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Abstract: Electromagnetic (EM) simulation tools are of primary importance in the design of contemporary antennas. The 
necessity of accurate performance evaluation of complex structures is a reason why the final tuning of antenna dimensions, 
aimed at improvement of electrical and field characteristics, needs to be based on EM analysis. Design automation is highly 
desirable and can be achieved by coupling EM solvers with numerical optimization routines. Unfortunately, its computational 
overhead may be impractically high for conventional algorithms. This paper proposes an efficient gradient search algorithm 
with numerical derivatives. The acceleration of the optimization process is obtained by means of the two mechanisms 
developed to suppress some of finite-differentiation-based updates of the antenna response sensitivities that involve 
monitoring and quantifying the gradient changes as well as design relocation between the consecutive algorithm iterations. 
Both methods considerably reduce the need for finite differentiation, leading to significant computational savings. At the 
same time, excellent reliability and repeatability is maintained, which is demonstrated through statistics over multiple 
algorithm runs with random initial designs. Our approach is validated using a benchmark set of wideband antennas. The 
proposed algorithm is competitive to both the reference trust-region algorithm as well as its recently reported accelerated 
versions.  

1. Introduction
Design of contemporary antenna systems is a 

challenging endeavour. It involves several steps including a 
conceptual design, development of antenna topology (usually 
aided by a parameter sweeping), as well as design 
optimization [1]. The importance of this last stage has been 
steadily increasing as a result of a growing complexity of 
antenna structures which can no longer be reliably evaluated 
using design-ready theoretical models. Instead, 
computationally expensive full-wave electromagnetic (EM) 
analysis is required. It is especially critical to account for the 
phenomena that exhibit non-negligible effects on the system 
performance such as mutual radiator coupling, feed radiation, 
the effects of connectors or radomes. The need for using EM 
simulation for the antennas described by large number of 
geometry parameters makes the design closure a time 
consuming process. On the top of this, several performance 
figures have to be handled at the same time (e.g., impedance 
matching, radiation patterns, gain, axial ratio, as well as the 
physical size of the structure). The last issue is particularly 
problematic for the traditional tuning methods, primarily 
based on parameter sweeping. Nowadays, rigorous numerical 
optimization has been gaining popularity as it is capable of 
simultaneous adjustment of all relevant parameters. A 
practical problem is the high computational cost of 
conventional algorithms, which is the case even for local 
methods, e.g., gradient algorithms [2] or pattern search 
techniques [3]. Clearly, it is much more pronounced for 
global procedures, especially population-based 

metaheuristics (genetic algorithms [4], differential evolution 
[5], particle swarm optimizers [6]); making them virtually 
unusable for direct optimization of high-fidelity EM 
simulation models. 

Improvement of computational efficiency of 
numerical optimization has been investigated over the last 
years leading to a number of interesting techniques and 
promising results. In the case of gradient-based algorithms, a 
considerable speedup can be achieved using the adjoint 
sensitivity techniques [7], [8]. Unfortunately, the adjoint 
technology is not widely accessible through commercial 
solvers [9]. An alternative approach are surrogate-based 
optimization (SBO) methods [10]. As a matter of fact, SBO 
is a large and still growing class of techniques whose common 
feature is a utilisation of a faster representation (referred to as 
the surrogate model) of the original simulation model in order 
to accelerate the process of the optimum design identification. 
The surrogate models fall into one of the two categories: 
physics-based models (e.g., space mapping [11], response 
correction methods [12], [13], feature-based optimization 
[14], adaptive response scaling [15]) or approximation (or 
data-driven) ones (e.g., kriging [16], Gaussian process 
regression [17], combinations with machine learning 
techniques [18]). The principal distinction between these two 
groups stems from their very foundations. The data-driven 
models are merely approximations of the sampled simulation 
data, therefore they are fast and generic. However, they are 
affected by the curse of generality and are mainly used for 
local applications such as statistical analysis [19] or for 
handling low-dimensional parameter spaces [20]. On the 
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other hand, physics-based surrogates are constructed using 
underlying low-fidelity models which make them more 
immune to the dimensionality issues. At the same time, they 
are of limited use for antenna optimization, primarily due to 
unavailability of such models. 

