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Abstract

The permeability of complex porous materials is of interest to many engineering disci-

plines. This quantity can be obtained via direct flow simulation, which provides the most 

accurate results, but is very computationally expensive. In particular, the simulation con-

vergence time scales poorly as the simulation domains become less porous or more het-

erogeneous. Semi-analytical models that rely on averaged structural properties (i.e., 

porosity and tortuosity) have been proposed, but these features only partly summarize the 

domain, resulting in limited applicability. On the other hand, data-driven machine learn-

ing approaches have shown great promise for building more general models by virtue of 

accounting for the spatial arrangement of the domains’ solid boundaries. However, prior 

approaches building on the convolutional neural network (ConvNet) literature concern-

ing 2D image recognition problems do not scale well to the large 3D domains required to 

obtain a representative elementary volume (REV). As such, most prior work focused on 

homogeneous samples, where a small REV entails that the global nature of fluid flow could 

be mostly neglected, and accordingly, the memory bottleneck of addressing 3D domains 

with ConvNets was side-stepped. Therefore, important geometries such as fractures and 

vuggy domains could not be modeled properly. In this work, we address this limitation 

with a general multiscale deep learning model that is able to learn from porous media sim-

ulation data. By using a coupled set of neural networks that view the domain on different 

scales, we enable the evaluation of large ( > 5123 ) images in approximately one second on 

a single graphics processing unit. This model architecture opens up the possibility of mod-

eling domain sizes that would not be feasible using traditional direct simulation tools on 

a desktop computer. We validate our method with a laminar fluid flow case using vuggy 

samples and fractures. As a result of viewing the entire domain at once, our model is able 

to perform accurate prediction on domains exhibiting a large degree of heterogeneity. We 

expect the methodology to be applicable to many other transport problems where complex 

geometries play a central role.
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1 Introduction

In the last few decades, micro-tomographic imaging in conjunction with direct numerical 

simulations (digital rock technologies) have been developed extensively to act as a com-

plementary tool for laboratory measurements of porous materials (Schepp et  al. 2020). 

Many of these breakthroughs are partly thanks to advances in data storing and sharing 

(Prodanovic et  al.), wider availability of imaging facilities (Cnudde and Boone 2013), 

and better technologies (hardware and software) to visualize fine-scale features of porous 

media (Wildenschild and Sheppard 2013). Nevertheless, characterization based on stand-

alone images does not provide enough insight on how the small-scale structures affect the 

macroscopic behavior for a given phenomenon (i.e., fluid flow). A more robust way of 

understanding these (and potentially being able to upscale them) is through simulating the 

underlying physics of fluid flow.

The increase in speed and availability of computational resources (graphics processing 

units, supercomputer clusters, and cloud computing) has made it possible to develop direct 

simulation methods to obtain petrophysical properties based on 3D images (Pan et  al. 

2004; Tartakovsky and Meakin 2005; White et al. 2006; Jenny et al. 2003). However, solv-

ing these problems in time frames that could allow their industrial applicability requires 

thousands of computing cores. Furthermore, the most insight could be gained in repeated 

simulation with dynamically changing conditions. For example, to assess the influence of 

diagenetic processes, such as cementation and compaction, surface properties like rough-

ness, or tuning the segmentation of a sample to match experimental measurements. These 

scenarios entail solving a forward physics model several times (in similar domains), which 

is prohibitively expensive in many cases. A model that could give fast and accurate approx-

imations of a given petrophysical property is of great interest.

A particular physical framework of interest in digital rocks physics is to describe how 

a fluid flows through a given material driven by a pressure difference. This is relevant to 

characterize how easy it is for a fluid to travel through a specific sample, and it can also 

reveal the presence of preferential fluid paths and potential bottlenecks for flow. By under-

standing how a fluid behaves in a representative sample, it is possible to use this data to 

inform larger scale processes about the effect of the microstructure. For example, a strong 

understanding of representative flow can provide macroscopic simulations with consti-

tutive relations. The simplest and most important way to summarize the microstructural 

effects on flow is with the permeability, which is a volume-average property derived from 

the fluid velocity which describes how well a fluid can advance through its connected void-

space. Knowing the permeability is of interest for not only for petroleum engineering (Sun 

et  al. 2017), but for carbon capture/sequestration (Bond et  al. 2017), and aquifer exploi-

tation (Cunningham and Sukop 2011), but also in geothermal engineering (Molina et al. 

2020), membrane design, and fuel cell applications (Holley and Faghri 2006).

Despite the fact that there are many published analytical solutions and computational 

algorithms to obtain the permeability in a faster manner, they do not work well in the 

presence of strong heterogeneities associated with important geometries such as fractures 

(Tokan-Lawal et al. 2015). This is partly due to the fact that most of these proposed solu-

tions are computed based on averaged properties of the solid structure, such as the poros-

ity and the tortuosity of the sample (Carman 1939, 1997; Kozeny 1927; Bear 1972). The 

main issue is that samples with very similar average structural values could have widely 

different volumetric flux behaviors, for example, when fractures or vugs are present. For 

instance, a certain porous structure could have permeability values spanning three orders 
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of magnitude depending whether the domain is not fractured, or if it hosts a fracture par-

allel or perpendicular to the direction of  flow. While these situations significantly affect 

permeability, the porosity remains relatively unchanged; there is no known route for char-

acterizing the relationship between flow and complex microstructure in terms of small 

number of variables. While there are theoretical approaches based on correlation functions 

(Torquato 2020), they are mostly applied to statistically homogenous microstructures, and 

it remains unclear if such an approach can apply to the complex multiscale porous media 

found in many natural samples.

To obtain a measure of the permeability of a sample taking into account the 3D micro-

structure, a fluid flow simulation can be carried out with a wide variety of iterative numer-

ical methods that approximate the solution of the Navier–Stokes equation (Saxena et  al. 

2017). One of the most prominent is the Lattice–Boltzmann method (LBM). Although 

these simulations are performed at a much smaller scale relatively to a natural reservoir, 

they provide the critical parameters to enable the upscaling of hard-data (such as cores 

coming from wells or outcrops) into field scale simulators. Although it would be desir-

able to simulate bigger computational volumes that contain more information about the 

reservoir of interest (since imaging technology can provide volumes that are 2000
3 voxels 

or larger), it is computationally expensive, making it very difficult to perform routinely or 

repeatedly.

A representative elementary volume (REV) has to be ensured to reliably utilize these 

properties in large scale (field) simulations (and thus upscale). An REV is defined as the 

size of a window where measurements are scale-independent, and that accurately repre-

sents the system (Bachmat and Bear 1987). Notwithstanding, having an REV, i.e., porosity 

(which is easily determined from a segmented image), does not guarantee that this window 

size would have a representative response in a flow property like permeability. As shown 

in Costanza–Robinson et al. (2011), for fairly homogeneous samples, the side length of the 

window to obtain an REV in a dynamic property is at least five times what is its for the 

structure (porosity). This is one of the reasons why porosity alone is a poor estimate for 

permeability: Even when the pore structures are similar, the flow patterns that they host 

could be very different due to the global nature of the steady-state solution. In the context 

of single fractures, it is still unclear if an REV exists (Santos et al. 2018a; Guiltinan et al. 

