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Abstract— A new computationally efficient filtering algo-
rithm for reconstruction of the first harmonic of a peri-
odic signal is presented. The algorithm allows to recover
the combustion quality information from the engine speed
measurements which are noise contaminated. The algorithm
is applied to the torque estimation problem for a V'8 spark
ignition engine.

I. INTRODUCTION

The performance of engine torque estimation affects
directly a drivability of the vehicle. The engine torque
estimation function is based on monitoring of the cylinder
individual fluctuations of the high resolution engine speed
signal (see references [3], [8], [9]). The engine speed signal
is based on the measurements of a passage time between
two subsequent teeth on a crankwheel. The passage time
decreases as the rotational speed increases thus the time
interval errors increase. Moreover, low frequency oscilla-
tions from the powertrain and high frequency oscillations
due to the crankshaft torsion, together with vibrations
induced by the road, act as disturbances on the crankshaft.
These disturbances influence directly the performance of the
engine speed signal and consequently the torque monitoring
function. The problem described above is more important
for six and eight cylinder engines than for five cylinder
engines. This is due to a larger amount of combustion events
which should be recognized in the presence of the described
disturbances.

This necessitates the development of the computationally
efficient filtering algorithms which recover the engine speed
fluctuations corresponding to the combustion events from
the noise contaminated measurements.

The approach proposed in this paper is based on the
trigonometric interpolation of the measured engine speed
data in the least squares sense. In application of the idea
of the window moving in time (see references [2], [4]) to
numerical differentiation by using polynomial of a certain
order, the trigonometric polynomial is fitted here to the
measured data. The trigonometric interpolation is fairly
suitable for the engine speed approximation due to the
periodic nature of both engine rotational dynamics and
combustion forces as functions of a crank angle. The
filtering technique uses the periodic signal at the combustion
frequency and the amplitudes of the trigonometric functions
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are updated according to the trigonometric interpolation
method. Applying the idea of the recursive computations to
the moving window described in [10], the computationally
efficient recursive algorithms are developed in this case for
the trigonometric polynomials.

A Volvo XC90 passenger car equipped with V'8 engine
was used in the experiments. Algorithms are implemented
in MATLAB! and applied to the measured data collected
from the experimental vehicle.

The paper is organized as follows. The next section
is devoted to the problem statement. The third section is
devoted to the recursive trigonometric interpolation method
and its application to the engine torque estimation. The
fourth section contains brief concluding remarks.

II. PROBLEM STATEMENT

As a rule, a passage time between two teeth on a
crankwheel is measured in production engines. The high
resolution engine speed signal is then calculated via the
elapsed time by using the first difference method.

The combustion state of the given cylinder is defined
via the amplitude. The amplitude for the cylinder, whose
power stroke occurs in the interval, in turn is defined as
the difference between maximal and minimal values of
the high resolution engine speed signal. The corresponding
amplitude, which is the measure of the crankwheel speed
perturbations induced by the periodic impulsive cylinder
individual torque contributions, provides a mean for esti-
mation of the engine torque [5]. Here and below, a non-
standard definition is used, and under the term ’amplitude’
the difference between maximal and minimal values is
understood.

Figure 1 shows the harmonics of the engine speed signal
at 1800 rpm and 5400 rpm calculated by the Discrete
Fourier Transform (DFT) method [6]. The input sequence
was sampled with the step 30 CA ( Crank Angle ) degrees
and the data was acquired over a 720 CA degree window.
Amplitudes are plotted as a function of a harmonic number
of a periodic signal with the period of 720 CA ( Crank
Angle ) degrees. The harmonic number is defined as an
inte%er which is equal to the ratio of two periods, n;, =
%, where T}, is the period of the harmonic. Figure 1
shows that the engine speed signal at low rotational speeds
has a dominating component which corresponds to the com-
bustions events. The engine speed signal at high rotational
speeds has fluctuations which occur as a consequence of
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the combustion events, low frequency oscillations from the
powertrain as well as high frequency oscillations due to the
crankshaft torsion. The high frequency oscillations due to
the crankshaft twist and low frequency oscillations from the
powertrain could be greater than the oscillations induced by
the combustion events. Notice that, the input sequence was
sampled with the step 30° which is a relatively low rate
sampling. At this rate the high order harmonic components
could be aliased within the range of a lower frequencies.
Thus, the higher amplitudes at the lower harmonics (n; < 8
) showed in Fig.1, could be the superposition of low fre-
quency torsional oscillations and the aliased high frequency
oscillations.

