
J. Ocean Eng. Mar. Energy (2017) 3:21–33

DOI 10.1007/s40722-016-0066-2

RESEARCH ARTICLE

Computationally efficient nonlinear Froude–Krylov force

calculations for heaving axisymmetric wave energy point

absorbers

Giuseppe Giorgi1 · John V. Ringwood1

Received: 17 February 2016 / Accepted: 20 July 2016 / Published online: 29 July 2016

© Springer International Publishing Switzerland 2016

Abstract Most wave energy converters (WECs) are descri-

bed by linear mathematical models, based on the main

assumption of small amplitudes of motion. Notwithstanding

the computational convenience, linear models can become

inaccurate when large motions occur. On the other hand,

nonlinear models are often time consuming to simulate,

while model-based controllers require system dynamic mod-

els which can execute in real time. Therefore, this paper

proposes a computationally efficient representation of non-

linear static and dynamic Froude–Krylov forces, valid for

any heaving axisymmetric point absorber. Nonlinearities are

increased by nonuniform WEC cross sectional area and large

displacements induced by energy maximising control strate-

gies, which prevent the device from behaving as a wave

follower. Results also show that the power production assess-

ment realized through a linear model can be overly optimistic

and control parameters calculations should also reflect the

true nonlinear nature of the WEC model.

Keywords Wave energy · Axisymmetric point absorber ·

Linear potential theory · Nonlinear Froude–Krylov force ·

Latching control

1 Introduction

In wave energy applications, the accuracy of the mathemat-

ical model of a wave energy device is crucial to simulate the
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correct motion and to determine a reliable power production

assessment, as well as to design model-based controllers,

which depend, either explicitly or implicitly, on the math-

ematical model of the system to determine the control

parameters. Usually, the model is linear and based on Cum-

mins equation (Cummins 1962), with hydrodynamic para-

meters calculated using boundary element methods (BEMs).

Notwithstanding the simplicity and the computational con-

venience of a linear model, the hypotheses under which the

linear model is valid are quite restrictive, in particular the

assumption of small motion.

Indeed, the purpose of a wave energy converter (WEC) is

to exaggerate the motion to maximize the power production.

As a result, nonlinearities become important and linear mod-

els become relatively inaccurate. Several studies have shown

significant differences between linear models and experi-

mental tank tests (Babarit et al. 2009), fully nonlinear models

like CFD (Giorgi and Ringwood 2016a), or partially nonlin-

ear models (Merigaud et al. 2012).

While the computational effort usually increases consider-

ably with the number of nonlinearities included in the model,

the gain in accuracy depends on the relevance of each non-

linear effect on the particular device (Peñalba et al. 2015a).

For the heaving point absorber in Fig. 2, the most rele-

vant nonlinear component of the hydrodynamic force is the

Froude–Krylov (FK) force (Merigaud et al. 2012), which is

the integration of the incident pressure over the wetted sur-

face.

While, in the linear approach, the FK force is com-

puted over the constant mean wetted surface, in a nonlinear

approach the pressure is integrated over the instantaneous

wetted surface, which requires a significant additional com-

putational effort, since it implies the usage of either a very fine

mesh (Babarit et al. 2009) or an automatic remeshing routine

of the surface (Gilloteaux 2007). These nonlinear solutions
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return accurate results but at a computational price too high

to be compatible with the real-time simulation required by

model-based controllers. This paper proposes a computa-

tionally efficient algebraic calculation of the nonlinear FK

force valid for axisymmetric heaving point absorbers. Note

that such devices normally satisfy the condition of rotational

symmetry and the algebraic equations derived here can be

applied both to single and multi-body devices, when the

hydrodynamic interaction between bodies does not deform

the incident wave significantly.

A purely algebraic calculation of nonlinear Froude–

Krylov forces is achievable for axisymmetric point absorbers

constrained to move in heave only, as the WAVESTAR

device (Hansen and Kramer 2011), or for axisymmetric point

absorbers operating mainly in waves long with respect to the

device diameter, as the pitch motion is negligible. In case

of combined heave and pitch motion, no algebraic solution

exists and the FK integral has to be solved numerically.

The focus of the paper is on WECs operating in the power

production region, using a model-based control system to

maximise power capture. The vast majority of waves in the

power production region are linear, though significant nonlin-

ear WEC dynamics may be excited. In contrast, many studies

(Henry et al. 2013; Rafiee and Dias 2013) utilise (compu-

tationally complex) nonlinear WEC simulations to assess

the impact of extreme waves, usually using computational

fluid dynamics (CFD) (Agamloh et al. 2008) or smooth parti-

cle hydrodynamics (SPH) (Omidvar et al. 2012). This paper

targets nonlinear wave–body interactions caused by linear

waves in the power production region only. Therefore, the

paper does not purport to address the area of WEC device sur-

vivability or extreme loading because such sporadic events,

which are not significant for the power production assess-

ment, cannot be described by linear wave theory.

