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Abstract

For semiparametric survival models with interval censored data and a cure fraction, it is often 

difficult to derive nonparametric maximum likelihood estimation due to the challenge in 

maximizing the complex likelihood function. In this paper, we propose a computationally efficient 

EM algorithm, facilitated by a gamma-poisson data augmentation, for maximum likelihood 

estimation in a class of generalized odds rate mixture cure (GORMC) models with interval 

censored data. The gamma-poisson data augmentation greatly simplifies the EM estimation and 

enhances the convergence speed of the EM algorithm. The empirical properties of the proposed 

method are examined through extensive simulation studies and compared with numerical 

maximum likelihood estimates. An R package “GORCure” is developed to implement the 

proposed method and its use is illustrated by an application to the Aerobic Center Longitudinal 

Study dataset.
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1 Introduction

With the development of modern technology, some diseases, such as breast cancer and 

prostate cancer, has an opportunity to be cured. That is, there exist a proportion of the 

patients being cured, who will not die from this disease in the future. To study the risk 

effects associated with such disease, the main interests are focused on (i) what risk factors 

can affect the probability of patients being cured; and (ii) what risk factors can influence the 

survival probabilities of uncured patients. The standard survival models, such as the 

proportional hazards (PH) model (Cox, 1992) and the proportional odds (PO) (Bennett, 

1983) model, are inappropriate to address these questions because their unstated model 

assumption is that all the subjects will die from the event of interest eventually. That is, it 

cannot accommodate the proportion of patients being cured.
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In order to capture the proportion of patients being cured, there are many discussions on the 

two-component mixture cure model (Boag, 1949; Berkson and Gage, 1952; Farewell, 1982) 

and the promotion time cure model (Tsodikov et al., 2003). Among them, the two-

component mixture cure model has straightforward interpretation in practice since it models 

the cured and uncured patients directly by the incidence and latency part. Let T be a 

nonnegative random variable denoting the failure time of a patient, and S(·|x, z) be the 

survival function of T, where x and z are two covariate vectors on which the distribution of T 
may depend, and may not be same in practice. The two-component mixture cure model is 

defined as

S(t | x, z) = 1 − π(z) + π(z) ⋅ Su(t | x), (1)

where the incidence part, π(z), models the uncured probability, and the latency part, Su(·|x), 

models the survival probability of uncured patients.

The association of the covariate vector z with the probability of uncured is modeled through 

a link function, and the most commonly used link functions are the logit link logit(π(z)) = η
′z, the probit link (Φ−1(π(z)) = η′z) and the complementary log-log link (log(−log(1 − 

π(z))) = η′z) (Price and Manatunga, 2001). The standard survival models are applied to the 

survival probability of uncured patients, Su(t|x). For example, the proportional hazards 

mixture cure (PHMC) model, which incorporates the PH model to Su(·|x), has been studied 

extensively in literature (Kuk and Chen, 1992; Sy and Taylor, 2000; Peng and Dear, 2000). 

Similarly, the proportional odds mixture cure (POMC) model assumes the PO model for 

Su(·|x) (Gu et al., 2011). In the PHMC model, the constant hazard ratio is assumed for the 

uncured patients; and in the POMC model, the constant odds ratio among the survival 

probability of uncured patients has to be satisfied. There are cases that neither model is 

preferred, and a general survival function which includes both the PH and PO models is 

more desirable.

The generalized odds rate (GOR) class of regression models (Bickel, 1986; Dabrowska and 

Doksum, 1988; Scharfstein et al., 1998; Banerjee et al., 2007), which include the PH and PO 

models as special cases, have attracted much attention recently. The GOR model is defined 

as

gr(Su(t | x)) = H(t) + β′x, (2)

where H(·) is a nondecreasing transformation function satisfying H(0) = −∞ and gr(·) is a 

known decreasing link function indexed by a transformation parameter r. Specifically, when 

r = 0, g0(s) = log(−log s) refers to the PH model, and when r > 0, gr(s) = log(r−1(s−r −1)) 

corresponds to a class of generalized proportional odds (GPO) model (Mao and Wang, 

2010). Note, when r = 1 it is the PO model with g1(s) = −logit(s) = −log[s/(1 − s)]. In this 

article, we incorporate the GOR model to the survival probability of uncured patients, Su(·|

x), and refer it as the GORMC model, which includes the PHMC (r = 0), POMC (r = 1), and 

GPO mixture cure (GPOMC) model (r > 0) as its special cases. Mao and Wang (2010) also 
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provide the proof of the identifiability of the covariates in the generalized odds rate mixture 

cure model.

In medical studies, it is common to observe interval censored data, where event times of 

interest are only known to occur in some intervals. For example, in the Aerobics Center 

Longitudinal Study (Blair et al., 1996; Lee et al., 2012), we are interested in studying the 

relation between diagnosis age of hypertension and potential risk factors including 

cardiorespiratory fitness (hereafter referred to as “fitness”) levels, gender and BMI. Here, 

age at diagnosis of hypertension is only known to occur between two consecutive visits, 

which is interval censored. The Turnbull (1976) nonparametric survival curves for different 

fitness levels and gender are plotted in Figure 1. From the figure, females tend to have 

higher survival probabilities than males at all fitness levels, and there is a leveling off of 

survival curves at the end of study. The leveling off can be a potential indicator of “cured”, 

and suggest that there exists a proportion of participants never developing hypertension.

Regression analysis with interval censored data is more challenging than right censored data 

in both computation and theory. Current researches for mixture cure model with interval 

censored data focus on the PHMC model. For the PHMC model with current status data, Ma 

(2009) developed a penalized maximum likelihood method with the weighted bootstrap for 

variance estimation. For the PHMC model with interval censored data, Kim and Jhun (2008) 

proposed an EM algorithm by assuming a piecewise exponential distribution for the baseline 

hazard with a multiple imputation approach for variance estimation; Ma (2010) assumed a 

piecewise constant baseline cumulative hazard function and developed a two-step maximum 

likelihood method; the multiple imputation technique were also considered in Lam et al. 

(2013) and Zhou et al. (2016). However, there are sparse work on the GORMC model with 

interval censored data.

Recently, a two-stage poisson data augmentation was proposed by McMahan et al. (2013) 

for the PH and PO model with current status data, and was extended to the PH model with 

interval censored data by Wang et al. (2016). In this article, we propose a new gamma-

poisson data augmentation approach for the efficient estimation of the GORMC model with 

interval censored data. In order to account for the latent cure indicator and interval 

censoring, a Bernoulli random variable, a gamma frailty and poisson latent variables are 

introduced to facilitate the maximum likelihood estimation using an EM algorithm. 