2020b, a). This puts into prominence the need for more advanced methods that can provide 

accurate solutions on large samples that take in account all the complexities of the domain.

In the last decade, convolutional neural networks (ConvNets) (Fukushima 1980) have 

become a prominent tool in the field of image analysis. These have taken over traditional 

tools for computer vision tasks such as image recognition and semantic segmentation, as 

result of being easily trained to create spatially-aware relationships between inputs and 

outputs. This is accomplished with learnable kernels which can be identified with small 

windows that have the same dimensionality as the input data (i.e., 2D for images, 3D for 

volumes). They have been successfully applied in many tasks regarding earth science dis-

ciplines (Alakeely and Horne 2020; Jo et al. 2020; Pan et al. 2020), and particularly in the 

field of digital rocks (Guiltinan et  al. 2020a; Mosser et  al. 2017a, b; Chung et  al. 2020; 

Bihani et al. 2021; Santos et al. 2018b). These data-driven models have also been useful for 

solving flow (Santos et al. 2020b; Wang et al. 2021a, b; Alqahtani et al. 2021), successfully 

modeling the relationship between 3D microstructure and flow response much more accu-

rately than empirical formulas that depend only on averaged properties.

However, ConvNets are expensive to scale to 3D volumes. This is due to the fact 

that these structures are memory intensive, so traditional networks used for computer 

vision tasks (i.e., UNet (Jha et al.) or the ResNet (He et al. 2016) ) limit the input sizes 
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to be around 100
3 (Santos et al. 2020b; Wang et al. 2021b). As shown in Santos et al. 

(2020b), one could subsample the domain into smaller pieces to use these architec-

tures, where the subsample does not need to be an REV but it has to be accompanied 

by features that inform the model about the original location of this subdomain (i.e., 

tortuosity, pore-space connectivity, distance to the non-slip boundaries). This method 

provides accurate results, nevertheless, predictions stop being reliable in domains with 

large heterogeneities, such as a fracture or vugs. Alternatively, one can downsample 

the image into a more tractable size (Alqahtani et  al. 2021), sacrificing detail. Wang 

et al. (2021a) states that one major point of focus for deep learning of porous media 

is the computational cost of working with 3D arrays, and the development of architec-

tures that are better suited for porous materials instead of the usual architectures pro-

posed for 2D classification/segmentation of standardized datasets (Deng et al. 2009). 

Here, we provide a strong approach to directly address these outstanding issues.

A multiscale approach that is able to capture large and small scale aspects of the 

microstructure simultaneously is an attractive proposal to overcome this limitation. 

Multiscale approaches have precedent in the ConvNet literature. Super-resolution Con-

vNets (Shi et  al. 2016; Huang et  al. 2017; Yang et  al. 2018; Yamanaka et  al. 2017) 

address images at two different scales, although the problem is not one of regression, 

but of interpolation; fine-scale input is not available to the model. Karra et al (2017) 

provide an explicitly multiscale training pipeline, which progressive grows a genera-

tive network to build a high-resolution model of image datasets. This is accomplished 

by starting with coarser, lower-resolution networks and gradually adding details using 

networks that work with finer scales. Perhaps the most relevant to our work is Sin-

GAN (Shaham et al. 2019), another generative model that uses a linked set of networks 

to describe images at different scales; finer scales build upon the models for coarser 

scales.

We invoke similar principles to build a MultiScale Network for hierarchical regres-

sion (MS-Net), which performs regression based on a hierarchical principle: coarse 

inputs provide broad information about the data, and progressively finer-scale inputs 

can be used to refine this information. A schematic of the workflow is shown in Fig. 1. 

In this paper, we use MS-Net to learn relationships between pore structure and flow 

fields of steady-state solutions from LBM. Our model starts by analyzing a coarsened 

version of a porous domain (where the main heterogeneities affecting flow are present), 

and then proceeds to make a partial prediction of the velocity field. This is then passed 

subsequently to finer-scale networks to refine this coarse prediction until the entire 

flow field is recovered. This paradigm exhibits strong advantages over other ConvNet 

approaches such as Poreflow-Net (Santos et  al. 2020b) with regard to the ability to 

learn on heterogeneous domains and in terms of the computational expense of the 

model. While applied here to fluid flow, we believe this hierarchical regression para-

digm could be applied to many disciplines dealing with 3D volumes, not limited to the 

problems studied here.

The rest of this manuscript is organized as follows. In Sect. 2, we describe our meth-

ods, and in Sect. 3, we describe the data we have applied our methods to. In Sect. 4, we 

describe the results of training using two different data sources. We show the results 

on test data comprised of a variety of samples presenting a wide range of heterogenei-

ties at different scales. In Sect. 5, we provide discussion, including comments on the 

memory-efficiency of the approach, and we conclude in Sect. 6.
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2  Multiscale Neural Network Description

Our end goal is to build a model which can estimate flow characteristics based on the 

microstructure found in a variety of complex samples, with constant fluid properties and 

time independent driving force. We aim to capture the steady-state fluid flow and asso-

ciated statistics thereof, such as the permeability, but emphasize that other field quanti-

ties at steady-state could be addressed with the same framework. The main requirement 

for our approach is to have a domain (constituting a 3D binary array), and a matching 

response (simulation or experiment) across that domain. Additional information would 

be needed to capture more complex situations such as time-dependent (unsteady) flow. 

We choose to model this relationship with system of deep neural networks.

The task of learning the physics of transport in porous media requires a model that 

can learn complex relationships (like the one between structure and fluid velocity), 

and that has capacity to generalize many possible domains (outside of the ones used 

for training) for its broad applicability. One approach is to obtain massive amounts of 

data. This is expensive for multiscale porous media, which need to be modeled at very 

high resolutions. Moreover, model training time scales with the evaluation speed of the 

model. The common deep learning approach to building complex, well-generalizing 

models is to use networks that are (1) very deep, having a large number of layers or (2) 

very wide, having a large number of neurons at each layer. Although these strategies 

typically results in higher accuracy, they always result in a larger computation required 

to train and use the model. The memory cost is proportional not only to the width and 

depth of the network, but also with the volume of the sample that needs to be analyzed. 

Fig. 1  Overview of our multiscale network approach. Starting from a 3D � CT image of a fractured carbon-

ate (a gray-scale cross-section of the domain is shown in the back, where unconnected microporosity can 

be observed, and the main fracture of the domain is shown in dashed red lines), we predict the single-phase 

flow field of the image by combining predictions made over multiple resolutions of the binary input (shown 

to the left, where only the surface between the pore-space and the solid is shown in gray). Each neural net-

work (depicted as purple boxes) scans the image with different window sizes that increase exponentially 

(depicted with gray outline cubes in the domain). The different sizes of the neural networks depict higher 

model capacity. The predictions of the networks are all linked together (via the arrow connections) to pro-

vide an approximation of the Navier–Stokes solution (shown in the right, where the higher velocity values 

get brighter colors). All these elements are explained in detail in Sects. 2 and Fig. 3
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In practice, this has limited the volume with which 3D data can be evaluated on a single 

GPU to sizes on the order of 80
3 (Santos et al. 2020b).

