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Abstract

This paper describes an algorithm for finding faces within

an image. The basis of the algorithm is to run an observa-

tion window at all possible positions, scales and orientation

within the image. A non-linear support vector machine is

used to determine whether or not a face is contained within

the observation window. The non-linear support vector ma-

chine operates by comparing the input patch to a set of sup-

port vectors (which can be thought of as face and anti-face

templates). Each support vector is scored by some non-

linear function against the observation window and if the

resulting sum is over some threshold a face is indicated. Be-

cause of the huge search space that is considered, it is im-

perative to investigate ways to speed up the support vector

machine. Within this paper we suggest a method of speeding

up the non-linear support vector machine. A set of reduced

set vectors (RV’s) are calculated from the support vectors.

By considering the RV’s sequentially, and if at any point a

face is deemed too unlikely to cease the sequential evalua-

tion, obviating the need to evaluate the remaining RV’s. The

idea being that we only need to apply a subset of the RV’s to

eliminate things that are obviously not a face (thus reducing

the computation). The key then is to explore the RV’s in the

right order and a method for this is proposed.

1. Introduction

In this paper we consider the problem of face detection

within a large collection of images, such as a large pho-

tographic database, images bandied about in emails or dis-

played on the internet. We consider the most general prob-

lem with no constraint on the position of the face, further-

more we allow the images to be monochrome or colour so

that colour information alone cannot be used to reduce the

search (leaving the exploration of colour cues to others).

This is a well researched problem and there have been

a large number of different approaches to it. The most suc-

cessful have included those of Osuna and Girosi [3] who ap-

plied support vectors (SV’s) to the problem, that of Rowley

et al [5] who used a neural network, and that of Schneider-

man and Kanade [6] who pursued a maximum likelihood

approach based on histograms of feature outputs. The one

common thing to all these methods is that they are all based

on running a 20 � 20 pixel observation window across the

image at all possible locations, scales and orientations. This

involves a high degree of computation as (a) the observation

window is a 400 dimensional vector that has to be classified

in a very non-linear space (b) there are hundreds of thou-

sands of positions to search.

Within this paper we follow the support vector machine

approach of Osuna and Girosi [3], our new contribution be-

ing the sequential application of the support vectors to speed

up the algorithm, and an algorithm to determine the or-

der of this evaluation. Nonlinear Support Vector Machines

are known to lead to excellent classification accuracies in

a wide range of tasks [7, 10], including face detection [3].

They utilize a set of support vectors to define a boundary

between two classes, this boundary depending on a ker-

nel function that defines a distance between two vectors.

They are, however, usually slower classifiers than neural

networks. The reason for this is that their run-time complex-

ity is proportional to the number of SVs, i.e. to the number

of training examples that the SVM algorithm utilizes in the

expansion of the decision function. Whilst it is possible to

construct classification problems, even in high-dimensional

spaces, where the decision surface can be described by two

SVs only, it is normally the case that the set of SVs forms

a substantial subset of the whole training set. This is the

case for face detection where several hundred support vec-

tors can be needed.

There has been a fair amount of research on methods for

reducing the run-time complexity of SVMs [2, 8]. In the

present article, we employ one of these methods and adapt

it to the case where the reduced expansion is not evaluated

at once, but rather in a sequential way, such that in most

cases a very small number of SVs are applied.

The paper is organised as follows: In Section 2 the gen-

eral theory of support vector machines is reviewed with em-

phasis on non-linear support vector machines. In Section 3

it is explained how to compute a set of reduced support vec-
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tors and how to deduce a suitable order for their evaluation.

The training is explained in Section 4 and the face finding

algorithm in Section 5. Results are given in Section 6 and

conclusion plus avenues for future work suggested in Sec-

tion 7.