Furthermore, the variance estimates can be obtained in closed forms by the Louis method. 

The remainder of the paper is organized as follows. Section 2 introduces the GORMC 

model. The proposed data augmentation assisted EM algorithm are described in Section 3. 

The simulation study is presented in Section 4.1 and the proposed method is applied to the 

Aerobic Center Longitudinal Study in Section 4.2. The discussions are given in Section 5. 

The closed form of Hessian Matrix for variance estimation are provided in the Appendix.

2 Model Description

Assume each subject has a sequence of examination times 0 < Vi1 < ⋯ < Vi,ki < ∞, i = 1, 2, 

…, n during the study and (Li, Ri] is the observed time interval including the exact event 

time Ti for the ith subject. The observed data can be denoted as O = {Oi = (Li, Ri, δL,i, δR,i, 
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δI,i, xi, zi), i = 1, 2, …, n}, where δL,i, δR,i, δI,i are the censoring indicators where δL,i = 1 

when Ti is left censored (Li = 0), δR,i = 1 when Ti is right censored (Ri = 1), and δI,i = 1 

when Ti is interval censored (0 < Li < Ri < ∞) with the convention that δL,i + δR,i + δI,i = 1 

for all i.

Assuming the examination times Vij’s and the event time Ti are independent given the 

covariate xi (Huang and Wellner, 1997). The observed likelihood function of the parameters 

θo = (η, β, H) under the GORMC model with a prespecified r > 0 is given by

ℒ(θO |O) = ∏
i = 1

n
ℒi(θo |Oi) = ∏

i = 1

n
π(zi)

1 − δR, i 1 − Su(Ri | xi)
δL, i Su(Li | xi) − Su(Ri | xi)

δI, i

× 1 − π(zi) + π(zi)Su(Li | xi)
δR, i .

(3)

π(zi) is modelled by the logistic regression, logit(π(zi)) = η′zi, and the survival function of 

uncured patients is estimated by the GOR model (2)

Su(t | xi) =
exp − He(t)e

β′xi , r = 0,

[1 + rHe(t)e
β′xi]

− 1
r , r > 0,

where He(t) = exp[H(t)]. Direct maximization of (3) with respect to β, η and He(·) is neither 

easy nor reliable due to the complex structure of the likelihood function. To facilitate the 

maximum likelihood estimation, we propose a gamma-Poisson data augmentation method to 

define a proper complete data likelihood function in the next section. Then, an EM algorithm 

is developed based on the resulting complete data likelihood function in Section 3.

3 Data Augmentation and EM Algorithm

It is worthwhile pointing out that limr 0[1 + rHe(t)e
β′xi]

− 1
r = exp − He(t)e

β′xi . Thus, all 

the results in the PHMC model can be derived by taking the limit of the results under the 

GPOMC model (r → 0). Therefore, we focus discussions on the data augmentation and 

conditional expectations under the GPOMC model in Sections 3.1 and 3.2, and then give the 

results for the PHMC model in Section 3.3.
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3.1 Complete Likelihood

Let ui ~ Ber(π(zi)) be a latent variable with ui = 1 if subject i is uncured, where Ber(p) is the 

bernoulli distribution with the probability of success p. Conditional on u = (u1,⋯, un) and 

using the fact that (1 − ui)δR,i = 1 − ui, the likelihood function of θo can be written as

ℒ(θo |O, u) = ∏
i = 1

n
ℒi(θo |Oi, ui) = ∏

i = 0

n
π(zi)

ui[1 − π(zi)]
1 − ui 1 − Su(Ri | xi)

δL, i Su(Li | xi) − Su(Ri | xi)
δI, i

× Su(Li | xi)

δ
R, i

ui
.

Furthermore, let ϕ ~ Gamma(1/r, r), the survival function of uncured patients under the 

GPOMC model can be written as

Su(t | x) = [1 + rHe(t)eβ′x]
− 1

r = ∫0
∞

exp − ϕHe(t)eβ′x ϕ

1
r − 1

e
− ϕ

r

Γ(1
r )r

1
r

dϕ .

The likelihood function based on u and ϕ = (ϕ1, ⋯, ϕn) is

ℒ(θo |O, u, ϕ, r) = ∏
i = 1

n ϕi

1
r − 1

e
−

ϕi
r

Γ(1
r )r

1
r

× π(zi)
ui[1 − π(zi)]

1 − ui × 1 − exp[ − ϕiHe(Ri)e
β′xi]

δL, i

× exp[ − ϕiHe(Li)e
β′xi] − exp[ − ϕiHe(Ri)e

β′xi]
δI, i

× exp[ − δR, iuiϕiHe(Li)e
β′xi],

where ϕi
i . i . d .Gamma(1/r, r)for i = 1, ⋯, n .

Poisson latent variables are introduced conditional on the gamma frailty term ϕ in the 

following way. For subject i, we have Yi|ϕi ~ Pois(λiϕi) and Wi|ϕi ~ Pois(ωiϕi), where 

λi = e
β′xi[δL, iHe(Ri) + δI, iHe(Li)] and ωi = e

β′xi δI, i[He(Ri) − He(Li)] + δR, iHe(Li) . Moreover, 

we set Yi ≡ 0 if Yi ~ Pois(0). Note that Yi and Wi are independent of each other conditional 

on ϕi. Under this construction, we have Yi > 0 and Wi = 0 under left censoring, Yi = 0 and 

Wi > 0 under interval censoring and Yi = Wi = 0 under right censoring. Therefore, the 

complete likelihood function based on ϕ, u, Y = (Y1,⋯, Yn) and W = (W1, ⋯, Wn) is
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ℒ(θo |O, u, ϕ, Y, W, r) = ∏
i = 1

n
π(zi)

ui[1 − π(zi)]
1 − ui ×

ϕi

1
r − 1

e
−

ϕi
r

Γ(1
r )r

1
r

× 1
Y i!

(λiϕi)
Yie

−λiϕi
δL, i

× 1
W i!

(ωiϕi)
Wie

−(λi + ωi)ϕi
δI, i

× exp( − δ
R, i

uiωiϕi
),

(4)

under the constraint δL,iI(Yi > 0) + δI,iI(Wi > 0) + δR,i = 1 for i = 1, ⋯, n. The observed 

likelihood function (3) can be achieved by integrating out the latent variables u, ϕ, Y and W 
in the complete likelihood function (4).

