
HAL Id: hal-00098216
https://hal.archives-ouvertes.fr/hal-00098216

Submitted on 25 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computationally efficient optimal output decentralized
estimation

André Bassong Onana, Mohamed Darouach, Michel Zasadzinski

To cite this version:
André Bassong Onana, Mohamed Darouach, Michel Zasadzinski. Computationally efficient optimal
output decentralized estimation. International Journal of Control, Taylor & Francis, 1993, 58 (6),
pp.1303-1323. �hal-00098216�

https://hal.archives-ouvertes.fr/hal-00098216
https://hal.archives-ouvertes.fr

1

COMPUTATIONALLY EFFICIENT OPTIMAL OUTPUT DECENTRALIZED
ESTIMATION

A. BASSONG-ONANA , M. DAROUACH, M. ZASADZINSKI
CRAN - CNRS UA 821 - Université de Nancy I
186, rue de Lorraine - 54400 COSNES-ET-ROMAIN, France.

Abstract
This paper presents decentralized computational architectures for the optimal state estimation in

stochastic large-scale linear systems. The main feature of the proposed architectures lies on
elaborating each subsystem's decision not only by processing its own local data, but also by adjusting
this decision with all other related subsystems local data. This adjustment procedure ensures the
optimality of the decentralized filter. It is emphasized that the Kalman filter algorithm operates more
efficiently when measurements are processed into low order subsets, especially when they are
processed one at a time. Thus, using this feature in a decentralized scheme increases significantly
computational savings and numerical stability. Architectures presented in this paper for the
mechanization of decentralized estimators allow a high degree of parallelism and can be implemented
on a wide range of computer networks.

1. Introduction
The main difficulties to overcome in processing data of large-scale interconnected structures deal

with their high dimensionality. For this reason, reducing the dimension of large-scale systems has
been ever since the great motivation of most investigators in designing schemes for estimation and
control. Significant results obtained in small dimensioned systems are tried in large-scale systems
through decompostion, with the hope of preserving the global performances such as optimality and
stability.

Most previous works on decentralized estimation and control (Siljak and Vukcevic, 1978,
Hodzic and Siljak, 1985, Stankovic and Siljak, 1989) consist of constructing the local estimators and
controllers by using standard optimization schemes, thus treating inputs and outputs of each
subsystem for its own estimator or controller. This strategy yields, in general, a loss of the global
performances; in particular, the decentralized estimators developed by using this principle are globally
suboptimal. The optimal decentralized estimators existing in the literature are built upon the
exploration of all sensor observations for updating the estimation procedure. Two interesting
approaches can be outlined.

For large-scale systems that are composed of geographically distributed sensors, with possible
long distances, the attention was focused on constructing decentralized schemes that don't require the
transmission of all sensor observations on a central location. By processing measurements locally on
each sensing node (Hashemipour et al., 1988, Gardner and Leondes, 1990, Rao and Durant-Whyte,
1991), the need for large communication bandwidth is considerably reduced. But the global system
model is treated as a whole on each node according equations

x(k+1) = Ax(k) + Bu(k) + w(k)
 zi(k) = Hix(k) + vi(k)

Each subsystem computes the global Kalman filter equations related to its own observations.
Since the processing time on each local processor is less than if all sensors were centralized, there is
obviously a reduction of the global processing time when processors operate concurrently. However,
despite the reduction of computation time, the global number of operations, as well as the global
memory requirements, are enormously increased. Therefore, this approach falls in reducing the
dimension of the global estimation problem. As it will be seen in section 2, each sensor can always be
associated with a reduced-order system model, thus allowing a significant reduction of computational
requirements.

The largely reported approach consists of transforming the global system model into a weakly
or a strongly interconnected structure with, preferably, local outputs. The main algorithm using this
approach was developed by Hassan et al. (1978). The optimal solution was obtained by performing
successive orthogonalizations on the measurement subspaces, and Hassan et al. (1978) have shown
that the numerical properties of the obtained decentralized filter are significantly better than the global

2

Kalman filter. However, as it will be shown later in this paper, the formulation of their algorithm could
be considerably improved. Rhodes (1990) proposed a parallel scheme based on the decomposition of
the steady-state Kalman filter into an observable canonical form. Despite the parallel structure for on-
line implementations of the Kalman filter, the off-line computation of the global algebraic Riccati
equation, necessary for the decomposition, incurs a risk of numerical instability.