2. Non-linear Support Vector Ma-

chines

Support Vector classifiers implicitly map the data

(x1; y1); : : : ; (x`; y`) 2 X � f�1g (in our case, X is

the 20 � 20 observation window being a 400 dimensional

integer valued vector) into a dot product space F via a

(usually nonlinear) map � : X ! F; x 7! �(x): F is

often referred to as the feature space. Although F can be

high-dimensional, it is usually not necessary to explicitly

work in that space [1]. There exists a class of kernels

k(x;x0) which can be shown to compute the dot products

in associated feature spaces, i.e. k(x;x0) = (�(x) ��(x0)):
The SV algorithm computes a hyperplane which separates

the data in F by a large margin. Once this geometrical

problem is cast in terms of dot products, the kernel trick

is used and thus all computations in F are reduced to the

evaluation of the kernel. It can be shown that the resulting

training problem consists of computing (for some positive

value of the parameter C determining the trade-off between

margin maximization and training error minimization)

max
�

X̀
i=1

�i �
1

2

X̀
i;j=1

�i�jyiyjk(xi;xj) (1)

subject to 0 � �i � C; i = 1; : : : ; `;
X̀
i=1

�iyi = 0; (2)

and that the solution has an expansion

f(x) = sgn

 X̀
i=1

�iyik(x;xi) + b

!
: (3)

Those training examples xi with �i > 0 are called Support

Vectors.

Kernels commonly used include polynomials k(x;x0) =
(x � x0)d, which can be shown to map into a feature space

spanned by all order d products of input features, and the

Gaussian RBF kernel

k(x;x0) = exp

�
�kx� x

0k2

2 �2

�
: (4)

Performance-wise, they have been found to do similarly

well; in the present paper, we focus on the latter of the two.

This means that support vectors act as templates for faces

and anti-faces, thus relating non-linear SV’s to vector quan-

tization.

3. Reduced Set Vectors

Assume we are given a vector 	 2 F , expanded in images

of input patterns xi 2 X ,

	 =

NxX
i=1

�i�(xi); (5)

with �i 2 R;xi 2 X . To reduce the complexity of evalu-

ating it, one can approximate it by a reduced set expansion

[2]

	0 =

NzX
i=1

�i�(zi); (6)

with Nz � Nx, �i 2 R, and reduced set vectors zi 2 X .

To this end, one can minimize [2]

k	�	0k2 =

NxX
i;j=1

�i�jk(xi;xj) +

NzX
i;j=1

�i�jk(zi; zj) (7)

�2

NxX
i=1

NzX
j=1

�i�jk(xi; zj):

The key point of that method is that although � is not given

explicitly, (7) can be computed (and minimized) in terms of

the kernel.

The sequential approach used here requires an extension

of the reduced set method, to compute a whole sequence of

reduced set approximations

	0
m =

mX
i=1

�m;i�(zi); (8)

for m = 1; : : : ; Nz. The reduced set vectors zi and

the coefficients �m;i are computed by iterative optimiza-

tion [8]. For the first vector, we need to approximate

	 =
PNx

i=1 �i�(xi) by 	0 = ��(z). Minimizing the dis-

tance k	�	0k2 between 	 and 	0, with respect to z; �, to

give the first reduced set vector z1 and its coefficient �1;1,

using the method set out in the appendix.

Recall that the aim of the reduced set algorithm is to ap-

proximate a vector 	 as in equation (5) by an expansion of

the type (6) with Nz > 1. The required higher order re-

duced set vectors zi; i > 1 and their coefficients �i, are

obtained in recursive fashion by defining a residual vector

	m = 	�

m�1X
i=1

�m�1;i�(zi); (9)

where 	 is the original feature-space vector defined in (5).

Then the procedure for obtaining the first reduced set vec-

tor z1 is repeated, now with 	m in place of 	 to obtain zm.

However, the optimal � from this step is not used, instead
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optimal �m;i; i = 1; : : : ;m are jointly computed [8]. Fig-

ure 1 demonstrates the effects on the classification boundary

of sequential reduced set vector evaluation. Note that there

is a law of diminishing returns, the first few RV’s yielding

the greatest increase in discrimination.

Figure 1: The result of the sequential application of RV’s (stars)

to a classification problem, showing the result of using 1,2,3,4,9

and 13 RV’s Darker regions indicate strong support for the classi-

fication.

Thresholds. For any Nz, the obtained expansion can be

plugged into the SVM decision function (3) to yield f(x) =

sgn
�PNz

j=1 �jk(x; zj) + b
�
: It is, however, not optimal to

simply re-use the offset b stemming from the original SV

machine. Reduced set approximations of decision functions

can be improved by recomputing the thresholds bj based on

the training set or some validation set [8], to get

fNz
(x) = sgn

0
� NzX

j=1

�jk(x; zj) + bNz

1
A : (10)

This is especially true in the present setting, as will become

clear in the following.