To estimate the unknown monotone transformation function He, the monotone splines are 

adopted for He(·) as

He(t) = ∑
l = 1

k
γlbl(t),

where b′ls are nondecreasing integrated spline basis functions ranges from 0 to 1 and the 

coefficients γ = (γ1, ⋯, γk) are non-negative to ensure the monotonicity. Assuming that 

∑l = 1
k γl ∞ as k → ∞, the monotone spline function He(t) = ∑l = 1

k γlbl(t) ∞ as t → 

∞. Therefore, the survival function of uncured patients is proper. The choice of knots for the 

spline functions can either be equally spaced or at the quartiles as suggested by Ramsay 

(1988). To further simplify the calculation, we let Yil|ϕi ~ Pois(λilϕi) and Wil|ϕi ~ 

Pois(ωilϕi), where λil = γle
β′xi[δ

L, i
bl

(Ri) + δ
I, i

bl
(Li)] and 

ωil = γle
β′xi δI, i[bl(Ri) − bl(Li)] + δ

R, i
bl

(Li) , i = 1, ⋯, n; l = 1, ⋯, k. Notice that ∑l = 1
k λil = λi

and ∑l = 1
k ωil = ωi, we have Y i =d ∑l = 1

k Y il and W i =d ∑l = 1
k W il, where “ =d ” means equal in 

distribution. The final complete likelihood function of θ = (η, β, γ) based on ϕ, u, Yl and Wl, 

l = 1, ⋯, k, is
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ℒc(θ) = ∏
i = 1

n
π(zi)

ui[1 − π(zi)]
1 − ui ×

ϕi

1
r − 1

e
−

ϕi
r

Γ(1
r )r

1
r

× ∏
l = 1

k 1
Y il!

(λilϕi)
Yile

−λilϕi
δL, i

× 1
W il!

(ωilϕi)
Wile

−(λil + ωil)ϕi
δI, i

× exp( − δ
R, i

uiωilϕi
) ,

(5)

under the constraint δL, iI(∑l = 1
k Y il > 0) +δI, iI(∑l = 1

k W il > 0) + δR, i = 1 for i = 1,⋯, n. 

Similarly, by integrating out u, ϕ, Yl’s and Wl’s in (5), it reduces to the observed likelihood 

function (3).

3.2 EM Algorithm

The expectation of the logarithm of the complete likelihood function with respect to the 

latent variables conditional on the observed data O, a prespecified transformation parameter 

r, and the current parameter estimate θ(d) can be expressed as the summation of two parts

𝒬(θ; θ(d)) = 𝒬1(η; η(d)) + 𝒬2(β, γ; β(d), γ(d)),

where

𝒬1(η; η(d)) = ∑
i = 1

n
E(ui |O, θ(d))log[π(zi)] + [1 − E(ui |O, θ(d))]log[1 − π(zi)],

𝒬2(β, γ; β(d), γ(d) = ∑
i = 1

n
∑

l = 1

k
[δL, iE(Yil |O, θ(d)) + [δI, iE(Wil |O, θ(d))](logγl + β′xi) − γle

β′XiE(ϕiui |O, θ(d))

[(1 − δR, i)bl(Ri) + δ
R, i

bl
(Li)] + L(θ(d)),

where L(θ(d)) is a function of θ(d) but free of θ.

When subject i is left censored, Yi conditionally follows the zero-truncated negative 

binomial distribution (ZTNB). The probability mass function (p.m.f.) can be written as

Pr(Yi = y |O, θ(d), r) =
δL, i

ci
(d)

y + 1
r − 1

y
[1 − 1 − ci

(d) r]
y

1 − ci
(d) I(y > 0),

where
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ci
(d) = 1 −

δL, i

1 + rλi
(d)

1
r

is the conditional probability for the truncation Yi > 0 and λi
(d) is the value of λi evaluated at 

θ(d). This is denoted as Y i ZTNB(1/r, δL, i[1 − (1 − ci
(d))r]). Similarly, when the subject is 

interval censored, we have W i ZTNB(1/r, δI, i[1 − (1 − di
(d))r]), where

di
(d) = 1 −

δI, i(1 + rλi
(d))

1 + rλi
(d) + rωi

(d)

1
r

is the conditional probability for the truncation Wi > 0.

The conditional expectations of Yi and Wi are

E(Yi |O, θ(d), r) =
δL, iλi

(d)

ci
(d) , E(Wi |O, θ(d), r) =

δI, iωi
(d)

(1 + rλi
(d))di

(d) .

Using the fact Y il |Y i Binomial(Y i, λil
(d)/λi

(d)) and W il |W i Binomial(W i, ωil
(d)/ωi

(d)), apply the 

iterated rule of expectations, the conditional expectations of Yil and Wil are

E(Y il |O, θ(d), r) =
λil

(d)

λi
(d) E(Y i |O, θ(d), r) =

δL, iλil
(d)

ci
(d) , (6)

E(W il |O, θ(d), r) =
ωil

(d)

ωi
(d) E(W i |O, θ(d), r) =

δI, iωil
(d)

(1 + rλi
(d))di

(d) . (7)

Similarly, λil
(d)(ωil

(d)) is the value of λil (ωil) with θ evaluated at θ(d).

Finally, the conditional expectation of ui and uiϕi can be derived from the joint distributions 

of Yi, Wi, ui and ϕi:

E(ui |O, θ(d), r) = 1 − δR, i +
δR, iπ

(d)(zi)

ei
(d)(1 + rωi

(d))1/r , ei
(d) = 1 − π(d)(zi) + π(d)(zi)

δR, i

1 + rωi
(d)

1
r
, (8)
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E(uiϕi |O, θ(d), r) =
δL, i[1 − (1 − ci

(d))r + 1]
ci

(d) +
δI, i[1 − (1 − di

(d))r + 1]
(1 + rλi

(d))di
(d)

+
δR, iπ

(d)(zi)

ei
(d)(1 + rωi

(d))1 + 1/r ,

(9)

where π(d)(zi) is the value of π(zi) with θ being evaluated at θ(d). Once the conditional 

expectations of observed likelihood is obtained, the maximization can be realized as 

described in subsection 3.4.

