
Computationally efficient models of neuromuscular recruitment and mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Neural Eng. 5 175

(http://iopscience.iop.org/1741-2552/5/2/008)

Download details:

IP Address: 130.237.218.28

The article was downloaded on 23/05/2010 at 12:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1741-2552/5/2
http://iopscience.iop.org/1741-2552
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF NEURAL ENGINEERING

J. Neural Eng. 5 (2008) 175–184 doi:10.1088/1741-2560/5/2/008

Computationally efficient models of
neuromuscular recruitment and
mechanics
D Song1, G Raphael1, N Lan2 and G E Loeb1

1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089,
USA
2 Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles,
CA 90089, USA

E-mail: ninglan@usc.edu

Received 23 October 2007
Accepted for publication 20 March 2008
Published 28 April 2008
Online at stacks.iop.org/JNE/5/175

Abstract
We have improved the stability and computational efficiency of a physiologically realistic,
virtual muscle (VM 3.∗) model (Cheng et al 2000 J. Neurosci. Methods 101 117–30) by a
simpler structure of lumped fiber types and a novel recruitment algorithm. In the new version
(VM 4.0), the mathematical equations are reformulated into state-space representation and
structured into a CMEX S-function in SIMULINK. A continuous recruitment scheme
approximates the discrete recruitment of slow and fast motor units under physiological
conditions. This makes it possible to predict force output during smooth recruitment and
derecruitment without having to simulate explicitly a large number of independently recruited
units. We removed the intermediate state variable, effective length (Leff), which had been
introduced to model the delayed length dependency of the activation–frequency relationship,
but which had little effect and could introduce instability under physiological conditions of
use. Both of these changes greatly reduce the number of state variables with little loss of
accuracy compared to the original VM. The performance of VM 4.0 was validated by
comparison with VM 3.1.5 for both single-muscle force production and a multi-joint task. The
improved VM 4.0 model is more suitable for the analysis of neural control of movements and
for design of prosthetic systems to restore lost or impaired motor functions. VM 4.0 is
available via the internet and includes options to use the original VM model, which remains
useful for detailed simulations of single motor unit behavior.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The original Virtual MuscleTM software (VM 3.∗) (Cheng et al
2000) was based on a series of muscle characterization
experiments designed specifically to develop an accurate
set of mathematical equations representing the physiological
processes of force production (Brown et al 1999, Brown
and Loeb 1999, 2000a, 2000b). The data from those and
other experiments were used to fit coefficients to describe the
details of recruitment and force generation in skeletal muscles
with mixed fiber types. VM 3.∗ includes a motor neuron
pool with multiple motor units recruited discretely, in size-

ranked order, and with physiological frequency modulation
and second-order activation kinetics (Brown and Loeb 2000b).
The lumped passive forces and aggregate active forces of all
motor units interact with the muscle mass and visco-elastic
tendon and aponeurosis (Scott and Loeb 1995). The model
differs from the usual Hill-type models in that it includes
length dependence of the activation–frequency (Af) and force–
velocity (FV) relationships as well as sag and yield behaviors
that are fiber-type specific (Brown et al 1999, Brown and Loeb
2000b). These processes have usually been ignored or treated
independently in other muscle models.
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Figure 1. The mechanical structure of a single and lumped unit in the VM model. The contractile element (CE) operates in parallel with the
passive element (PE), which consists of stretching (PE1) and compressing components (PE2), to represent the fascicles. The fascicle
element is in series with muscle mass element and series-elastic element (SE), which represent the combined tendon and aponeurosis. Fpe1

results from the well-recognized nonlinear spring Kpe1 with a viscosity element (ηpe1) that resists quick stretch and compression in the
passive muscle, while Fpe2 results from a nonlinear spring K pe2 resisting compression at the thick myofilaments during active contraction at
short lengths, thus is proportional to the activity of the muscle; Fse results from a nonlinear spring Kse with a low stiffness toe region. Fce′ is
the force produced by combined contractile and passive components in the fascicle or contractile element; the difference of Fce′ and Fse

operate on the muscle mass to drive the muscle contraction dynamics.