This paper implements and compares three different meth-

ods:

(a) A linear hydrodynamic model,

(b) A nonlinear Froude–Krylov model, using a remeshing

routine to compute the instantaneous wetted surface,

(c) A nonlinear Froude–Krylov model, using the algebraic

solution of the Froude–Krylov force integral.

The linear, remeshing and algebraic approaches are used

to simulate the motion of a heaving sphere with centroid at

the still water level under linear monochromatic waves, to

highlight the nonlinearities deriving only from the FK force

at each individual wave frequency. The chosen geometry is a

sphere, which has a cross-sectional area (CSA) which varies

with the instantaneous draft of the device, which is likely

to emphasize the nonlinearity of the FK force. To maximize

the power production in each sea state, latching control has

been implemented. Latching is a discrete controller that locks

the device motion at its extrema for an appropriate latch-

ing duration so that the amplitude of motion is exaggerated

(Budal et al. 1979). As a consequence, the wetted surface

experiences greater changes, exaggerating the relevance of

nonlinearities. The performance of methods (a), (b) and (c)

(linear, remeshing nonlinear Froude–Krylov and algebraic

nonlinear Froude–Krylov) is compared in terms of amplitude

of motion, optimal control parameters, power production and

computational time.

The reminder of the paper is organized as follows: Sect. 2

presents the theoretical background on which the modelling

approaches described in Sect. 3 are based. Section 4 presents,

in detail, the algebraic solution of the nonlinear FK force

integral. A case study is analyzed in Sect. 5 and results are

given in Sect. 6. Some conclusions and final remarks are

presented in Sect. 7.

2 Theoretical background

The fluid is assumed inviscid and the incident flow irrota-

tional and incompressible. The right-handed inertial refer-

ence frame is centered at the hydrostatic equilibrium position

of the body, which is coincident with the gravity center. New-

ton’s second law can be used to describe the system dynamics

as follows:

mξ̈(t) = Fg −

∫∫

S(t)

P(t) n dS + FPTO(t) (1)

where m is the mass of the body, ξ = (x, y, z) the general

displacement of the body from its hydrostatic equilibrium

position, Fg the gravity force, S the submerged surface, P

the pressure, n a vector normal to the surface and FPTO the

power take-off force.

The pressure P can be derived from the incident flow

applying Bernoulli’s equation:

P(t) = −ρgz(t) − ρ
∂φ(t)

∂t
− ρ

|∇φ(t)|2

2
(2)

where ρ is the water density, g the acceleration of gravity,

Pst = −ρgz, hydrostatic pressure and φ the potential flow,

which can be decomposed as the sum of the undisturbed

incident flow potential φI, the diffraction potential φD and

the radiation potential φR:

φ(t) = φI + φD + φR (3)

Combining Eqs. (1–3), different forces can be defined:

– FF Kst is the static Froude–Krylov force, given as the bal-

ance between the gravity force and the Archimedes force:
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FF Kst (t) = Fg −

∫∫

S(t)

Pst (t) n dS (4)

– FF Kdy
is the dynamic Froude–Krylov force:

FF Kdy
(t) = −

∫∫

S(t)

Pdy(t) n dS (5)

where Pdy = −ρ
∂φI

∂t
− ρ

|∇φI |
2

2
the dynamic pressure.

– FD is the diffraction force:

FD(t) = −

∫∫

S(t)

PD(t) n dS (6)

where PD = −ρ
∂φD

∂t
− ρ

|∇φD |2

2
the diffraction pressure.

– FR is the radiation force:

FR(t) = −

∫∫

S(t)

PR(t) n dS (7)

where PR = −ρ
∂φR

∂t
− ρ

|∇φR |2

2
the diffraction pressure.

The time-dependance annotation will be omitted for

brevity hereafter. Using Eqs. (4–7), (1) can be rewritten as:

mξ̈ = FF Kst + FF Kdy
+ FD + FR + FPT O (8)

Note that, since the fluid is assumed to be inviscid, no

viscous force appears in (8). However, a viscous term could

be added in (8), for example using the Morrison equation

(Morison et al. 1950):

Fvis = −
1

2
ρ Cd Ad |V − V0| (V − V0) (9)

where Cd is the drag coefficient, Ad is the characteristic sur-

face, V is the velocity of the floater and V0 is the undisturbed

flow velocity.

3 Modelling approaches

The formulation proposed in Sect. 2 presents some sources

of nonlinearities: Bernoulli’s Eq. (2) has quadratic terms,

the incident potential flow can be nonlinear and the wet-

ted surface may vary in time. While the quadratic terms in

(2) are assumed negligible and only linear waves are con-

sidered, the wetted surface is modelled as either constant

or variable, leading respectively to a linear or nonlinear

representation of Froude–Krylov forces, resulting in linear

and nonlinear Froude–Krylov hydrodynamic models. Radi-

ation and diffraction forces are assumed to be linear in both

models: Falnes (2002) shows that diffraction is negligible

when the device dimension is considerably smaller than the

wave length. Likewise, Clement and Ferrant (1988) show

that radiation nonlinearities are negligible for floating bod-

ies small compared to the wavelength. Merigaud et al. (2012)

implemented both nonlinear Froude–Krylov and nonlinear

radiation and diffraction forces for a heaving point absorber,

showing that the response of the device is mainly affected

by nonlinear FK forces, while nonlinear radiation and dif-

fraction forces have minor effects on the system dynamics.