3.3 Results under the PHMC Model

First notice that when r → 0, ϕi converges in probability to the value of 1. Therefore, the 

data augmentation for the PHMC model involves the uncured indicator u and two layers of 

poisson latent variables, where u is introduced the same way as before. To accommodate for 

the interval censored data among uncured patients, we have Yi ~ Pois(λi) and Wi ~ Pois(ωi) 

in the first stage, and Yil ~ Pois(λil) and Wil ~ Pois(ωil) in the second stage, where λi, ωi, 

λil and ωil have the same definition as before. The resulting complete likelihood function 

based on u, Yl’s and Wl’s is

ℒc(θ) = ∏
i = 1

n
π(zi)

ui[1 − π(zi)]
1 − ui × ∏

l = 1

k 1
Yil!

λil
Yile

−λil
δL, i 1

Wil!
ωil

Wile
−(λil + ωil)

δI, i

exp ( − δ
R, i

uiωil
)

,

under the constraint δL, iI(∑l = 1
k Y il > 0) + δI, iI(∑l = 1

k W il > 0) + δR, i = 1 for i = 1, ⋯, n.

Under the PHMC model, the conditional expectation of the logarithm of the complete 

likelihood function 𝒬(θ; θ(d)) has a similar form as before except we have ϕi ≡ 1 in 

𝒬2(β, γ; β(d), γ(d)).

The random variable Yi (Wi) conditionally follows zero truncated poisson distribution, and 

the conditional expectations are

E(Yi |O, θ(d)) =
δL, iλi

(d)

1 − exp( − λi
(d))
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E(Wi |O, θ(d)) =
δI, iωi

(d)

1 − exp( − ωi
(d))

,

where λi
(d) is the value of λi with θ being evaluated at θ(d).

Applying the iterated rule of expectations, the conditional expectations of Yil and Wil are

E(Y il |O, θ(d)) =
λil

(d)

λi
(d) E(Y i |O, θ(d)) =

δL, iλil
(d)

1 − exp( − λi
(d))

(10)

E(W il |O, θ(d)) =
ωil

(d)

ωi
(d) E(W i |O, θ(d)) =

δI, iλil
(d)

1 − exp( − ωi
(d))

. (11)

The conditional expectation of the uncure indicator has the form of

E(ui |O, θ(d)) = 1 − δR, i +
δR, iπ

(d)(zi)exp( − ωi
(d))

1 − π(d)(zi) + π(d)(zi)exp( − ωi
(d))

. (12)

Similarly, once the conditional expectations of observed likelihood is obtained, the 

maximization can be realized as described in subsection 3.4.

3.4 Algorithm

The Expectation Maximization (EM) Algorithm for calculating estimates for θ is described 

as follows:

Step 0: give initial values θ(0) as: η(0) = β(0) = 0, γ(0) = 1 and a pre-specified value of 

r;

Step 1: in the (d + 1)th iteration, calculate conditional expectations in Equations (6) 

to (9) based on θ(d) if r > 0, or Equations (10) to (12) if r = 0;

Step 2: update η(d+1) by fitting a logistic regression between the outcome E(u|O, θ(d)) 

and the covariate z, where a quasi-binomial distribution is assumed for the outcome;

Step 3: update β(d+1) by maximizing 𝒬2(β, γ(β); β(d), γ(d)), where

γl(β) =
∑i = 1

n δL, iE(Yil |O, θ(d)) + δI, iE(Wil |O, θ(d))

∑i = 1
n e

β′xiE(uiϕi |O, θ(d))[(1 − δR, i)bl(Ri) + δR, ibl(Li)]
, l = 1, ⋯, k,
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where ϕi 1 when r = 0;

Step 4: calculate γl
(d + 1) = γl β(d + 1)  for l = 1,⋯, k;

Step 5: repeat Step 1 - Step 4 until the absolute difference of log-likelihood values 

between two consecutive iterations is less than 0.001. The estimates θ = (η, β, γ) are 

obtained in the last iteration.

REMARK 1—The closed form solutions for γl(β) in Step 3 are derived by solving the first 

derivatives ∂𝒬2(β, γ; β(d), γ(d))/ ∂γl = 0, l = 1, ⋯, k . The closed form expression of γl’s is a 

result of the data augmentation, which simplifies the maximization task and enhance the 

convergence speed of the algorithm.

REMARK 2—The transformation parameter r can be chosen based on the log-likelihood 

values after convergence. Assume we have grids r1 < ⋯ < rM, the log-likelihood values are 

calculated for each rm, m = 1, ⋯, M, and we choose the rm with the largest log-likelihood 

value.

3.5 Variance Estimation

One of the direct appeal of this approach is that we can obtain close form solutions for the 

variance of θ through Louis method (Louis, 1982). That is,

Var(θ) = ( − ℋ)−1,

where ℋ is the hessian matrix, which can be estimated by

ℋ = ∂2𝒬(θ; θ)
∂θ∂θ′ + Var

∂logℒc(θ)
∂θ .

The calculation of all quantities in the above hessian matrix has closed form and is listed in 

the Appendix. Large sample properties are preserved and the wald-type inferences for θ can 

be carried out in the regular way.

REMARK 3—If the number of nodes k is large, the dimension of the parameters will be 

large and the direct inversion of the observed information matrix may become infeasible. An 

alternative way for estimating the variance of the regression parameter estimators is to invert 

the observed information matrix based on the profile likelihood, as commonly done in the 

nonparametric maximum likelihood estimation literature (Murphy and Van der Vaart, 2000).

4 Numerical Study

4.1 Simulation Study

We generate data from the GORMC model
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S(t|x, z) = 1 − π(z) + π(z) × Su(t|x),

with two variables in covariate matricies x and z: x1 and z1 follow the uniform distribution ~ 

U(0, 2), x2 and z2 follow the Bernoulli distribution Ber(.5). The coefficients are set to be β = 

(1, 1) and η = (0, 1, 1), yielding an average cure probability of 40%. The baseline 

transformation function has the form of He(t) = log(1 + t) + t3/2. Different models with r = 0, 

0.5, 1 and 2 are considered.

We generate the uncure indicator u = (u1, u2, ⋯, un) through the Bernoulli distribution with 

probability π(z). The interval censored survival times are generated in the following way: 

assume the ith subject has ordered visit times 0 = V i0 < V i1 < ⋯ < V iνi
 during the study, 

where the total number of visits of each subject νi is generated as one plus a Poisson random 

variable with mean ς. The lengths between two consecutive visits are 

τi
(1), ⋯, τi

(νi)iidExponential(κ), where τi
( j) = V i j − V i( j − 1) for j = 1, ⋯, νi. κ and ς are adjusted 

to have a 10% left censoring rate and a 50% right censoring rate under different models. We 

have left censoring if the generated survival time Ti < Vi1 and the patient is not cured (ui = 

1). We have right censoring if T i > V iνi
 or the subject is cured (ui = 0). Otherwise, if the 

patient is not cured ui = 1, and Ti ∊ (Vij, Vi(j+1)] for j = 1, ⋯, νi − 1, we have interval 

censoring.