The problem stated in this paper is to design the computa-
tionally efficient algorithms which recover the engine speed
fluctuations corresponding to the combustion events from
the noise contaminated measurements of the engine speed.
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Figure 1:

Harmonic contents of the engine speed signal at 1800 rpm
and 5400 rpm computed via the DFT method. The input
sequence is sampled with the step 30°. The data is
acquired over 720° window. The measurements are made
on the experimental vehicle on the chassis rolls.
Amplitudes are plotted as a function of the harmonic
number of the signal with the period of 720 CA degrees.
The engine is operating at 50% load. Amplitudes at 1800
rpm are plotted with solid line and amplitudes at 5400
rpm are plotted with the dotted line.

III. RECURSIVE TRIGONOMETRIC INTERPOLATION
METHOD

A. General Description

Suppose that there is a set of the Crank Angle synchro-

nized data y;, [ = 1,...,w , measured at the following
points:

360°
1 =4, 1xo=2A, LT =wA, A= —— (1)

where A is a step size. For example, the high resolution
engine speed signal is sampled on the basis of a Crank
Angle (CA) with the step A, namely,

L.

A= N 2)
where A is the discretization step ( CA degrees ), N is the
number of the cylinders of the engine, n,, is the number of
points measured for each combustion event ( n, > 3 ), L.
is the length of the engine cycle in CA degrees ( as a rule,
L. = 720°). Since an engine crankshaft is usually provided
with 58 teeth and a gap corresponding to two missing teeth,
the step A should be a multiple of 6°.

Assume that the number of measurements w is greater
than or equal to (2n + 1), where n is the number of the
frequencies of the signal. Then there exists the trigonometric
polynomial in the following form:

To(x) = ap + Z(aqcos(qx) + bgsin(qx)), 3)
qg=1
which gives the best approximation of the measured data
y; at the points z; in the least-squares sense. Notice,
that the frequencies ¢ = 1,2,...,n defined in (3) should
include the combustion frequency, as well as low powertrain
frequencies and high frequencies due to the crankshaft
torsion.
Measured data should be approximated by the polynomial
(3) in the least squares sense. The error to be minimized at
every step is as follows:

n

E = Z(yl —(ap+ Z(aqcos(qxl) + bqsin(qxl))))z. 4
=1

q=1
Straightforward calculations show that the coefficients
which minimize (4) are the following:

1 w
w = ~>u 5)
w3
2 w
a, = EZylcos(qxl), (6)
1=1
2 — .
by = EZy;sm(qxl). (7)
=1

The expressions (3), (5) - (7) are known as the DFT
method [6]. The coefficients (5), (6), (7) of the DFT have
such a simple form due to the property of the orthogonality
of the trigonometric polynomials in the interval [0+ 360°).
It is interesting to note that the trigonometric polynomial
can be fitted to the measured data at any interval. However,
for computation of the coefficients ag, a4, by the matrix
inversion is required, as it is usual for the least-squares
fitting. Therefore the DFT method can be seen as a special
case of the trigonometric interpolation method.

The main result of this paper is formulated below.
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B. Introduction of a moving window and recursive algo-
rithms

The amount of computations in (5) - (7) can be reduced
by introduction of the local fixed coordinates, i.e., moving
window of a size w. The same idea was proposed in the
spline interpolation method described in [4] and is based on
the on-line least-squares polynomial fitting over the window
moving in time. The idea of the window moving in time is
illustrated in Figure 2. The window is defined in the form of
the local coordinates X, Y7. Then, the least squares curve
fitting problem is solved in local coordinates and the result
is transformed to the original coordinate system. Moreover,
at every step the coefficients (5) - (7) can be computed
recursively using the information from the previous step.
This makes the whole scheme computationally efficient and
implementable.

Consider one step of the window moving in time. As-
sume that there is a set of measurements at step (k — 1),
{y(1), y(2), @), .., y(w)}, whichis measured
in the following local coordinate system based on the crank
angle {0, A, 2A, . (w—1)A}, where A is
defined by (2). At step k, new value y(w+1) enters the win-
dow while y(1) leaves the window. Whence, at step & there
is a set of measurements {  y(2), v(3), y(4), ..,

y(w+1)}, measured in the same local coordinate system.
One step of the moving window is shown in Figure 2, where
the engine speed is measured for the V8 engine with the
step A = 30°.
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Figure 2
Measurements with the step 30 CA degrees on the V8§
engine. The engine speed is plotted with the solid line.
The engine is operating at full load. Window of the size
w = 12 moving in time is defined in the form of local
coordinates Xy, Y.

