. △
By dropping the notation (X̂, N̂) in r(X̂, N̂) and defining

the QR decomposition [46]

A = [QA, Q̄A]
[

RA

0

]

(15)
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TABLE I

COMPUTATIONAL COMPARISON

the cost function in (14) can be factored as [9]

‖r + AδX + BδN‖2

=
∥

∥

∥

∥

∥

[

Q
⊺

A

Q̄
⊺

A

]

r +
[

RA

0

]

δX +
[

Q
⊺

AB

Q̄
⊺

AB

]

δN

∥

∥

∥

∥

∥

2

=
∥

∥Q
⊺

Ar + RAδX + Q
⊺

ABδN
∥

∥

2 +
∥

∥Q̄
⊺

A r + Q̄
⊺

ABδN
∥

∥

2
.

(16)

Note that for any fixed δN, the first term on the right-hand

side of the above equation can be made equal to zero by an

appropriate choice of δX. Thus, solving the following ILS

problem:

min
δN∈Zm

∥

∥Q̄
⊺

Ar + Q̄
⊺

ABδN
∥

∥

2
(17)

yields the optimum of (14). Typically, the ILS solution has two

steps: reduction and search [35]. Each iteration of the NMILS

is that computationally expensive and multiple iterations may

be required, this is caused by the need for relinearization in

(13) this is caused by changes in X̂.

Increasing the length K of the CRT window enhances

both accuracy and reliability at the expense of a higher

computational load. Later in Section V-D, the computational

load will be summarized in Table I and compared with the

CPS algorithm that is developed herein.

The main contribution of this paper is an alternative

approach to replace Step 2). The new approach requires a

significantly lower computational load. The general method

of proof will be to show first that the two approaches would

be equivalent if the GPS measurement equations were linear

and time invariant and then to develop bounds on the errors

incurred due to the GPS measurement equation nonlinear

effects and time variations. Because the bounds are small

relative to the measurement noise, these errors are irrelevant

for practical engineering purposes. The proposed method is

inspired by the observation that in practice the optimal solution

trajectory X∗ (with integers resolved) is different only from

the float solution X̌ in terms of a common 3-D position

error to each state vector in the trajectory (see Fig. 2).

The mathematical analysis in Section V verifies this

observation.

IV. COMMON-POSITION-SHIFT ESTIMATION

This section presents the CPS method, which is a com-

putationally efficient alternative to the original CRT method.

Fig. 2. Example comparison of horizontal positioning results. The blue
dashed-dotted curve is from MILS GPS/INS [17] with centimeter accuracy.
The red dashed curve shows the float solution from (12). The yellow asterisks
show the DGPS differential pseudorange solution (i.e., no carrier phase).

Fig. 3. Example 3-D position shift. The blue curve represents the original
trajectory, the green dashed arrow represents the 3-D position shift vector,
and the red curve represents the shifted trajectory.

The key point is to construct a smaller optimization problem

to replace that in Step 2) of Section III. First, the notation for

the CPS method is defined.

A. Notation of Common Position Shift

Given a trajectory X = [x⊺(t1), . . . , x⊺(tK )]⊺ and a CPS

vector � p ∈ R
3, define the CPS operator ⊕ as

X′ = X ⊕ � p � [x⊺(t1) ⊕ � p, . . . , x⊺(tK ) ⊕ � p]⊺

which denotes adding the constant vector � p to the position

portion p(tk) of each state vector x(tk) in X. The resulting

trajectory X′ is referred to as the shifted trajectory with respect

to the original X (see Fig. 3).

B. Outline of the CPS Method

This paper will show that the cost function ‖r(X, N)‖2

of (11) can be rewritten as a sum of cost functions

‖r(X, N)‖2 = ‖r1(X)‖2 + ‖r2(X)‖2 + ‖r3(X, N)‖2. (18)

These cost functions have two important related properties.

First, the term ‖r1(X)‖2 determines the shape, orientation,

and general location of the trajectory, but is insensitive to

a CPS � p and to the integer vector N (see Proposition 2).

Second, for any given X, the terms (‖r2(X)‖2 +‖r3(X, N)‖2)

are independent of s and can be minimized solely by the choice
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of (� p, N) (see Proposition 3). Therefore, if the linearization

errors and the time variation of the GPS measurement model

are ignored, Proposition 4 will show that the cost function can

be rewritten as

‖r(X, N)‖2 = ‖r1(X̌)‖2+‖r2(X̌⊕� p)‖2+‖r3(X̌⊕� p, N)‖2

where X = X̌ ⊕ � p.

These facts allow the problem of interest to be solved by

the following approach.

1) Find either the float solution X̌ defined in (12) or the

integer-free solution X⊛ defined in (26), which are

shown to be identical in Proposition 1.

2) Find (� p⋆, N⋆) that is the optimal solution of

min
� p∈R3,N∈Zm

‖r2(X̌ ⊕ � p)‖2 + ‖r3(X̌ ⊕ � p, N)‖2

(19)

where X̌ is fixed when evaluating ‖r2‖2+‖r3‖2.

3) Check the validity of the integer estimates.

The trajectory-integer estimate from the CPS method is

finalized as (X̌ ⊕ � p⋆, N⋆). The optimality of the solution

(X̌ ⊕ � p⋆, N⋆) is discussed in Propositions 4 and 5 by

comparing with (X∗, N∗) obtained from the original NMILS

method revisited in Section III.

The CPS estimation in (19) is designed to replace the

original full NMILS Step 2) in Section III. The optimization

in (19) is also solved by the NMILS method outlined in

Section III; however, the dimensions are significantly smaller

and only a single (linearization) iteration is required.

C. Decomposition of GPS Cost Terms

This section defines the cost function decomposition

for (18).

Define ϕi = [ϕi (t1), . . . , ϕ
i (tK )]⊺ ∈ R

K to be the vector

stacking the carrier phase measurements of the i th satellite.

The last summation term in (9) can be rewritten as
∑

k

∑

i

∥

∥hi
k(x(tk)) + λN i − ϕi (tk)

∥

∥

2

σ 2
ϕ

=
∑

i

[

∑

k

∥

∥hi
k(x(tk)) + λN i − ϕi (tk)

∥

∥

2

σ 2
ϕ

]

=
∑

i

‖hi (X) + λ1N i − ϕi‖2
σ 2

ϕ I
(20)

where hi = [hi
1(x(t1)), . . . , hi

K (x(tK ))]⊺ ∈ R
K ,

1 = [1, . . . , 1]⊺ ∈ R
K , and I is the K × K identity matrix.

In particular, 1 is rank 1 and can be QR decomposed as

[Q1, Q̄1]
[

R1

0

]

= 1

where1 [Q1]1×K and [Q̄1](K−1)×K contain orthonormal bases

for the column space and the left null space of 1. Let

Q = [Q1, Q̄1], which is a unitary matrix. This QR decom-

position can be computed offline for different K values.

1Note that Q1 and Q1 are two different symbols. The former is the basis
for the column space of 1. The latter is the covariance matrix of the first INS
cost term in (9).