According to Wang et al. (2016), we use 5 equally spaced knots at percentiles and order of 3 

for the monotone splines. The proposed EM algorithm is compared with the numerical 

method that directly maximizes the observed likelihood function (3), named “Direct MLE” 

(Nelder and Mead, 1965). We use sample size of 500 and implement 1000 replications for 

each simulation setting. The bias, average estimated standard error (StErr), empirical 

standard deviation (StDev) and 95% empirical coverage probability (CP) are reported in 

Table 1. From the results, we find the biases of the proposed EM algorithm are smaller than 

those from the Direct MLE method in most of the settings. The estimated standard error of 

the EM algorithm is comparable with the empirical approach and the CP is close to the 

nominal level 0.95.

We further investigate the estimated baseline survival curves, and present the mean of 

estimated baseline survival curves along with 2.5% and 97.5% quantiles under all settings in 

Figure 2. The estimated baseline survival curves are close to the truth in all cases. The 

summaries of convergence time are listed in Table 2, which shows the proposed EM 

algorithm converges much faster than the Direct MLE method in all cases. This advantage is 

because the data augmentation simplifies the structure of the likelihood function and make 

the maximization steps easier.

4.2 Application to the Aerobics Center Longitudinal Study (ACLS)

Here, we apply the proposed method to the ACLS data (Blair et al., 1996; Lee et al., 2012) 

to investigate the association between age at diagnosis of hypertension and some potential 
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risk factors for young adults (baseline age less than 45 years old). The dataset contained 

1,611 females and 7,703 males. The event time of interest is the diagnosis age of 

hypertension (HTN), which is defined as the systolic blood pressure (SBP) being greater 

than 140 mmHg or the diastolic blood pressure (DBP) being greater than 90 mmHg. Each 

subject will visit the Cooper Clinic for periodic preventive medical examination, and the 

blood pressure is tested in each visit. Diagnosis of HTN can be determined between two 

consecutive visits. The Turnbull nonparametric survival curve in Figure 1 have a leveling off 

at the end of study, which indicates a potential “cured” subgroup among the study 

population. Therefore, it is appropriate to apply the proposed model to address the question 

of interest.

We fit the GORMC class of regression models to this data with the fitness levels, gender and 

BMI in both the cure rate and survival parts. The parameter r is determined by the grid 

search with r ranges from 0 to 3 by 0.2. Similarly, the monotone splines have order 3 with 5 

equally spaced knots at percentiles. The estimated observed log-likelihood values are plotted 

in Figure 3(a). The model with r = 2 gives the greatest log-likelihood value −8986.571. The 

estimates of the parameters and their standard errors for this model are reported in Table 3. 

The estimated survival curves for the three fitness levels are plotted for males and females in 

Figure 3(b), where the median values of BMI in each subgroup are used. Figure 3(b) reflects 

the tendency that females have lower probability to develop HTN than males.

There is no significant difference regarding whether males or females will have HTN, but 

males tend to have higher probability to develop HTN comparing with females at the same 

age after adjusting for the fitness levels and BMI. BMI plays a significant role in developing 

the HTN. With higher BMI, individuals are more likely to develop HTN. For individuals 

having potential to develop HTN, the probability to HTN increases with the increase of 

BMI. Fitness is not statistically significant for HTN.

4.3 Software

We develop the R package named “GORCure” based on the proposed method and contribute 

to CRAN for public use. The main function is GORMC(), where the formula for the survival 

part and the cure rate part are specified using the arguments survfun and curefun, 

separately. The transformation parameter r can be specified as any nonnegative numbers. 

For example, the following code fit the ACLS data with r = 2.

> fit<-GORMC(survfun = Surv(left,right) ~ BMI + Female + Medium + High, 

curefun = ~ BMI + Female + Medium + High, data = ACLS, r = 2)

A summary table for the coefficients, including the estimates, standard errors and test 

results, as well as the log-likelihood value can be obtained by summary(fit). The 

predict function can be used to obtain the estimated cure rate and survival curve of a new 

individual, and the covariates in the cure rate part and the survival part are specified by 

new.z and new.x, respectively.
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> pred<-predict(fit, new.x = c(median(ACLS$BMI), 0, 0, 0), new.z = c(1, 

median(ACLS$BMI), 0, 0, 0))

> pred$CureRate

> plot(pred)

5 Discussion

We proposed an EM algorithm for the generalized odds rate mixture cure (GORMC) model 

with interval censored data. The proposed algorithm is computationally efficient and the 

variance estimates have closed forms using the Louis method. The choice of r based on the 

loglikelihood values will give an indication for model selection in practice as illustrated by 

the real data analysis in Section 4.2.

We tried different number of knots and orders for the monotone splines in the simulation 

study and found little change in the coefficient estimates. Based on the experiences in the 

simulation, the monotone splines with a small number of k, such as 5-8, is flexible enough to 

accurately estimate He(t) on the observed time window [0, tmax], where tmax = max(Li, Ri; i 
= 1,⋯, n) is the last observation time. The estimated parameters including those for the 

uncure rate have little bias (Details in Supplementary file).

The identifiability of mixture cure models has been widely studied in the literature, for 

example, Li et al. (2001); Hanin and Huang (2014); Liu and Shen (2009). With the 

monotone spline representation considered in our paper, the identifiability of the model can 

be similarly shown in theory. With finite samples, the proposed estimation method may 

suffer the potential weak identifiability issue when there is only one binary covariate in the 

uncure rate π(z), as commonly occurred in most estimation procedures for cure models. In 

nonparametric estimation, Taylor (1995) set the tail of Su0(t) to zero after the last event time, 

which forces the uncured survival function to be proper. Similar ideas can be applied for 

methods with splines. For example, Bremhorst and Lambert (2016) discussed the estimation 

of the promotion time cure model with the P-splines and fixed the last spline parameter to a 

large enough value, which forces the estimated baseline survival function of uncured 

subjects to be 0 at the end of the follow-up. A similar technique can also be adopted in the 

proposed estimation method.