One of the prerequisites for speeding up local search 
algorithms, both direct EM-based design and variable-fidelity 
SBO algorithms [11], is a reduction of the number of antenna 
simulations at any level of fidelity that is relevant to the 
optimization framework at hand. Recently, some variations 
of the trust-region (TR) gradient search framework have been 
proposed with this in mind [21], [22]. The methods aim at 
reducing the number of EM analyses through omission of the 
gradient updates under certain conditions. These include 
small relative changes of the design between the algorithm 
iterations in particular directions [21], and sufficient 
alignment of the design relocation direction with the 
coordinate system vectors [22]. In both cases, the 
computational speedup has been achieved at the expense of 
noticeable loss of design quality. 

In this work, a novel trust-region-based algorithm with 
numerical derivatives for computationally-efficient antenna 
design optimization is proposed. There are two mechanisms 
introduced to control (or, more specifically, suppress in some 
cases) the gradient updates using finite differentiation. The 
first one is the monitoring of the antenna sensitivity change 
between the algorithm iterations; the second involves 
analysing the amount of design relocation in relation to the 
trust region size. A combination of these mechanisms makes 
it possible to considerably reduce the number of EM analyses 
with respect to the reference TR algorithm, without 
compromising the design quality in a significant manner. 
Furthermore, the proposed approach outperforms the 
methods of [21] and [22] both in terms of the computational 
efficiency and reliability.  

The main contributions of the work are the following: 
(i) establishing a computationally-efficient procedure for 
antenna optimization by adaptation and fusion of previously 
reported acceleration mechanisms; the procedure yields the 
designs of quality comparable to those produced by reference 
TR-region algorithm at less than half of its computational cost, 
(ii) guiding the optimization process in a novel manner by 
combining various sensitivity update techniques in an 
adaptive fashion, and (iii) demonstrating the relevance of the 
approach for solving real-world antenna design tasks. One of 
possible applications of the framework is a direct EM-driven 
design closure of antennas. The algorithm can also be used 
within variable-fidelity SBO routines for optimizing 
surrogates constructed from coarse-mesh EM simulations.  

2. Acceleration Procedures for Trust-Region 
Gradient-Based Antenna Optimization 

In this section, the formulations of the design closure 
task as well as the conventional trust-region algorithm are 
recalled, followed by an exposition of the proposed 
optimization procedure. Specifically, the two adopted 
acceleration mechanisms and their integration into the trust-
region framework are discussed in detail.  

 
 

2.1. Formulation of the Design Optimization Task 
 

An essential part of design automation by means of 
numerical optimization is a properly defined performance 
measure. Typically, scalar cost functions are utilized to assess 
the quality of the design. This is the most convenient 
approach, in which single-objective search routines are 
employed (e.g., gradient-based algorithms). Multi-objective 
design [23], handling vector-valued objective functions is out 
of the scope of this work.  

Here, the antenna design closure task is formulated as 
a nonlinear minimization problem of the form  

 
* arg min ( ))U

x
x x                                (1) 

 
where U stands for the scalar objective function and x denotes 
a vector of antenna geometry parameters. The actual 
definition of the objective function depends on the 
performance figures of interest. Probably the most popular 
type of optimization problems in antenna design is an 
improvement of the impedance matching over a frequency 
range of interest F. In this case, the cost function U can be 
defined as  

 
11( ) max | ( , ) |

f F
U S f


x x                           (2) 

 
where |S11(x,f)| is the reflection coefficient and it depends 
both on the vector of antenna parameters x and the frequency 
f. For ultra-wideband (UWB) antennas considered in Section 
3, the frequency range F corresponds to the UWB band from 
3.1 GHz to 10.6 GHz.  

The design optimization task is formulated in a 
minimax sense as a nonlinear minimization problem of the 
form (1), whereas the objective function U is defined by (2). 
The antenna characteristics, for the sake of reliability, are 
obtained from full-wave EM simulation. One of widely used 
and reliable (local) routines for solving such tasks is a trust-
region gradient search recalled in Section 2.2. This is the 
starting point of the proposed accelerated algorithm 
introduced in Section 2.3. 

 
2.2. Reference Optimization Algorithm 

 
The reference method is the conventional local trust-

region (TR)-based algorithm (e.g., [24]) that solves the 
problem (1) by yielding approximations x(i), i = 0, 1, …, to 
the optimum design x*. The consecutive designs are obtained 
by optimizing a local linear model U(L(i)) of U at x(i)  

 
  ( ) ( ) ( )

( 1) ( )

;
arg min ,

i i i

i iU f

   


x d x x d
x L x                (3) 

 
where L(i)(x) is a first-order Taylor expansion of the adopted 
cost function at the current iteration point x(i). For the 
reflection characteristic it takes the form of 

 
( ) ( ) ( ) ( )