4. Training

Initially the SVM was trained on 3600 frontal face and

25000 non-face examples using Platt’s Sequential Minimal

Optimisation [4]. The kernel used was Gaussian (Equa-

tion 4) with a standard deviation � of 3.5. The trade-off

between margin maximization and training error minimiza-

tion, was set to 1. The non-face patches were taken ran-

domly on a set of 1000 images containing no faces. The

SVM selected 1742 support vectors.

To improve the performance of the classifier a second

bout of training was initiated: To decrease the number of

false positives the face detector was applied on a new set of

100 images which did not contain any faces. This gener-

ated 110000 false positive patches which were then added

to the training. To decrease the number of false negatives,

virtual faces were generated and added to the training set.

These virtual faces were computed by modifying the con-

trast or by adding an illumination plane to the faces of the

original training set. This alleviates the need of computing

a pre-processing at detection time and increase the run-time

performance of our algorithm. The SVM was then retrained

using this new training set which yielded 8291 support vec-

tors. These were subsequently decreased to 100 reduced set

vectors. Note that a retraining using the misclassifications

of a previous training has been shown in [5] to produce a

greatly improved classifier.

Figure 2: First 10 reduced set vectors. Note that all vectors can

be interpreted as either faces (e.g. the first one) or anti-faces (e.g.

the second one)

.

5. Face Detection by Sequential Eval-

uation

At detection time, each pixel of an input image is a po-

tential face (a large number). To detect faces at different

scales an image pyramid is constructed. If w and h are the

width and the height of the input image and L and s the

number of sub-sampling levels and the sub-sampling rate,

respectively, the total number of patches to be evaluated is

Np =
PL

l=1 whs
2(l�1). Evaluating the full SVM or even

the whole set of reduced vectors on all patches would be

slow. A large portion of the patches can be easily classified

using only a few reduced set vectors. Hence we propose the

following Sequential Evaluation algorithm, to be applied to

each overlapping patch x of an input image.

1. Set the hierarchy level to m = 1.

2. Evaluate ym = sgn
�Pm

j=1 �m;jKj + bm

�
whereKj =

k(x; zj):

3. � if ym < 0, x is classified as a non-face and the

algorithm stops.

� if ym � 0, m is incremented. If m = Nz the

algorithm stops, otherwise evaluation continues

at step 2.
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4. if yj � 0 and j = Nz, the full SVM is applied on the

patch x, using equation 3. If the evaluation is positive

the patch is classified as a face.

The main feature of this approach is that on average, rela-

tively few kernels Kj have to be evaluated at any given im-

age location — i.e., for most patches, the algorithm above

stops at a level j � Nz. This speeds up the algorithm rela-

tive to the full reduced set (by more than an order of magni-

tude in the face classification experiments reported below).

Note that in the case of gaussian kernels, the application of

one reduced set vector amounts to a simple template match-

ing operation.

Setting offsets. The offsets bm are fixed to obtain a de-

sired point on the R.O.C. for the overall sequential scheme.

Suppose an overall false negative rate � is required, then,

given a “decay rate” �, we express � as a geometric series

by setting false negative rates �m for the mth level in the hi-

erarchy to �j = ��j�1 where �1 = �(1��): Now each bm
is fixed to achieve the desired �m over a validation set. The

free parameter � can now be set to maximize the overall

true positive rate over the validation set.

6. Results

Within this section the new sequential evaluation algorithm

is tested for speed and accuracy.

Speed Improvement. At detection time, due to the se-

quential evaluation of the patches, very few reduced set vec-

tors are applied. Figure 3 shows the number of reduced set

vectors evaluated per patches for different methods (SVM,

RSM and SRSM (Sequential Reduced Set Machine)), when

the algorithm is applied to the photo in Fig 4. The Full

SVM and the RSM evaluate all their support or reduced set

vectors on all the patches, while the SRSM uses on average

only 2.8 reduced set vectors per patch. Figure 4 shows the

patches of an input image which remain after 1, 10, 20 and

30 sequential reduced set evaluations on an image with one

face, figure 5 shows the results on an image with multiple

faces.