The proposed method works pretty well with moderate to large sample size and moderate 

right censoring rate as shown in Section 4.1. When the sample size is small, say N < 100, or 

the left or right censoring is extremely large, say > 80%, the algorithm sometimes does not 

converge, and the estimated hessian matrix might be singular.

For mixed-case interval censored data, where some subjects have exact observation times in 

the study, the proposed algorithm can not be easily extended and some further research is 

expected in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Calculation of ℋ

Hessian Matrix of PHMC Model

The first part of the hessian matrix ℋ involves the second derivatives of 𝒬(θ; θ) with respect 

to θ, which include the following quantities. All the expectations of latent variables are 

conditioned on the observed data O and the final estimate θ. The conditions O and θ are 

omitted for notational simplicity.

∂2𝒬(θ; θ)
∂η j∂η j′

= − ∑
i = 1

n
zi jzi j′π(zi)[1 − π(zi)],

∂2𝒬(θ; θ)
∂η j∂ β j′

= ∂2𝒬(θ; θ)
∂η j∂γ j′

= 0,

∂2𝒬(θ; θ)
∂ β j∂ β j′

= − ∑
i = 1

n
xi jxi j′e

β′xi[(1 − δR, i)He(Ri) + δR, iE(ui)He(Li)],

∂2𝒬(θ; θ)
∂ β j∂γl

= − ∑
i = 1

n
xi je

β′xi[(1 − δR, i)bl(Ri) + δR, iE(ui)bl(Li)], and

∂2𝒬(θ; θ)
∂γl∂γl′

= − ∑
i = 1

n 1
γl
2(δL, iE(Yil) + δI, iE(Wil))I(l′ = l) .

The second part includes covariance between the first derivatives of the log-likelihood 

function with respect to θ. All of the quantities are listed below, where all the variance and 

covariance of latent variables are conditioned on the observed data O and the final estimate 

θ.

Cov
∂logℒc(θ)

∂η j
,

∂logℒc(θ)
∂η j′

= ∑
i = 1

n
zi jzi j′Var(ui),
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Cov
∂logℒc(θ)

∂η j
,

∂logℒc(θ)
∂ β j′

= − ∑
i = 1

n
δR, izi jxi j′e

β′xiHe(Li)Var(ui),

Cov
∂logℒc(θ)

∂η j
,

∂logℒc(θ)
∂γl

= − ∑
i = 1

n
δR, izi je

β′xibl(Li)Var(ui),

Cov
∂logℒc(θ)

∂ β j
,

∂logℒc(θ)
∂ β j′

= ∑
i = 1

n
xi jxi j′[δL, iVar(Yi) + δI, iVar(Wi) + δR, ie

2β′xiHe
2(Li)Var(ui)],

Cov
∂logℒc(θ)

∂ β j
,

∂logℒc(θ)
∂γl

= ∑
i = 1

n xi j
γl

[δL, iCov(Yi, Yil) + δI, iCov(Wi, Wil)] + δR, ixi je
2β′xiHe(Li)bl(Li)Var

(ui), and

Cov
∂logℒc(θ)

∂γl
,

∂logℒc(θ)
∂γl′

= ∑
i = 1

n 1
γlγl′

[δL, iCov(Yil, Yil′) + δI, iCov(Wil, Wil′)] + δR, ie
2β′xibl(Li)bl′(Li)Var

(ui) .

Next, we calculate the conditional variance and covariance of the latent variables in the 

above equations. First notice that we have ui
2 ≡ ui, so the conditional variance of the uncure 

indicator is

Var(ui) = E(ui
2) − [E(ui)]

2 = E(ui) − [E(ui)]
2 = E(ui)[1 − E(ui)] .

Since Yi (Wi) conditionally follows zero truncated Poisson with mean λi(ωi), letting 

ci = 1 − exp( − λi)(di = 1 − exp( − ωi)), we have

Var(Yi) =
δL, iλi

ci
2 (ci − λi + ciλi), and

Var(Wi) =
δI, iωi

di
2 (di − ωi + diωi) .
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The conditional variance and covariance of Yil (Wil) can be obtained by using the iterated 

rules for the variance/covariance and recognizing that the conditional distribution of Yil 

(Wil) given Yi (Wi) is binomial. Their explicit forms are

Var(Yil) =
δL, iλil

ci
2 (ci − λil + ciλil),

Cov(Yil, Yil′) =
δL, iλilλil′(ci − 1)

ci
2 ,

Cov(Yil, Yi) = Cov(Yil, ∑
l′ = 1

k
Yil′) = Var(Yil) + ∑

l′ ≠ l
Cov (Yil, Yil′) =

δL, iλil

ci
2 [ci + λi(ci − 1)],

Var(Wil) =
δI, iωil

di
2 (di − ωil + diωil),

Cov(Wil, Wil′) =
δI, iωilωil′(di − 1)

di
2 , and

Cov(Wil, Wi) = Cov(Wil, ∑
l′ = 1

k
Wil′) = Var(Wil) + ∑

l′ ≠ l
Cov (Wil, Wil′) =

δI, iωil

di
2 [di + ωi(di − 1)] .

Hessian Matrix of GPOMC Model

The first part of the hessian matrix ℋ involves the second derivatives of 𝒬(θ; θ) with respect 

to θ, which includes the following quantities:

∂2𝒬(θ; θ)
∂η j∂η j′

= − ∑
i = 1

n
zi jzi j′π(zi)[1 − π(zi)],

∂2𝒬(θ; θ)
∂η j∂ β j′

= ∂2𝒬(θ; θ)
∂η j∂γ j′

= 0,
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∂2𝒬(θ; θ)
∂ β j∂ β j′

= − ∑
i = 1

n
xi jxi j′e

β′xiE(uiϕi)[(1 − δR, i)He(Ri) + δR, iHe(Li)],

∂2𝒬(θ; θ)
∂γl∂ β j

= − ∑
i = 1

n
xi je

β′xiE(uiϕi)[(1 − δR, i)bl(Ri) + δR, ibl(Li)], and

∂2𝒬(θ; θ)
∂γl∂γl′

= − ∑
i = 1

n 1
γl
2(δL, iE(Yil) + δI, iE(Wil))I(l′ = l) .

The second part includes covariance between the first derivatives of the log-likelihood 

function with respect to θ, all of the quantities are listed below.