The decentralized estimators developed in this paper are based on the output decentralization as
described in section 2, and are applicable for both centralized or distributed sensors large-scale
systems. In section 3, it is shown that the use of a recursive updating (RU) scheme for processing the
estimation results in a considerable reduction of partial and global computational requirements. Two
versions of the proposed decentralized filter, using the RU scheme, are presented in section 4, and
three schemes are given in section 5 for their mechanization. One interesting feature of the resulting
decentralized filter is that measurements can always be processed one at a time, regardless of the
number of processors, thus improving the numerical behavior of the filter implementations.
Computational aspects are also considered and, in section 6, the numerical stability of the decentralized
filter is shown on an illustrative example.

2. Description of the system decomposition
In this section, we recall the output decomposition of large-scale systems described by a

dynamical stochastic model (S) of the following form

x(k+1) = Ax(k) + Bu(k) + w(k)
z(k) = Hx(k) + v(k)

 (1)

where x(k)∈ℜnx1, u(k)∈ℜqx1, z(k)∈ℜmx1 are the state, input and output vectors respectively, x(k) and
v(k) are the model noise and the measurement noise respectively, and matrices A, B and H have
appropriate dimensions.

The output decentralization of the above system consists of transforming the system into a
number of interconnected subsystems with local outputs. Naturally interconnected systems in which
each subsystem has local sensors are not concerned by the following decomposition. Several
techniques exist for the output decomposition of systems, but the one presented here is derived from
the observable canonical form which provides a sparse stucture. So the main assumption we make is
the observability of the pair (H, A), which implies its detectability (necessary condition for convergence
and stability of the Kalman filter (De Souza et al., 1986)). Then, assuming that matrix H has full row
rank, there exists a nonsingular matrix T which transforms system (S) into system (S) given by

x(k+1) = Ax(k) + Bu(k) + w(k)

z(k) = Hx(k) + v(k)
 (2)

with A = T A T-1 =

A11 A12 . . A1N
A21 A22 . . A2N

.
AN1 AN2 . . ANN

 , B = TB = [BT
1 BT

2 ... BT
N]T

Aii =

0(ni-mi)1 Ini-mi

A1
i i A2

i i
 ∈ℜnixni, Aij =

0(ni-mj)nj

A2
i j

 ∈ℜnixnj, j≠i, i=1,...,m

H = B T-1 = diag(H1,...,HN), Hi = [Imi
 0mi(ni-mi)

], x(k) = Tx(k) = [xT
1(k) ... xT

N(k)]T,

w(k) = Tw(k) = [wT
1(k) ... wT

N(k)]T , z(k) = [zT
1(k) ... zT

N(k)]T, v(k) = [vT
1(k) ... vT

N(k)]T

where n1 + ... + nN = n and m1 + ... + mN = m. Ip and 0pr are the identity matrix of order p and the
null matrix of order pxr respectively.

Explicitely, the overall system (S) appears as N interconnected subsystems with local outputs,
each subsystem (Si) being described by the following equations

xi(k+1) = Aiixi(k) + ∑

jℵi
j=1

N Aijxj(k)+ Biu(k) + wi(k)

 zi(k) = Hixi(k) + vi(k)

 (3)

where all pairs (Hi , Aii) are observable.

3

It must be noted that if ni = mi, then Aii = A1
ii and Aij = A2

ij .
The construction of transformation T can be done in two steps
- first, construct the non singular matrix M which transforms system (S) into its observable

canonical form (Ogata, 1987), providing m subsystems;
- second, if the number of measurements is greater than the number N of available processors,

then, by row and column permutations, group a given number of subsystems obtained in the previous
step with respect to the canonical form, so as to match the number of available processors. If Q is the
resulting permutation matrix, then T = QM.

Before developing the RU output decentralized filter, we describe in the following section the
RU scheme for the global Kalman filtering.

3. The recursive updating Kalman filter
Consider the system model given by (2), and assume that noises w(k) and v(k) are white,

gaussian, and satisfy

E{w(k)} = 0 E{w(k)wT(j)} = Wδ(k,j), W≥0 E{x(0)wT(k)} = 0 E{w(k)vT(k)} = 0
E{v(k)} = 0 E{v(k)vT(j)} = Vδ(k,j) , V>0 E{x(0)vT(k)} = 0.