The i th term in (20) can be decomposed into two parts by

projecting it on the column space and the left null space of 1

‖hi (X) + λ1N i − ϕi‖2
σ 2

ϕ I

= ‖Q⊺(hi (X) + λ1N i − ϕi )‖2
Q⊺σ 2

ϕQ

=
∥

∥

∥

∥

[

Q
⊺

1

Q̄
⊺

1

] [

hi (X) + λQ

[

R1

0

]

N i − ϕi

]∥

∥

∥

∥

2

σ 2
ϕ I

=
∥

∥

∥

∥

[

Q
⊺

1 hi (X) + λR1 N i − Q
⊺

1 ϕi

Q̄
⊺

1 (hi (X) − ϕi )

]∥

∥

∥

∥

2

σ 2
ϕ I

=
∥

∥Q̄
⊺

1 (hi (X) − ϕi )
∥

∥

2

σ 2
ϕ I−

+
∥

∥Q
⊺

1 hi (X) + λR1 N i − Q
⊺

1 ϕi
∥

∥

2

σ 2
ϕ

(21)

where I− = Q̄
⊺

1 Q̄1 is the (K − 1) × (K − 1) identity matrix.

Note that the first term in (21) is independent of the integer

ambiguity N i .

Applying the same QR factorization to the pseudorange

summation term in (9) and reorganizing yield

‖r(X, N)‖2 = ‖s(t1) − s1‖2
Ps1

+
∑

k

‖φ(x(tk), Uk) − x(tk+1)‖2
Qk

+
∑

i

∥

∥Q̄
⊺

1 (hi (X) − ρi )
∥

∥

2

σ 2
ρ I−

+
∑

i

∥

∥Q̄
⊺

1 (hi (X) − ϕi )
∥

∥

2

σ 2
ϕ I−

+
∑

i

∥

∥Q
⊺

1 hi (X) − Q
⊺

1 ρi
∥

∥

2

σ 2
ρ

+
∑

i

∥

∥Q
⊺

1 hi (X)+λR1N i −Q
⊺

1 ϕi
∥

∥

2

σ 2
ϕ
. (22)

Based on the above expression, it will be convenient to define

the following three cost functions. The first cost function

‖r1(X)‖2 � ‖s(t1) − s1‖2
Ps1

+
∑

k

‖φ(x(tk), Uk) − x(tk+1)‖2
Qk

+
∑

i

∥

∥Q̄
⊺

1 (hi (X) − ρi )
∥

∥

2

σ 2
ρ

+
∑

i

∥

∥Q̄
⊺

1 (hi (X) − ϕi )
∥

∥

2

σ 2
ϕ I−

neglects the last two terms in (22). The second cost

function is

‖r2(X)‖2 �
∑

i

∥

∥Q
⊺

1 hi (X) − Q
⊺

1 ρi
∥

∥

2

σ 2
ρ
. (23)

The third cost function is

‖r3(X, N)‖2 �
∑

i

∥

∥Q
⊺

1 hi (X) + λR1 N i − Q
⊺

1 ϕi
∥

∥

2

σ 2
ϕ

(24)

which will define the CPS and is analyzed in Section IV-B.

With these definitions

‖r(X, N)‖2 = ‖r1(X)‖2 + ‖r2(X)‖2 + ‖r3(X, N)‖2. (25)
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To simplify expressions in the following discussion, let:
‖ra(X)‖2 � ‖r1(X)‖2 + ‖r2(X)‖2

‖rb(X, N)‖2 � ‖r2(X)‖2 + ‖r3(X, N)‖2.

D. Integer-Free Solution

Define the integer-free solution as

X⊛ = arg min
X∈Rns K

‖ra(X)‖2. (26)

Proposition 1: If the variable N is treated as a real vector,

then for X̌ and Ň, as defined in (12)

‖r(X̌, Ň)‖2 = ‖ra(X⊛)‖2

and X⊛ = X̌, where r(X, N) is defined in (11). △
Proof 1: From (25)

‖r(X, N)‖2 = ‖r1(X)‖2 + ‖r2(X)‖2

+
∑

i

∥

∥Q
⊺

1 hi (X) + λR1 N i − Q
⊺

1 ϕi
∥

∥

2

σ 2
ϕ
.

Each term in the summation is a scalar

||Q⊺

1 hi (X) + λR1 N i − Q
⊺

1 ϕi ||2
σ 2

ϕ
. (27)

When N i is treated as a real variable, then for any X, the value

Ň i =
Q

⊺

1 (ϕi − hi (X))

λR1

(28)

makes the i th term zero. Therefore

‖r(X, Ň)‖ = ‖r1(X)‖2 + ‖r2(X)‖2.

�

Proposition 1 indicates that the integer-free solution is

equivalent to the float solution of (12). This equivalence will

be utilized in Section V.

V. COMMON-POSITION-SHIFT METHOD ANALYSIS

This section presents the mathematical analysis of the

proposed CPS method. With the aid of several propositions

proved herein, the optimality of the CPS method is discussed

in Propositions 4 and 5.

A. Useful Constants Related to GPS

In the analysis, certain GPS facts will be used [2], [3], [26].

They are summarized in this paragraph. The standard deviation

of the differential pseudorange measurement is σρ = 0.5–3 m.

The standard deviation of the differential phase measurement

is σϕ ≈ 0.01σρ . The minimum distance from a receiver on the

earth surface to a GPS satellite satisfies

hi
k( pk) = ‖ p(tk) − pi (tk)‖ ≥ D � 20 000 km.

The orbital speed of the GPS satellite with respect to the ECEF

origin satisfies ‖V i‖ ≤ V̄ � 4.0 km/s. When the DGPS base

station is within a few tens of kilometers, DGPS accuracy

is on the order of 1 m (i.e., 1σ ) [3]. Herein, it is assumed

that there are always base stations (e.g., from CORS [4])

available to the rover within 20 km. Therefore, for the float

solution X̌

‖ p̌(tk) − p(tk)‖ < � f = 3 m.

B. Propositions for the CPS Method

Proposition 2 quantifies the sensitivity of ‖r1(X̂)‖2

to a CPS.

Proposition 2: For any trajectory estimate, X̂ ∈ R
ns K.

1) Neglecting the time variation and the high-order terms

in the linearization of the GPS measurement model

‖r1(X̂ ⊕ � p)‖2 = ‖r1(X̂)‖2. (29)

2) Accounting for the time variation and the high-order

terms in the linearization of the GPS measurement

model, for any trajectory estimate X̂ ∈ R
ns K with

‖�p‖ < 10 km, it is valid that

Q̄
⊺

1 (hi (X̂ ⊕ � p) − ϕi ) = Q̄
⊺

1 (hi (X̂) − ϕi + δ1) (30)

Q̄
⊺

1 (hi (X̂ ⊕ � p) − ρi ) = Q̄
⊺

1 (hi (X̂) − ρi + δ1) (31)

where δ1 ∈ R
K is a vector of perturbations caused by the

CPS. Furthermore, the magnitude of δ1 is bounded by

‖δ1‖∞ ≤ B1(‖� p‖, v̄ ) (32)

where the real function B1 : R
2
+ �→ R+ is defined as

B1(‖� p‖, v̄) � K (C1 + C2v̄)‖� p‖ + ‖� p‖2/2D

(33)

and K is the CRT window length in seconds,

C1 � (V̄ /D) = 2.0 × 10−4, C2 � (1/D) = 5.0 ×
10−8 s/m, v̄ is the upper bound of the rover speed over

the window, and ‖� p‖ is the magnitude of CPS. △
Proof 2: First, a CPS � p will not cause any variation in

the prior cost and the INS cost terms
∑

k

‖φ(x(tk ⊕ � p), Uk) − x(tk+1 ⊕ � p)‖2
Qk

=
∑

k

‖φ(x(tk), Uk) − x(tk+1)‖2
Qk

.