Furthermore, Gilloteaux (2007) and Guerinel et al. (2013)

use real tank experiments, with the SEAREV device and

the WAVESTAR device respectively, to validate a nonlinear

Froude–Krylov model with linear radiation and diffraction

term, showing a significant improvement with respect to

a fully-linear model and good agreement with the experi-

mental measurement. Similar results are obtained by Giorgi

and Ringwood (2016b), who compare a nonlinear Froude–

Krylov model which includes a viscous term with a fully

nonlinear CFD model.

3.1 Linear model

The linear approach assumes a small amplitude and steep-

ness of the wave, thus the potential problem is linearized and

solved around the equilibrium position of the device. Under

the linear assumption, the mean wetted surface SM is used

and Eq. (8) becomes:

mξ̈ = −K H ξ
︸ ︷︷ ︸

FF Kst

−

∫ ∞

−∞

Kex (t − τ) η(τ ) dτ

︸ ︷︷ ︸

Fex =FF Kdy
+FD

−µ∞ξ̈ −

∫ ∞

−∞

K R(t − τ) ξ̇(τ ) dτ

︸ ︷︷ ︸

FR

−FPT O (10)

where:

– FF Kst is described by the hydrostatic stiffness K H ;

– Fex is represented by the convolution product between

the excitation impulse-response function (IRF) Kex and

the free-surface elevation η;

– FR is represented by the added mass µ∞ and the con-

volution product between the radiation IRF K R and

the velocity ξ̇ , based on Cummins equation (Cummins

1962);

The added mass and the impulse response functions are

calculated by the time domain BEM software ACHIL3D

(Babarit 2010). The radiation convolution, which is com-

putationally expensive to compute directly, is replaced by its

state space representation (Taghipour et al. 2007).
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3.2 Nonlinear Froude–Krylov force model

While the linear model uses the constant mean wetted surface

SM , the nonlinear FK model computes the Froude–Krylov

forces considering the exact instantaneous wetted surface

S(t), namely integrating the fluid pressure over the actual

submerged portion of the body, as it moves through the water:

FF K = FF Kst + FF Kdy
= Fg −

∫∫

S(t)

(Pst + Pdy) n dS

(11)

Note that both static and dynamic Froude–Krylov forces

depend on the instantaneous wetted surface, which depends

both on the incident wave elevation and the displacement of

the body. The remaining force components of (8) are com-

puted linearly: the radiation force is described by Cummins

equation as in (10) while the diffraction force is represented

by the convolution product between the diffraction impulse-

response function K7 and the free surface elevation η:

FD = −

∫ ∞

−∞

K7(t − τ) η(τ ) dτ (12)

Note that, while in the linear model the diffraction force is

computed together with the dynamic Froude–Krylov force by

means of the excitation IRF Kex , in the nonlinear FK model

the diffraction force is calculated independently through the

diffraction IRF K7.

For a general geometry of the device, the computation of

the integral in (11) is performed by discretizing the surface

of the body with a finite mesh and summing up the forces

generated by the pressure acting on the area of each plane

panel. At each time step, as the body moves, an automatic

(computationally expensive) routine re-meshes the partially

submerged panels around the free surface and updates the

instantaneous wetted surface. A detailed description of the

remeshing routing can be found in Gilloteaux (2007).

In contrast, this paper shows an algebraic solution to the

pressure integral in (11), valid for any axisymmetric geom-

etry subject to deep water linear waves, achieving the same

results of the remeshing routine but with a considerable com-

putational saving, as will be shown in Sect. 6. The details of

the pressure integral calculations are provided in Sect. 4.

4 Algebraic solution

The algebraic calculation of the integral in (11) requires the

explicit definition of the pressure P , the infinitesimal surface

element n dS and the limits of integration. The pressure is

obtained applying Airy’s wave theory for deep water waves:

P(x, z, t) = ρgaeχ z cos (ωt − χx) − ρgz (13)

where x is the direction of wave propagation, z is the vertical

direction (positive upwards), a is the wave amplitude, χ the

wave number and ω the wave frequency.

The solution of the pressure integral is presented for two

different types of axisymmetric devices: Sect. 4.1 consid-

ers point absorbers constrained to heave only, for which an

algebraic solution is attainable, while Sect. 4.2 presents the

formulation for point absorbers moving in both heave and

pitch directions, for which a numerical solution of the inte-

gral is required.

4.1 Heaving point absorber

As shown in Fig. 1, the geometry is assumed axisymmetric

with a fixed vertical axis, so it is possible to describe its

surface in parametric cylindrical coordinates:

⎧

⎪
⎨

⎪
⎩

x(σ, θ) = f (σ ) cos θ

y(σ, θ) = f (σ ) sin θ,

z(σ, θ) = σ

θ ∈ [0, 2π)∧σ ∈ [σ1, σ2] (14)

Table 1 shows some examples of profiles of revolution

f (σ ) using the cylindrical coordinates in (14).