The coefficients (5) -
follows:

(7) at step (k — 1) are defined as

ao(k—1) = Ezy(l)’ ®)

w

A(k-1) = Zy(i)cos((i —1)qA), ©)
i=1
2
byk—1) = . Zy(z)sm((z — 1)qA), (10)
i=1
where ¢ denotes the frequency. The coefficients (8) - (10)
at step k are defined as follows:
1 w—+1
= — ] 11
apk ” ; y(i), (11)
9 w—+1
dak = ZQ y(i)cos((i — 2)qA), (12)
9 w41
by = - y(i)sin((i — 2)gA). (13)

The coefficients (11) -
coefficients (8) - (10).

Straightforward calculations give the expression for the
first coefficient,

(13) are to be expressed via the

agk = Ao(k—1) + Cq(k—1)> (14)

where c5-1) = =(y(w + 1) — y(1)), simply meaning
that the value y(w + 1) enters the window, while the value
y(1) leaves the window.

Starting with a4y, one gets,

2 w+1
Qg = — Z y(i)cos((i — 2)qA)
— %y(w + 1)cos((w — 1)qA)
+ % > yli)eos((i ~ Da  g8) =
%y(u} + 1)cos((w — 1)gA)
+  cos(qA)(agr—-1) — %y(l))
+ 5in(qA)bg(r—-1)
= byk—1)8in(gA) + dyx—1)cos(gA), (15)
and
9 w—+1
b = w Z y(i)sin((i — 2)qA)
_ %y('w + Dsin((w — 1)gA)
+ % >_y(i)sin((i = 1)gA — qA) =
%y(w + D)sin((w — 1)qA)

+ cos(ad) (byr) ~ —y(2)sin(gA)
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2
- Sm(qA)(aq(k—l) - E(y(l)
+  y(2)cos(qA))
= —dg-1)51n(qA) + byr—1)cos(qA), (16)

where dg;—1) = aq(k—1) + 2¢4(k—1). Notice that (15), (16)
can be expressed in a single matrix equation

Sqk = Aqkzq, (17

Q,
qu? = ( bZ: ) ]
A =
a* ( —dg(k—1)

dq(k—1)
)
Aq(k—1)
is a skew symmetric matrix and

= ((nea)),

is a constant vector. Implementation of the algorithms (14)
- (16) requires 5 multiplications and 7 additions only at
a single frequency. The algorithms are suitable for imple-
mentation on a simple controller that has a multiply and
add processor.

The number of the multiplications for the DFT compu-
tation is proportional to the number of the samples of the
input sequence ( the size of the moving window w ) at a
single frequency. The coefficients agy, aqr and by of the
scheme proposed here are computed via (8) - (10) at the first
step. Hence the number of the arithmetical operations which
is required for implementation of the algorithms proposed
here and the DFT algorithms is the same at the first step.
However, the number of the arithmetical operations for
recursive algorithms (14),(15) and (16) does not depend
on the window size w at the subsequent steps. Then the
advantage of the method proposed here with respect to the
DFT method increases with the window size w.

The algorithms proposed above can also be used in the
case of the engine speed transients, provided that a “slowly*
varying trend of the engine speed is properly compensated.
A simple compensation technique is described below. The
measured engine speed signal wy, is filtered by the following
low pass filter:

where

bq(kfl)

At
)(Wf(kq) — wy), (18)

Wik = @fk-) Tf (W, W
where wyy is a filtered engine speed and Tf(wy,wy) is
a “time constant™ of the filter (18), At [sec] is the dis-
cretization step. The time constant is realized as a look-up
table with engine speed wy and its derivative wg, which
is estimated by the first difference method as two inputs.
The look-up table is calibrated so that the time constant
is reduced under the transients to capture fast changes
in engine speed, and is increased under the steady-state
conditions. The following difference,

Yk = Wk — Wik, (19)

between measured engine speed signal wy and filtered
signal wyy represents the fluctuations which occur as a
consequence of the combustion events, contaminated with
errors. This difference is approximated by the trigonometric
interpolation method. Then the engine speed is approxi-
mated via the sum of two components. The first one is
the filtered engine speed wy, which approximates “slowly*
varying trend of the engine speed. The second one is the
approximation of the combustion events.