One approach to address this limitation is to break large domains into sub-samples, 

and augment the feature set so that it contains hand-crafted information pertaining to 

the relative location of each sub-sample (Santos et  al. 2020b). This can add informa-

tion about the local and global boundaries surrounding the subsample. However, a clear 

limitation of this approach is its applicability for domains containing large-scale hetero-

geneities. Figure 2 shows the variation of properties as a function of window size for 

various data considered in this paper, and it is clear that in some cases the REV may be 

much larger than 80 voxels. If this data is split into sub-domains, the large-scale infor-

mation about features is limited to the hand-crafted information fed to the model, and 

the power of machine learning to analyze the correlations in the 3D input space is lim-

ited to window sizes that are orders of magnitude smaller than the REV.

Instead of increasing the model size, one can design topologies for a network (archi-

tectures) which aim to capture aspects of human cognition or of domain knowledge. 

For example, self-attention units (Vaswani et  al. 2017; Jaegle et  al. 2021; Ho et  al. 

2019; Dosovitskiy et al. 2020) capture a notion of dynamic relative importance among 

features.

We propose an architecture designed to overcome the hurdles of training convolutional 

neural networks to small 3D volumes, the multiscale network (MS-Net), and show that MS-

Net is a suitable system to model physics in complex porous materials. The MS-Net is a 

coupled system of convolutional neural networks that allows training to entire samples to 

understand the relationship between pore-structure and single-phase flow physics, includ-

ing large-scale effects. This makes it possible to provide accurate flow field estimations in 

large domains, including large-scale heterogeneities, without complex feature engineering.

In the following sections, we first provide an overview of how convolutional neural net-

works work, and explain our proposed model, the MS-Net, a system of single-scale net-

works that work collectively to construct a prediction for a given sample. We then explain 

our loss function which couples these networks together. Finally, we explain the coarsening 

Fig. 2  Coefficient of variation (ratio between standard deviation  and the mean) of the porosity and fluid 

flow field for domains subsampled using increasingly larger window sizes. We show four examples: 

a sphere pack, a vuggy core, an imaged carbonate fracture (from Fig.  1) and a synthetic fracture (from 

Sect. 4.2). For samples presenting large heterogeneities (like the fractures), very large windows (>100 vox-

els) are necessary to capture representative porosity and flow patterns
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and refining operations used to move inputs and outputs, respectively, between different 

networks.

2.1  Overview of Convolutional Networks

Our model is comprised by individual, memory inexpensive neural networks which are 

described in Appendix A. All of the individual networks (one per scale) of our system are 

composed by identical fully convolutional neural networks (which means that the size of 

the 3D inputs are not modified along the way). The most important component of a con-

volutional network is the convolutional layer. This layer contains kernels (or filters) of size 

(k
size

)3 that slide across the input to create feature maps via the convolution operation:

where F denotes the total number of kernels (or channels) of that layer, ∗ is the convolution 

operation, b a bias term, and f is a nonlinear activation function. A detailed explanation of 

these elements is provided in Goodfellow et al. (2016). The elements of these kernels are 

trainable parameters, and they operate on all the voxels of the domain. These parameters 

are optimized (or learned) during training. By stacking these convolutional layers, a con-

volutional network can build a model which is naturally translationally covariant, that is, a 

shift of the input image volume produces a shift in the output image volume (LeCun et al. 

2015). In this work, we use k
size

= 3 , since it is the most efficient size for current hardware 

(Ding et al. 2021).

An important concept in convolutional neural networks is the field of vision. The field of 

vision ( FoV ) dictates to which extent parts of the input might affect sections of the output. 

The FoV of a single convolutional layer with a ksize = 3 is of 3 voxels. For the case of a 

fully convolutional neural network with no coarsening (pooling) inside its layers (the input 

size is equal to the output size), the FoV is given by the following relation:

where L is the number of convolutional layers of the network, and ksize the size of the ker-

nel. For the case of the single scale network architecture used here (see Appendix A for 

details), the FoV is 11 voxels. This is much smaller than the REV of any of our samples 

(Fig. 2). It is worth noting that it is not possible to add more layers to increase the FoV and 

still train with samples that are 2563 or larger in current GPUs. We now explain MS-Net, 

which addresses this limitation using a coupled set of convolutional networks.

2.2  Hierarchical Network Structure

The MS-Net is a system of interacting convolutional neural networks that operate at dif-

ferent scales. Each neural network takes as input the same domain at different resolutions 

through coarsening and refining operations, ℂ and ℝ
m
 , which will be explained in detail in 

Sect. 2.4. Each network is responsible for capturing the fluid response at a certain resolu-

tion and to pass it to the next network. This process is visualized in Fig. 3.

What changes between the individual networks is the number of inputs that they receive. 

The coarsest network receives only the domain representation at the coarsest scale (Eq. 4), 

(1)xout = f

(

F
∑

i=1

xin ∗ ki + bi

)

,

(2)FoV = L
(

ksize − 1
)

+ 1,
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while the subsequent ones receive two, the domain representation at the appropriate scale, 

and the prediction from the previous scale (Fig.  3 and Eq.  5). As mentioned above, the 

input’s linear size is reduced by a factor of two between every scale.

Mathematically, the system of networks can be described as such:

where n indicates the coarsest scale, NN
i
 the individual neural networks, and ℂ() and ℝ

m
() , 

the coarsening and refinement operations, respectively. In this system of equations, the 

input is first coarsened over as many times as there are networks. The neural network that 

works with the coarsest input ( NN
n
 ) has the largest FoV with respect to the original image, 

and processes the largest scale aspects of the problem. The results of this network are used 

both as a component of the output of the system, and are made available for the finer scale 

networks, so that finer-scale, more local processing that can resolve details of flow have 

access to the information processed at larger scales. The process of coarsening an image 

progressively doubles the field of vision per scale, yielding the following formula for FoV 

in MS-net:

As we stated in the previous section, the finest (first) network has a FoV of 11 voxels. With 

our proposed system, the second network can see with a window of 22, and so on, with the 

FoV increasing exponentially with the number of scales. Using these principles, the model 

is able to analyze large portions of the image that can contain large-scale heterogeneities 

affecting flow (Fig. 1). The sizes of the windows do not strictly need to be REVs, since 

(3)X
n
= ℂ(X

n−1
)

(4)ŷn = NNn(Xn)

(5)ŷn−1 = NNn−1(Xn−1,ℝm(ŷn)) +ℝm(ŷn)

(6)

...

