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Abstract. Optimal image mosaicing has large computational complex-
ity, that becomes prohibitive as the number of sub-images increases. Two
methods are proposed, which require less computation time by perform-
ing mosaicing in pairs of two sub-images at a time, without significant
reconstruction losses, as evidenced by simulation results.

1 Introduction

Very high resolution digital image acquisition is a process that stresses the limits
of acquisition devices. Even high-end CCD devices can not offer the level of detail
that is required in certain applications. To overcome this obstacle, digitization
structures have been proposed that utilize observation of different, albeit over-
lapping, fields of view (sub-images), sometimes with the aid of sensor/detector
arrays, and positioning mechanisms. Mosaicing is a process which is used to re-
construct or re-stitch a single, continuous image from a set of overlapping images.
Several mosaicing techniques have been proposed in the literature [1–5]. Image
mosaicing is essential for the creation of high-resolution large-scale panoramas
for virtual environments. Image mosaicing is also important in other areas that
include image-based rendering, creation of high resolution digital images of ar-
chitectural monuments and works of art (especially of those with considerable
dimensions like frescoes and large-size paintings) for archival purposes (Fig. 1)
and digital painting restoration, medical imaging [1] aerial and satellite imaging
etc [2]. If the field of view is split into M1 rows of M2 images, it should be trivial
to show that an M1M2-fold increase in resolution may be attained, compared to
sensor resolution.

The mosaicing process may be broken down into two steps. The first step in-
volves the estimation of optimal displacement of each sub-image with respect to
each neighboring one (assuming only translational camera motion and no rota-
tion or zooming). This represents the most computationally intensive part of the
entire process. In the general case of an M1 by M2 image mosaic, a search should
be performed in a m-dimensional space, where m = 2(2M1M2 −M1 −M2). The
term in parenthesis represents the number of all pairs of neighboring sub-images.



Fig. 1. (a) A M1 = 3 by M2 = 2 sub-image acquisition of a painting. (b) Reconstructed
images after STM processing. (c) Reconstructed images after SGSTM processing.

Since these are 2-d searches, this term is multiplied by two. It is evident that
computation cost becomes prohibitive, as the number of sub-images increases.
Optimal displacement is researched, under the assumption that acquired images
are not free of distortions [3]. The second step of the mosaicing process utilizes
the previously generated displacement information in order to combine each pair
of neighboring sub-images with invisible seams.

This paper shall focus on the first step. The proposed methods attempt to
reduce the number of computations required to compute the sub-image displace-
ments. Despite the fact that the methods are illustrated for the particular case
where sub-images are only displaced (translated) with respect to each other, the
proposed matching methodology is applicable to more complex cases, e.g. cases
that involve camera rotation or zooming.



2 Mosaicing Techniques for Two Images

Before we proceed to the general case of mosaicing an arbitrary number of sub-
images, the case of two images should be studied first, since it provides significant
insight to the problem. In the following it is assumed that the displacement vector
d is constrained to take values in the following set:

d ∈ {[d1 d2]T : di ∈ {dimin , . . . , dimax}, i = 1, 2} (1)

If Ij(n), j = 1, 2, is the intensity of the j-th image at pixel coordinates
n = [n1 n2]T ∈ W (d), where W (d) denotes the overlap area, then a quantita-
tive expression for the matching error E(d), which is associated with a specific
displacement d, can be derived as follows:

E(d) =

∑

n∈W (d)

|I1(n)− I2(n)|p

||W (d)|| (2)

where ||W (d)|| denotes the number of pixels in the overlap area W (d). For
p = 1, 2 (2) expresses the Matching Mean Absolute Error EMMAE and the
Matching Mean Square Error EMMSE , respectively. Subsequently, an optimal
value dopt for the displacement can be estimated as follows:

dopt = argmin
d

E(d) (3)

From (1) and (3) it should be evident that this minimization process requires
a repeated evaluation of (2) over all possible values of d. Since matching error
calculation is the most computationally intensive part of the mosaicing process,
alternative forms of (3) should be researched. Block matching techniques can
be employed in order to avoid the computation cost which is associated with
the exhaustive minimization procedure, which is implied by (3). In this context,
procedures such as the 2-d logarithmic search, the three-point search and the
conjugate gradient procedure may be utilized for this purpose [6]. These proce-
dures may provide estimates d̂opt of the optimal displacement value dopt. The
2-d logarithmic search was employed throughout our simulations.