Under the above assumption, it is well known that the following Kalman filter equations provide
the optimal estimate of x(k+1) :

x̂(0/0) = E{x(0)} P(0/0) = E{(x(0)-x̂(0/0))(x(0)-x̂(0/0))T}
x̂(k+1/k) = Ax̂(k/k) + Bu(k) (4)
x̂(k+1/k+1) = x̂(k+1/k) + Kop

(k+1)(z(k+1)-Hx̂(k+1/k)) (5)
Kop

(k+1) = P(k+1/k)HT(HP(k+1/k)HT+V)-1 (6)
P(k+1/k) = AP(k/k)AT + W (7)
P(k+1/k+1) = (I-Kop

(k+1) H)P(k+1/k) (8)

where Kop
(k+1) is the Kalman gain. Computing this gain by classical matrix inversion algorithms may

require too much computations and, even, give inaccurate numerical results. The objective in this
section is to show how the measurements can be handled separately, in a recursive updating scheme, to
produce the optimal estimate. For the purpose, the measurements are partitioned into r subsets (row
partitioning of matrix H) such that

zi(k) = Hix(k) + vi(k), i=1, ..., r (9)
with

H = [HT
1 ... HT

r]T , z(k) = [zT
1(k) ... zT

r (k)]T

 , v(k) = [vT

1(k) ... vT
r (k)]T, Hi∈ℜ

mixn

and
m1 + m2 + ... + mr = m.
In the sequel, the measurement error covariance matrix V will be taken as block diagonal

(V=diag(V1,...,Vr)). This is not a limitation, since the orthogonal diagonalization of V can always be
performed.

Let's define x~i
(k/k) , K~ i

(k) , ε~i
(k/k) , P~i

(k/k) as the partial estimate of x(k), the partial gain, the partial
estimation error and its covariance matrix respectively. The recursive updating Kalman filter equations
are given by the following theorem.

Theorem 3.1
Let the system be described by model (2), and the measurements be partitioned according to

equation (9). Subject to the statistical assumption given previously, then
a) the estimate of state at time k+1 can be obtained in r iterations according to the following

recursions:
x~0

(k+1/k+1) = Ax̂(k/k) + Bu(k) (10)

P~0
(k+1/k+1) = AP(k/k)AT + W (11)

4

x~i
(k+1/k+1) = x~i-1

(k+1/k+1) + K~ i
(k+1)(zi(k+1) - Hix

~i-1
(k+1/k+1)) (12)

with
K~ i

(k+1) = P~i-1
(k+1/k+1) HT

i (HiP
~i-1

(k+1/k+1)HT
i +Vi) -1 (13)

P~i
(k+1/k+1) = (I-K~ i

(k+1) Hi)P~i-1
(k+1/k+1) (14)

At the last iteration, we have the optimality, i.e. x̂(k+1/k+1) = x~r
(k+1/k+1) and P(k+1/k+1) = P~r

(k+1/k+1) .
b) The optimal gain can be computed sequentially according to

K~ 1|1
(k+1) =K~ 1(k+1) (15)

K~ i|i
(k+1) = [(In - K~ i(k+1)Hi(k+1))K~ (k+1)

i-1|i-1 | K~ i
(k+1)], 1< i ≤ r (16)

which gives at the last iteration Kop
(k+1) = K~ r|r(k+1), with Kop

(k+1) defined by equation (6). ❒

The above theorem can be easily proved by induction and will, therefore, be omitted in this
paper. As pointed out by Bierman (1973) (see also Mendel, 1971), the recursive updating scheme
improves significantly the computational behaviour of the Kalman filter (see example in section 6),
especially when measurements are processed one at a time. We exploit this feature to derive the
improved output decentralized estimator.

4. Design of the RU output decentralized filter
Coming back to the decentralized Kalman filter developed by Hassan et al. (1978), there are

some important points to be noted. The main drawback of their solution lies on the necessity of
computing equations (8), (11) and (12) to obtain measurement updates. More precisely, these
equations are dimensionally unconsistent when all subsystems don't have the same number of
observations. Indeed, by using the same notations as in their paper (see Hassan et al. (1978) for more
details), the expressions of the measurement residues y~s-1

s(k+1/k+1) and y~s-2
s(k+1/k+1) , as defined in theorem

2, are given by :
y~s-1

s(k+1/+1) = y
s
(k+1) - E{y

s
(k+1)| (k),y1(k+1),...,y

s-1(k+1)}
y~s-2

l(k+1/k+1) = y
s
(k+1) - E{y

s
(k+1)| (k),y1(k+1),...,y

s-2(k+1)}
These residues can be expressed equivalently by :

y~s-1
s(k+1/k+1) = y

s
(k+1) - H

s
x~l-1

l(k+1/k+1)

and y~s-2

s(k+1/k+1) = y
s
(k+1) -H

s
x~s-2

s(k+1/k+1)

.