VM 3.∗ was built in MATLAB with inter-connected
Simulink basic blocks, which is inefficient in terms of
memory utilization and computational speed. In the new
VM, the mathematical equations provided in Cheng et al
(2000) were re-formulated in state-space representation by
explicitly choosing a set of state variables. The state-
space model was then implemented in a single CMEX S-
function of SIMULINK. The S-function is a computational
module of numerical integration, which accepts a set of
inputs to the model, updates model states based on their
derivative equations, and calculates a set of outputs efficiently.
It is represented by a single, customized Simulink block
whose inputs and outputs can be linked to other Simulink
blocks representing the other parts of the mechanical and
control system. Such model implementation is convenient
for neurophysiologists to build their own models efficiently
using VM blocks for each muscle.

VM 3.∗ was intended as a generic modeling tool for
public use in neuromuscular physiology and engineering
applications. In this study, we evaluated its computational
performance in realistic multi-muscle and multi-joint settings.
These simulations revealed that smooth modulation of force
output could only be obtained with a large number of discrete
motor units, which resulted in excessively long computational
time. There was also an instability in the interaction of
antagonistic muscles around a joint that was traced to the
intermediate state variable, effective length (Leff), which had
been introduced to model the delayed length dependence of
the activation–frequency relationship. These problems were
fixed in VM 4.0 and validated against VM 3.1.5 as presented
here.

A new muscle recruitment algorithm called ‘natural
continuous’ approximates the discrete recruitment of
individual units in the original VM 3.∗. The new recruitment
strategy lumps multiple motor units of the same muscle fiber
type into a single motor unit that is frequency modulated (see
below). This greatly reduces the number of motor units needed

to generate a smooth recruitment response. The new natural
continuous recruitment algorithm weights the force output of
the lumped motor units within a fiber type and between the
fiber types to give rise to smooth force production over the
entire range of activation levels. Preliminary results have been
presented elsewhere (Song et al 2007).

VM 4.0 includes both the old and the new recruitment
schemes, making it suitable for analysis of neural control of
movements (Alstermark et al 2007, Chan and Moran 2006,
Lan et al 2005), and for design of prosthetics and FES
systems to restore lost or impaired motor functions. VM 4.0
is available for downloading from http://ami.usc.edu/projects/
ami/projects/bion/musculoskeletal/virtual muscle.html.

2. Material and methods

2.1. Musculotendon dynamics

The musculotendon dynamics of the VM model is modeled as
a second-order mechanical system which includes the muscle
mass driven by the difference of forces generated in contractile
element (fascicle) and series element (tendon) (figure 1).

2.2. Recruitment types

VM 4.0 allows the user to build four different models of a
given muscle based on the recruitment strategy:

• Natural discrete (Brown and Cheng) provides the original
VM 3.∗ model with discrete motor units and effective
length (Leff) and produces an output consisting of nested
Simulink blocks.

• Natural discrete provides the VM 4.0 model (Leff omitted;
single S-function output) with discrete motor units and
size-ordered recruitment similar to VM 3.∗.

• Natural continuous provides the VM 4.0 model with a
single motor unit of each fiber type that is frequency
modulated and weighted to approximate size-ordered
physiological recruitment.
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Figure 2. (a) Natural discrete recruitment algorithm as applied to a muscle consisting of three simulated slow-twitch and three fast-twitch
motor units, respectively. Ui

th is the recruitment threshold of ith motor unit; Ur is the activation level at which all the motor units are
recruited. Once a motor unit is recruited, the firing frequency of the unit will rise linearly with U between fmin and fmax. This recruitment
scheme mimics biologic recruitment of motor neurons. (b) Natural continuous recruitment algorithm as applied to two fiber types, slow and
fast. Ui

th is the recruitment threshold of ith fiber type or unit; the first fiber type U 1
th = U slow

th is fixed at 0.001. Similar to the discrete
algorithm, once a fiber type is recruited, the firing frequency of the fiber will rise linearly with U between fmin and fmax.

• Intramuscular FES provides the VM 4.0 model with a
single motor unit of each fiber type whose frequency
of firing is specified by an input variable representing
stimulus frequency. Force output is weighted equally
among the motor units to approximate the random fiber-
type recruitment reported for intramuscular electrical
stimulation by Singh et al (2000).