Therefore, the proof of (29) focuses on the GPS measurements.

Equations (30) and (31) are first derived by considering the

time variation and the high-order terms in the linearization

of the GPS measurement model, and then by neglecting the

perturbation δ1 due to linearization errors, (29) is obtained.

With the assumption ‖� p‖ < 10 km, the numerical analysis

in [1, Sec. 8.8.1.3] shows that

hi
k( pk + � p) − hi

k( pk) = H i
k� p + ‖� p‖2

2hi
k( pk)

+ h.o.t.

where hi
k( pk) = ‖ p(tk) − pi (tk)‖ and H i

k ∈ R
1×3 is the

Jacobian matrix of hi
k

H i
k � H i(tk) =

∂hi
k

∂ p(tk)
=

[

p(tk) − pi (tk)

‖ p(tk) − pi (tk)‖

]

.

Given that hi
k( pk) ≥ D and ǫi

k � ‖� p‖2/(2hi
k( pk)), it follows

that:

hi
k( pk + � p) − hi

k( pk) = H i
k� p + ǫi

k (34)

with |ǫi
k | < ‖� p‖2/2D.



1548 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 24, NO. 5, SEPTEMBER 2016

Consider H i(t) : R �→ R
3 as a function of time

t̄ � (tK + t1)/2 and H̄ i � H i(t̄) (35)

then by Taylor series, it follows that:

H i(t) = H̄ i + d H i(t)

dt
(t − t̄) + h.o.t. (36)

By defining the variation

Ȟ i
k � H i

k − H̄ i

and using (36), Ȟ i
k can be written as

Ȟ i
k = d H i(tk)

dt
(tk − t̄) + h.o.t.

The derivative d H i(t)/dt is

d H i(tk)

dt
= v(t) − vi (t)

‖ p(t) − pi (t)‖

− ( p(t) − pi (t))( p(t) − pi (t))⊺(v(t) − vi (t))

‖ p(t) − pi (t)‖3

(37)

and therefore, the variation of the Jacobian matrix is

bounded by

‖Ȟ i
k‖ ≤ 2(v̄ + V̄ )

D
|tk − t̄ |

since ‖v(t)‖ ≤ v̄ and ‖vi (t)‖ ≤ V̄ . Furthermore, with

Assumption 3, (tK − t1) < K and then

∥

∥Ȟ i
k

∥

∥ ≤ V̄ + v̄

D
(tK − t1) = K (C1 + C2v̄). (38)

We are now in a position to consider the effect of a shift � p

on the value of Q̄
⊺

1 hi
(

X̂ ⊕ � p
)

Q̄
⊺

1 hi (X̂ ⊕ � p) = Q̄
⊺

1

⎡

⎢

⎣

hi
1( p̂1 + � p)

...

hi
K ( p̂K + � p)

⎤

⎥

⎦

= Q̄
⊺

1

⎡

⎢

⎣

hi
1( p̂1) + H i

1� p + ǫi
1

...

hi
K ( p̂K ) + H i

K � p + ǫi
K

⎤

⎥

⎦

= Q̄
⊺

1

⎡

⎢

⎣

hi
1( p̂1)

...

hi
K ( p̂K )

⎤

⎥

⎦
+ Q̄

⊺

1

⎡

⎢

⎣

H i
1
...

H i
K

⎤

⎥

⎦
� p + Q̄

⊺

1 ǫi

where for ǫi
k in (34)

ǫi �
[

ǫi
1, . . . , ǫ

i
K

]⊺ ∈ R
K. (39)

With the notation of H̄ i and Ȟ i
k , it follows that:

Q̄
⊺

1 hi (X̂ ⊕ � p)

= Q̄
⊺

1 hi (X̂) + Q̄
⊺

1

⎡

⎢

⎣

Ȟ i
1
...

Ȟ i
K

⎤

⎥

⎦
� p + Q̄

⊺

1

⎡

⎢

⎣

H̄ i� p
...

H̄ i� p

⎤

⎥

⎦
+ Q̄

⊺

1 ǫi

= Q̄
⊺

1

⎛

⎜

⎝
hi (X̂) +

⎡

⎢

⎣

Ȟ i
1
...

Ȟ i
K

⎤

⎥

⎦
� p + ǫi

⎞

⎟

⎠
+ 0

where the 0 term follows from the fact that the columns of Q̄1

span the left null space of 1. Thus, it follows that:

Q̄
⊺

1 hi (X̂ ⊕ � p) = Q̄
⊺

1 [hi (X̂) + δ1] (40)

with the perturbation

δ1 �
[

Ȟ i
1� p + ǫi

1, . . . , Ȟ i
K � p + ǫi

K

]⊺
. (41)

Then, from (38) it follows that:

‖δ1‖∞ = max
{

|Ȟ i
k� p + ǫi

1|
}

≤ K (C1 + C2v̄)‖� p‖ + ‖� p‖2/2D

where C1 = 2.0 × 10−4 and C2 = 5.0 × 10−8 s/m.

With (40), (30) and (31) can be derived, and then by

neglecting the perturbation δ1, (29) is valid.

Remark 3: The intuition behind Proposition 2 is that due

to the small variation in hi ( p(t)), for small time windows

and small perturbations � p, their effect is removed by the

linear transformation Q̄⊺. For typical values (i.e., K ≤ 10,

‖� p‖ ≤ 1.5 m, and v̄ ≤ 50 m/s) the upper bound on the

perturbation ‖Ȟ i
k� p‖ caused by the CPS is 0.0031 m, which

is a factor of ten smaller than the centimeter noise level of the

carrier phase measurement. Because the perturbation is small

relative to the carrier phase measurement noise and multipath,

they can be neglected. △
Proposition 3 considers the cost functions ‖r2(X)‖2 and

‖r3(X, N)‖2 defined in (23) and (24).

Proposition 3: Consider any two trajectory integer

estimates (X̂1, N̂1) and (X̂2, N̂2).

1) Neglecting the time variation and the high-order terms in

the linearization of the GPS measurement model, there

exists a correction (� p, δN) ∈ R
3 × Z

m such that

‖r2(X̂1 ⊕ � p)‖2 + ‖r3(X̂1 ⊕ � p, N̂1 + δN)‖2

= ‖r2(X̂2)‖2 + ‖r3(X̂2, N̂2)‖2. (42)

2) Define the position errors between trajectories X̂1 and

X̂2 as δpk � p2
k − p1

k, k = 1, . . . , K . Accounting for the

time variation and the high-order terms in the lineariza-

tion of the GPS measurement model, if ‖δ pk‖ < 10 km,

there exists a correction (� p, δN) ∈ R
3 × Z

m such

that

Q
⊺

1 hi (X̂1 ⊕ � p) + λR1

(

N̂ i
1 + δN i

)

− Q
⊺

1 ϕi

= Q
⊺

1 hi (X̂2) + λR1 N̂ i
2 − Q

⊺

1 ϕi + Q
⊺

1 δ2 (43)

Q
⊺

1 hi (X̂1 ⊕ � p) − Q
⊺

1 ρ i

= Q
⊺

1 hi (X̂2) − Q
⊺

1 ρi + Q
⊺

1 δ2 (44)

where the magnitude of δ2 is bounded by

‖δ2‖∞ ≤ B1(‖� p‖, v̄ ) (45)

where B1 and v̄ are defined in (33). △
Proof 3: The details of this proof are in Appendix II.