It can be checked that the corresponding covariance matrices are :

P = H P H Vy y x xs
s-1

s
s-1 (k 1/k 1) s

s
s-1

s
s-1 (k 1/k 1) s

T
s (k 1)˜ ˜ ˜ ˜+ + + + ++

P = H P H Vy y x xs
s-2

s
s-2 (k 1/k 1) s

s
s-2

s
s-2 (k 1/k 1) s

T
s (k 1)˜ ˜ ˜ ˜+ + + + ++

P = H P H Vy y x xs-1
s-2

s-1
s-2 (k 1/k 1) s-1

s-1
s-2

s-1
s-2 (k 1/k 1) s-1

T
s-1 (k 1)˜ ˜ ˜ ˜+ + + + ++ .

From the above equations, it is seen that matrix K = P Ps
s-2

(k 1)
s
s-2

s
s-2 (k 1/k 1)

s-1
s-2

s-1
s-2

-1
(k 1/k 1)

s-1 y y y y
+ + + + +˜ ˜ ˜ ˜

in equation (12) can be computed only if matrices Hs and Hs-1 have the same number of rows. It will
be shown that the decentralized filter designed in this paper doesn't require the computation of
equations (11) and (12) of Hassan et al. (1978). Therefore, the proposed filter is superior in the
viewpoint of number of operations and numerical stability.

In this section, we assume that the output decentralization of the system has been achieved as
outlined in section 2. However, the decentralized filter designed here applies also to the general case of
any linear system which has an interconnected structure with independent local outputs (the pairs (Hi,
Aii) may not be in canonical form). Thus, each subsystem of such an interconnected structure is
described by equations (3).

By analogy with the previous section, define

5

x̂i(k/k), εi(k/k) : optimal estimate of xi(k) and its stimation error

x~r
i(k/k) , ε~r

i(k/k) : partial estimate of xi(k) with respect to local data of subsystem r, and its
 estimation error

Ki(k) , K~ r
i(k) : the optimal and the partial gains of subsystem i

Pij(k/k) = E{εi(k/k)ε
T
j(k/k) } and P~r

ij(k/k) = E{ε~r
i(k/k)ε~rT

j(k/k) } are the optimal and the partial interconnection
error covariance matrices between subsystems i and j.

The recursive updating strategy for decentralizing the estimation problem consists of updating
each local estimate by using, in a given order, successively the local data of each subsystem. When all
local data have been explored, each resulting local estimate is optimal. The measurements may be
explored globally in any order but, in the subsystems level, this order must be the same. Without loss
of generality, we design decentralized schemes where measurements are explored from subsystem 1 to
subsystem N.

Now, let us give the two versions of the decentralized filter. From the previous section, it is easy
to show that the following equations provide the optimal decentralized state estimate:
Algorithm 4.1

Each subsystem i (i=1,...,N) proceeds as follows:

- Measurement updates initialization (time update):

x~0
i(k+1/k+1) = Aix̂(k/k) + Biu(k) (17)

P~0
ii(k+1/k+1) = AiP(k/k)AT

i + Wii, i≤N (18)

P~
0
i.(k+1/k+1) = AiP(k/k)AT

i. + Wi. , P
~0
.i(k+1/k+1) = P~0T

i.(k+1/k+1) , i≤N-1 (19)

- Recursions on measurement updates (r=1, .., N):

x~r
i(k+1/k+1) = x~r-1

i(k+1/k+1) + K~ r
i(k+1)(zr(k+1) - Hrx

~r-1
r(k+1/k+1)) (20)

with
K~ r

i(k+1) = P~r-1
ir(k+1/k+1) HT

r (HrP
~r-1

rr(k+1/k+1)HT
r + Vr) -1 (21)

P~r
ii(k+1/k+1) = P~r-1

ii(k+1/k+1) -K~ r
i(k+1) HrP

~r-1T

ir(k+1/k+1) (22)

P~r
i.(k+1/k+1) = P~r-1

i.(k+1/k+1) - K~ r
i(k+1) HrP

~r-1
r/i.(k+1/k+1) (23)