One important feature of the virtual muscle model is
the built-in recruitment scheme of multiple motor units for
different fiber types. The natural discrete algorithm in VM 3.∗
was formulated to model the multiple motor neuron pool and
natural orderly recruitment of motor units (figure 2(a)) in
response to the neural activation input, U (Cheng et al 2000).
Activation incrementally recruits the motor units based on
the recruitment rank of the fiber type, and once the unit is
recruited, the firing frequency input of this unit (fenv) start
from a nonzero value (from fmin = 0.5 f0.5 to fmax = 2 f0.5)
and is modulated linearly over a range of frequencies specific
to the unit type. The default range is a function of f0.5, the
frequency for which the steadily recruited motor unit produces
50% of its maximal tetanic force, F0, at its optimal fascicle
length, Lce0. This neural excitation signal is modeled as two
separate first-order dynamics (fenv–fint–feff) to simulate the rise
and fall time of calcium kinetics (Brown and Loeb 2000b).
The level of effective activation of each fiber type results from
a linear combination of multiple motor unit activations (Af)
weighted by their respective fractional PCSA (physiological
cross-sectional area). The differences between slow and
fast fiber types are reflected in rise–fall times of excitation
dynamics, sagging (S) or yielding (Y) properties, Af relation
and muscle force–length, force–velocity (FL, FV) properties.
The sudden recruitment of a motor unit at its initial firing rate
causes a step increase of muscle force; the size of that step
is determined by the fractional PCSA of that unit, which is a
function of the number of motor units modeled in the pool. If

the number of motor units is sufficiently large (e.g. ∼100 as
occurs in a typical muscle), the factional PCSA can be reduced
to produce a relatively smooth recruitment of muscle force. In
order to reduce computational time, however, VM models are
often constructed with only a few motor units, so the step jump
in force recruitment is unphysiologically large, particularly at
low levels of activation.

To solve this problem, we designed a natural continuous
algorithm (figure 2(b)) to match the average behavior of the
natural discrete recruitment strategy. Instead of modeling
each unit explicitly, the natural continuous algorithm lumps
the multiple units according to the corresponding fiber types,
thus requiring only one unit per fiber type. Each unit or fiber
type becomes active at a threshold Ui

th that depends on the
distribution of fractional PCSA (Fpcsa) among all the fiber
types and their recruitment orders⎧⎪⎪⎨

⎪⎪⎩
Ui

th = 0.001 i = 1

Ui
th = Ur ·

i−1∑
k=1

Fk
pcsa i > 1.

(1)

Once recruited, the lumped motor unit modulates its
frequency according to the usual calcium dynamics as in the
natural discrete algorithm. There are three important aspects
of the new algorithm. First, the total muscle activation and
contraction dynamics depend on the proportions of slow and
fast fibers. The continuous algorithm accounts for this effect
by linearly combining Af and FL, the FV properties of each
fiber types (equation (2)) multiplied by a weighting factor, Wi ,
representing proportions of the fiber type among the overall
active muscle portion (equation (3)). Second, the discrete
algorithm simulates force modulations in physiological
muscles by sequentially adding or subtracting fractional
PCSA-scaled forces of newly recruited or derecruited motor
units. As the number of units increases, this additional
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process is equivalent to multiplication by the activation level
(Ueff), which formulates the continuous version of neural
modulation of muscle forces in the new natural continuous
algorithm (equation (2)). Third, the activation–frequency
(Af) relationship includes the dynamics of calcium activation
and this effect must also be represented in the multiplication
of activation. We thus introduced a first-order dynamics
to convert activation input U to effective activation Ueff

(equation (4)). The values of rising and falling time constants
(TU) were chosen to simulate the dynamic force responses of
natural discrete system to sinusoidal activation inputs over the
range of physiological neural modulations (0–10 Hz).