Remark 4: Proposition 3 shows when K and ‖� p‖ are

bounded (e.g., K ≤ 10 and ‖� p‖ ≤ 3 m), we can mini-

mize ‖r2(X)‖2 + ‖r3(X, N)‖2 to within a small error, just

through a CPS � p and adjusting the integer estimates by δN.

Furthermore, the magnitude of the error δ2 is small relative to
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the noise level of carrier phase measurements. For example,

for K ≤ 10, �p ≤ 1.5 m, and v̄ ≤ 50 m/s, it follows that

‖δ2‖∞ ≤ 0.0031 m. △

C. Optimality of the CPS Method

The major propositions about the optimality of the CPS

method are presented as follows.

Proposition 4: If δ1 = 0 and δ2 = 0, then the following

identity is valid:

‖r(X̌ ⊕ � p⋆, N⋆)‖2 = ‖r(X∗, N∗)‖2 (46)

where X̌ is the float solution from (12), (� p⋆, N⋆) is the CPS

solution from (19), and (X∗, N∗) is the full NMILS estimate

from (11). △
Proof 4: See Appendix III.

Remark 5: This paper and proof introduce different tra-

jectories X̌, X∗, and X⊛ and trajectory sets X∗
1, X∗

2 and

X⋆. The proof shows that certain components of the cost

function have the same value when evaluated for differ-

ent trajectories or trajectory sets. Taking advantage of this

allows definition of the CPS algorithm described in (19)

that vastly reduces the computational load, as summarized

in Table I. △
Proposition 4 considers the case where the linearization

errors do not exist. Proposition 5 analyzes the effect of the

linearization errors.

Proposition 5: Accounting for the time variation and the

high-order terms in the linearization of the GPS measurement

model, the following inequality is valid:

E{‖r(X̌ ⊕ � p⋆, N⋆)‖2} ≤ (1 + C3)E{‖r(X∗, N∗)‖2}

where X̌ is the float solution from (12), (� p⋆, N⋆) is the CPS

solution from (19) with ‖� p⋆‖ ≤ � f , and

C3 =
K m

(

4σ−2
ρ + 3σ−2

ϕ

)

[B1(� f , v̄ )]2

(2K − 1)m − 3

and (X∗, N∗) is the full NMILS estimate from (11) and E{·}
is the expectation operator. △

Proof 5: See Appendix IV.

Remark 6: When K = 10, � f = 1.5, m = 7, σρ = 1.0 m

and σϕ = 0.020 m, and C3 = 0.04. The error between the

expected final costs of two optimizations is bounded within

4% of the expected optimum from the full NMILS approach.

For the full NMILS solution, the residuals are at the centimeter

level; therefore, the worst case perturbations would be 0.4 mm.

Thus, Propositions 4 and 5 show that the CPS is a valid and

accurate approximation to the original full NMILS approach.

△
The implementation results presented in Section VI demon-

strate that the differences between two approaches match the

expected performance.

D. Computation Analysis of the CPS Method

Table I compares the computational cost of the direct

MILS (see Section III) and CPS MILS (see Section IV-A).

TABLE II

EXAMPLE COMPARISON OF COMPUTATIONAL LOAD: f = 200,
K = 10, ns = 16, Ns = 160, M = 297, AND m = 7

In Table I, I1 represents the number of (linearized) nonlinear

least squares iterations required to find in the float solution

of Step 1). Similarly, I2 represents the number of linearized

iterations required for integer ambiguity resolution in the ILS

problem of Step 2). The IMU sampling rate (e.g., 200 Hz)

is f .

Compared with solving the full NMILS in (11) directly,

the computational cost in (19) is significantly reduced due

to the much smaller dimension of the real unknown variable

� p ∈ R
3 versus X ∈ R

ns K. In particular, this dimen-

sion reduction facilitates the QR decomposition in (15)

[see Row (2b) in Table I]. The dimensions of the corre-

sponding A matrices in the full MILS and CPS MILS are

M × Ns versus 2m × 3, where M � ns K + 2mK − 3

is the dimension of the residual vector, Ns � ns K is the

total state dimension of X, and 2m is the total number

of GPS measurements at a single epoch (code and carrier

phase). Furthermore, while each NMILS iteration of the direct

approach requires the expensive INS reintegration, the CPS

NMILS of (19) does not [see Row (2a) in Table I]. In the ILS,

the reduction step is cast as a QRZ decomposition, which is

actually a QR factorization with column pivoting (or column

reordering) [35]. In CPS MILS, the computation cost on QRZ

decomposition is lower due to the smaller dimension of Q̄
⊺

A B

[see Row (2c) in Table I]. On the other hand, the computation

of the integer search represented with (∗) in Row (2d) of

Table I will not vary significantly, since the dimension of δN

is the same in both approaches. The computation of the float

solution and the integer validation is the same in both the

direct MILS and CPS MILS methods.

To give a better sense of the computation improvement

achieved by the CPS approach, Table II shows an numerical

example of computation costs in Row (2a–c) of Table I. In this

example, the IMU frequency is 200 Hz, the CRT window

length is K = 10 epochs, the dimension of navigation state

is ns = 16, the average GNSS satellite availability is m = 7,

Ns = 160, and M = 297. Table II indicates in each step

that the CPS approach saves at least 90% of computation.

In particular, the computation cost of the QR decomposition

in Step 2b) is significantly reduced by an order of 105.

Note that neither approach being compared involved any

type of algorithm that would reduce computations by taking

into account the significant level of sparsity in the matrix A.

Sparse matrix implementations are an area of future research

that could further significantly reduce the computational

load.

VI. EXPERIMENTS

This section discusses the experimental implementations

of the proposed CPS method. The results demonstrate that
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Fig. 4. Maximum norm of horizontal positioning error and posterior L1 phase measurements residuals within each K = 10-s CRT window for the CPS method.

the CPS state estimates are close to those of the original

approach.

A. Solution Validation

In addition to the integer validation techniques, a threshold

� f for the CPS is used as a sanity check. This threshold can

be picked by the designer based on the expected positioning

accuracy of the float solution. After the CPS estimation

in (19), if ‖� p⋆‖ < � f and N⋆ can be validated with

standard integer validation techniques [31], then the estimate

of (X, N) that resulted from this CPS approach is finalized

as (X̌ ⊕ � p⋆, N⋆).

Various alternatives are possible if the CPS solution is

invalidated. The residuals could be analyzed in an attempt to

detect and remove satellites with noisy or invalid measure-

ments to improve performance within the current epoch. The

original full NMILS in (11) could be executed to attempt to

get (X∗, N∗). Alternatively, the float solution X̌ could be used

to update the real-time state estimates, while at future epochs,

the CRT window could be augmented with additional data for

the next trial of integer resolution. For example, the designer

can choose to slide the current window to the next epoch(s) or

extend the length of the current window to accumulate more

data. Or the scheme could just skip the current window and

wait for a new window with larger m, which should yield a

higher success rate. In the following experiments, � f = 3 m.