P~r
.i(k+1/k+1) = P~rT

i.(k+1/k+1) (24)

At the last iteration, each local estimate is optimal, i.e. we have

x̂ i(k+1/k+1) = x~N
i(k+1/k+1) , Pii(k/k) = P~N

ii(k+1/k+1) , Pi.(k/k) = P~
N
i.(k+1/k+1) and P.i(k/k) = P~NT

i.(k+1/k+1)

where
Ai = [Ai1 ... AiN], Ai. = [AT

i+1 ... AT
N]

T
, Wi. = [Wi(i+1) ... WiN], Pi.(k/k) = [Pi(i+1)(k/k) ... PiN(k/k)],

P.i(k/k) =[PT
(i+1)i(k/k) ... PT

Ni(k/k)]
T
, P~r

i.(k/k) = [P~r
i(i+1)(k/k) ... P~r

iN(k/k)], P~r
.i(k+1/k+1) = [P~rT

(i+1)i(k/k) ... P~rT

Ni(k/k)]
T
,

 P~r
r/i.(k/k) = [P~r

r(i+1)(k/k) ... P~r
rN(k/k)], with i ≤ N-1. ❒

Remark 4.1
1) When there are as processors as the number of measurements, only one measurement at a

time is involved in the above equations. Equation (21) becomes

6

K~ r
i(k+1) =

P~r-1
ir(k+1/k+1)HT

r

HrP
~r-1

rr(k+1/k+1)HT
r +Vr

 (25)

Thus, a matrix inversion is reduced to a scalar inversion, and the roundoff error is considerably
reduced over the global matrix inversion.

2) As it can be seen from equations (17)-(24), the decentralized filter design is simple. The
interconnection covariances are assigned to each subsystem through matrix P~r

i.(k+1/k+1) . Their
calculation can be done either by a central processor or, distributively, by each subsystem's local
processor. It can be noted that equations (19) and (23) don't apply for i=N (no interconnection
covariance is assigned to subsystem N).

3) Since the global error covariance matrix is symmetric, only upper block triangular terms,
namely P~r

i.(k+1/k+1) , need to be computed. This has the double advantage of reducing calculations and
increasing the numerical stability of the filter (the strict symmetry of the global error covariance matrix
is preserved).

4) The partial terms Δzr(k+1) = zr(k+1) - Hrx
~r-1

r(k+1/k+1) and Mhr(k+1) = HT
r (HrP

~r-1
rr(k+1/k+1)HT

r +Vr) -1 are
common to all subsystems and are used for updating the estimates. The schemes presented in the next
section, for the mechanization of the RU output decentralized filter, depend upon how these updating
terms are handled for coordinating the estimation procedure.

5) Compared with the algorithm of Hassan et al. (1978), equations (17)-(19) and (21)-(23)
above are the contraction of equations (4)-(6), (9), (10) and (13)-(15) of Hassan et al. (1978). One
essential difference between both algorithms is that equation (20) of the above filter replaces equations
(8), (11) and (12) of Hassan et al. (1978). In particular, it must be noted that two matrices have to be
inverted, during each updating step, in their algorithm. ❒

Remark 4.2
The optimal gain Kop

(k+1) can also be computed according to the above decentralized structure.
Indeed, let K~ r|r

(k+1) denote the adjusted global gain at iteration r of the measurement updates. By writing
Kop

(k+1) = [KopT
1 (k+1) ... KopT

N (k+1)]T and K~ r|r
(k+1) = [K~ r|rT

1(k+1) ... K~ r|rT
N(k+1)]T, the following equations can

be computed, within the recursions on measurement updates, for the global gain matrix:

K~ 1|1
i(k+1) = K~ 1

i(k+1) (26)

K~ r|r
i(k+1) = [K~ r-1|r-1

i(k+1) - K~ r
i(k+1) HrK

~ r-1|r-1
r(k+1) | K~ r

i(k+1)], 1 < r ≤ N (27)

and then Kop
i (k+1) = K~ N|N

i(k+1) . ❒

It has been pointed out, in the above remarks, that only a scalar has to be inverted in equation
(21) when there are as processors as the number of measurements. Since this is not the case in
general, equation (21) must be treated as a matrix equation. In fact, algorithm 4.1 can always be
modified so that one measurement at a time is processed by local processors during the updating
cycle. Thus, the second version of the decentralized filter given below has a component-wise
measurement updating procedure. The numerical improvement over the first version is obvious. The
following equations of the modified decentralized filter are derived immediately from equations (17)-
(24).