11( , ) ( , ) ( , ) ( )   i i i i
Sf S f fL x x G x x x          (4) 
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where Gs denotes the gradient vector. In (3), the inequalities 
–d(i)  x – x(i)  d(i) are understood component-wise and they 
define the interval-type trust region. This allows us to handle 
antenna parameters of substantially different ranges: ranging 
from fractions of millimeters for, e.g., spacings between the 
lines, up to tens of millimeters in the case of, e.g., 
transmission line lengths. The initial size vector d(0) is 
proportional to the design space size. During the optimization 
process, the TR region size is adjusted in adherence with the 
standard rules based on the gain ratio defined as  = [U(x(i+1)) 
 U(x(i))]/ [U(L(i)(x(i+1)))  U(L(i)(x(i)))]. The new design x(i+1) 
is accepted if  > 0. 

In vast majority of applications, the gradient is 
estimated through finite differentiation (FD), which implies 
an additional computational burden of n EM simulations of 
the antenna per algorithm iteration, where n denotes the 
number of parameters. Thus, the overall CPU overhead of the 
optimization process is primarily determined by the number 
of EM simulations induced by the gradient updates, which is 
further increased in the case of unsuccessful iterations (i.e.,  
< 0) when a new candidate design has to be found by solving 
(3) with a reduced d(i) [24].   
 

2.3. Reduced-Cost Algorithm: Component 
Procedures 

 
Here, the issue of the high computational overhead of 

antenna optimization is addressed by introducing two 
independent acceleration mechanisms: sensitivity variation 
tracking and design change monitoring. The FD-based 
gradient update is carried out if recommended by either of the 
component procedures.  

 

EM 
Solver

Set i = 1

i  2?

Set k = 1

NoGk
(i) 

calculated 
with FD ?

Calculate 
δk (i+1) (Gk

(i),Gk
(i−1) ) δk

(i+1) =δk
(i)

Calculate 
Nk (i+1) (δk

(i+1) ) Nk
(i+1) =Nk

(i) −1

Gk
(i+1) = Gk

(i) Calculate Gk
(i+1) 

through FD

NoNk
(i+1) >1

Set k = k + 1

k ≤ n ? No Set i = i + 1

Calculate 
entire 

gradient G(i) 
through FD

GRADIENT 
CHANGE
MONITORING 
PROCEDURE

Yes No

Yes

Yes

Yes

 
Fig. 1. Flow diagram of gradient change monitoring procedure 
(GCMP). The following notation is used: Gk

(i)(f) – the k-th 
column of the antenna response gradient GS; δk

(i) – a gradient 
difference factor; Nk

(i) – a number of the future iterations 
without FD; n – number of antenna parameters; the indices k 
and i refer to the parameter and algorithm iteration number, 
respectively. 

 

In the first procedure (Gradient Change Monitoring 
Procedure, GCMP), the response gradient differences 
throughout the algorithm run are monitored in order to detect 
the parameters characterized by stable sensitivity patterns 
according to appropriately developed metric. For those 
parameters, CPU costly FD-based gradient updates are not 
performed for a certain number of iterations that is 
proportional to the gradient change magnitude. The flow 
diagram of GCMP is presented in Fig. 1. 

The second acceleration mechanism (Design Change 
Monitoring Procedure, DCMP) is based on monitoring 
relative design relocations with respect to the trust region size, 
as well as a history of the optimization process. The gradient 
estimation through FD is suppressed for the variables 
exhibiting minor alterations. The procedure is shown 
graphically in Fig. 2. 

Let us introduce the following notation for the GCMP 
procedure: 

 Gk
(i)(f) =  S11(x,f)/ xk – the k-th column of GS in 

the ith iteration of the algorithm;  
 ΔGk

(i)(f) = |Gk
(i)(f)| – |Gk

(i–1)(f)| – the sensitivity 
change of the k-th parameter between iterations; 

 MGk(i)(f) = (|Gk
(i)(f)| + |Gk

(i–1)(f)|) / 2 – the mean 
sensitivity for the k-th parameter in consecutive 
iterations; 

 δk
(i) – a gradient difference factor for the k-th 

parameter in the i-th iteration; δmin
(i) = min{k = 

1, …, n : δk
(i)}, δmax

(i) = max{k = 1, …, n : δk
(i)};  

 Nk
(i) – a number of the future iterations without FD; 

 Nmin, Nmax – the minimum and maximum number 
of iterations without FD, respectively (GCMP 
control parameter). 