Considering the canonical basis given by the radial and

tangent unit vectors, eσ and eθ respectively, the infinitesimal

surface element dS becomes:

n dS = n ‖eσ × eθ‖ dσdθ = n f (σ )

√

f ′(σ )2 + 1 dσdθ

(15)

Finally, the point absorber is constrained to move only

in heave (along the unit vector k of the z-axis), therefore,

only the vertical component Pz of the pressure is taken into

account:

Pz = P ·〈n , k〉 =

〈
eσ × eθ

‖eσ × eθ‖
, k

〉

= P ·
f ′(σ )

√

f ′(σ )2 + 1
(16)

Combining Eqs. (13–16) with (11), the magnitude of the

Froude–Krylov force in the vertical direction becomes:

FF Kz =

∫ 2π

0

∫ σ2

σ1

P(x(σ, θ), z(σ, θ), t) f ′(σ ) f (σ )dσdθ

=

∫ 2π

0

∫ σ2

σ1

(ρgaeχσ cos (ωt−χ f (σ ) cos θ)−ρgσ)

× f ′(σ ) f (σ )dσdθ (17)

Referring again to Fig. 1, with h0 the draft at equilibrium,

zd(t) the vertical displacement of the body and η(t) the free

surface elevation of the undisturbed incident flow at x = 0,
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Fig. 1 Axisymmetric heaving

device with generic profile

f (σ ): the figure on the left

shows the rest position, with the

center of gravity at the still

water level (SWL) and draft h0;

the figure on the right shows the

free surface elevation η and the

device displacement zd after a

time t∗. The pressure is

integrated over the surface

between σ1 and σ2

the instantaneous wetted surface is defined by the following

limits of integration:

{

σ1 = zd(t) − h0

σ2 = η(t)
(18)

The expression for the pressure in (13) is still not directly

integrable because of the x dependance in the argument of

the cosine. Two solutions are available:

– The long wave approximation, which assumes that the

wave length λ is considerably longer than the character-

istic dimension of the device, so the dependance of the

pressure on x is neglected, or

– A McLaurin expansion of the cosine term.

In Sect. 6.1 it will be shown that, while both methods

are accurate for long waves, only the McLaurin expansion

method (using just three terms of the expansion) is able to

return accurate results in every sea state.

The integral in (17) can be solved for any profile f (σ )

defined either as a polynomial function of order zero (cylin-

der), order one (cone) or any higher order, as an arc of a

circumference (portion of a sphere) or as an exponential.

Table 1 summarizes the results for a variety of common

geometries under the long wave approximation.

4.2 Heaving-pitching point absorber

In this section a two degree of freedom axisymmetric device

is considered, where both heave and pitch motions are

allowed. Along with the translational force in (11), a resulting

torque acts on the body:

TF K = −

∫∫

S(t)

(Pst + Pdy) n × r dS (19)

where r is the vector representing the distance from the

center of gravity.

Since the body is pitching, the axis of revolution symmetry

must rotate as well. Therefore, the cylindrical coordinates of

(14) have to be multiplied by the following rotation matrix:

Rδ =

⎡

⎣

cos δ 0 sin δ

0 1 0

− sin δ 0 cos δ

⎤

⎦ (20)

where δ is the pitching angle.

Using pitching cylindrical coordinates, the integrals for

heave force in (11) and pitch torque in (19) have no gen-

eral algebraic solution for axisymmetric point absorbers and

a numerical approach is required. Notwithstanding an alge-

braic solution is not achievable, the numerical integration is a

viable option since it is likely to be more computationally effi-

cient than a remeshing routine approach. Nevertheless, this

paper aims to deal only with algebraic solution of the Froude–

Krylov integral, therefore, purely heaving point absorbers are

considered, using the formulation of Sect. 4.1.

It is worth of notice that a purely pitching prismatic device

is suitable to have an algebraic solution for the Froude–

Krylov torque. Giorgi and Ringwood (2016c) compare the

relevance of nonlinear Froude–Krylov forces, as well as vis-

cous drag, for a heaving point absorber and a bottom-hinged

oscillating flap device.