Figure 7 shows the number of reduced set vectors used

to classify each patch of an image. The intensities values

of the pixels of the right image are proportional to the num-

ber of reduced set vectors used to classify the corresponding

spot in the left image (note that the intensities are displayed

at the center of the corresponding patches only). The uni-

form parts of the input image are easily rejected using a sin-

gle reduced set vector, whereas the cluttered background re-

quires more reduced set vectors. Note that very few patches

needed all the reduced set vectors (only the patches contain-

ing the faces used all the reduced set vectors).

Accuracy. Figure 6 shows a comparison of the accuracy

of the different methods. These R.O.C. were computed on
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Figure 3: Number of reduced set vectors used per patch for the

full SVM (8291 support vectors), Reduced Set SVM and Sequential

Reduced Set SVM (both at 100 reduced set vector)

Figure 4: From left to right: input image, followed by portions

of the image which contain un-reject patches after the sequential

evaluation of 1 (13.3% patches remaining), 10 (2.6%), 20 (0.01%)

and 30 (0.002%) support vectors. Note that in these images, a

pixel is displayed if it is part of any remaining un-rejected patch

at any scale, orientation or position This explains the apparent

discrepancy between the above percentages and the visual impres-

sion.

a test set containing 800 faces and 5000 non-faces. The ac-

curacy of the SRSM (100 reduced set vectors) is very sim-

ilar to the accuracy of the full SVM (8291 support vectors)

and the RS (100 reduced set vectors) which perform equally

well.

To compare our system with others, we used the Row-

ley et al. [5] test set (which also includes the Sung et

al. [9] and the Osuna et al. [3] test images). This set con-

sists of 130 images containing 507 faces. We used a sub-

sampling ratio of s = 0:7 and the input images were sub-

sampled as long as their width and height was larger than

20 (i.e. the number of levels in the sub-sampling pyramid is

min
�

oor

�
log(20=w)
log 0:7

�
; 
oor

�
log(20=h)
log 0:7

��
where w and h

are, respectively, the width and the height of the input im-

age). We obtained a detection rate of 80.7% with a false

detection rate of 0.001%. These numbers are slightly worse

than Rowley’s, Sung’s and Osuna’s results, although they

are hard to compare due to the fact that they pre-process

the patches before feeding them into their classifier (his-

togram equalisation, background pixel removal and illumi-

nation gradient compensation). Our main objective was

speed, hence no pre-processing was made. Secondly, we
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Figure 5: Input image, followed by patches which remain after

the evaluation of 1 (19.8% patches remaining), 10 (0.74%), 20

(0.06%) and 30 (0.01%) : : : 70 (0.007%)support vectors. Note the

comment in the caption of Fig 4.
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Figure 6: Left: R.O.C. for the SVM using 8291 support vectors

(dotted line), the RS using 100 reduced set vectors (dashed line)

and SRSM using also 100 reduced set vectors (solid line). Note

that the SVM and RS curves are so close that they are not distin-

guishable. Right: R.O.C. for an SRSM using 1 (dashed line), 2

(dash-dot line), 3 (dotted line) and 4 (solid line) reduced set vec-

tors.

used a different training set as their training set was partly

proprietary. Speed figures are also hard to compare, but

from the information given, we conjecture that the Osuna

et al. RS system is comparable in speed to our RS system,

which in turn is 30 times slower than our sequential evalu-

ation system (32�s for the sequential evaluation, 1.2ms for

the reduced set evaluation and 26ms for the full SVM per

patch on a 500MHz Pentium).

7. Conclusion and Future Work

Pattern detection systems usually have to scan large images.

Therefore, the greatest challenge in engineering systems for

real-world applications is that of reducing computational

Figure 7: Top left: The intensity values of the pixels of the left

image are proportional to the number of reduced set vectors used

to classify their associated patches of the middle image. Light

grey corresponds to the use of a single reduced set vector, black

to the use of all the vectors. Top middle: 153�263 middle im-

age contains 76108 patches and was detected in 2:58s. Top right:

A 601�444 image containing 518801 patches detected in 27.9s.

Bottom Left: 1280�1024 contains 2562592 patches and was

detected in 80:1s. Bottom right: A 320�240 image containing

147289 patches detected in 10.4s (Note the false positives).

complexity. Within this paper we have demonstrated com-

putational savings in classification by the use of a sequential

reduced support vector evaluation. There are several av-

enues for future research. (a) We have explored the use of

the Gaussian kernel as a distance metric, however it may be

possible to tailor the kernel to something much more suited

to facial detection. (b) It may be that the criteria for choos-

ing the reduced set of support vectors can be improved. At

present the reduced set of support vectors is chosen to min-

imize (7), which affects classification error only indirectly.