ŷ = ŷ0 = NN0(X0,ℝm(ŷ1)) +ℝm(ŷ1),

(7)FoVMS-Net = (L
(

ksize − 1
)

+ 1) ⋅ 2n,

Fig. 3  MS-Net pipeline. Our model consists of a system of fully convolutional neural networks where the 

feed-forward pass is done from coarse-to-fine (left to right). Each scale learns the relationship of solid 

structure and velocity response at the particular image resolution. The number of scales (n) is set by the 

user and all these scales are trained simultaneously. In this figure we are showing the original (finest) scale, 

the coarsest (n) and the second coarsest ( n − 1 ). The masked refinement step is explained on Sect. 2.4). X
0
 

represents the original structure and ŷ the final prediction of the model
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the network still processes the entire image at once. Nevertheless, the bigger the FoV, the 

easier it is to learn the long range interactions of big heterogeneities affecting flow. Compu-

tationally, it would be possible to add enough scales to be able to have FoVs that are close 

to the entire computational size of the sample  (2003–5003). Early experiments with a very 

large number of scales revealed that this limits the performance of the model when applied 

to small samples.

2.3  Images at Different Scales

Our workflow relies on a multiscale modeling approach. We identify the scale number to 

denote how many times the original image has been coarsened. Hence, scale 0 refers to 

the original image, scale 1 is the original image after being coarsened one time, and so on. 

This process is visualized in Fig. 4. There are two main benefits to this approach, which 

constructs a series of domain representations with varying level of detail. The first is that 

coarser networks, which analyze fewer voxels, can be assigned more trainable parameters 

(larger network widths or more neurons, as depicted in Fig. 1) without incurring memory 

costs associated with the full sample size. The second is the exponential increase the FoV 

rendered by this approach (Eq. 7).

For this particular problem of fluid flow, as a proxy for pore-structure, we used the dis-

tance transform (also known as the Euclidean distance), which labels each void voxel with 

the distance to the closest solid wall (seen in Fig. 4). We selected this feature because it is 

very simple and inexpensive to compute, and provides more information than the binary 

image alone. The fact that no additional inputs are needed makes the MS-Net less depend-

ant on expert knowledge for feature engineering. Note that we treat only the connected void 

space; the steady-state flow in an isolated void will be zero, and we can safely fill discon-

nected voids that do not connect to the inlet/outlet system with solid nodes as a cheap pre-

processing step.

This distance is related to the velocity field in a non-linear way, which must be learned 

by the network. Nonetheless, it is possible to visualize how coarser images provide more 

straightforward information about fluid flow. In Fig. 5, we show input domains against dif-

ferent scales (top row) and corresponding, 2D histograms (bottom row) relating the feature 

value to the magnitude of the velocity. At scale zero, the distance value is not strongly 

related to the velocity; for a given distance value, the velocity may still range over more 

than three orders of magnitude. This deviation from the parabolic velocity profile arises 

due to the complexity of the porous media. At scale 3, the feature and velocity have been 

Fig. 4  Original image and three subsequent scales of a fractured sphere pack. The color denotes the dis-

tance transform of the original domain. While the computational size of the domain decreases (50% each 

time) the main features remain present. While most of the pores outside the fracture become less visible, 

their value is not zero, which still provides valuable information to the coarsest network of the MS-Net
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coarsened several times, and a clearer relationship between the distance and velocity 

emerges. It is then the job of the nth neural network to determine how the 3D pattern of 

features is non-linearly related to the velocity at this scale, and to pass this information on 

to networks that operate at a finer scale, as shown in Fig. 3.

2.4  Coarsening and Refinement Operations

We use the term coarsening ( ℂ ) to describe the operation of reducing the size of an image 

by grouping a section of neighboring voxels into one voxel (in this case, by averaging). We 

use the term refinement ( ℝ ) to denote the operation of increasing the computational size of 

an image, but not the amount of information (this is also known as image upscaling, but we 

use the term refinement to avoid potential confusion with upscaling in reservoir engineer-

ing or other surrogate modeling).

The coarsening and refining operations should have the following properties applied to 

data z (i.e., input or output volumes):

the angle brackets ⟨⟩ represent the volumetric average over space, and the masked refine-

ment ℝ
m
() projects solutions from a coarse space back into the finer resolution space while 

assigning zero predictions to regions that are occupied by the solid. The first equation 

indicates that coarsening should preserve the average prediction, and the second says that 

refinement should be a pseudo-inverse for coarsening, that is, if we take an image, refine 

it, and then subsequently coarsen it, we should arrive back at the original image. Note that 

the opposite operation—coarsening followed by refinement—cannot be invertible, as the 

coarser scale image manifestly contains less information than the fine scale one.

(8)⟨z
n
⟩ = ⟨ℂ(z

n−1
)⟩

(9)z
n
= ℂ(ℝ

m
(z

n
)),

scale 0 scale 1 scale 2 scale 3

0.0 0.5 1.0

−15

−10

lo
g1

0(
ve

l)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Normalized distance

Fig. 5  Top: XY-plane cross-section of the velocity in Z-direction of increasingly coarser scales. Bottom: 2D 

histograms of the normalized distance transform vs velocity after coarsening steps. As the system is coars-

ened, the correlation between the distance transform and the velocity becomes more apparent
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The coarsening operation is simple. As mentioned in Sect. 2.3, we first coarsen our 

input domain n-times. Coarsening is applied via a simple nearest neighbor average; 

every 23 region of the image is coarsened to a single voxel by averaging. This operation 

is known as average pooling in image processing.

The refinement operation is more subtle. There exists a naive nearest-neighbors 

refinement algorithm, wherein the voxel value is replicated across each 2
3 region in 

the refined image. However, this presents difficulties for prediction in porous media—

namely, that if this operation is used for refinement, flow properties from coarser net-

works will be predicted on solid voxels where they are by definition zero (refer to 

Fig. 13), and the fine-scale networks will be forced to learn how to cancel these predic-

tions exactly. Early experiments with this naive refinement operation confirmed that this 

behavior is problematic for learning.

Instead, we base our refinement operation on a refinement mask derived from the 

input solid/fluid nodes. This is performed such that, when refined back to the finest 

scale, the prediction will be exactly zero on the solid nodes and constant on the fluid 

nodes, while conserving the average. We refer to this masked refinement as ℝ
m

 . This 

requires computing refinement masks that re-weight regions in the refined field based 

on the percentage of solid nodes in each sub-region. Refinement masks for a particu-

lar example are visualized in Fig. 6. An example calculation and pseudo-code for this 

operation is given in the A.3. Then, the masked refinement operation can simply be 

computed as naive refinement, followed by multiplication by the mask. Figure 14 dem-

onstrates the difference between the operations by comparing naive refinement with 

masked refinement.

The masked refinement operation is cheap and parameter-free; nothing needs to be 

learned by the neural network, unlike, for example, the transposed convolution (Goodfel-

low et al. 2016). We thus find it an apt way to account for the physical constraints posed 

Fig. 6  Schematic of the coarsening and masking process. Top: Starting from the original domain, a series 

of coarsening steps are performed, every 23 neighboring voxels are averaged to produce one voxel at the fol-

lowing scale. Structural information is lost along the way. Bottom: Masks for each scale, which re-weight 

a naive refinement operator. These masks have larger weights in regions where the prediction must be re-

distributed, near the boundaries with solid nodes, and is zero in regions that correspond entirely to solid 

nodes. For example, if the image of scale 3 is refined using nearest-neighbors and multiplied by the mask 2, 

the image at scale 2 would be fully recovered
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by fields defined only within the pore. The masked refinement operation is also the unique 

refinement operation such that when applied to the input binary domain, coarsening and 

refinement are true inverses; the masked refinement operation recovers the original input 

domain from the coarsened input domain.