The normalized active force from contractile element (CE)
with n fiber types (units) is calculated as

F̄ ce = Ueff ·
n∑

i=1

[Wi · Afi · (FLiFVi + F̄ pe2)], (2)

where n is the number of active muscle fiber types and Wi is
calculated based on the threshold of each fiber type or unit,
Ui

th, and the effective activation, Ueff,

Wi = Ueff − Ui
th∑i

k=1

(
Ueff − Uk

th

) , ∀ Ueff � Ui
th. (3)

The amount of muscle actually recruited is specified by
an intermediate muscle activation signal, effective activation,
Ueff, which incorporates first-order dynamics simulating the
rise–fall effect modeled in calcium dynamics

U̇ eff = U − Ueff

TU

, TU =
{

0.03(sec) U � Ueff

0.15(sec) U < Ueff .
(4)

2.3. Contractile dynamics

A realistic model of the human elbow and shoulder was
constructed from six VM 3.∗ muscles as described in
(Song et al at press). As described under the results of
section 3.1., this model exhibited unphysiological instability
that was traced to the intermediate state variable, effective
length (Leff), which was modeled in VM 3.∗ using a nonlinear
first-order differential equation

˙̄L
eff

ce
i (t) =

[
L̄ce(t) − L̄eff

ce
i (t)

]3

TL(1 − Afi )
(5)

(Leff described in the text and figures is an abbreviation of
‘effective length’ and it is represented by L̄eff

ce in equations,
which denotes the normalized effective length of muscle
contractile element).

The construct of effective length (Leff) was introduced
in VM 3.∗ to model the delayed length dependence of the
activation–frequency (Af) relationship (Brown et al 1999).
The activation process that determines which cross-bridges
can contribute active force acts with a delay, so any mechanical
effects of length on the activation process itself will be related
to the length of the muscle at that earlier time, rather than
the current length and velocity, which exert their effects on
the cross-bridges themselves (Brown et al 1999). This is a

relatively subtle effect that can be revealed by appropriate
experimental design under conditions of controlled activation
and kinematics (Brown et al 1999). To model this effect,
(Cheng et al 2000) replaced the length input to the Af
relationship with a time-delayed version of length (effective
length: Leff) as seen in equation (6)

Af i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Afi
(
f i

eff, L̄
effi

ce , V̄ce
) = 1 − exp

[
−

(
Yf i

eff

af nf

)ni
f

]
,

slow

Afi
(
f i

eff, L̄
effi

ce

)
= 1 − exp

[
−

(
Sif i

eff

af nf

)ni
f

]
,

fast

ni
f = nf 0 + nf 1

(
1

L̄effi

ce

− 1

)
(6)

The destabilizing effect is removed by omitting Leff, and
the new Af relationship is then modeled as a function of current
muscle fascicle length (equation (7)). The performances of
these two versions of the muscle model are compared in the
results of section 3.1,

Afi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Afi
(
f i

eff, L̄ce, V̄ce
) = 1 − exp

[
−

(
Yf i

eff

af nf

)ni
f

]
,

slow

Afi
(
f i

eff, L̄ce
) = 1 − exp

[
−

(
Sif i

eff

af nf

)ni
f

]
,

fast

ni
f = nf 0 + nf 1

(
1

L̄ce
− 1

)
(7)

Table 1 provides the complete equations and coefficients
for human muscle fiber types in the reformulated virtual
muscle model.

2.4. Validation

To test the effectiveness of the natural continuous strategy, we
compared its performance with that of the natural discrete VM
model for both static and dynamic conditions of activation and
kinematics. A human muscle model (deltoid posterior) with
motor neuron pool composed of 60% slow and 40% fast fiber
types was used. The muscle mass was 97.5 g (i.e. F0 = 266 N),
optimal fascicle length was 11 cm, optimal tendon length was
2 cm and maximal musculotendon length was 18.4 cm. Static
force–activation relationships (F–U curves) of natural discrete
muscle models with a small number of motor units (three slow
and three fast) and with a more physiological motor pool (30
slow and 30 fast) were compared with those of the natural
continuous muscle model at constant muscle length input
(Lmt = 16 cm) over the full range of activation levels (U =
0–1).

The natural discrete algorithm models multiple units
which differ in the distributions of firing rates that they produce
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Table 1. Summary of model equations and best-fit constants.