The variable y;, is approximated by ¢ according to the
following equation:

k= aok+ Y _(agrcos(q(w —1)A) + bersin(q(w — 1)A)),

q=1
(20)
where the coefficients are updated as follows:
ok = Qo(k—1) T Cq(k—1)> (21)
agk = bgr—1)5in(qA) + dg—1ycos(qA),  (22)
bge = —dgk—1)sin(qA) + byr—1)cos(qA), (23)

where dq(k—l) Qq(k—1) T ZCq(k—l) and Cq(k—1)

L (y(w+1) —y(1)). The value of the interpolating polyno-
mial g, is taken at the end of the moving window (w—1)A.
Then the engine speed can be approximated as follows:

Wr = Wik + Yk (24)

where ¢ is computed via (20) - (23).

Further in the paper, the trigonometric interpolation is
used as a filter at the combustion frequency, i.e.,

Uk = Qok + agkc0s(ge(w — 1)A)
+ bgrsin(ge(w — 1)A), (25)
Wee = Wik + gckv (26)

where q. = év—ﬂ is the combustion frequency, and N is the
number of the engine cylinders. The combustion fre%uency
is the frequency of the signal whose period is 720" The
coefficients agx, @gek, bger are computed according to the
recursive formulae (21) - (23). Figure 3 shows the result
of the filtering at the firing frequency of the engine speed
signal by the filter (25), (26). It can be seen that the
amplitude information is recovered on the signal which is
filtered by the filter (25), (26).
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Figure 3
Measurements with the step 30 CA degrees on the V8§
engine. A single engine cycle is plotted. The engine speed
is plotted with the solid line. Relative load is 45%.
Filtered signal corresponding to the firing frequency is
plotted with dashdot line. The size of the moving window
is equal to twelve (w = 12).

C. Application of the recursive trigonometric interpolation
method to the estimation of the engine torque

The filtered engine speed signal can now be used for
engine torque estimation. The time rate change of the
crankshaft angular velocity is proportional to the torque
acting on the system. The ideal engine rotational dynamics
can be described as follows:

Jo(t) =T. - Ty, 27)

where w is the speed of the engine, J is the crankshaft
inertia, T, is the brake torque of the engine, and 7; is the
engine load torque. Equation (27) can be transformed into
the crank angle domain using the chain rule of differenti-
ation and employing the crank angle # as an independent
variable,

dw
J— =T, -1. 28
wl =g ! (28)
Integrating over a crank angle interval [§, 6] (e.g., 05

and 6y may be defined so that the engine speed assumes a
minimal value at 6, and maximum value at f;), we obtain

1 (% (T.-T)
0r) —w(bs) == —dv. 29
w(ty) — it = 5 [ 5 9)
Since the torque is a continuous function in the interval
[0s,0¢], there exists 6, € [0,,60¢], such that the following
holds:

/"f (T.=T0) 4y _ (T00) = T(O0D)O; = 05) )
0

. w w(@l)

Substituting (30) into (29) and with the amplitude, A;,
defined for the ¢th engine cylinder, ¢ = 1,---, N, as

A; =w(lf) — w(0s), (31
we obtain
o (Hf - 95) _
Ay = W(Te(el) T1(61))- (32)
Since
1 1 1
~— = —(w(th) - ),

w() ®

where @ is the mean value of the engine speed in the
interval, and since % is small and can be neglected, it
follows that

A~ ) 0) - 1igon)).
Thus A; can be viewed as a measure of the difference
between the engine brake torque and the load torque. The
expression (33) may be suitable for estimating 7.(61) in
transient conditions if the load torque, 7;(6;), is known.
Unfortunately, the load torque depends on vehicle mass and
road grade which are unknown parameters. See reference
[11] for challenges and methods to simultaneously estimate
the vehicle mass and the road grade. The load torque may be
estimated using the automatic transmission torque converter
turbine speed measurement, if the torque converter is in the
unlocked state, or using a wheel speed measurement.
More progress can be made for close to steady-state or
slow transient conditions. Let 7. denote the mean value of
the ith cylinder torque, i.e.,

Te(‘g) = Te + Te(e)v

(33)

where T, (f) is the torque fluctuation.