However, it might be advantageous to choose a reduced set

that minimizes classification error directly. (c) It would be

interesting to adapt the thresholds based on contextual in-

formation: for instance, if a face is detected in the image,

this places strong priors on the scale and orientation of any

other faces we expect to see. This could further speed up

the detection. Finally, although the method has been im-

plemented for the task of face detection, it could be readily

applied to a wide class of other detection and classifications

problems.
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Computing the first reduced set vector. Now the algo-

rithm for minimizing the distance k	 � 	0k2 in section is

presented. First, we minimize the distance between 	 and

the orthogonal projection of 	 onto span (�(z)),




 (	 ��(z))

(�(z) ��(z))
�(z)�	




2 = k	k2 �
(	 ��(z))2

(�(z) ��(z))
:

(11)

i.e. maximize
(	 � �(z))2

(�(z) ��(z))
; (12)

which can be expressed in terms of the kernel. Once the

maximum is found, it is extended to the minimum of k	�
	0k2 by setting (cf. (11)) � = (	 ��(z))=(�(z) ��(z)).

For kernels which satisfy k(z; z) = 1 for all z 2 X (e.g.

Gaussian kernels), (12) reduces to

(	 � �(z))2: (13)

For the extremum, we have 0 = rz(	 � �(z))2 =
2(	 � �(z))rz(	 � �(z)). To evaluate the gradient in

terms of k, we substitute (5) to get the sufficient condition

0 =
PNx

i=1 �irzk(xi; z). For k(xi; z) = k(kxi � zk2)
(e.g. Gaussians, or (kxi � zk2 + 1)
 for 
 = �1;�1=2),

we obtain 0 =
PNx

i=1 �ik
0(kxi � zk2)(xi � z), lead-

ing to z =
P

Nx

i=1
�ik

0(kxi�zk
2)xi

P
Nx

i=1
�ik0(kxi�zk2)

: For the Gaussian ker-

nel k(xi; z) = exp(�kxi � zk2=(2�2)) we thus arrive at

z =
P

Nx

i=1
�i exp(�kxi�zk

2=(2�2))xi
P

Nx

i=1
�i exp(�kxi�zk2=(2�2))

; and devise an iteration

zn+1 =

PNx

i=1 �i exp(�kxi � znk
2=(2�2))xiPNx

i=1 �i exp(�kxi � znk2=(2�2))
: (14)

The denominator equals (	 � �(zn)) and thus is nonzero

in a neighbourhood of the extremum of (13), unless the ex-

tremum itself is zero. The latter only occurs if the projection

of 	 on the linear span of �(X ) is zero, in which case it is

pointless to try to approximate 	. Numerical instabilities

related to (	 ��(z)) being small can thus be approached by

restarting the iteration with different starting values.

Without further detail, we note that (14) can be inter-

preted as a type of clustering which takes into account both

positive and negative data [8].

Computing higher order reduced set vectors. Higher

order, reduced set vectors zm; m > 1 are required

and each zm is computed from 	m (defined above)

as follows. Equation (14) is applied to 	m (in place

of 	) by expressing 	m in its representation in terms

of mapped input images: 	m =
P`

i=1 �i�(xi) �Pm�1
i=1 �i�(zi); i.e. we need to set Nx = ` + m �

1, (�1; : : : ; �Nx
) = (�1; : : : ; �`;��1; : : : ;��m�1), and

(x1; : : : ;xNx
) = (x1; : : : ;x`; z1; : : : ; zm�1).

At each step, we compute the optimal coefficients � =
(�1; : : : ; �m) using Proposition 1 (note that if the discrep-

ancy 	m+1 has not yet reached zero, then Kz will be in-

vertible).

Proposition 1 ([8]) The optimal coefficients � =
(�1; : : : ; �m) for approximating 	 =

P`
i=1 �i�(xi)

by
Pm

i=1 �i�(zi) (for linearly independent

�(z1); : : : ;�(zm)) in the 2-norm are given by

� = (Kz)�1Kzx�: (15)

Here, Kz
ij := (�(zi) ��(zj)) and Kzx

ij := (�(zi) ��(xj)).

The solution vector takes the form (6).
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