2.5  Loss Function

To train the MS-Net, the weights of the convolutional kernels and biases of the network 

(Eq. 14) are optimized to minimize the following equation based on the mean squared error 

for every sample s at every scale i between the prediction at that scale ŷi,s and the true value 

coarsened at that scale yi,s . The full loss L can be broken in to contributions for each image 

L
s
 , and scale, L

i

s
:

where n is the total number of scales, and S the number of samples, ⟨...⟩ denote the spatial 

averaging operation. This equation accounts for the variance in the true velocity, �2

y
s

 , in 

order to weight samples that contain very different overall velocity scales (related to per-

meability) more evenly. Since the coarsest scale is implicitly present in the solution at 

every scale (Eq. 6), the coarsest network is encouraged to output most of the magnitude of 

the velocity Fig.  7. This loss function is also useful to be able to train with samples of 
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Fig. 7  Velocity prediction per scale and sample loss L
s
 for the training samples, organized by column. (top 

row) Normalized mean velocity (that is, ̄̂v∕v̄ at each scale. Coarser scales are shown with lighter lines. Note 

that the average velocity is predicted mostly by the coarsest scale, and refined by further scales. (bottom 

row) Corresponding values of the loss function for each sample during training. Although the permeability 

( k ∝ v̄ ) of the samples spans orders of magnitude, the network assigns roughly the same importance to them 

during training using a well-normalized loss function
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varying structural heterogeneity (and fluid response), since the mean square error is nor-

malized with the sample variance to obtain a dimensionless quantity that is consistent for 

every sample. The velocity variance does not scale all the samples to the exact same distri-

bution, but it is a good first order approximation to allow training models with very differ-

ent velocity distributions.

3  Data Description: Flow Simulation

To train and test our proposed model, we carried-out single-phase simulations using our 

in-house multi-relaxation time D3Q19 (three dimensions and 19 discrete velocities) lattice-

Boltzmann code (D’Humieres et al. 2002). Our computational domains are periodic in the 

z-direction, where an external force is applied to drive the fluid forward simulating a pres-

sure drop. The rest of the domain faces are treated as impermeable. The simulation is said 

to achieve convergence when the coefficient of variation of the velocity field is smaller than 

1x10
−6 between 1000 consecutive iterations. We run each simulation on 96 cores at the 

Texas Advanced Computing Center. The output of the LB solver is the velocity field in the 

direction of flow (here, the z-direction). To calculate the permeability of our sample, we 

use the following equation:

where v is the mean of the velocity field in the direction of flow, � is the viscosity of the 

fluid, 
dP

dl
 is the pressure differential applied to the sample, and 

dx

dl
 is the resolution of the 

sample (in meters per voxel). Although we used the LBM to carry-out our simulations, the 

following workflow is method agnostic. It only relies on having a voxelized 3D domain 

with its corresponding voxelized response.

4  Results

Below we will present two computational experiments (porous media and fractures) that 

were carried-out to show how the MS-Net is able to learn from 3D domains with heteroge-

neities at different scales. In the first subsection, we will show to what extent the MS-Net 

is able to learn from very simple sphere-pack geometries to be able to accurately predict 

flow in a wide range of realistic samples from the Digital Rock Portal (Prodanovic et al.). 

It is worth noting that simulating the training set took less than one hour per sample, and 

training the model took seven hours, while some samples in the test set took over a day 

to achieve convergence through the numerical LBM solver. In the second experiment, 

we show that training using two fracture samples of different aperture sizes and rough-

ness parameters is enough to estimate permeability for a wider family of aperture sizes, 

and roughnes.

4.1  Training the MS-Net with Sphere Packs

To explore the ability of the MS-Net to learn the main features of flow through porous 

media, we utilize a series of five 2563 numerically dilated sphere packs (starting from 

(13)ksample =
v�

dP

dl

(

dx

dl

)2

,
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the original sphere pack imaged by Finney and Prodanovic (2016)) to train the network 

(Fig. 15). The porosity of the training samples range from 10 to 29%, and their permeabil-

ity from 1 to 37 Darcy. For reference, the individual simulation times to create the training 

samples range from 10 to under 50 minutes to achieve convergence.

Our model consists of four scales, using 22n+1 filters per scale (2 in the finest model and 

128 in the coarsest). During training, each sample is passed through the model (as shown 

in Fig. 3), and then the model optimizes its parameters (the numbers in the 3D filters and 

the biases) to obtain a functional relationship between the 3D image and the velocity field 

by minimizing the loss function (Eq. 12). The MS-Net can be trained end-to-end since all 

included operations are differentiable (including the coarsening and masked refinement) 

with respect to the model’s weights.

In short, we are looking to obtain a relation of the form of velocity v
z
 as a function of 

the distance transform feature x, that is, vz = f (x).

The network was trained for 2500 epochs, with a batch size of all five of the samples 

(i.e., full-batch training). This process took approximately seven hours. To highlight the 

order of magnitude of the loss function during training, the first 1000 epochs of the train-

ing are shown in Fig. 7. This illustrates that magnitude of the loss for each sample is simi-

lar, despite the very different velocity scales associated with each sample. We also tried 

augmenting the training dataset utilizing 90 degree rotations about the flow axis, but no 

benefits were observed. The loss function value per sample and the mean velocity per scale 

of the network are plotted in Fig. 7. As seen in the top row of the figure, the coarsest scale 

is responsible for most of the velocity magnitude, and finer-scale networks make compara-

tively small adjustments. The bottom row of plots shows the loss for each sample used for 

training. We note that the normalization of our loss (Eq. 12) puts the loss for each sample 

on a similar scale, despite the considerable variance in porosity and permeability between 

samples.

Once trained, the network produces very accurate predictions on the training samples. 

Figure 8a shows predicted and true velocity fields, and relative error, for a cross section of 

one of the training example. Figure 9a shows a histogram of the true vs. predicted velocity 

across all pore-space voxels, along with a plot of the relative change in fluid flux across x-y 

slices of the sample. However, performance on training data does not necessarily translate 

to useful performance on the vast variety of real-world microstructures, and as such we 

endeavor to assess the trained MS-net on many test microstructures compiled from various 

sources. Figure 8, rows b through e, and Fig. 9, rows b through e, show velocity field per-

formance on various samples from test sets, which we examine in the following sections.