5 Case study

The relevance of nonlinear Froude–Krylov forces, hence

the difference between the linear and nonlinear FK model,

becomes important when the instantaneous wetted surface

significantly differs from the mean wetted surface. Two major

conditions for this situation follow:
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Table 1 Solution of the integral of the vertical component of static and dynamic pressure under the long wave approximation for axisymmetric

devices with different profiles of revolution: vertical line (cylinder), oblique line (cone), arc of circumference (sphere) and exponential profile

Vertical line Oblique line Arc of circumference Exponential profile

f (σ ) = R f (σ ) = m(σ − zd ) + q f (σ ) =
√

R2 − (σ − zd )2 f (σ ) = AeB(σ−zd )

Cylinder f (σ ) R

2π∫

0

σ 2∫

σ1

Pstz dσdθ −π R2ρgσ1

2π∫

0

σ 2∫

σ1

Pdyz dσdθ π R2ρgaeχσ1 cos ωt

Cone f (σ ) m(σ − zd ) + q

2π∫

0

σ 2∫

σ1

Pstz dσdθ −2πρgm
[

m σ 3

3
+ (q − mzd ) σ 2

2

]σ2

σ1

2π∫

0

σ 2∫

σ1

Pdyz dσdθ − 2π
χ

ρgam2 cos ωt
[

(
q
m

− 1
χ

− zd + σ)eχσ
]σ2

σ1

Sphere f (σ )
√

R2 − (σ − zd )2

2π∫

0

σ 2∫

σ1

Pstz dσdθ −2πρg
[

σ 3

3
+ zd

σ 2

2

]σ2

σ1

2π∫

0

σ 2∫

σ1

Pdyz dσdθ − 2π
χ

ρga cos ωt
[

(zd + 1
χ

− σ)eχσ
]σ2

σ1

Exponential profile f (σ ) AeB(σ−zd )

2π∫

0

σ 2∫

σ1

Pstz dσdθ −πρg A2
[

(σ − zd − 1
2B

)e2B(σ−zd )
]σ2

σ1

2π∫

0

σ 2∫

σ1

Pdyz dσdθ 2πρg A2 B
2B+χ

ae−2Bzd cos ωt
[

e(2B+χ)σ
]σ2

σ1

(a) The device has a nonuniform cross sectional area (CSA)

and

(b) the device does not behave as a wave follower, namely its

displacement zd is significantly different from the wave

surface elevation η.

Note that condition (b) results in significant variations in

wetted surface of the WEC. Therefore, as shown in Fig. 2,

the device is chosen to be a sphere of 2.5 m radius, with

the gravity center G coincident with the geometric center

and a natural period of 3.17 s. The dimension of the sphere is
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Fig. 2 Case study: spherical

device (radius R = 2.5 m, 3.17 s

natural period Tn) constrained to

heave with PTO linear damper

and latching mechanism, subject

to deep water linear waves

chosen to be comparable with common existing wave energy

converters like WAVESTAR (Hansen and Kramer 2011). The

device is constrained to heave only and is tethered to the

seabed with a linear damper acting as PTO, in combination

with a latching mechanism.

To focus only on nonlinearities relative to FK forces,

linear waves based on Airy’s theory are used, assuming a

small steepness Hw/λ (Mehaute 1976), defined as the ratio

between the wave height Hw and wave length λ. The waves

are chosen to be monochromatic to analyze the response of

the device at each different frequency independently, with

wave periods Tw chosen to cover the common sea states

experienced by a point absorber wave energy device in deep

water conditions (Hansen and Kramer 2011). Since FK non-

linearities are caused by changes in the instantaneous wetted

surface, which depends on the intersection between the free

surface elevation and the body position, the higher the wave

steepness, the higher the relevance of FK nonlinearities.

Therefore, three different wave steepness indices are consid-

ered (0.006, 0.012 and 0.018), where the highest steepness

allowed in linear wave theory (Mehaute 1976) generates the

most significant nonlinear response. Moreover, the compar-

ison is carried on at constant steepness for different wave

periods to have the same (scaled) wave profile and, con-

sequently, a fair comparison. The resulting sea states are

summarised in Table 2.

The main objective of a WEC is to maximize the energy

captured by the PTO system. Considering the force-to-

velocity model of a WEC, in the frequency domain, and for

a linear system, Falnes (2002) obtains

V (ω)

Fex (ω) + FPT O(ω)
=

1

Zi (ω)
, (21)

where Zi (ω) is the intrinsic impedance of the system, V (ω)

is the device velocity, Fex (ω) is the wave excitation force

and FPT O(ω) is the control force. The condition for optimal

energy absorption is derived by Falnes (2002) and referred to

as complex conjugate control, since the external impedance

added by the PTO is required to be the complex conjugate of

the intrinsic impedance:

Z PT O(ω) = Z∗
i (ω) (22)

Accomplishing the condition in (22) is equivalent to real-

izing an optimal velocity profile as

V opt (ω) =
Fex (ω)

2Ri (ω)
, (23)

where Ri = 1/2(Zi + Z∗
i ) is the real part of Zi . As a con-

sequence, Ri is a real function, so the velocity profile is in

phase with the excitation force. Therefore, the optimal com-

plex conjugate control imposes a condition over both the

amplitude and the phase of the velocity. A simpler approach

is followed by a phase-only control strategy, such as latching,

which pursues only the phase matching between the veloc-

ity and the exciting force, without considering the amplitude.

Latching is a discrete example of phase control, meaning that

an on/off PTO force is applied, usually by means of a braking

system, to eliminate any phase shift between the velocity and

the incoming wave excitation force.