Algorithm 4.2

Each subsystem i (i=1,...,N) proceeds as follows:

- Measurement updates initialization (time update):

The same equations as in Algorithm 4.1.

7

- Recursions on measurement updates (r=1, .., N):

Equations (20)-(24) are equivalent to the following :

x~r|0
i(k+1/k+1) = x~r-1

i(k+1/k+1) (28)

P~r|0
ii(k+1/k+1) = P~r-1

ii(k+1/k+1) (29)

P~r|0
i.(k+1/k+1) = P~r-1

i.(k+1/k+1) , P~r|0
.i(k+1/k+1) = P~r-1

.i(k+1/k+1) (30)

Component-wise updating cycle (s=1,...,mr):

x~r|s
i(k+1/k+1) = x~r|s-1

i(k+1/k+1) + K~ r|s
i(k+1)(zs

r (k+1) - Hs
rx
~r|s-1

r(k+1/k+1)) (31)
with

K~ r|s
i(k+1) =

P~r|s-1
ir(k+1/k+1) HsT

r

Hs
rP
~r|s-1

rr(k+1/k+1)HsT

r +Vs
r

 (32)

P~r|s
ii(k+1/k+1) = P~r|s-1

ii(k+1/k+1) - K~ r|s
i(k+1) Hs

rP
~r|s-1T

ir(k+1/k+1) (33)

P~r|s
i.(k+1/k+1) = P~r|s-1

i.(k+1/k+1) - K~ r|s
i(k+1) Hs

rP
~r|s-1

r/i.(k+1/k+1) (34)

P~r|s
.i(k+1/k+1) = P~r|sT

i.(k+1/k+1) (35)

and x~r
i(k+1/k+1) = x~r|mr

i(k+1/k+1) (36)

P~r
ii(k+1/k+1) = P~r|mr

ii(k+1/k+1) (37)

P~r
i.(k+1/k+1) = P~r|mr

i.(k+1/k+1) , P~
r
.i(k+1/k+1) = P~rT

i.(k+1/k+1) (38)

where zr(k+1) = [z1
r (k+1) ... zmr

r (k+1)]T , Hr = [H1
r ... H

mr
r]T and

Vr = diag(V1
r ,...,V

mr
r). x~r|s

i(k+1/k+1) , K~ r|s
i(k+1) , P~r|s

ii(k+1/k+1) and P~r|s
i.(k+1/k+1) are the partial estimate of state, the

partial gain, the partial local and interconnection covariance matrices respectively, with respect to
measurement zs

r (k+1) . In this case, the updating terms are Δr|s
zr (k+1) = zs

r (k+1) - Hs
rx
~r|s-1

r(k+1/k+1) and

Mr|s
zr (k+1) = Hs

rP
~r|s-1

rr(k+1/k+1) HsT

r + V sr . ❒

Remark 4.3
Since the objective in the filter implemtations is to reduce as far as possible the computational

requirements, in writing computer programs for algorithms 4.1 and 4.2, one may exploit the sparse
structure of the decomposed system to suppress extra useless calculations. Indeed, most computations
are involved in the time update equations. These equations can be written in a reduced order form by
noting that matrix Ai (i ≤ N) has the form

Ai =

 0 | Ini-mi

0
 A2

i
 (39)

5. Mechanization of the RU output decentralized filter
In this section, we discuss some aspects of the output decentralized filter implementation. As

pointed out in the previous section, the strategy for the implementation of the decentralized filter
depends on how the updating terms are treated. In general, the architecture adopted will depend on the
hardware (and even software) available for each application. One advantage of the architectures
presented below is their adaptability with a wide range of existing computer networks. In the sequel,

8

we give two multi-level computational architecures and describe the information flow within these
networks.

Coordination by a super processor
The most natural architecture for processing the decentralized filter is undoubtably the

hierarchical architecture supported by a central processor (or super processor). All outputs
measurements are passed to the super processor for computing the updating terms Δzr and Mhr (or Δr|s

zr

and Mr|s
zr) and the interconnection covariance matrix P~r

i. (or P~r|s
i.) , which are then passed back to the

local processors to compute K~ r
i , P~r

i,i and x~r
i (or K~ r|s

i , P~r|s
i,i and x~r|s

i) . Since no interconnection
covariance term is assigned to the last local processor N, this processor can be supressed, and its
computations supported by the super processor, thus removing the need of an additional processor.
Therefore, in the architecture of figures 1a and 1b, showing how the super processor and the local
processors are interconnected, the last local processor may be processor N or N-1.