B. Experimental Description

For performance evaluation, the proposed approach is

implemented in C++ and applied to RTK GPS/INS data sets

collected from an automotive vehicle. The on-vehicle GPS/INS

suite consists of a NovAtel OEMV3 receiver that outputs

GPS pseudorange and carrier phase measurements at 1 Hz,

and a 200-Hz NV-IMU1000 IMU from NAV Technology

Company Ltd that outputs the specific forces and angular rate

measurements along the three orthogonal axes. The DGPS

information, including the raw dual-frequency GPS measure-

ments (Message 1004 in RTCM3.1) and the base position

(Message 1006 in RTCM3.1), is broadcast by the UC River-

side (UCR) Ntrip Caster (ntrip.engr.ucr.edu:2101) publicly

over the Internet at 1 and 0.1 Hz, respectively [36], [37].

Two data sets logged on the vehicle are processed by the

CPS approach:

1) a stationary 12-h (43 200-s) data set collected on UCR

campus on March 29, 2014;

2) a moving 640-s data set collected while driving near the

UCR Center for Environmental Research and Technol-

ogy (CE-CERT) on January 23, 2014.

Since the purpose of the IMU is to cause the residuals to be

insensitive to vehicle motion, the performance (i.e., position

error and residual analysis) on the two data sets should be

similar. The accuracy of the stationary data is more easily

verified.

The algorithms were executed on a desktop computer with

Intel Core2 Q9400 four-core CPU at 2.66 GHz, 8-GB DDR3

1333-MHz memory, and 240-GB SSD disk drive. The pro-

gram runs in Ubuntu 12.04 64-bit OS within a VMware

virtual machine for Windows 7. The total memory used by

the virtual machine is up to 4 GB. Under this implemen-

tation environment and picking the CRT window length to

be K = 10 s, the average computing time for one CPS iteration

is approximately 0.25 ms versus 150 ms for the original full

MILS method, indicating significant (600×) computational

performance improvement. The code is capable of real-time

or postprocessed modes of operation. The results presented

here are from postprocessing, still running in real time, using

stored data.

For the stationary data, the 3-D ground-truth position is

known, so positioning errors are presented to show the CPS

performance. For the moving data sets, the ground truth is

unavailable; therefore, the trajectory and integer estimates
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from the CPS and the original full MILS method [17] are

compared to show that the CPS is an efficient alternative

to the full MILS method, while achieving the same level

of accuracy. For both implementations, dual-frequency carrier

phase measurements are utilized to form wide-lane phase mea-

surements [1]. For both stationary and moving data, histograms

of the L1 carrier phase measurements residuals are used as a

second method to illustrate CRT accuracy. A 10° elevation

mask is applied to GPS satellites. Integers were resolved

only when the CRT windows contained at least five satellites.

In the evaluation of the CPS approach, the initial condition

and the prior term in the cost function of (9) include only s

defined in (3). There is no prior for the position or integer.

Therefore, the integer solutions for each CRT window are

independent. After estimation at each time step, a residual

check is used to validate the integer estimates. If the mag-

nitude of a carrier phase measurement residuals with fixed

integer estimate is larger than 0.06 m, the integer estimate

is rejected. Other integer validation techniques, e.g., ratio

test, can be applied [31], [38]. Only the validated results are

recorded.

C. Stationary Data

For the stationary data, the antenna position p0 is surveyed

with accuracy at the millimeter level. The algorithm itself has

no knowledge of this ground-truth position.

For each 10-s CRT windows, the algorithm estimates

X = [x(t1)
⊺, x(t2)

⊺, . . . , x(t10)
⊺]⊺. For the 43 200-s station-

ary data, 569 trials failed with m < 5, 38 167 trials are

validated (i.e., m ≥ 5 and the residual check is passed).

The positioning results are presented through comparison

with the ground truth (i.e., p(tk) − p0). To evaluate the

positioning performance, the maximum norm of the hori-

zontal position error over each CRT window was logged

and is shown as a histogram in Fig. 4 (top-left). Accura-

cies below 0.02 m are typical, which matches the expected

performance of RTK GPS positioning. Fig. 4 (bottom-left)

shows that the vast majority of the L1 phase residuals lie

in [−0.02, 0.02] m.

D. Moving Data

The route and satellite availability while logging this

data set are shown in Fig. 5. The average vehicle speed

is 35 km/h.

Since the ground truth is not available for this data set, the

implementation results of the CPS method are compared with

those of the original full MILS method [17]. The implementa-

tion results show that all the validated integers from CPS are

identical to those from the full MILS method. Furthermore,

Fig. 4 (top-right) shows that the maximum norm, during each

CRT window, of the horizontal position error between CPS

and full MILS are bounded by 0.04 m and typically less

than 0.02 m. This demonstrates that the CPS method is a good

approximation of the full MILS method in terms of integer

ambiguity resolution and positioning. Fig. 4 (bottom-right)

shows that most of the L1 phase measurement residuals lie

in [−0.02, 0.02] m.

Fig. 5. Route and the satellite availability of the 640-s moving data
experiment. The x- and y-axis are the longitude and latitude in degrees,
respectively. The colors along the route indicate the number of satellites visible
to the receiver at that location and time.

Fig. 6. Magnitude of the 3-D position shift estimated by CPS and the

variations of ‖r4‖2 caused by the CPS.

The purpose of Fig. 6 is to validate Proposition 2. For the

i th satellite in each time window, define

�r i � Q̄
⊺
1 (hi (X̌ ⊕ � p⋆) − ϕi ) − Q̄

⊺

1 (hi (X̌) − ϕi )

which is the variation of the integer-free phase measure-

ment residuals (see Proposition 2) caused by the estimated

CPS � p⋆. Furthermore, �r i can be rewritten as

�r i = Q̄
⊺

1 (hi (X̌ ⊕ � p⋆) − hi (X̌)).

For the moving data, the maximum magnitude of �r i over

each CRT window, i.e., δmax = maxi {‖�r i‖∞}, is recorded

along with the magnitude of CPS ‖� p⋆‖ for each CRT

window.

Proposition 2 implies that a CPS will cause only small

variations, �r i , that are upper bounded by B1(‖� p⋆‖, v̄).

Fig. 6 validates this claim by plotting δmax, ‖� p⋆‖, and the

bound B1 calculated in (33). Fig. 6 also shows that in this

data set, all the CPS estimates have norm less than 1.2 m, as

expected.
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Fig. 7. Maximum attitude, velocity, and bias estimation errors between the CPS and full MILS results of the moving data.

Fig. 7 shows the maximum differences between the CPS

estimates and the full MILS estimates of attitude, velocity,

and bias. Fig. 7 shows that the roll and pitch estimate errors

are smaller than 0.1◦, and for yaw angle, most of the errors

are smaller than 0.5◦. The velocity estimate errors between

two methods are smaller than 0.02 m/s.

VII. CONCLUSION

This paper proposes a novel integer ambiguity resolution

approach over a time window of GPS/IMU data. The purpose

of processing a window of data is to enhance the relia-

bility of obtaining high-accuracy position estimation, using

carrier phase measurements, even in challenging environments.

Enhanced reliability will require further research into outlier

detection methods that are beyond the scope of this paper.