3 Spanning Tree Mosaicing of Multiple Images

Let us suppose that M1 × M2 sub-images should be mosaiced. In this case, a
displacement matrix D plays a role similar to that of the displacement vector
d of Sect. 2. The 2M1M2 −M1 −M2 columns of D are 2-dimensional vectors,
each one corresponding to a displacement value between two neighboring sub-
images. An expression for the quality of matching, similar to the two-image case,
can be derived in the multiple image case, by substituting d with D in (2) and
extending the summation over all neighboring images. The optimal value Dopt

of the displacement matrix can be derived from the following expression:

Dopt = argmin
D

E(D) (4)



Unfortunately, (4) imposes prohibitive computational requirements, since the
search is now performed in a much larger space. Indeed, let us suppose that
for each one of the column vectors of D, eq (1) holds. It can be shown that
D may assume ((d1max − d1min + 1) (d2max − d2min + 1))2M1M2−M1−M2 different
values. Thus, computational complexity increases exponentially. Additionally,
calculation of E(D) poses other computation problems, since the overlap area
W is now a multi-dimensional set.

In order to avoid this exhaustive matching process, certain constraints can be
imposed on the way images are matched. Indeed, a faster method may be devised
by performing simple matches only, i.e. matches between an image and one of
its neighbors. The proposed method may be easily understood with the aid of a
mosaicing example. In Fig. 2 (a) a mosaic of M1 = 2 by M2 = 2 sub-images is
depicted. By associating each image with a graph node and each local matching
of two sub-images with an edge, the mosaicing of the four images can be described
by the graph of Fig. 2 (b). Computation of Dopt requires an exhaustive search
in 8-dimensional space. To avoid this complexity, the entire mosaicing process is
decomposed into simpler steps of mosaicing two images at a time. Spanning trees
offer an elegant representation of the possible mosaicing procedures, under this
constraint. Figs. 2 (c)-(f) illustrate the four spanning trees that correspond to
the graph of Fig. 2 (b). For example, in the case depicted in Fig. 2 (c) three two-
image matches should be performed: image A to B, A to C, and C to D, while in
Figs. 2 (d)-(f) the other three possible mosaicing procedures are illustrated. The
final resulting image is the one produced by the procedure which is associated
with the smallest matching error. It should be obvious that this sub-optimal
procedure offers a significant decrease in computational complexity. The number
of trees of a graph can be calculated by the matrix-tree Theorem [7]:

Theorem 1 (Matrix-Tree Theorem). Let G be a non-trivial graph with ad-
jacency array A and degree array C. The number of the discrete spanning trees
of G is equal with each cofactor of array C−A.

Both A and C are matrices of size (M1M2)× (M1M2). If node vi is adjacent to
node vj , A(i, j) = 1, otherwise A(i, j) = 0. Additionally, the degree matrix is of
the form:

C = diag(d(v1), . . . , d(vM1M2)) (5)

where d(vi) denotes the number of nodes adjacent to vi.
The spanning tree mosaicing (STM) procedure is outlined below:

1. For each pair of neighboring images, calculate the optimal displacement and
the associated matching error. Notice, that each pair of neighboring images
corresponds to an edge of the graph.

2. For each spanning tree that is associated with the specific graph, calculate
the corresponding matching error, by summing the local matching errors
which are associated with the two-image matches depicted by the given tree.

3. Select the tree that is associated with the smallest matching error.
4. Perform mosaicing of two images at a time, following a route of the selected

spanning tree.
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Fig. 2. (a) A labelled mosaic of M1 = 2 by M2 = 2 sub-images, (b) the corresponding
graph, (c)-(f) the four possible spanning trees.

It should be clarified that sub-optimal results are obtained when the STM
approach is followed. Specifically, an approximation D̂opt of the optimal matrix
is computed. However, this is contemplated by the speed gains provided by the
algorithm.

As will be shown in Sect. 5, similar results are obtained by using either the
MMAE or the MMSE criterion. Thus, MMAE may be preferred since it is faster
to compute.

4 Sub-Graph STM

The number of trees that correspond to graphs of sizes up to 5 by 5 images are
tabulated in Table 1. Unfortunately, for large values of M1 and M2 this method
can not be utilized, since the number of trees grows very fast with respect to
grid size.

Table 1. Number of spanning trees in a graph-grid of size M1 ×M2

M2

1 2 3 4 5

1 0 1 1 1 1
2 1 4 15 56 209

M1 3 1 15 192 2415 30305
4 1 56 2415 100352 4140081
5 1 209 30305 4140081 5.6× 108



Sub-graph STM (SGSTM) may, partially, address this issue. In SGSTM, a
graph may be partitioned into sub-graphs, by a process that splits the original
graph vertically and/or horizontally. In Fig. 3, a sample partitioning of this form
is depicted. By splitting vertically first and then horizontally, four sub-graphs
are created. STM can be applied separately to each one of the four sub-graphs
of Fig. 3 (d). Using data of Table 1, it can be easily shown that a total of
192 + 1 + 0 + 1 = 194 spanning trees should be examined. Since four images will
be produced by the STM process (one for each sub-graph), a further STM step
will be required, in order to produce the final image. Thus, 4 more trees should
be added to the 194 trees examined in the previous step, to produce a total of
198 trees. In contrast, an STM of the original image set would require matching
error calculations in 100352 cases.