Equations Slow-twitch fibers Fast-twitch fibers

F̄ se(L̄se) = cT kT ln
{

exp
[

L̄se−LT
r

kT

]
+ 1

}
cT kT LT

r cT kT LT
r

27.8 .0047 0.964 27.8 .0047 0.964

F̄ pe1

(
L̄ce, V̄ce

) = c1k1 ln
{

exp
[

L̄ce/L̄max
ce −Lr1
k1

]
+ 1

}
+ ηV̄ce

c1

23.0
k1

0.046
Lr1

1.17
η

0.01
c1

23.0
k1

0.046
Lr1

1.17

F̄ pe2

(
L̄ce

) = c2

{
exp

[
k2

(
L̄ce − Lr2

)] − 1
}
, F̄ pe2 � 0

c2

−0.02
k2

−21.0
Lr2

0.70
c2

−0.02
k2

−21.0
Lr2

0.70

FL
(
L̄ce

) = exp
(
−

∣∣∣ L̄
β
ce−1
ω

∣∣∣ρ) ω
1.12

β
2.30

ρ
1.62

ω
0.75

β
1.55

ρ
2.12

FV
(
V̄ce, L̄ce

) ={ (
Vmax − V̄ce

)/[
Vmax +

(
cv0 + cv1L̄ce

)
V̄ce

]
, V̄ce � 0[

bv − (
av0 + av1L̄ce + av2L̄

2
ce

)
V̄ce

]/(
bv + V̄ce

)
, V̄ce > 0

Vmax

−7.88
cv0

5.88
cv1

0
Vmax

−9.15
cv0

−5.70
cv1

9.18

av0

−4.70
av1

8.41
av2

−5.34
bv

0.35
av0

−1.53
av1

0
av2

0
bv

0.69⎧⎪⎪⎨
⎪⎪⎩

Afi
(
f i

eff, L̄ce, V̄ce

) = 1 − exp

[
−

(
Yf i

eff
af nf

)ni
f

]
, slow

Afi
(
f i

eff, L̄ce

) = 1 − exp

[
−

(
Sif i

eff
af nf

)ni
f

]
, fast

ni
f = nf 0 + nf 1

(
1

L̄ce
− 1

)
af

0.56
nf 0

2.1
nf 1

5
af

0.56
nf 0

2.1
nf 1

3.3

Ẏ (t) = 1−cY

[
1−exp

(
− |V̄ce|

VY

)]
−Y(t)

TY

cY

0.35
VY

0.1
TY (ms)

200 – – –

Ṡi
(
t, f i

eff

) = aS−Si (t)

TS
, aS =

{
aS1, f

i
eff(t) < 0.1

aS2, f
i

eff(t) � 0.1
– – –

aS1

1.76
aS2

0.96
TS(ms)

43

ḟ i
int

(
t, f i

env, L̄ce

) = f i
env(t)−f i

int(t)

T i
f

ḟ i
eff

(
t, f i

int, L̄ce

) = f i
int(t)−f i

eff (t)

T i
f

T i
f =

{
Tf 1L̄

2
ce + Tf 2f

i
env (t) , ḟ i

eff � 0(
Tf 3 + Tf 4Af i

)/
L̄ce, ḟ

i
eff < 0

Tf 1(ms)
34.3

Tf 2(ms)
22.7

Tf 3(ms)
47.0

Tf 4(ms)
25.2

Tf 1(ms)
20.6

Tf 2(ms)
13.6

Tf 3(ms)
28.2

Tf 4(ms)
15.1

U̇eff = U−Ueff
TU

, TU =
{
TU1 U � Ueff

TU2 U < Ueff

TU1(ms)
30

TU2(ms)
150

TU1(ms)
30

TU2(ms)
150

Notes. Top bar x̄ denotes the normalized variable x (forces by maximum isometric tetanic muscle force F0, lengths and velocities by optimal fascicle length or optimal tendon length [Lce0 or
Lse0]); superscript xi denotes the ith motor unit specific variable x.
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Table 2. Symbols and the definitions.