Therefore, a latching control system is implemented to

maximize the power capture of the WEC in each sea state.

Moreover, especially at frequencies far from resonance, the

control system prevents the device behaving like a wave

follower, exaggerating the amplitude of motion and, conse-
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Table 2 Sea states: linear

monochromatic deep water

waves according to Airy’s

theory

Wave periods (s) Tw 3 4 5 6 7 8 9 10

Normalized wave lengths, λ/D 2.8 5.0 7.8 11.2 15.4 20.0 25.2 31.2

Wave heights (m), Hw

For Hw/λ = 0.006 0.08 0.15 0.23 0.34 0.46 0.60 0.76 0.94

For Hw/λ = 0.012 0.17 0.30 0.47 0.67 0.92 1.20 1.52 1.87

For Hw/λ = 0.018 0.25 0.44 0.69 1 1.36 1.78 2.25 2.78

Wave lengths have been normalized with respect to the buoy diameter D = 5 m

Fig. 3 Latching calculations to

put velocity and excitation force

in phase. Latching instants at

extrema of position P0 and

−P0: t1, t3 and t5; latching

duration: TL ; unlatching

instants: t2, t4 and t6

quently, FK nonlinearities (Peñalba et al. 2015b). Latching

control is a common solution for point absorbers thanks to its

straightforward implementation in a real device and its good

performance (Budal et al. 1979; Babarit and Clément 2006).

The objective of power absorption maximization in a lin-

ear system is achieved by having the device velocity in phase

with the excitation force. Referring to Fig. 3, the device is

locked at times t1, t3 and t5 at the extrema of displacement,

namely when the velocity is zero, and released at times t2, t4
and t6 after a latched duration TL .

The control parameters are the PTO damping coefficient

BPT O and the latching duration TL which, in a linear case

with monochromatic waves, is optimally calculated (Ring-

wood and Butler 2004) as:

TL =
t5 − t1

2
− (t5 − t4) =

Tw

2
−

Td

2
=

Tw

2
−

Tn

2
√

1 − ζ 2

(24)

where the damped natural period Td is determined by the

natural period Tn and the total damping ratio ζ of the

system which, in turns, depends on the sum of the frequency-

dependent radiation damping and PTO damping.

In the nonlinear FK model, since the cross sectional area

is changing during the motion, the hydrostatic stiffness and,

consequently, the damped natural period are not constant.

Moreover, it has already been shown that, even in the lin-

ear case, an algebraic solution to the power optimization

problem of both BPT O and TL is not possible (Nolan et al.

2005) (Babarit et al. 2004). Therefore, the optimal couple of

control parameters TL and BPT O that maximizes the power

output is calculated iteratively for each sea state. Since the

optimization procedure uses the results of the nonlinear FK

model simulations, such a latching control strategy effec-

tively becomes a nonlinear model-based control.

6 Results

6.1 Validation of the Froude–Krylov force calculation

It is first necessary to evaluate the correctness of the alge-

braic results of the pressure integral in (11). The static part

of the FK integral can be validated against an alternative

method to calculate the nonlinear static FK force, which can

be expressed as a nonlinear stiffness depending on the vol-

ume Vwet of the instantaneous wetted surface. As expected,

the two methods return exactly the same results.

On the other hand, the static FK force calculated with the

remeshing routine approach is slightly smaller (about 2 %).
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Table 3 Percentage difference

between the algebraic dynamic

Froude–Krylov force using

either the long wave or the

McLaurin approximation and

the remeshing routine approach

Steepness 0.006 0.012 0.018 0.006 0.012 0.018

Tw (s) λ/D Long wave approximation (%) McLaurin approximation (%)

3 2.8 19.7 20.0 20.3 0.9 1.2 1.4

4 5.0 10.7 11.0 11.2 1.3 1.4 1.5

5 7.8 5.7 5.9 5.9 1.6 1.5 1.5

6 11.2 3.5 3.6 3.6 1.7 1.7 1.7

7 15.4 2.5 2.6 2.8 1.6 1.7 1.8

8 20.0 2.1 2.2 2.4 1.8 1.9 2.1

9 25.2 1.9 2.1 2.3 1.8 2.0 2.2

10 31.2 1.8 2.0 2.2 1.8 2.0 2.2

The main reason of the difference is the actual geometry

simulated: while the algebraic solution is based on an ideal

sphere, the remeshing routine model is based on a discretized

geometry, which rounds down the wetted surface and, conse-

quently, Vwet . In fact, the nonlinear stiffness approach, based

on the same discretized geometry, returns a better agreement

with the remeshing approach. While the non-ideal geometry

approximation is assessable only for the static part, it affects

both the static and the dynamic FK forces.

The algebraic dynamic FK force can be calculated either

using the long wave approximation or the McLaurin expan-

sion, as discussed in Sect. 4. Within the expansion, all the sine

terms integrate to zero, so only the cosine terms contribute

to the algebraic solution. Using only the first three terms (i.e.

the long wave approximation plus other two terms of the

expansion), an acceptable accuracy is achieved for all the

sea states in Table 2, including the shortest wave. While the

algebraic solution of the dynamic FK force using the long

wave approximation is shown in Table 1, Eq. (25) shows

the algebraic solution of the dynamic FK integral of (17),

using the first three terms of the McLaurin approximation

(Table 3).