The architecture in Fig. 1a is more suitable for centralized sensors large-scale systems. Indeed,
for distributed sensors large-scale systems, it is preferable to process measurements locally in order to
avoid transmission of all observations to the super processor. In the architecture of figure 1.b below,
each local processor is charged of its related updating terms which it sends directly, through a
bidirectional transmission bus, to all others local processors to adjust their estimates. Thus, the super
processor is discharged from the calculation of Δzr and Mhr (or Δr|s

zr and Mr|s
zr); it just has to compute

and transmit interconnection covariance matrices. It may also send an indicator to inform a given
processor about the transmission of updating terms.

The main drawback of hierarchical architectures is, obviously, their dependency on the central
processor. The efficiency of such structures requires a high reliability of the super processor.
Therefore, the processing capability and the power of the super processor, and even the fluidity of
exchanges between subsystems and the super processor, are required.

Coordination by shared memory
Communication between subsystems during the updating cycles can be carried out via shared

memory. Indeed, in the architecture of figure 2, a shared memory serves as a bidirectional 'mailbox'
between subsystems through a suitable logical interface and a hardware bus interface. The existence of
memories that allow simultaneous reading and storage by one processor at a time legitimates this third
architecture.

In this configuration, each subsystem achieves the complete updating procedure by reading,
from the shared memory, the updating terms issued by one of the other subsystems. In turn, each
subsystem stores, in the shared memory, the updating terms for the next updating cycle. At the end of
the procedure, that is when the optimal estimates have been attained in the subsystems level, each local
processor sends its local results to the reconstitution unit. The latter reconstitutes the global estimate
x̂(k+1/k+1) and the global error covariance matrix P(k+1/k+1), and gives them back to subsystems for the
next estimation step. It can be noted that all computations are supported by subsystems. The shared
memory and the reconstitution unit form two levels of coordination, the measurement-coordination and
the time-coordination respectively. In fact, the reconstitution unit may be another shared memory.
Thus, compared to the previous hierarchical architectures, architecture of figure 2 increases the degree
of parallelism. A high degree of parallelism can be obtained by eliminating memory access conflicts
between local processors.

For each version of the RU decentralized filter, the global numbers of elementary operations are
the same in the above architectures; only the subsystems numbers of operations are sensibly different.
In the following paragraph, we show that the reduction of computational requirements is substantial in
the subsystems level, and even notable for the overall system.

Study of computational requirements
Since the computational requirements (processing time and memory requirements) depend on

each processor and/or the multiprocessor environment, we do not intend to draw exact numerical
conclusions in this study. However, the number of elementary operations (additions and
multiplications) gives a good measure of these requirements, and will here be used to give an idea of
computational savings in the decentralized filter implementations. By taking into account all eventual
symmetries of matrices, the global numbers of elementary operations have the following expressions.

9

For multiplications we have:

- conventional Kalman filter :

1
2 nm(5n+3m+6) + 12 n2(3n+1) + 12(m-1)(m2+2m+2) + (n(n+q))

- sequential Kalman filter :

1
2 n(5n+9) + 12 n2(3n+1) + (n+q) + n(m-1)(n+4)

- Algorithm 4.1

Σ
N

i=1
(1

2mini(2ni+3mi+3) + 1
2(mi-1)(m2

i +mi+2) + 1
2nni(2n+ni+1) + ni(n+q)

 + Σ
N

r=1
(mr(nr+ni) + ninr(ni+3mr+3))) + Σ

N-1

i=1
(nin

2 + nnisi + Σ
N

r=1
ninr(mr+si-1))

- Algorithm 4.2

Σ
N

i=1
(mini(ni+3) + ni(n+m+q) + 1

2nni(2n+ni+1) + 1
2ni(ni+5)tN) + Σ

N-1

i=1
(nin(n+si) + ni(si+1)tN)

and for additions:

- conventional Kalman filter

1
2 nm(5n+3m) + 12 m(m-1)2 + 12 n2(3n-1) + n(n+q-1)

- sequential Kalman filter

1
2 n(5n+3) + 12 n2(3n-1) + n(n+q-1) + 12(m-1)(3n2+7n-7)