In the GCMP procedure, the gradient variation 
between the two consecutive iterations is quantified using the 
following metric, referred to as the gradient change factor 

 

 
 

 

1

( )

( )std
i

k

i
i k

k

G f

G f
M

 
  
 
 

                        (5) 

 
In (5), the standard deviation is calculated over the frequency 
range F. In each iteration, the gradient change factors are first 
arranged in an ascending order. For lower values of δk, a 
higher value Nk

(i) of future iterations without FD is assigned to 
the k-th parameter. Hence. the estimation of the gradient 
through FD is performed less frequently. The number Nk

(i) is 
calculated with the use of the following conversion function  

 

 ( ) ( )expi i
k kN a b                               (6) 
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               (7) 
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where [[.]] denotes the nearest integer function. The control 
parameters of GCMP procedure: Nmin and Nmax refer to the 
minimum and the maximum number of iterations without FD, 
respectively. They govern the frequency of performing the 
sensitivity updates through FD. These occur at most once per 
Nmin iterations and at least once per Nmax iterations. For the 
parameters of the smallest, as measured by δk

(i), gradient 
change between subsequent iterations, the maximum number 
Nmax is assigned. Conversely, the higher δk

(i), the smaller 
number Nk

(i) is assigned to the k-th parameter indicating that 
more frequent FD is required.  

The value of Nk
(i) is based on: (i) the current difference 

factors δk
(i), determined with (5) for the variables with FD in 

the i-th iteration, and (ii) the previous difference factors, kept 
from the previous iterations if FD in the i-th iteration was 
omitted. Throughout the iterations without FD, the value δk 
holds valid, and it is used for selecting δmin

 and δmax. 
Therefore, δk affects Nk for other parameters with FD update. 
In addition, for those parameters, the preceding number of 
iterations is decremented, i.e., Nk

(i+1) = Nk
(i) – 1. For the 

variables to be updated with FD, Nk
(i+1) is calculated using (6). 

Let us now introduce the following notation for the 
DCPM procedure: 

 ||d(i)|| – the size of TR region; 
 dthr – a user-specified trust-region size threshold 

(DCMP control parameter); 
 φk

(i) – a decision factor for the k-th parameter; 
 φthr – a user-specified threshold for decision factors; 
 νk

(i) – an update history count for the k-th parameter. 

Set k = 1

Calculate decision factor φk
(i+1) 

Set k = k + 1

Yes

No

 ||d(i+1) || ≥ dthr?

k ≤ n ?

Yes   φk
(i+1)<φthr ?
and

νk
(i) >1 ?

Yes

No

No

DESIGN 
CHANGE
MONITORING 
PROCEDURE

Gk
(i+1) = Gk

(i) Calculate Gk
(i+1) 

with FD

Calculate history check νk
(i) 

EM 
Solver

 
Fig. 2. Flow diagram of design change monitoring procedure 
(DCMP). The following notation is used: Gk

(i)(f) – the k-th 
column of the antenna response gradient GS; ||d(i)|| – the size 
of TR region; dthr – user-specified trust-region size threshold; 
φk

(i) – the decision factor; φthr – user-specified threshold for 
decision factors; νk

(i) – update history count; the indices k and 
i refer to the parameter and algorithm iteration number, 
respectively. 

In the DCMP procedure, design relocation between 
iterations is quantified in order to decide upon a possible 
omission of the gradient update through FD. Let us introduce 
the following decision factors φk

(i+1) (defined as a relative 
change of the kth parameter, w.r.t. the TR region size dk

(i) in 
the ith iteration) 

 

 
   

 

1
1

i i
k ki

k i
k

x x

d







                           (9) 

 
where xk

(i) and xk
(i+1) refer to the k-th components of the 

vectors x(i), x(i+1), respectively. The maximum number N of 
iterations without FD is the DCMP procedure control 
parameter. It ensures that the FD-based gradient update is 
executed at least once per N iterations. The frequency of FD 
updates depends also on the size of TR region ||d(i)||. If it is 
below a user-specified threshold dthr (close to convergence), 
FD is discouraged for all parameters. However, if ||d(i+1)|| > 
dthr, for a given parameter k, the FD is skipped if the following 
conditions are simultaneously fulfilled: (i) the decision factor 
φk

(i+1) is lower than the user-specified threshold φthr, and (ii) 
Gk was updated through FD at least once in the last N 
iterations (an update history count νk

(i)  1). The count νk
(i) is 

calculated as the total number of gradient updates performed 
through FD within the last N iterations.  