F Mc
F Kdyz

=

∫ 2π

0

∫ σ2

σ1

(ρgaeχσ (cos ωt+χ f (σ ) cos θ sin ωt

−
χ f (σ ) cos θ2

2
cos ωt) f ′(σ ) f (σ )dσdθ

= −
2π

χ
ρga cos ωt

[

eχσ

(

zd +
1

χ
− σ

)]σ2

σ1

−
π

2
χρga cos ωt

[

eχσ

(

zd R2 − z3
d +

R2−3z2
d

χ

−
6zd

χ2
−

6

χ3

)
]σ2

σ1

−
π

2
χρga cos ωt

[

eχσ

(

σ

(

3z2
d −R2+

6zd

χ

+
6

χ2

)

− σ 2

(

3zd +
3

χ

)

+ σ 3

)]σ2

σ1

(25)

where the notation is the same as that used for the spherical

profile defined in Table 1.

Table 3 shows the percentage difference between the

dynamic FK force calculated using the two algebraic meth-

ods and the remeshing routine approach. As for the static

FK force, the dynamic force is always smaller in the

remeshed approach, mainly because of the discretized geom-

etry approximation. For long waves, the two algebraic

methods are significantly overlapping and the small dif-

ference with the remeshing approach is mainly due to the

geometry approximation. Conversely, when short waves are

considered, only the McLaurin method is effective. Finally,

in addition to a dependence on the wave length, the relative

error slightly increases when the wave steepness increases.

6.2 Results

Section 6.1 shows that, geometry approximation apart, the

results of the algebraic approach are essentially the same as

the remeshing routine approach. Nevertheless, Table 4 shows

that the computational time of the algebraic nonlinear model

is similar to the linear model, while the remeshing routine is

several times slower.

Hereafter, referring to Table 2, only the highest wave

steepness (0.018) is considered to compute the response of

the device, since it generates the most significant nonlinear

behaviour. The difference in amplitude of motion between

the linear and nonlinear FK model is analyzed through the

response amplitude operator (RAO). Figure 4a shows that,

Table 4 Normalized computational time of each nonlinear FK model

to linear model

Normalized computational time

Algebraic method

Long wave approximation 1.35

McLaurin approximation 1.65

Remeshing method 5.15
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Fig. 4 Response amplitude operator (RAO) of linear and nonlinear

model without control (a) and with control (b)

without the controller, the responses are very similar. In fact,

the motion of the device is amplified at frequencies close to

resonance, but the corresponding wave heights are small. On

the other hand, bigger waves occur at frequencies far from

resonance, when the device acts like a wave follower. In both

cases, the variation of instantaneous wetted surface is limited,

therefore, nonlinearities have little relevance.

In contrast, latching control increases the relative motion

between the device and the wave, enhancing the influence

of nonlinearities. Consequently, as shown by the RAO in

Fig. 4b, the linear model significantly overestimates the

response of the device at large periods when the wave height

is bigger.

Comparing Fig. 4a, b, it is evident that the impact of non-

linear FK forces is enhanced by the controller since, as shown

in Fig. 5, they magnifies the amplitude of the motion with

respect to the free surface elevation and, as a consequence,

the change in instantaneous wetted surface. Without con-

trol, the linear and nonlinear models significantly overlap,

since the relative displacement is small. Conversely, when

the controller is applied, the relative displacement is aug-

mented and the linear model diverges from the nonlinear.

Nevertheless, the finite geometry of the floater imposes a

physical limit, since a relative displacement larger than the

draft would mean that the body is completely out of the water.

In such a situation, all hydrodynamic forces should be null,

so the body is pulled back into the water by the gravity force.
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Fig. 5 Maximum relative displacement between the vertical displace-

ment of the floater and the free surface elevation for linear and nonlinear

model under uncontrolled and controlled conditions. The physical limit

represents the relative displacement equal to the draft

On the contrary, all hydrodynamic forces in the linear model

are computed with respect to the mean wetted surface, which

is, therefore, unrealistic when large motions occur. However,

the nonlinear FK model takes into account the instantaneous

wetted surface, giving realistic FK forces, while the diffrac-

tion force is calculated as in the linear model. As a result,

the linear model crosses the physical threshold (relative dis-

placement greater then the draft) and becomes unrealistic for

a wave much smaller than for the nonlinear FK model.