(b)

(c) (d)

(a)

Fig. 3. (a) A graph of M1 = 4 by M2 = 4 image mosaic. (b) Vertical split of (a). (c)
Horizontal split of (b). (d) Resulting partition of graph.

If the original graph is of size M ×M (M = 2ν), the image can be gradually
mosaiced by decomposing the original graph into an appropriate number of 2×2
sub-graphs, performing STM on each one, decompose once more the resulting
M
2 × M

2 graphs and so on, until one image emerges. After mosaicing a partition’s
sub-graphs, new displacement matrices should be calculated that correspond to
the resulting sub-images. It is obvious that the number of 2×2 graphs is equal to
M
2

M
2 + M

4
M
4 + . . .+1 = M2−1

3 . Since four spanning trees exist for a 2× 2 graph,
the matching error of only 4M2−1

3 trees should be evaluated. Speedup values are



depicted in Fig. 4. It is obvious that SGSTM represents a vast improvement over
the STM approach, in terms of computation needs. The results of both methods
on an image consisting of 6 sub-images can be seen in Fig. 1. Obviously, SGSTM
mosaicing quality may be inferior to the one provided by STM, since a smaller
number of possible sub-image displacements is examined.
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Fig. 4. Theoretical speedup of SGSTM compared to STM, for M × M (M = 2ν)
graphs.

5 Simulation Results

Simulations were carried out in order to assess the performance of the proposed
methods, on several image sets. In the following, comments and results are pre-
sented for one of these sets, consisting of 12 sub-images, which were arranged
in a grid of M1 = 4 rows of M2 = 3 sub-images each. Each sub-image had a
resolution of 951× 951 pixels. For this graph 2415 spanning trees exist.

For each one of the 2M1M2 − M1 − M2 = 17 pairs of neighboring sub-
images, matching errors were calculated under both the MMAE and the MMSE
criteria. The 2-d logarithmic search was utilized in order to obtain the optimal
displacement. Subsequently, for each one of the 2415 spanning trees, the total
matching error (MMAE and MMSE) was calculated.

The total time that was required to find all spanning trees that correspond to
the given graph, calculate optimal neighboring image displacements under a spe-
cific criterion, and output the overall matching error of each tree is tabulated in
Table 2, in seconds. Results are included for both STM and SGSTM approaches.



In the SGSTM case, the graph was decomposed into four sub-graphs: two 2× 2
and two 2× 1, which required the calculation of overall error for 14 trees, com-
pared to the 2415 of STM. It is evident that SGSTM is more than an order
of magnitude faster than STM. More specifically, the speedup provided by the
SGSTM method over the STM method was 13.9 when the MMSE criterion was
used and 11.4 for the MMAE criterion, albeit with a significant increase in the
matching error. Furthermore, the use of MMAE proved to be faster than that of
the MMSE. Sample minimum, maximum, mean and variance of matching error,
over the entire spanning tree set for the STM approach, are recorded in Table 3.

Table 2. STM and SGSTM performance results under the MMAE and MMSE criteria

MMAE MMSE
Method Error Time Error Time

STM 6.4 782.7 107 1265
SGSTM 9.7 68.9 228 91

Table 3. STM matching error statistical measures

Measure MMAE MMSE

Maximum 10.7 378
Minimum 6.4 107
Mean 7.9 186
Variance 0.45 1771

By studying the spanning trees that exhibited the lowest MMAE scores the
following observations were made:

– MMAE optimality is closely related to MMSE optimality. Indeed, the trees
that exhibited the lowest MMAE figures, exhibited also the lowest MMSE
figures.

– The most characteristic feature of the trees with the lowest error figures was
that optimal matching began from the center and proceeded outwards. In
other words, the central nodes of the graph were connected in the best per-
forming trees. Currently, it is assumed that matching quality of the central
nodes is more crucial to the overall mosaicing quality, than matching quality
of the other nodes. This issue is currently under investigation.



6 Conclusions

In this paper two novel methods that can be used for the mosaicing of large
images were proposed. Spanning trees are utilized for describing the order of the
mosaicing process. Since matches are performed between pairs of neighboring
images, an exhaustive search for the optimal placement of sub-images with re-
spect to each other is avoided. The SGSTM method offers significant speedup,
when compared to the STM method. Despite the fact that this performance im-
provement comes at the cost of increased matching error, SGSTM can be utilized
for fast visualization of mosaicing results (e.g. mosaic previews).
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