The major difference between the proposed and the 
reference algorithm lies in the frequency of performing 
gradient estimation through FD. In the conventional routine, 
the entire gradient FD is estimated through FD, whereas in 
the proposed algorithm FD-based gradient estimation is 
performed only in the two first iterations. Next, FD is omitted 
if the gradient stability is detected and the design change 
between iterations is small with respect to the corresponding 
variables. The combination of the two procedures leads to 
noticeable computational savings with minor design quality 
deterioration, which is confirmed by the results of Section 3. 

3. Verification Case Studies 
 

This section provides numerical verification of the 
proposed algorithm as well as comparisons with the reference 
TR algorithm along with its accelerated versions of [21] and [22]. 
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                   a                         b                        c             
Fig. 3. Antenna structures used for verification of the proposed 
algorithm. Ground plane marked using light gray shade.  
(a) Antenna I [25],  
(b) Antenna II [26],  
(c) Antenna III [27]. 
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3.1. Benchmark Cases 
 

The benchmark set consists of three antennas shown 
in Fig. 3. Antennas I and II are implemented on Taconic RF-
35 substrate (εr = 3.5, tanδ = 0.0018, h = 0.762 mm). Antenna 
I, shown in Fig. 3(a), utilizes a quasi-circular radiator with a 
modified ground plane for bandwidth enhancement [25]. Its 
independent design variables are: x = [L0 dR R rrel dL dw Lg 
L1 R1 dr crel]T. Antenna II (cf. Fig. 3 (b)) is a standard 
rectangular monopole [26] described by the vector of seven 
independent parameters x = [l0 g a l1 l2 w1 o]T; with w0 = 2o + 
a. The feeding line width wf = 1.7 mm ensures 50 ohm input 
impedance. Antenna III is based on the structure of [27], see 
Fig. 3 (c), and it is implemented on FR4 substrate (r = 4.3 
and h = 1.55 mm). The structure geometry parameters are x = 
[Lg L0 Ls Ws d dL ds dWs dW a b]T. The computational models 
of all antennas are implemented in CST Microwave Studio 
and evaluated using its transient solver. The EM models 
incorporate SMA connectors. 

 
Table 1 Initial Geometry Parameter Vectors of Antennas I 
through III for the Representative Algorithm Runs of Fig. 4, 
along with Their Lower and Upper Bounds. 

Antenna Geometry parameter values [mm] 

I 

 L0 dR R rrel dL dw Lg L1 R1 dr crel 

initial 10.5 1.13 5.2 0.31 2.2 6.3 12.2 2.9 2.7 0.43 0.37 

lower 4.0 0 3 0.1 0 0 4 0 2 0.2 0.2 

upper 15 6 8 0.9 5 8 15 6 5 1.0 0.9 

II 

 l0  g  a  l1  l2  w1 o     

initial 24.5 17.3 10.7 7.4 8.6 3.9 2.5     

lower 10 10 5 5 2 0.1 0.2     

 upper 35 20 15 12 15 10 3.0     

III 

 Lg  L0  Ls  Ws  d  dL  ds  dWs dW a b 

initial 10.0 12.6 9.2 0.95 3.2 2.9 1.58 2.7 3.1 0.39 0.57 

lower 2 2 2 0.2 2 0 0.1 0.1 0 0.01 0.01 

 upper 15 15 20 3 15 15 3 8 5 0.80 0.80 

 
 
Table 2 Optimization Results for Antennas I through III 

Antenna I II III 
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Reference 111.2 −14.9 0.6 97.6 −11.9 0.4 111.0 −13.9 1.0 
Algorithm 

of [21] 
58.3 

[47.6] 
–13.7 
[1.2] 1.3 45.1 

[53.8] 
–11.1 
[0.8] 1.1 73.1 

[34.1] 
–12.8 
[1.1] 1.3 

Algorithm 
of [22] 

37.5 
[66.3] 

–13.9 
[1.0] 1.3 31.5 

[67.7] 
–11.0 
[0.9] 1.6 36.1 

[67.5] 
–11.6 
[2.3] 1.9 

This work 40.9 
[63.2] 

–14.6 
[0.3] 0.9 32.3 

[66.9] 
–11.4 
[0.5] 1.0 41.4 

[62.7] 
–13.7 
[0.2] 1.2 

# Number of EM simulations averaged over 10 algorithm runs. 
$ Maximum in-band reflection max|S11| in dB averaged over 10 algorithm runs. 
In brackets below: relative computational savings in percent w.r.t. the reference 
algorithm. 
* Standard deviation of max|S11| in dB across the set of 10 algorithm runs. In 
brackets below: degradation of max|S11| w.r.t. the reference algorithm in dB. 
 