The CPS method focuses on the reduction of computa-

tional cost. Theoretically, the achievable computational savings

should be on the order of 104, while 600 has been demon-

strated. Future research could further reduce the computational

load by taking advantage of the potential sparsity of the

linearized matrix denoted by A. The analysis shows that the

estimation accuracy of the original and CPS algorithms would

be identical if the GPS measurements were linear and time

invariant and presents bounds on the errors incurred due to

the measurement nonlinearity and time dependence.

The theoretical approach is also interesting in that it shows

that the cost function can be decomposed into one part that

determines the shape and vicinity of the trajectory, but is

insensitive to the carrier phase integers and a position shift

vector, and a second part that is sensitive to the carrier

phase integer and can be solved to determine the required

position shift so that the location of the trajectory is accurately

known.

Theoretical analysis is presented for the CPS method. The

implementation results show that the proposed CPS method

obtains integer estimates identical to those from the original

full MILS method and obtains centimeter positioning accuracy

and that other state estimation errors are small.

APPENDIX I

INS REVIEW

For any initial state x(τk), the solution to (1) for

t ∈ [τk, τk+1] is

x(t) = x(τk) +
∫ t

τk

f (x(τ ), u(τ ))dτ. (47)

While nature solves (47) in continuous time, the INS has

only IMU and aiding measurements at discrete-time instants;

therefore, the INS numerically solves

x̂(τk+1) = φ(x̂(τk), ũ(τk))

= x̂(τk) +
∫ τk+1

τk

f (x̂(τ ), ũ(τ ))dτ (48)

where φ is defined as the integration operator. The result of

the numeric integration of (48) is the INS state estimate of

x̂(τk+1) for the given x̂(τk) and û(τk). The numeric integration

repeats to propagate the state measurements between the times

of aiding measurements. The aiding measurement times can be

unequally spaced in time without causing any complications.

Let Ũ j = {ũ(τk), τk ∈ [t j , t j+1]}, then (48) can be called

recursively to compute x̂(t j+1) from x̂(t j ) and Ũ j ; denote

this by x̂(t j+1) = φ(x̂(t j ), Ũ j ). At the same time, nature is

integrating (47) which it denoted as x(t j+1) = φ(x(t j ), U j ).

The linearized error growth model is

δ x̂(t j+1) = � jδ x̂(t j ) + ω j
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where ω j ∼ N(0, Q j ) and � j = (∂φ(x)/∂x)|(x̂(t j ),Ũ j )
. The

INS provides both Q j and � j (see [1, Sec. 7.2.5.2]).

APPENDIX II

This appendix proves Proposition 3.

Proof 6: The linearization error term ǫi is not included

in this proof, but can be added by following the idea in the

proof of Proposition 2.

The proof first shows the existence of (� p, N)

for (43) and (44) and then allows δ2 = 0 to prove the

existence of (� p, N) for (42).

From its definition in Section IV, Q1 is a unit column matrix

whose column spans the range space of 1 = [1, . . . , 1]⊺ ∈ R
K

Q
⊺

1 = [1/
√

K , . . . , 1/
√

K ] ∈ R
K.

Therefore

Q
⊺

1

⎡

⎢

⎣

H̄ i

...

H̄ i

⎤

⎥

⎦
=

√
K H̄ i (49)

for the row vector H̄ i as defined in (35).

Starting from (43), our goal is to show that there exist

� p ∈ R
3 and integer δN i for i = 1, . . . , m, such that

Q
⊺

1 hi (X̂1 ⊕ � p) + λR1

(

N̂ i
1 + δN i

)

= Q
⊺

1 hi (X̂2) + λR1 N i
2 + Q

⊺

1 δ2. (50)

Let δX � X̂2 − X̂1 and p̂k ∈ R
3 be the position estimates

in X̂1, then

Q
⊺

1 hi (X̂2) = Q
⊺

1 hi (X̂1 + δX) (51)

= Q
⊺

1

⎡

⎢

⎣

hi
1( p̂1 + � p1)

...

hi
K ( p̂K + � pK )

⎤

⎥

⎦
(52)

= Q
⊺

1

⎡

⎢

⎣

hi
1( p̂1)

...

hi
K ( p̂K )

⎤

⎥

⎦
+ Q

⊺

1

⎡

⎢

⎣

H i
1� p1
...

H i
K � pK

⎤

⎥

⎦
(53)

= Q
⊺

1

⎡

⎢

⎣

hi
1( p̂1)

...

hi
K ( p̂K )

⎤

⎥

⎦
+ Q

⊺

1

⎡

⎢

⎣

H̄ i� p1
...

H̄ i� pK

⎤

⎥

⎦
+ Q

⊺

1

⎡

⎢

⎣

Ȟ i
1� p1
...

Ȟ i
K � pK

⎤

⎥

⎦
(54)

= Q
⊺

1

⎡

⎢

⎣

hi
1( p̂1)

...

hi
K ( p̂K )

⎤

⎥

⎦
+ H̄ i

√
K

∑

k

� pk +Q
⊺

1

⎡

⎢

⎣

Ȟ i
1(� p+� p̌1)

...

Ȟ i
K (� p+� p̌K )

⎤

⎥

⎦

where H̄ i is the average of Jacobian matrix H i
k . Define

� p = 1

K

K
∑

i=1

� pk ∈ R
3 (55)

as the average of the position adjustments in δX and

� p̌k = � pk −� p as the variation of the position adjustments.

Continuing, using (55) and then (49) yields

Q
⊺

1 hi (X̂2)

= Q
⊺

1

⎡

⎢

⎣

hi
1( p̂1)

...

hi
K ( p̂K )

⎤

⎥

⎦
+

√
K H̄ i� p + Q

⊺

1

⎡

⎢

⎣

Ȟ i
1(� p + � p̌1)

...

Ȟ i
K (� p + � p̌K )

⎤

⎥

⎦

= Q
⊺

1

⎡

⎢

⎣

hi
1( p̂1)

...

hi
K ( p̂K )

⎤

⎥

⎦
+Q

⊺

1

⎡

⎢

⎣

(

H̄ i + Ȟ i
1

)

� p
...

(

H̄ i + Ȟ i
K

)

� p

⎤

⎥

⎦
+Q

⊺

1

⎡

⎢

⎣

Ȟ i
1� p̌1

...

Ȟ i
K � p̌K

⎤

⎥

⎦

= Q
⊺

1

⎡

⎢

⎣

hi
1( p̂1) + H i

1� p
...

hi
K ( p̂K ) + H i

K � p

⎤

⎥

⎦
+ Q

⊺

1

⎡

⎢

⎣

Ȟ i
1� p̌1
...

Ȟ i
K � p̌K

⎤

⎥

⎦
(56)

= Q
⊺

1

⎡

⎢

⎣

hi
1( p̂1 + � p)

...

hi
K ( p̂K + � p)

⎤

⎥

⎦
+ Q

⊺

1

⎡

⎢

⎣

Ȟ i
1� p̌1
...

Ȟ i
K � p̌K

⎤

⎥

⎦
(57)

= Q
⊺

1 hi (X̂1 ⊕ � p) + Q
⊺

1

⎡

⎢

⎣

Ȟ i
1� p̌1
...