The relative comparison between linear and nonlinear

models strongly depends on the device geometry; in the case

of the sphere, the nonlinear FK forces are smaller than the

linear FK forces because the area of the intersection between

the instantaneous wetted surface and the free surface eleva-

tion is always smaller than the CSA at the still water level. If

a cylinder was considered, nonlinear and linear forces would

be the same (Peñalba et al. 2015b). Conversely, if the CSA

increases as the device moves away from the mean position,

the nonlinear FK forces would be larger than the linear. Nev-

ertheless, to the best of knowledge of the authors, all existing

point absorbers have decreasing diameter with draft and the

vast majority are either spheres or cylinders. In general, if the

area increases with draft, the normal to the surface will be

upwards; eventually the normal must change sign and point

downwards as the draft increases. The consequence is that the

Froude–Krylov forces on the surface would partially cancel

out, generating a small resulting force on the device. Clearly

such a situation is not suitable for a wave energy converter,

since the main objective is to excite the body rather than

stabilize it.

For each sea state, the optimal latching control parameters

BPT O and TL are defined iteratively, thanks to the low com-

putational cost of both models. Figure 6 shows an example
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Fig. 6 Power graph for different control parameters (damping coeffi-

cient BPT O and latching duration TL ), using the nonlinear model for

the wave with period Tw 5 s
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Fig. 7 Optimal profiles of PTO damping coefficients BPT O for linear

and nonlinear models

of the power graph used to identify the point of maximum

power.

The resulting optimal profiles of the control parame-

ters for each sea state are presented in Figs. 7 and 8. In

the linear model, the progressive reduction of the optimal

damping as Tw increases depends on the reduction of the radi-

ation damping term of the sphere at low frequencies (Falnes

2002). Conversely, the optimal BPT O for the nonlinear model

increases. As a consequence, the damped natural period Td

of the nonlinear model is longer and the optimal latching

duration is shorter; Fig. 8 presents the algebraic optimum for

the nonlinear model (dash-dot red line), computed using (24)

with the optimal BPT O of Fig. 7. Nevertheless, the natural

period Tn used in (24) is accurate only for small amplitudes

of motion, since it is calculated from the mean cross sectional

area. On the other hand, the variations in instantaneous wetted

surface considered in the nonlinear model result in a longer

natural period and, consequently, shorter optimal latching

duration (solid red line).
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Fig. 8 Optimal profiles of latching durations TL for linear and nonlin-

ear models. The algebraic optimum for the nonlinear model refers to

the application of (24) with the optimal damping in Fig. 7
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Fig. 9 Optimal power extracted using linear and nonlinear models

Figure 9 shows the mean power extracted using the

optimal control parameters. Consistent with the RAO of

Fig. 4b, the linear model overestimates the motion of the

wave energy device, leading to an overly optimistic power

production assessment.

7 Conclusions

Previous work (Merigaud et al. 2012; Peñalba et al. 2015b)

showed that nonlinear Froude–Krylov forces are likely to

be the dominant source of nonlinearities for heaving point

absorbers with nonuniform cross sectional area under con-

trolled conditions. This paper proposes an algebraic formula-

tion for nonlinear static and dynamic FK forces valid for any

axisymmetric heaving wave energy converter. An alternative
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method using a remeshing of the surface is used to validate

the algebraic approach; despite a considerable computational

saving, the nonlinear FK forces are computed with the same

accuracy.

From the comparison between linear and algebraic non-

linear model applied to a spherical point absorber subject to

linear regular waves, the following conclusions are drawn:

– Nonlinear FK forces are relevant only when the instanta-

neous wetted surface experiences substantial variations.

Under latching control conditions, the amplitude of

motion is exaggerated and the behavior as a wave fol-

lower prevented. Likewise, other control philosophies

(apart from latching) might exaggerate the body motion

relative to the free surface elevation, causing significant

changes in the nonlinear FK forces (Bacelli and Ring-

wood 2015).

– Nonlinearities affect the choice of optimal latching con-

trol parameters: the required PTO damping coefficient

BPT O is considerably higher than in the linear model.

Furthermore, the damped natural period is longer, due

to both the higher damping and the changing of the

instantaneous cross sectional area, so the optimal latching

duration TL is smaller.

– The linear model leads to an overly optimistic power pro-

duction assessment.

The study carried out in this paper focuses on monochro-

matic sea states to understand the behavior of the system at

each single frequency. Nevertheless, a further step toward

a more realistic situation will be to include panchromatic

waves. In the power production region for WECs, the vast

majority of waves are linear, so the total pressure of an

irregular sea state can be calculated as the superposition

of regular components. Then, the instantaneous wetted sur-

face is determined by the irregular free surface elevation and

the displacement of the device. The higher the number of

frequency components, the higher the computational effort

required in the algebraic calculation of nonlinear FK forces.

Depending on the ratio of the wavelength to the device dimen-

sion, either the long wave approximation or the McLaurin

expansion is chosen for each wave component to invest the

least computational effort to satisfy a certain accuracy target.

However, the computational saving of the algebraic method

compared to the remeshing approach, may not scale up in

the same way for polychromatic waves. The computational

time of the remeshing approach is mainly influenced by the

remeshing routine used to determine the instantaneous wet-

ted surface, which requires the same computational effort

both in regular and irregular sea states, while the computa-

tional effort of the algebraic method increases (linearly) with

the number of wave frequencies.
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