4.1.1  Fontainebleau Sandstone Test Set

Training to the sphere-pack dataset reveals that the model can learn the main factors affect-

ing/contributing to flow through permeable media. To assess the performance of the trained 

MS-Net, we used Fontainebleau sandstones (Berg 2016) at different computational sizes 

( 2563 and 480
3 ). The cross sections of these structures are visualized in the right panel of 

Fig. 15. Overall results are presented in Table 1, and flow field plots for a single sample are 

presented in Fig. 8b and 9b. The relative percent error of the permeability can be calcu-

lated as er = |1 −

kpred

k
| . The typical accuracy of the permeability is approximately within 

10%. One remarkable fact is that the model retains approximately the same accuracy when 

applied to 480
3 samples as 2563 samples.
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It is worth noting that the simulation of the sample with a porosity of 9.8 % took 13 

hours to converge; this single sample takes more computational effort than the entire con-

struction of training data and the training the model together.

Fig. 8  Cross-sectional view of simulation result, the predictions of the model trained with sphere packs and 

the relative error. The samples displayed are the following: a Training sphere pack with porosity 29%, b 

Fontainebleau Sandstone with a porosity of 9%, c Porosity gradient sample from Group I, d Castlegate 

sandstone from Group II, and e Propped fracture from Group III
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4.1.2  Additional Test Predictions on more Heterogeneous Domains

To assess the ability of the model trained with sphere packs to predict flow in more hetero-

geneous materials, we tested samples of different computational size and complexity. We 

split the data into three groups according to their type:

• Group I: Artificially created samples: In this group, we include a sphere pack with an 

additional grain dilation (that lowered the porosity) from the lowest porosity training 

sample1, a vuggy core created by removing 10% of the matrix grains from the original 

sphere pack (Finney and Prodanovic 2016) to open up pore-space and create discon-

nected vugs (Khan et al. 2019, 2020), then the grain were numerically dilated two times 

to simulate cement growth, a sample made out of spheres of different sizes where the 

porosity at the inlet starts at 35% and it decreases to 2% at the outlet, and this last sam-

ple reflected in the direction of flow.
• Group II: Realistic samples: Bentheimer sandstone (Muljadi 2015), an artificial mul-

tiscale sample (microsand)(Mohammadmoradi 2017), Castlegate sandstone (Moham-

madmoradi 2017). The sizes where selected such that they were an REV.
• Group III: Fractured domains: Segmented micro-CT image of a fractured carbonate 

(Prodanovic and Bryant 2009), layered bidispered packing recreating a propped fracture 

(Prodanovic et al. 2010), and a sphere pack where the spheres intersecting a plane in 

the middle of the sample where shifted to create a preferential conduit, and this same 

structure rotated 90 degrees in the direction of flow (so that the fracture is in the middle 

plane of the flow axis and deters flow) (Prodanovic et al. 2010).

The lowest porosity sample (porosity of 7.5%) took 26 hours running on 100 cores to 

achieve convergence. Besides an accurate permeability estimate, another measure of preci-

sion if the loss function value at the finest scale (from Eq. 12). These two are related, but 

not simple transformations of each other. The loss function provides a volumetric average 

of the flow field error. We normalized this value using the sample’s porosity to obtain a 

comparable quantity, which results in a quantity that is roughly the same for all samples. 

Visualizations of some of these samples are shown in Fig. 16, and the prediction results are 

shown in Table 2.

Table 2 reveals remarkable performance on the variety of geometries considered. Sam-

ples from all groups are predicted very well, with permeability errors for the most part 

within about 25% of the true value, through samples ranging by three orders of magni-

tude in permeability. Flow field errors for one sample from each group are shown in 

Figs. 8c–e, 9c–e.

Fig. 9  2D histogram of the true velocities vs the predictions of the model trained with sphere packs in 

log10, and the percentage change in the flux per slice of the domain. The percentage change of flux shows 

how much the fluid flux varies from slice-to-slice across the sample. In our results, we can see percentage 

changes up to 10%. Each row corresponds to the sample samples as shown in Fig. 8

▸

1 We tried to carry-out a simulation of a structure with an additional grain dilation (4.7 % porosity); how-

ever, the job timed-out after 48 hrs without achieving convergence.
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Two notable failure cases emerged. In the first, the Castlegate sandstone, we find that 

the flow field prediction is still somewhat reasonable, as visualized in Figs.  8d and  9d. 

The largest failure case (highlighted in bold in Table 2), is the fractured sphere pack with 

a fracture parallel to fluid flow. In this case, the model is not able to provide an accurate 

flow field due to the difference in flow behavior that a big preferential channel (like this 

synthetic fracture) imposes compared with the training data (sphere packs), and as a result 

the predicted permeability is off by a factor of 5. Likewise, the sample also has the highest 

loss value. However, since no example of any similar nature is found in the training set, we 

investigate in the following section the ability of the model to predict on parallel fractures 

when presented with parallel fractures during training.

Table 1  Results of the 

Fontainebleau sandstone test set

We show the true permeability k, calculated using the LBM, and the 

ratio between the true permeability and the prediction of our model 

k pred/k

Porosity (%) Size k (m2) kpred/k

10.4 2563 8.21E−13 0.94

9.8 4803 6.50E−13 1.08

12.6 2563 1.47E−12 1.10

12.4 4803 1.28E−12 0.98

15.4 2563 2.72E−12 1.03

15.2 4803 3.18E−12 0.99

18.0 2563 5.28E−12 0.98

17.4 4803 4.95E−12 1.02

24.7 2563 1.30E−11 1.03

24.3 4803 1.38E−11 0.98

Table 2  Results of the predictions on the test set

We additionally show here the ratio between the loss (Eq. 12) and the porosity, which is another measure of 

accuracy in the active cells of the prediction. In bold, the worst performing sample using the model trained 

on sphere packs

Group �CT Sample Size � k (m2) L
0

s
∗ � kpred∕k

I Porosity gradient 2563 9.7% 1.78e−13 0.151 0.98

Reflected porosity gradient 2563 9.7% 1.78e−13 0.154 0.98

Synthetic vuggy core 2563 32.1% 2.71e−11 0.148 0.94

Tight sphere pack 4803 7.5% 3.80e−13 0.077 1.01

II ✓ Bentheimer sandstone 2563 20.6% 5.10e−12 0.092 1.08

Multiscale microsand 4803 29.8% 8.48e−12 0.196 1.23

✓ Castlegate sandstone 5123 20.4% 4.25e−12 0.235 1.38

III ✓ Carbonate fracture 2563 9.2% 2.12e−12 0.098 0.87

Propped fracture 2563 37.5% 9.55e−11 0.140 0.73

Orthogonal fractured sphere pack 2563 41.2% 1.04e−10 0.170 0.95

Parallel fractured sphere pack 2563 41.2% 5.14e−10 0.347 0.20
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4.2  Training the MS-Net with Fractures

Since the MS-Net is able to see the entire domain at each iteration, we carried-out an addi-

tional numerical experiment with domains hosting single rough fractures from a study of 

the relationship between roughness and multiphase flow properties (Santos and Jo 2019; 

Santos et  al. 2018a). Alqahtani et  al. (2021) identified flow through fractures as an out-

standing problem in deep-learning of porous materials.