Ȟ i
K � p̌K

⎤

⎥

⎦
. (58)

Thus, with N̂ i
1 + δN i = N̂ i

2, it follows that:

Q
⊺

1 hi (X̂1 ⊕ � p) + λR1

(

N̂ i
1 + δN i

)

= Q
⊺

1 hi (X̂2) + λR1 N̂ i
2 + Q

⊺

1 δ2

where δ2 � [Ȟ i
1� p̌1, . . . , Ȟ i

K � p̌K ]⊺. With (38),

‖� p̌k‖ < �p and |ǫi
k | < ‖� p‖2/2D, and the bound

in (45) can be derived. This conclusion can also apply to

code measurements such that (44) is also valid.

By neglecting the perturbation δ2 in (43) and (44),

(42) can be obtained and this concludes the proof. Note that

the definition of � p in (55) is independent of i ; therefore, the

proof can be repeated for each satellite.

APPENDIX III

This appendix proves Proposition 4. The proof will use the

following symbols:

X∗
1 = arg min

X∈Rns K

‖r1(X)‖2, X∗
2 = arg min

X∈Rns K

‖r2(X)‖2

(X⋆, N⋆) � arg min
X∈Rns K ,N∈Zm

‖rb(X, N)‖2

and

� p∗
12 = arg min

� p∈R3

∥

∥r2

(

X∗
1 ⊕ � p

)
∥

∥

2
.

Note that X∗
1, X∗

2, and X⋆ are sets of trajecto-

ries. At each time t , with the definition in (3), any

trajectory X can be rewritten as X = [P⊺, S⊺]⊺,

where P = [p⊺(t1), . . . , p⊺(tK )]⊺ ∈ R
3K and S =

[s⊺(t1), . . . , s⊺(tK )]⊺ ∈ R
K (ns−3). Because by definition ‖r2‖2

(or ‖rb‖2) is independent of S, the set X∗
2 (or X⋆) contains

all trajectories with the same sequence of positions P∗
2 , but

distinct values of S. Each trajectory in X∗
2 (or X⋆) has the same

value for ‖r2‖2 (or ‖rb‖2), but will be penalized differently
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by ‖r1‖2. Similarly, X∗
1 is a trajectory set, each having the

same shape S∗
1, but with P shifted by a common vector � p

by Proposition 2. Each trajectory in X∗
1 has the same value

for ‖r1‖2 but different penalty for ‖rb‖2.

Proof 7: By the definition of (X⋆, N⋆), it follows that for

the float solution X̌ defined in (12), ∀(� p, N) ∈ R
3 ∪ Z

m :

‖rb(X⋆, N⋆)‖2 ≤ ‖rb(X̌ ⊕ � p, N)‖2. (59)

Given (X̌, Ň) and (X⋆, N⋆), the unique (� p⋆, N⋆) such that

‖rb(X̌ ⊕ � p⋆, N⋆)‖2 = ‖rb(X⋆, N⋆)‖2 (60)

is provided in Appendix II in the proof of Proposition 3. From

Proposition 2 (with δ1 = 0), it follows that:

‖r1(X̌ ⊕ � p⋆)‖2 = ‖r1(X̌)‖2. (61)

Similarly, by Proposition 2 (with δ1 = 0), it can also be

proved that
∥

∥r1

(

X∗
1 ⊕ � p∗

12

)
∥

∥

2 =
∥

∥r1

(

X∗
1

)
∥

∥

2
. (62)

By Proposition 3 (with δ2 = 0) and considering the identical

optimality achieved by p∗
12 and X∗

2 , it follows that:
∥

∥r2

(

X∗
1 ⊕ � p∗

12

)
∥

∥

2 =
∥

∥r2

(

X∗
2

)
∥

∥

2
. (63)

Since X̌ is the float solution such that

‖ra(X̌)‖2 ≤ ‖ra(X)‖2 ∀X ∈ R
ns K

we have

‖r1(X̌)‖2 + ‖r2(X̌)‖2

≤
∥

∥r1

(

X∗
1 ⊕ � p∗

12

)

‖2 +
∥

∥r2

(

X∗
1 ⊕ � p∗

12

)
∥

∥

2
. (64)

Substituting (62) and (63) into (64), it follows that:

‖r1(X̌)‖2 + ‖r2(X̌)‖2 ≤
∥

∥r1

(

X∗
1

)
∥

∥

2 +
∥

∥r2

(

X∗
2

)
∥

∥

2
.

By the definition of X∗
1 and X∗

2
∥

∥r1

(

X∗
1

)∥

∥

2 ≤ ‖r1(X)‖2 ∀X ∈ R
ns K

∥

∥r2

(

X∗
2

)∥

∥

2 ≤ ‖r2(X)‖2 ∀X ∈ R
ns K. (65)

Combining these three inequalities yields

‖r1(X̌)‖2 =
∥

∥r1

(

X∗
1

)
∥

∥

2
. (66)

By the definition of (X⋆, N⋆), it follows that:

‖rb(X⋆, N⋆)‖2 ≤ ‖rb(X, N)‖2 ∀(X, N) ∈ R
ns K × Z

m . (67)

With (65), (67), and ‖r1‖2 + ‖rb‖2 = ‖r‖2, it follows that:
∥

∥r1

(

X∗
1

)
∥

∥

2 + ‖rb(X⋆, N⋆)‖2 ≤ ‖r(X, N)‖2 ∀(X, N).

Then, it follows that:
∥

∥r1

(

X∗
1

)∥

∥

2 + ‖rb(X⋆, N⋆)‖2 ≤ ‖r(X∗, N∗)‖2. (68)

From (60), (61), and (66)

‖r1(X̌ ⊕ � p⋆)‖2 + ‖rb(X̌ ⊕ � p⋆, N⋆)‖2 ≤ ‖r(X∗, N∗)‖2

(69)

that is

‖r(X̌ ⊕ � p⋆, N⋆)‖2 ≤ ‖r(X∗, N∗)‖2. (70)

On the other hand, from (11), we have

‖r(X∗, N∗)‖2 ≤ ‖r(X, N)‖2 ∀X ∈ R
ns K, N ∈ Z

m .

Thus, only equality can stand

‖r(X̌ ⊕ � p⋆, N⋆)‖2 = ‖r(X∗, N∗)‖2

and this concludes the proof.

APPENDIX IV

This appendix proves Proposition 5 using similar tech-

niques as were used for proving Proposition 4. In this proof,

X̌ and � p⋆ are known and fixed.

Proof 8: Proposition 1 shows that the float solution X̌ is

equal to the integer-free solution, which optimizes the cost

‖ra(X)‖2 such that

‖ra(X̌)‖2 ≤ ‖ra(X)‖2 ∀X ∈ R
ns K.

Taking the norm of (30) after replacing δ1 with (41),

it follows that:
∥

∥Q̄
⊺

1 (hi (X̌ ⊕ � p⋆) − ϕi )
∥

∥

2

σ 2
ϕ I−

=
∥

∥Q̄
⊺

1 (hi (X̌) − ϕi )
∥

∥

2

σ 2
ϕ I−

+2

⎡

⎢

⎣

Ȟ i
1� p⋆ + ǫi

1
...

Ȟ i
K � p⋆ + ǫi

K

⎤

⎥

⎦

⊺

Q̄1

(

σ 2
ϕ I−)−1

Q̄
⊺

1 (hi (X̌) − ϕi )

+

∥

∥

∥

∥

∥

∥

∥

Q̄
⊺

1

⎡

⎢

⎣

Ȟ i
1� p⋆ + ǫi

1
...