Symbols Definitions

U Activation input (0–1)
F i

pcsa Fractional PCSA of ith motor unit (0–1)
Ui

th Recruitment threshold for ith motor unit (0–1)
Ur Fractional activation level at which all motor units for a given muscle are recruited (0–1)
Ueff Effective activation, an intermediate muscle activation signal simulating calcium dynamics (0–1)
Wi Proportion of active ith fiber-type/motor unit of total active muscle (0–1)
F0 Muscle maximal tetanic force (N)
Lce0 Optimal fascicle length (cm)
Lse0 Optimal tendon length (cm)
F̄ se Series elastic element (tendon) force (F0)
F̄ pe1 Stretching contractile passive element (fascicle) force (F0)
F̄ pe2 Compressive contractile passive element (fascicle) force (F0)
F̄ ce Active contractile element force (F0)
F̄ ce′ Total contractile element force (F0)
L̄se Tendon length (Lse0)
L̄ce Fascicle length (Lce0)
L̄max

ce Maximum fascicle length of the muscle at its maximum anatomic musculotendon length (Lce0)
V̄ce Fascicle velocity (Lce0/s)
FLi Force-length function of ith muscle fiber type
FVi Force–velocity function of ith muscle fiber type
Afi Activation–frequency relationship of ith motor unit
Y Yielding factor for slow motor units
Si Sagging factor for ith fast motor unit
f i

env Firing frequency input to second-order excitation dynamics of ith motor unit (f0.5)
f i

int Intermediate firing frequency of second-order excitation dynamics of ith motor unit (f0.5)
f i

eff Effective firing frequency of ith motor unit (f0.5)
L̄eff

ce
i Effective fascicle length (Lce0)

in the various muscle fibers at different levels of activation.
Frequency of firing has complex effects on the dynamics of
the contractile apparatus and its FL, FV properties that are
also fiber-type specific. Therefore, we compared the predicted
force for the natural discrete model with 30 units of each type to
the natural continuous model during sinusoidal modulation of
activation (U = 0–1) at constant muscle length (Lmt = 16 cm)
and during sinusoidal length input from anatomical minimum
to maximum (Lmt = 14–18 cm corresponding to the range of
joint motion) at constant activation level (U = 0.5). Because
the activation dynamics include delay terms, we systematically
varied the frequency of sinusoidal modulation of activation (U)
over the range 1–10 Hz.

3. Results

3.1. Stability

VM 3.∗ (‘natural discrete (Brown and Cheng)’ in VM 4.0)
introduced an intermediate state variable, effective length
(Leff), to model the effect of delayed length dependence on
activation–frequency relationships (Af) (equation (6)). This
forms an internal negative feedback loop between muscle
activation and musculotendon length with an Af-dependent
delay, which may produce instability of the musculo-
skeletal dynamics even without reflex feedback (figure 3(a)).
Removing this variable (equation (7)) resulted in a stable open-
loop response as shown in figure 3(b). Computation time was
also significantly reduced after removing the state variable of
effective length (see figure 7).

3.2. Accuracy for static conditions

The natural continuous and natural discrete recruitment
schemes were compared first in isometric contraction of the
deltoid posterior muscle models at constant muscle length,
16 cm. The F–U curves of discrete model with 3 units and
30 units for each fiber type were superimposed with that of
continuous muscle in figure 4. The continuous recruitment
strategy demonstrated a similar profile of F–U relationship
over the full range of activation (U = 0–1 in figure 4(a)).
However, for the discrete model with fewer motor units (three
slow and three fast) the finer scale of the curve (U = 0–
0.3) revealed abrupt jumps in force (∼15N) associated with
stepwise recruitment of the slow units (figure 4(b)). This
effect was mitigated as the number of units increases. As
expected, the natural continuous recruitment strategy provided
essentially a smoothed version of the same output forces,
closer to what would be expected for a real muscle consisting
of a much larger number of discrete motor units.