 
 
 

3.2. Numerical Results 
 

The proposed algorithm has been applied to optimize 
Antennas I through III for the best in-band matching within the 
UWB frequency range of 3.1 GHz to 10.6 GHz. The objective 
function is defined in Section 2.1 (equation (2)). For all 
antennas, in order to gather statistical data on the algorithm 
performance, multiple algorithm runs have been executed with 
random initial designs. For each initial design, one algorithm 
run is executed because all considered optimization procedures 
are deterministic. 

Table 1 provides the lower and upper bounds for 
geometry parameters of Antennas I through III. In addition, 
Table 1 contains the initial parameter vectors for the 
representative algorithm runs presented in Fig. 4, where both 
the initial and optimal antenna responses are shown. The 
numerical data has been gathered in Table 2. It should be noted 
that in each iteration of the algorithm, a new full-wave 
electromagnetic simulation is performed for a new candidate 
design. The antenna structures are parameterized in a way that 
virtually eliminates a possibility of yielding physically 
inconsistent designs (e.g., featuring negative values of certain 
dimensions), which could lead to failure of the simulation 
process.  

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Responses for the representative algorithm runs. 
Horizontal lines indicate the design specifications; (- - -) 
initial design, (—) optimized design: 
(a)  reflection characteristics of Antenna I [25],  
(b) reflection characteristics of Antenna II [26],  
(c) reflection characteristics of Antenna III [27]. 
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3.3. Discussion 
 

The obtained results are presented in Table 2, which 
contains: the optimization overhead, the maximum in-band 
reflection, the computational savings and the design quality 
measures. The results are obtained for the algorithm proposed in 
this work, as well as for several benchmark procedures: the 
reference conventional TR algorithm, and the previously 
reported routines of [21] and [22].  

It can be observed that the proposed algorithm delivers 
excellent design quality. For all antennas, the degradation of 
the maximum in-band reflection does not exceed 0.5 dB in 
comparison to the reference algorithm. At the same time, for 
the algorithm of [21], the objective function value 
deteriorates more significantly (up to 1.2 dB for Antenna I). 
Whereas for the routine of [22], the design quality 
deterioration is around 1 dB for Antennas I and II; however, 
it reaches a considerable value of 2.3 dB for Antenna III.  

The analysis of computational savings reveals that the 
number of EM simulations necessary by the proposed 
optimization routine to converge is notably reduced by 64 
percent on average w.r.t. the reference algorithm. For the 
algorithm of [22], the savings are slightly higher (around 67 
percent). This, however, comes at a price of a significant 
design quality degradation. The algorithm of [21], is not as 
fast as the two previously meant, it delivers the average 
computational savings of around 45 percent. 

The result repeatability is quantified by the standard 
deviation of the maximum in-band reflection over the set of ten 
algorithm runs. It should be emphasized, that the use of the 
random initial designs generally leads to different local optima. 
Hence, even for the reference routine a nonzero standard 
deviation is observed. This should be taken into consideration 
when comparing the standard deviation for any of the 
accelerated algorithms with the reference procedure. The true 
indicator of the results repeatability is the difference between 
the standard deviations of the expedited algorithm and the 
reference one. For the proposed algorithm, it is the lowest 
among all compared accelerated routines, which confirms its 
reliability. 

4. Conclusion 
In the paper, a novel trust-region algorithm for 

expedited design optimization of antenna structures has been 
introduced. Simultaneous utilization of two mechanisms for 
suppressing finite-differentiation-based gradient updates 
allows us for achieving considerable computational savings 
as well as only minor quality degradation when compared to 
the reference procedure. In addition, the performance 
improvements over the recently reported accelerated 
algorithms have been demonstrated. Our methodology offers 
excellent result repeatability, which has been verified through 
statistical analysis involving multiple optimization runs from 
random initial designs. The proposed approach can be utilized 
to both accelerate direct EM-driven optimization of antennas 
and to improve efficiency of design frameworks exploiting 
variable-fidelity EM simulations. 

5. Nomenclature 
DCMP – design change monitoring procedure; 
EM – electromagnetic; 
FD – finite differentiation; 
GCMP – gradient change monitoring procedure; 
SBO – surrogate-based optimization; 
TR – trust region; 
UW – ultra-wideband. 
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