Fig. 10  Five synthetic fracture cross-sections and their distance transform histograms. To the left, The dis-

tance transform map of five fractures with different roughness is shown. All of the domains are shown in 

one merged figure for brevity. All the fracture properties stay constant while their fractal exponent ( Df  ) 

decreases from 2.5 to 2.1 (top to bottom). To the right, the histogram of the distance transform of entire 

domains is shown. Rougher fractures have wider distributions

Table 3  Results of training and 

testing in different fractures

The first column indicates if the sample was part of the training set, 

followed by the mean aperture Ap , fractal exponent Df  and permeabil-

ity k. In bold, the worst performing sample of Table 2

Train Ap Df k (m2) kpred∕k

44 2.1 9.41e−10 1.03

2.2 7.54e−10 1.08

2.3 5.69e−10 1.01

2.4 4.17e−10 1.03

✓ 2.5 2.97e−10 1.01

✓ 22 2.1 2.21e−10 1.007

2.2 1.89e−10 1.003

2.3 1.52e−10 1.01

2.4 1.18e−10 1.04

2.5 8.98e−11 0.98

Propped fracture 9.57e−11 1.17

Parallel frac-

tured sphere 

pack

5.13e−10 1.03
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The domains were created synthetically using the model proposed by Ogilvie et al. 

(2006), where the roughness of the fracture surfaces is controlled by a fractal dimen-

sion Df  . The cross sections of the domains and their histograms are shown in Fig. 10. 

We utilize two sets of five fractures fractures with increasing roughness Df  . Within each 

group, each fracture has a constant mean fracture aperture Ap and therefore the poros-

ity of each sample in a group is identical. The total computational size of these is 256×

256×60. We trained our model using two of these synthetic fractures, one from each 

group, and tested them on the other 8 fractures. The results are shown in Table 3.

We selected two samples with different mean aperture and roughness exponent so that 

the network might learn how these factors affected flow. From the results of Table 3, we 

can conclude that the network is able to extrapolate accurately to construct solutions of the 

flow field for a wide variety of fractal exponents. The training fractures have permeability 

of 224 and 301 Darcy, whereas accurate test results are found ranging between 91 and 953 

Darcy. This gives strong evidence that the model is able to distill the underlying geometri-

cal factors affecting flow, even when the coarse-scale view of the pore is quite similar.

We contrast the machine learning approach with classical method such as the cubic law 

(Tokan-Lawal et  al. 2015). For these synthetically created fracture, the cubic law would 

return a permeability value that depends only on the aperture size, whereas LBM data 

reveals that the roughness could influence the permeability by a factor of 3. There have 

been a number of papers attempting to modify the cubic law for a more accurate perme-

ability prediction. However, there is evidence that those predictions could be off by six 

orders of magnitude (Tokan-Lawal et  al. 2015). There are also other approaches in line 

with our hypothesis that a fracture aperture field should be analyzed with local moving 

windows (Oron and Berkowitz 1998). This model could be used to estimate more accu-

rately the petrophysical properties of fractures for hydraulic fracturing workflows (Xue 

et al. 2019; Park et al. 2021).

5  Discussion

We have shown the MS-Net performing inference in volumes up 5123 , chosen to obtain the 

LBM solutions in a reasonable time-frame. The MS-Net can be scaled to larger systems on 

a single GPU. Table 4 reports the maximum size system which a forward pass of the fin-

est-scale network was successful for various recent GPU architectures, without modifying 

our workflow. Additional strategies such as distributing the computation across multiple 

GPUs, or pruning the trained model (Tanaka 2020; Li et al. 2017) might be able to push 

this scheme to even larger computational domains. For all architectures tested, the predic-

tion time was on the order of one second, whereas LBM simulations on a tight material 

may take several days to converge, even when running on hundreds of cores.

The number of scales used could be varied. For our experiments, we chose to train a 

model with four scales, since we did not see an increase in accuracy with more scales. This 

Table 4  Prediction size achieved 

in three different GPUs
GPU Memory Size achieved

Nvidia P100 12 Gb 640
3

Nvidia M6000 24 Gb 704
3

Nvidia A100 40 Gb 832
3
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number is a parameter that could be explored in further research. The FoV of the coarsest 

network is of 88 voxels wide, and the model itself operates on the entire domain simultane-

ously, rather than on subdomains. For comparison, the FoV of the PoreFlow-Net (Santos 

et al. 2020b) is of 20 voxels, and operated on subdomains of size 80
3 due to memory limita-

tions. We utilize 2 2n + 1 filters per scale (2 in the finest network and 128 in the coarsest).

We also believe that our work could be also utilized for compressing simulation data, 

since, as shown in Fig. 7, a single model is able to learn several simulations with a high 

degree of fidelity to make them more easily portable (also called representation learning 

in deep learning). A training example is on the order of 500 Mb of data in single precision 

float-point, whereas the trained model is approximately 25 Kb. Thus, when training to a 

single 5123 example, the neural network encodes the solution using approximately 2 × 10
−4 

bytes per voxel; it is tremendously more efficient than any floating point representation. 

One would also need to keep the input domain to recover the solution, but this is itself 

a binary array that is more easily compressed than the fluid flow itself. For example, we 

applied standard compression methods to the binary input array for the Castlegate sand-

stone, which was then fit into 2.4 MB of memory.

6  Conclusions and Future Work

It is well-established that semi-analytical formulas or correlations derived from experi-

ments can fail to predict permeability by orders of magnitude. Porosity values alone can be 

misleading due to the fact that this does not account for how certain structures affect flow 

in a given direction, or due to the presence of heterogeneities. However, going beyond sim-

ple approximations is often expensive. We have presented MS-Net, a multiscale convolu-

tional network approach, in order to better utilize imaging technologies for identifying pore 

structure and associate them with flow fields. When training on sphere packs and fractures, 

MS-Net learns complex relationships efficiently, and a trained model can make new predic-

tions in seconds, whereas new LBM computations can take hours to days to evaluate.

We believe that it would be possible to train the MS-Net using more and more diverse 

data to create a predictive model that could be able to generalize to more domains simulta-

neously (for example, unsaturated soils, membranes, mudrocks, and kerogen). This could 

be done using active learning principles, carrying out simulations where the model has a 

low degree of confidence in its prediction, such as in Santos et al. (2020a), to examine a 

vast variety of possible training samples and only compute physics-based flow simulations 

on a targeted set.

The MS-Net architecture is an efficient way of training with large 3D arrays compared 

to standard neural network architectures from computer vision. Although this model is 

shown to return predictions that are accurate, there are still high local errors. A plausible 

solution is to use the model prediction as the initial input for a full-physics simulation, as 

shown in Wang et al. (2021b). This workflow can be specially efficient if the simulator can 

take advantage GPU computing.(McClure et al. 2014, 2021)

On the other hand, there are desirable physical properties that might be realized by a 

future variant, such as mass or momentum continuity. One avenue of future work could be 

to focus on designing conservation modules for the MS-Net using such hard constraints for 

ConvNets (Mohan et al. 2020). An important hurdle of applying these techniques in porous 

media problems is that the bounded domains make the implementation more challenging.
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Another important area of future work would be to address data from different scien-

tific domains. This includes similar endeavors such as steady-state multiphase flow, waved 

propagation through a solid matrix, and component transport in porous media. The model 

could also be applied to other 3D problems, such as seismic inversion (Cho et al. 2018; 

Cho and Jun 2021), astronomical flows (van Oort et al. 2019), or the flow of blood through 

highly branched vessel structures.