Cov
∂logℒc(θ)

∂η j
,

∂logℒc(θ)
∂η j′

= ∑
i = 1

n
zi jzi j′Var(ui),

Cov
∂logℒc(θ)

∂η j
,

∂logℒc(θ)
∂ β j′

= − ∑
i = 1

n
δR, izi jxi j′e

β′xiHe(Li)E(uiϕi)[1 − E(ui)],

Cov
∂logℒc(θ)

∂η j
,

∂logℒc(θ)
∂γl

= − ∑
i = 1

n
δR, izi je

β′xibl(Li)E(uiϕi)[1 − E(ui)],

Cov
∂logℒc(θ)

∂γ j
,

∂logℒc(θ)
∂γl′

= ∑
i = 1

n 1
γlγl′

[δL, iCov(Yil, Yil′) + δI, iCov(Wil, Wil′)]

− e
β′xi 1

γl
bl′(Ri)[Cov(Yil, ϕi) + δI, iCov(Wil, ϕi)] + γl′bl(Ri)[δLi

Cov(Yil′, ϕi) + δIi
Cov(Wil′, ϕi)] + e

2β′xiVar

(uiϕi)[(1 − δR, i)bl(Ri)bl′(Ri) + δR, ibl(Li)bl′(Li)],

Cov
∂logℒc(θ)

∂ β j
,

∂logℒc(θ)
∂ β j′

= ∑
i = 1

n
xi jxi j′ [δL, iVar(Yi) + δI, iVar(Wi)] − 2e

β′xiHe(Ri)[δL, iCov(Yi, ϕi)

+ δI, iCov(Wi, ϕi)] + e
2β′xiVar(uiϕi)[(1 − δR, i)He

2(Ri) + δR, iHe
2(Li)] ,

and
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Cov
∂logℒc(θ)

∂γl
,

∂logℒc(θ)
∂ β j

= ∑
i = 1

n xi j
γl

δL, iCov(Yil, Yi) + δI, iCov(Wil, Wi) − e
β′xiHe(Ri)[δL, iCov(Yil, ϕi)

+ δI, iCov(Wil, ϕi)] − xi je
β′xibl(Ri)[δL, iCov(Yi, ϕi) + δI, iCov(Wi, ϕi)] − xi je

β′xiVar(uiϕi)[(1 − δR, i)bl(Ri)He

(Ri) + δR, ibl(Li)He(Li)] .

Next, we calculate the conditional variance and covariance of the latent variables in the 

above equations. Similar as in the PHMC model, we have

Var(ui) = E(ui)[1 − E(ui)] .

Let ci = 1 − [δL, i/(1 + λi)]
1/r, di = 1 − [δI, i(1 + λi)/(1 + λi + ωi)]

1/r and 

ei = 1 − π(zi) + π(zi)[δR, i/(1 + ωi)]
1/r, the conditional variances can be calculated directly as

Var(Yi) =
δL, iλi

ci
2 [(1 + r)]ciλi + ci − λi, and

Var(Wi) =
δI, iωi

(1 + rλi)
2di

2[(1 + r)ωidi + di(1 + rλi) − ωi] .

The conditional variance of uiϕi is

Var(uiϕi) =
δL, i

ci
2 ci(r + 1)[1 − (1 − ci)

2r + 1] − [1 − (1 − ci)
r + 1]2 +

δI, i

di
2(1 + rλi)

2 di(r + 1)[1 − (1 − di)
2r + 1

] − [1 − (1 − di)
r + 1]

2
+

δR, iπ(zi)

ei
2(1 + rωi)

2 + 1/r (r + 1)ei − π(zi)(1 + rωi)
−1/r .

The joint pdf of (Yi1,⋯, Yik, ϕi) is

f (Yi1, ⋯, Yik, ϕi) =
δL, iI(∑l = 1

k Yil > 0)

ciΓ
1
r r

1
r

ϕi
∑l = 1

k Yil + 1
r − 1

e
−ϕi(

1
r + λi) ∏

l = 1

k 1
Yil!

λil
Yil,

based on which, we have the conditional covariance between Yil and ϕi is

Cov(Yil, ϕi) =
δL, iλil

ci
2 [ci(r + 1) + (1 − ci)

r + 1 − 1] .
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Furthermore, using the fact that Y i =d ∑l = 1
k Y il, we have

Cov(Yi, ϕi) = ∑
l = 1

k
Cov (Yil, ϕi) =

δL, iλi

ci
2 [ci(r + 1) + (1 − ci)

r + 1 − 1] .

Similarly, the joint pdf of (Wi1,⋯, Wik, ϕi) is

f (Wi1, ⋯, Wik, ϕi) =
δI, i(1 + rλi)

1
r I(∑l = 1

k Wil > 0)

diΓ
1
r r

1
r

ϕi
∑l = 1

k Wil + 1
r − 1

e
−ϕi(

1
r + λi + ωi) ∏

l = 1

k 1
Wil!

ωil
Wil,

and the conditional covariance between Wil and ϕi is

Cov(Wil, ϕi) =
δI, iωil

di
2(1 + rλi)

2[di(r + 1) + (1 − di)
r + 1 − 1] .

We also have

Cov(Wi, ϕi) = ∑
l = 1

k
Cov (Wil, ϕi) =

δI, iωi

di
2(1 + rλi)

2[di(r + 1) + (1 − di)
r + 1 − 1] .

The conditional variance and covariance of Yil (Wil) can be obtained by using the iterated 

rules for the variance/covariance and recognizing that the conditional distribution of Yil 

(Wil) given Yi (Wi) is binomial. The explicit forms are Figure 2: Estimated Baseline 

Survival Functions

Cov(Yil, Yil′) =
δL, iλilλil′

ci
2 [(1 + r)ci − 1] +

δL, iλil
ci

I(l′ = l),

Cov(Yil, Yi) =
δL, iλil

ci
2 ci + λi[(1 + r)ci − 1] ,

Cov(Wil, Wil′) =
δI, iωilωil′

di
2(1 + rλi)

2[(1 + r)di − 1] +
δI, iωil

di(1 + rλi)
I(l′ = l), and
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Cov(Wil, Wi) =
δI, iωil

di
2(1 + rλi)

2 di(1 + rλi) + ωi[(1 + r)di − 1] .

References

Banerjee T, Chen MH, Dey DK, Kim S. Bayesian analysis of generalized odds-rate hazards models for 
survival data. Lifetime data analysis. 2007; 13(2):241–260. [PubMed: 17401683] 

Bennett S. Analysis of survival data by the proportional odds model. Statistics in medicine. 1983; 2(2):
273–277. [PubMed: 6648142] 

Berkson J, Gage RP. Survival curve for cancer patients following treatment. Journal of the American 
Statistical Association. 1952; 47(259):501–515.