Ȟ i
K � p⋆ + ǫi

K

⎤

⎥

⎦

∥

∥

∥

∥

∥

∥

∥

2

σ 2
ϕ I−

. (71)

Given the Gaussian noise assumptions, after convergence

of the float solution optimization process, the residual

Q̄
⊺

1 (hi (X̌) − ϕi ) is a zero-mean random variable modeled as

Gaussian. Therefore, the expected value of (71) yields

E
{
∥

∥Q̄
⊺

1 (hi
(

X̌ ⊕ � p⋆
)

− ϕi )
∥

∥

2

σ 2
ϕ I−

}

≤ E
{∥

∥Q̄
⊺

1 (hi (X̌) − ϕi )
∥

∥

2

σ 2
ϕ I−

}

+ σ−2
ϕ K [B1(‖� p⋆‖, v̄)]2

(72)

because Q = [Q1, Q̄1] allows that

∥

∥

∥

∥

∥

∥

∥

Q̄
⊺
1

⎡

⎢

⎣

Ȟ i
1� p⋆ + ǫi

1
...

Ȟ i
K � p⋆ + ǫi

K

⎤

⎥

⎦

∥

∥

∥

∥

∥

∥

∥

2

σ 2
ϕ I−

≤

∥

∥

∥

∥

∥

∥

∥

Q⊺

⎡

⎢

⎣

Ȟ i
1� p⋆ + ǫi

1
...

Ȟ i
K � p⋆ + ǫi

K

⎤

⎥

⎦

∥

∥

∥

∥

∥

∥

∥

2

σ 2
ϕ I

and |Ȟk� p⋆ + ǫi
k | ≤ B1(� p⋆, v̄), for any k = 1, . . . , K . Note

that an inequality analogous to inequality (72) also applies to

pseudorange measurements

E
{
∥

∥Q̄
⊺
1 (hi (X̌ ⊕ � p⋆) − ρi )

∥

∥

2

σ 2
ρ I−

}

≤ E
{
∥

∥Q̄
⊺

1 (hi (X̌) − ρ i )
∥

∥

2

σ 2
ρ I−

}

+ σ−2
ρ K [B1(‖� p⋆‖, v̄ )]2.

(73)
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Since a CPS � p will not cause any variation in the prior cost

and the INS cost terms, it follows that:
E{‖r1(X̌ ⊕ � p⋆)‖2 − ‖r1(X̌)‖2

}

≤ m
(

σ−2
ρ + σ−2

ϕ

)

K [B1(‖� p⋆‖v̄)]2 (74)

where m is the number of available satellites.

Similarly, with Proposition 3 and its proof, it can be derived

that

E{‖rb(X̌ ⊕ � p⋆, N⋆)‖2 − ‖rb(X⋆, N⋆)‖2}
≤ m

(

σ−2
ρ + σ−2

ϕ

)

K [B1(‖� p⋆‖v̄ )]2. (75)

Similarly by Proposition 2, it can also be proved that

E
{
∥

∥r1

(

X∗
1 ⊕ � p∗

12

)
∥

∥

2 −
∥

∥r1

(

X∗
1

)
∥

∥

2}

≤ m
(

σ−2
ρ + σ−2

ϕ

)

K
[

B1

(
∥

∥� p∗
12

∥

∥v̄
)]2

. (76)

By Proposition 3

E
{
∥

∥r2

(

X∗
1 ⊕ � p∗

12

)
∥

∥

2 −
∥

∥r2

(

X∗
2

)
∥

∥

2}

≤ mσ−2
ρ K

[

B1

(
∥

∥� p∗
12

∥

∥, v̄
)]2

. (77)

Since X̌ is the float solution such that

‖ra(X̌)‖2 ≤ ‖ra(X)‖2 ∀X ∈ R
ns K

we have

‖r1(X̌)‖2 + ‖r2(X̌)‖2

≤
∥

∥r1

(

X∗
1 ⊕ � p∗

12

)
∥

∥

2 +
∥

∥r2

(

X∗
1 ⊕ � p∗

12

)
∥

∥

2
. (78)

With inequalities (76), (77), and (78), it follows that:

E
{

‖r1(X̌)‖2 + ‖r2(X̌)‖2 −
∥

∥r1

(

X∗
1

)
∥

∥

2 −
∥

∥r2

(

X∗
2

)
∥

∥

2}

≤ m
(

2σ−2
ρ + σ−2

ϕ

)

K
[

B1

(
∥

∥� p∗
12

∥

∥, v̄
)]2

.

and then

E
{

‖r1(X̌)‖2 −
∥

∥r1

(

X∗
1

)
∥

∥

2}

≤ m
(

2σ−2
ρ + σ−2

ϕ

)

K
[

B1

(
∥

∥� p∗
12

∥

∥, v̄
)]2

(79)

since ‖r2(X̌)‖2 − ‖r2(X
∗
2)‖2 ≥ 0 is always true. From

inequalities (74) and (79), it follows that:

E
{
∥

∥r1(X̌ ⊕ � p⋆)‖2 −
∥

∥r1

(

X∗
1

)
∥

∥

2}

≤ m
(

3σ−2
ρ + 2σ−2

ϕ

)

K [B1(�, v̄)]2

where � � max(‖� p⋆‖, ‖� p∗
12‖). Along with inequality (75)

and the inequality
∥

∥r1

(

X∗
1

)
∥

∥

2 + ‖rb(X⋆, N⋆)‖2 ≤ ‖r(X∗, N∗)‖2

it follows that:
E{‖r(X̌ ⊕ � p⋆, N⋆)‖2}

= E{‖r1(X̌ ⊕ � p⋆)‖2 + ‖rb(X̌ ⊕ � p⋆, N⋆)‖2}
≤ E

{
∥

∥r1

(

X∗
1

)
∥

∥

2 + ‖rb(X⋆, N⋆)‖2
}

+ m
(

4σ−2
ρ + 3σ−2

ϕ

)

K [B1(�, v̄)]2. (80)

Following the steps from (67) and (68), it yields that:
E{‖r(X̌ ⊕ � p⋆, N⋆)‖2}

≤ E{‖r(X∗, N∗)‖2} + m
(

4σ−2
ρ + 3σ−2

ϕ

)

K [B1(�, v̄)]2

= E{‖r(X∗, N∗)‖2}(1 + C3)

where

C3 =
m

(

4σ−2
ρ + 3σ−2

ϕ

)

K [B1(�, v̄)]2

E{‖r(X∗, N∗)‖2} .

The optimum ‖r(X∗, N∗)‖2 is referred as the a posteriori

variance factor in classical least squares literature [45]. It can

be shown that

E{‖r(X∗, N∗)‖2} = (2K − 1)m − 3

where (2K −1)m −3 = (ns K +2K m −3)− (ns K +m) is the

difference between the total number of measurements and the

total dimension of unknown variables, which is also referred

as the degree of freedom. Thus, it follows that:

C3 =
m

(

4σ−2
ρ + 3σ−2

ϕ

)

K [B1(�, v̄)]2

(2K − 1)m − 3
.

Herein, both ‖� p⋆‖ and ‖� p∗
12‖ are upper bounded by � f ,

so � ≤ � f and this concludes the proof.
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