3.3. Accuracy for dynamic conditions

To test the effectiveness of the natural continuous algorithm
in modeling the dynamic response of muscle to neural
modulation and muscle length changes, the force outputs of
the continuous muscle model were compared with those of the
natural discrete model under input conditions of sinusoidal U
at constant Lmt (figure 5(a)); and a sinusoidal Lmt at constant U
(figure 5(b)). The continuous model produced force transients
approximating those of the discrete model in response to both
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Figure 3. Simulations in (a) and (b) are actuated by discretely recruited muscle models with and without Leff. (a) A demonstration of the
instability caused by Leff in virtual muscle through an open-loop dynamic simulation using a 2-DOF-6-muscle arm model. The muscle
activation commands of the antagonist muscles across shoulder (sh), elbow (el) and both joints (bi): Ush = 0.9, Uel = 0.4, Obi = 0.0.
(b) A demonstration of stable open-loop response at the shoulder and elbow joints after removal of the effective length state.
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Figure 4. The comparison of steady-state force-activation (F–U) profiles of deltoid posterior at Lmt = 16 cm between the natural continuous
algorithm and natural discrete models with a small motor neuron pool (three slow and three fast motor units) and a large motor neuron pool
(30 slow and 30 fast motor units). All the models have 60% slow fibers and 40% fast fibers. (a) F–U curves spanning entire activation rage
(U = 0–1); (b) F–U curves zoomed in at the low activation levels (U = 0–0.3).

dynamic muscle activation and muscle length changes. There
was a slight phase lead for the continuous recruitment strategy
during relatively rapid modulation of neural activation U
(figure 5(c)). In neural modulation of movement dynamics, the
important control variables of muscle output usually include
the mean force and force modulation ranges (top panel of
figure 5(e)). The ratios of continuous-to-discrete recruitments
for these two variables were close to unity over the
physiological range of modulation of activation U (1–10 Hz)
(figure 5(e)).

The effect of removing Leff on model accuracy was
assessed by comparing the same set of sinusoidal modulations
of activation and length in the two versions of the model
(equation (6) versus (7)). Figure 6 illustrated that the

discrepancy of force production between the muscle models
with and without effective length is less than 1%.

3.4. Simulation speed

The time elapsed to compute force output for models
with different recruitment strategies and different model
implementations were compared in figure 7. In the
comparison, two second simulations with a single muscle were
carried out in Matlab 7.1/Simulink 6.3 on a HP workstation
(3.2 GHz Intel R© Pentium R© 4CPU, 2.0 GB of RAM). In the
two discrete models, the computation time increased linearly
with number of motor units. Removing the effective length
substantially reduced the CPU time. The natural continuous
model achieved a 15-fold reduction of computation time
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Figure 5. Comparison of dynamic responses between the natural continuous muscle model and natural discrete muscle model with large
motor neuron pool (30 slow and 30 fast motor units). Both models have 60% slow fibers and 40% fast fibers. (c) shows the dynamic force
responses given the muscle inputs depicted in (a), sinusoidal activation (U: 0–1 at 3 Hz) and constant length (Lmt = 16 cm); (d) shows the
dynamic force responses given the muscle inputs depicted in (b), sinusoidal muscle length (Lmt: 14–18 at 3 Hz) and constant activation
(U = 0.5). (e) shows the ratios of mean forces and force modulation ranges between the continuous and discrete models over the
physiological range of modulation of activation U (1–10 Hz).
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Figure 6. Comparison of dynamic force responses between the
natural discrete muscle models with and without effective lengths
(Leff). The models include a large motor neuron pool (30 slow and
30 fast motor units). Both models have 60% slow fibers and 40%
fast fibers. (a) shows the dynamic force responses to the sinusoidal
activation (U: 0–1 at 3 Hz) and constant length (Lmt = 16 cm)
inputs; (b) shows the dynamic force responses to sinusoidal muscle
stretching (Lmt: 14–18 at 3 Hz) and constant activation (U = 0.5)
inputs.

compared to the discrete model with 30 motor units and
without Leff.

4. Discussion

Muscles are organized into motor units, each consisting of a
motor neuron plus a homogeneous group of muscle fibers that
are activated synchronously by that motor neuron. Motor units
are generally recruited in an orderly sequence based on both the
fiber type and the size (PCSA) of the unit (Cheng et al 2000).
The original VM model (natural discrete) was conceived to
simulate this behavior of individual motor unit recruitment in
response to a common synaptic excitation to all of the motor
neurons in the pool. This is an important feature not present
in the most other muscle models and is useful for modeling
details of intramuscular mechanics such as the responses of
Golgi tendon organs (Mileusnic and Loeb 2006). Ideally, for
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Figure 7. The comparison of computation time of different
recruitment models and implementation. The original natural
discrete model by Brown and Cheng includes Leff and is
implemented by interconnected Simulink basic blocks; the natural
discrete and natural continuous models do not include Leff and are
implemented using Simulink CMEX S-functions.

the natural discrete recruitment to be realistic, the number of
motor units included in the model should approach the actual
number of motor units in the muscle being modeled, which
is often more than 100. Each motor unit adds three states to
the model (after removing Leff), substantially increasing the
computational time (figure 7).