Bickel, P. Efficient testing in a class of transformation models. Proceedings of the 45th Session of the 
International Statistical Institute; 1986. p. 63-23.

Blair SN, Kampert JB, Kohl HW, Barlow CE, Macera CA, Paffenbarger RS, Gibbons LW. Influences 
of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in 
men and women. Jama. 1996; 276(3):205–210. [PubMed: 8667564] 

Boag JW. Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal 
of the Royal Statistical Society Series B (Methodological). 1949; 11(1):15–53.

Bremhorst V, Lambert P. Flexible estimation in cure survival models using bayesian p-splines. 
Computational Statistics & Data Analysis. 2016; 93:270–284.

Cox, DR. Breakthroughs in Statistics. Springer; 1992. Regression models and life-tables; p. 527-541.

Dabrowska DM, Doksum KA. Estimation and testing in a two-sample generalized odds-rate model. 
Journal of the American Statistical Association. 1988; 83(403):744–749.

Farewell VT. The use of mixture models for the analysis of survival data with long-term survivors. 
Biometrics. 1982:1041–1046. [PubMed: 7168793] 

Gu Y, Sinha D, Banerjee S. Analysis of cure rate survival data under proportional odds model. 
Lifetime data analysis. 2011; 17(1):123–134. [PubMed: 20521166] 

Hanin L, Huang LS. Identifiability of cure models revisited. Journal of Multivariate Analysis. 2014; 
130:261–274.

Huang, J., Wellner, JA. Interval censored survival data: a review of recent progress. Proceedings of the 
First Seattle Symposium in Biostatistics; Springer; 1997. p. 123-169.

Kim YJ, Jhun M. Cure rate model with interval censored data. Statistics in medicine. 2008; 27(1):3–
14. [PubMed: 17516589] 

Kuk AY, Chen CH. A mixture model combining logistic regression with proportional hazards 
regression. Biometrika. 1992; 79(3):531–541.

Lam KF, Wong KY, Zhou F. A semiparametric cure model for interval-censored data. Biometrical 
Journal. 2013; 55(5):771–788. [PubMed: 23720128] 

Lee, D-c, Sui, X., Church, TS., Lavie, CJ., Jackson, AS., Blair, SN. Changes in fitness and fatness on 
the development of cardiovascular disease risk factors: hypertension, metabolic syndrome, and 
hypercholesterolemia. Journal of the American College of Cardiology. 2012; 59(7):665–672. 
[PubMed: 22322083] 

Li CS, Taylor JM, Sy JP. Identifiability of cure models. Statistics & Probability Letters. 2001; 54(4):
389–395.

Liu H, Shen Y. A semiparametric regression cure model for interval-censored data. Journal of the 
American Statistical Association. 2009; 104(487):1168–1178. [PubMed: 20354594] 

Louis TA. Finding the observed information matrix when using the EM algorithm. Journal of the 
Royal Statistical Society Series B (Methodological). 1982:226–233.

Ma S. Cure model with current status data. Statistica Sinica. 2009; 19(1):233.

Ma S. Mixed case interval censored data with a cured subgroup. Statistica Sinica. 2010; 20:1165–
1181.

Zhou et al. Page 21

J Comput Graph Stat. Author manuscript; available in PMC 2018 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mao M, Wang JL. Semiparametric efficient estimation for a class of generalized proportional odds 
cure models. Journal of the American Statistical Association. 2010; 105(489):302–311. [PubMed: 
22865944] 

McMahan CS, Wang L, Tebbs JM. Regression analysis for current status data using the em algorithm. 
Statistics in medicine. 2013; 32(25):4452–4466. [PubMed: 23761135] 

Murphy SA, Van der Vaart AW. On profile likelihood. Journal of the American Statistical Association. 
2000; 95(450):449–465.

Nelder JA, Mead R. A simplex method for function minimization. The computer journal. 1965; 7(4):
308–313.

Peng Y, Dear KB. A nonparametric mixture model for cure rate estimation. Biometrics. 2000; 56(1):
237–243. [PubMed: 10783801] 

Price DL, Manatunga AK. Modelling survival data with a cured fraction using frailty models. Statistics 
in medicine. 2001; 20(9-10):1515–1527. [PubMed: 11343371] 

Ramsay JO. Monotone regression splines in action. Statistical science. 1988:425–441.

Scharfstein DO, Tsiatis AA, Gilbert PB. Semiparametric efficient estimation in the generalized odds-
rate class of regression models for right-censored time-to-event data. Lifetime data analysis. 1998; 
4(4):355–391. [PubMed: 9880995] 

Sy JP, Taylor JM. Estimation in a Cox proportional hazards cure model. Biometrics. 2000; 56(1):227–
236. [PubMed: 10783800] 

Taylor JM. Semi-parametric estimation in failure time mixture models. Biometrics. 1995:899–907. 
[PubMed: 7548707] 

Tsodikov A, Ibrahim J, Yakovlev A. Estimating cure rates from survival data. Journal of the American 
Statistical Association. 2003; 98(464)

Turnbull BW. The empirical distribution function with arbitrarily grouped, censored and truncated 
data. Journal of the Royal Statistical Society Series B (Methodological). 1976:290–295.

Wang L, McMahan CS, Hudgens MG, Qureshi ZP. A flexible, computationally efficient method for 
fitting the proportional hazards model to interval-censored data. Biometrics. 2016; 72(1):222–231. 
[PubMed: 26393917] 

Zhou J, Zhang J, McLain AC, Cai B. A multiple imputation approach for semiparametric cure model 
with interval censored data. Computational Statistics and Data Analysis. 2016; 99:105–114.

Zhou et al. Page 22

J Comput Graph Stat. Author manuscript; available in PMC 2018 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Turnbull nonparametric survival curves for ACLS Dataset
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Figure 2. 
Estimated Baseline Survival Functions
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Figure 3. 
Estimated survival curves for ACLS Dataset
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Table 3

Estimates for the ACLS Data

Variable Estimate S.E. P-value

Uncure Rate

Intercept −3.044  1.021 0.003

BMI 0.158 0.029 < .001 

Female 0.079 0.491 0.873

Medium 0.222 0.503 0.659

High 2.233 1.131 0.048

Survival Part

BMI 0.067 0.015 < .001 

female −1.227  0.153 < .001 

Medium 0.118 0.234 0.614

High 0.098 0.268 0.715
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