Lastly, we believe that an important endeavor is to create more realistic domains, with 

multiscale features such as fractal statistics. One avenue to pursue such methods is the 

Generative Adversarial Network (GAN), another ML technique which allows a generator 

model to learn to create new data by fooling a discriminator model (the adversary) that is 

trained to distinguish between real data and the Generator’s outputs. The multiscale tech-

nique has been applied to many real-world datasets such as human faces, but has not, to our 

knowledge, been used to construct synthetic porous media.

Appendix A Single neural network description

Each network of our system (one per scale) is composed by fully convolutional networks 

(which means that the dimensions of the 3D inputs are not modified along the way). Each 

of them is composed by stacks with the following layers:

• 3D convolution with a 33 kernel: This layer contains kernels (or filters) of size 33 that 

are slid across the input to create feature maps via the convolution operation: 

 where F denotes the number of kernels (or output channels) of that layer, ∗ is the con-

volution operation and b a bias term.
• Instance Normalization (Ulyanov et al. 2016): This layer normalizes its inputs to have 

a mean of zero and a standard deviation of one. This facilitates training a model with 

samples that have strong velocity contrasts (different orders of magnitude). This is done 

to every sample using their individual statistics and no trainable parameters. 

 where x is the sample mean and � its standard deviation, � is a small constant to avoid 

divisions over zero. This layers allows better flow of information (by constraining 

the mean and the standard deviation of the outputs) and reduces the risk of training 

diverging.
• Continuously Differentiable Exponential Linear Unit (CeLU) (Barron 2017): This 

layers helps to build nonlinear relationships (like the one between pore-structure and 

velocity field, shown in Fig.  5). All the data that passes through this layer is trans-

formed using the following equation: 

(14)xout =

F
∑

i=1

xin ∗ k
i
+ b

i
,

(15)xout =
xin − x

√

�
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,
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 where � is set to 2. We utilize this function because it speeds-up and improves training 

by virtue of not having vanishing gradients and by having mean values near zero. It also 

able to output negative values (unlike the ReLU) The outputs of this network are con-

strained from minus two to infinity.

Fig. 11  Schematic of a single-

scale network
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The last layer of each network is a 3D convolution with a 13 kernel: The 13 kernel acts 

as a linear regressor which reduces the dimensionality of the output to one single 3D 

image (in our case, the velocity field). This is done to weight all the feature maps from 

the previous layer (Fig. 11) and output a single 3D matrix (in this case, the velocity at 

that particular scale). The three components of the velocity tensor (vx,vy, and vz) can be 

predicted if this layer is set to have three filters.

The fourth block of our network does not include an activation function because we 

would like to give the network expressive power to be able to output negative velocities. 

Every convolutional layer includes a bias term. This system is visualized explicitly in 

Fig. 11.

Normalization of the Data and Initialization of the Network Parameters

We first start the training workflow by coarsening the initial inputs n times (depending 

on the number of scales desired Sect. 2.3). Then, we center the velocity of all the train-

ing set to be near one by dividing the LB simulation results with a constant. (This proce-

dure is shown in Fig. 12). This has the advantage of not having to compute and store the 

summary statistics of the training set (as opposed to default normalization approaches). 

It also preserves the solid values as zero.

We have also observed that if we scale the weights of the last layer of the coarsest 

network to output results that are close to one (the mean velocity of our normalized 

data), the training exhibited a speed-up of several hours, since the initial prediction is a 

closer approximation to the solution compared to the default initialization scheme (He 

et al. 2015).

Coarsening (Pooling) Operation

The coarsening (or pooling) operation is defined as:

Fig. 12  (left) Mean velocity per scale of the LB simulation results (in lattice units). Each dot represents a 

sample. (right) Mean velocity after normalizing the data
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where J is an array of all ones, d the number dimensions of the problem, and ∗
2

 the convo-

lution operation with a stride of 2.

Mask Calculation

We use the following python code to generate the masks of each sample at the begin-

ning of the training cycle: 

(17)
k = J

d
⋅

1

2d

ℂ(x
in
) = x

in
∗

2

k

Fig. 13  Schematic of the coarsening and refining process

Fig. 14  Comparison between upscaling and the proposed masked upscaling. Even when all the details are 

not fully recovered with the method, it preserves the mean velocity predictions from the coarse scale and it 

does not allow fluid in the solid space. Note how the dimensions of the image change (not to scale)
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As an example, parting from a 2D region of an image of 2x2 pixels where 3 out of 4 

pixels are solid, when this image is coarsened all these pixels are averaged into one value. 

When this coarsened image is refined using the masked approach, the only void pixel 

would get the value of the nearest neighbors matrix times 4 (Fig. 13).

End-to-End Model Training

 1. Initialize MS-Net: In this paper we used a model with n=4 scales (4 networks from 

Appendix A). Each of these networks has 22s+1 convolutional kernels in each of their 

5 layers. The network that works with the finest scale has 2 kernels while the one that 

receives the coarsest input has 128.
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Fig. 15  Superimposed cross sections of the sphere pack training set (left) and the sandstone test set (right). 

The image shows the five binary samples per set which were superimposed for visualization purposes. 

Since the geometries are binary (zeros in the void space and ones in the solids) is possible to sum all five 

to obtain a new array ( im = sand
1
+ sand

2
+ sand

3
+ sand

4
+ sand

5 ). The highs of the color bar stand for 

solids that are present in every domain while the lows are sections that are only present in the lower poros-

ity samples
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 2. Calculate the velocity variance ( �2

y
s

 ) of each training sample (s). This is used in the 

loss function (Eq. 12).

 3. Coarsen the x (Euclidean distance) and the y (velocity) of each sample n − 1 times and 

calculate the masks (Appendix A.3).

 4. Pass the coarsest image ( x
n
 ) through the network NN

n
 to obtain ŷ

n
.

 5. Upscale ŷ
n
 with the masked upscaling approach (Sect. 2.4) to obtain y

n
up

.

 6. Concatenate y
n

up

 with x
n−1

 and pass them through NN
n−1

.

 7. Add y
n

up

 to the output of NN
n−1

 to obtain ŷ
n−1

 8. Perform the last three steps subsequently with the rest of the networks.

 9. Calculate the loss function.

 10. Update the weights with a learning rate of 1 × 10
−3 . This is considered to be one epoch.

 11. Train the model until the loss stops improving.

Fig. 16  Examples from the additional test set a Vuggy core, b Porosity gradient, c Propped fracture, d Frac-

tured sphere pack. The computational size of these samples is 2563
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Appendix B Training and Testing Data

Supplementary Information The online version contains supplementary material available at https:// doi. 

org/ 10. 1007/ s11242- 021- 01617-y.
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