The natural continuous recruitment scheme introduced
in VM 4.0 improves the computational efficiency of the
model without significant loss of its physiological realism
and accuracy. Lumping motor units into one single structure
has been done successfully in another influential muscle
model (Zajac 1989), but the physiologically and mechanically
different fiber types were not represented at all. The results
of static force generation show that the continuous strategy
approximates the natural recruitment behavior of motor units
very well in the full range of motor neuron pool recruitment
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(figure 4). Dynamic simulation also shows that the natural
continuous strategy is accurate for the dynamics of force output
while requiring only one unit for each fiber type in the muscle
(figure 5). The slight discrepancy in force output dynamics
(figures 5(c) and (e)) arises because the continuous algorithm
replaces the distribution of firing frequencies across individual
motor units with a single frequency of the same fiber type that
is modulated smoothly according to activation.

Recently, there has been considerable interest in the
variability of force output actually produced by muscles
under steady-state conditions of kinematics and activation,
i.e. motor noise. The amplitude of the noise tends to be
a constant fraction of the mean force being generated, i.e.
signal-dependent noise or constant coefficient of variance.
This has been attributed to the incremental recruitment and
derecruitment of motor units whose size is related to their
recruitment order (Jones et al 2002). Minimizing motor
variability has been proposed as an organizational principle
for movement control (Hamilton and Wolpert 2002, Harris
and Wolpert 1998). In a simulation study to investigate how
muscle stiffness may be controlled to minimize kinematic
variability in the presence of motor noise (Selen et al
2005), the authors proved that the lumped Hill-type muscle
model with a single motor unit cannot replicate the realistic
force variability. Instead, a motor neuron pool model with
60 motor units combined with Hill-type muscle dynamics
must be used. In the VM model, the natural discrete
recruitment algorithm is appropriate to replicate the signal-
dependent feature of motor noise if the range of sizes of
motor units is constructed appropriately and the activation
signal has constant noise added to simulate membrane noise.
Alternatively, the natural continuous model can be used with
signal-dependant activation noise on its input, but the actual
amplitude of the output force noise will depend on the low-pass
filtering properties of the contractile apparatus.

VM 4.0 also includes a model of recruitment by
electrical stimulation (Intramuscular FES) that is designed to
simulate the recruitment produced during functional electrical
stimulation using intramuscular electrodes (Singh et al 2000).
As the stimulation pulse strength (equivalent to the activation
input) is increased, motor units tend to be recruited at random
because threshold depends mostly on distance of the motor
axon from the electrode, which is unrelated to unit type or
size. Motor units that are activated fire one and only one action
potential for each stimulation pulse. Electrodes placed on the
muscle nerve or on the surface of skin may produce different
patterns of motor unit recruitment. A general recruitment
scheme for FES could not be formulated to account for all
stimulation techniques. A discrete model similar to the natural
discrete recruitment scheme could be constructed if sufficient
characterization information were available regarding the
expected recruitment order of the individual motor units.

5. Conclusion

The second generation of virtual muscle software (VM 4.0)
described in this paper substantially reduces the computational

load, and improves the robustness and stability of force
computation, particularly when modeling multiple muscles
connected to a skeletal linkage. The discrete model of
recruitment (natural discrete) is useful to study the detailed
effects of the recruitment of individual motor units, such as
motor noise (Jones et al 2002). The lumped model with
the new natural continuous scheme is much more efficient
for computation with little loss of accuracy. The ability
to easily modify and accurately represent various types of
fibers in mixed and/or pathological muscles should be useful
for applications of the VM software to neurophysiology,
rehabilitation (FES) and sports medicine.
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