The torque of each cylinder can be presented as a sum of
two components, namely the mean value of the torque and
the torque fluctuations. The Dual Mass Flywheel (DMF)
which is widely used in production vehicles [1] reduces
the crankshaft oscillations transmitted to the powertrain,
offering the vibration isolation and acting like a lowpass
filter. Then the torque which is measured on the gear shaft
is the mean value of the engine brake torque, which in turn
is estimated via the torque fluctuations on the flywheel. In
other words, the periodic flywheel speed variations induced
by the periodic torque contributions of individual cylinders
are isolated due to the DMF from the rest of the driveline,
providing a mean for the torque estimation. Due to DMF in
the driveline it can be assumed that in close to steady-state
or in slow transient conditions,

T‘l(el) = Te~
Then, (33) implies
0r —0y) ~

An increase or decrease in T, correlates with, respectively,
an increase or decrease in 7, [5]. A simple, intuitive way to

understand this is to note that 7, increases almost linearly
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with the increase in the quantity of fuel while with the
appropriate’ choice of 6, 6 the cylinder pressure rise
during the cycle and the cylinder torque will also exhibit a
close to linear trend with the increase in fuel quantity. Thus
we find that 7, the mean-value of the ith engine cylinder
torque, can be correlated to A;. If the cylinders are balanced
and the engine is in steady-state conditions, the mean value
of the overall engine torque can be correlated to the average,
A, of fluctuations A; over a certain number of combustion
events. Usually, averaging over 10 — 15 events is sufficient.
As a result, a function f(-) can be developed that predicts
engine torque as a function of engine speed, w, and A, ie.,

T. = f(@,A). (34)

This function can be implemented as a 2D look-up table
and calibrated on an engine in a vehicle equipped with
a torque sensor at the flywheel for the duration of the
calibration phase. Although the look-up table (34) may,
in principle, have to be replicated for different gear ratios
(due to changing inertia with changing gear), experimental
evidence from our particular vehicle suggests that the gear
dependence is not significant.

Figure 4 illustrates the verification of the proposed al-
gorithm. The torque measured on a rig (chassis rolls) via
the measurements of the traction force is plotted with the
solid line and the estimated torque obtained by using the
technique proposed above is plotted with a dotted line.
Figure 3 confirms a good correlation between measured and
estimated engine brake torques.
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Figure 4
Measurements from the V8 engine. The engine speed is
4800 rpm. Measured engine torque is plotted with solid
line. Estimated torque is plotted with dotted line.

IV. CONCLUSION

It has been shown that the torque estimation technique
can benefit from the availablity of the combustion quality in-
formation provided by the algorithm proposed in this paper.

Reference [7] discusses how the window [0s, 0f] can be optimally
selected to improve individual cylinder torque observability.

A new computationally efficient algorithm which provides
filtering at the engine firing frequency was designed and
verified.

REFERENCES

[1] Albers A., Albrecht M., Kruger A., Lux R. (1997). New Methodol-
ogy for Power Train Development in the Automotive Engineering -
Integration of Simulation, Design and Testing , SAE Paper 2001-01-
3303.

[2] Dabroom A., Khalil H. (1999). Discrete-Time Implementation of
High-Gain Observers for Numerical Differentiation, International
Journal of Control 72 (17), p.p. 1523-1527.

[3] Ginoux S., Champoussin J.C. (1997). Engine Torque Determination by
Crankangle Measurements: State of the Art, Future Prospects , SAE
Paper 970532 .

[4] Diop S., Grizzle J., Moraal P., Stefanopoulou A. (1994). Interpolation
and Numerical Differentiation for Observer Design, Proc. American
Control Conference, Baltimore, Maryland, p.p. 1329 - 1333.

[5] Kay, I.W., and Lehrach, R.P.C. Torque Sensing for Controlled
Alternative-Fuel Combustion in Diesel Engines. SAE Paper 841007.

[6] Lyons R. Understanding Digital Signal Processing, Addison Wesley,
1997.

[7] van Nieuwstadt, M., and Kolmanovsky, 1. Detecting and Correcting
Cylinder Imbalance in Direct Injection Engines. Journal of Dynamic
Systems, Measurement and Control, vol. 123, September 2001, pp.
413-424, 2001.

[8] Rizzoni G. (1989) Estimate of Indicated Torque from Crankshaft
Speed Fluctuations: A Model for the Dynamics of the IC Engine,
IEEE Transactions on Vehicular Technology, vol. 38, no. 3, pp. 168-
179.

[9] Rizzoni G., Guezennec Y., Soliman A. (2003). Engine Control Using
Torque Estimation US Patent Application Publication 2003/0167118
Al.

[10] Stotsky A., Forgo A. (2004). Recursive Spline Interpolation Method
for Real Time Engine Control Applications, Control Engineering
Practice, vol.12, pp.409-416.

[11] Vahidi, A., Druzhinina, M., Stefanopoulou, A., and Peng, H. Simulta-
neous mass and time-varying grade estimation for heavy-duty vehicles.
Proceedings of 2003 American Control Conference, Denver, Colorado,
4951-4956, 2003.

5040