- Algorithm 4.1

Σ
N

i=1
(1

2mini(2ni+3mi-1)+1
2mi(mi-1)2+1

2nni(2n+ni-1)+ni(n+q-1)+Σ
N

r=1
(mrnr(ni+1) + ninr(ni+2mr-1)))

 + Σ
N-1

i=1
(nin(n-1) + nnisi +Σ

N

r=1
ninr(mr+si-1))

- Algorithm 4.2

Σ
N

i=1
(mini(ni+1)+ni(n+q-1) + 1

2nni(2n+ni-1) + 1
2ni(ni+3)tN) + Σ

N-1

i=1
(nin(n+si-1) + nisitN)

where si =Σnj
N

j=i+1
 and tN =Σnrmr

N

r=1
 .

The above established numbers of operations have been used to compare the global and the
decentralized filters in Fig. 3a, and algorithms 4.1 and 4.2 in Fig. 3b, when the subsystems have the
same dimensions (ni = nN , mi = mN). In the case of a component-wise decomposition of outputs (i.e.
the number of subsystems equals the number of outputs), the study of the global numbers of
operations in terms of the number of measurements shows that, for a fixed number of state variables,
the computational savings increase with the number of measurements. In fact, these savings become

10

significative when m>n
2 . It can be mentioned that considerable savings can be obtained with the

sequential Kalman filter but, as it is shown in the example, this advantage falls when the numerical
stability is of concern. We have not plotted the numbers of operations in the subsystems level, since
the gain of operations over the global implementation is obviously substantial. It can be noted that the
number of elementary operations executed by local processors decreases when the number of
subsystems increases. On Fig. 3, DKF1, DKF2, RUKF and CKF stand for Algorithm 4.1, Algorithm
4.2, RU Kalman filter and conventional Kalman filter respectively.

6. Numerical example
The superiority of the proposed decentralized filters on the other algorithms has been confirmed

by many simulation examples. To compare the numerical behaviour of the algorithms considered in
this paper, they have been applied, on MATLAB 386, to a linearized model of the system formed by an
interconnection of eleven synchronous machines and given in Hassan et al. (1978). This model has the
form of equations (1) which matrices are given in Appendix. The equivalent interconnected system
satisfies equations (2)-(3) which, in this example, correspond to an interconnection of 10 subsystems
having two states and one observation. For lack of place in this paper, we do not give explicitely the
transformed system matrices (they can easily be derived by transformation matrix T given in
Appendix). It must be noted here that the conditions for the convergence of the Kalman filter to a
stable steady-state filter (De Souza et al., 1986) are satisfied (the pair (H, A) is observable, and the pair

(A, W2
_1
) is reachable).

Implementation on a 10 local processors system
Figures 4 and 5 below, plotting the evolution of the trace of the global error covariance matrix,

show that the standard Kalman filter diverges, while the others converge. Indeed, from Fig.4 , it is seen
that after the 40th iteration, the computed error covariance matrix becomes very large for the standard
Kalman filter. Although system matrices are well-conditioned (cond(A)=3.2620, cond(A)=8.9121, and
cond(H)=cond(H)=1), the effects of round-off error propagation are more desastrous for the
conventional Kalman filter, proving its numerical instabilty. On the other hand Fig. 5 shows that the
sequential Kalman filter, as well as all versions of the decentralized filter, are more numerically stable
than the conventional Kalman filter, thus improving convergence and stability conditions when the
system has large dimension. This conclusion is exact each subsystem has a scalar measurement,
however it is not always the case when, unfortunately, less processors than the number of
measurements are available.

Implementation on a 6 local processors system
If only 6 local processors are available, it is always possible, by means of row and column

permutations, to fuse certain subsystems with respect to the observable canonical form, as pointed out
in section 2. In this example, let's fuse subsystems (H1, A11) and (H2, A22), subsystems (H5, A55) and
(H6, A66), and subsystems (H8, A88), (H9, A99) and (H10, A1010). This is achieved by the permutation
matrix Q given in Appendix. The new transformed system is an interconnection of 6 subsystems with
greater dimensions given by :

n1=4
m1=2

n2=2
m1=1

n3=2
m3=1

n4=4
m4=2

n5=2
m5=1

n6=6
m6=3

The implemention of the above algorithms reveals the superiority of Algorithm 4.2 of the
decentralized filter. Indeed, it can be seen in this case, that the sequential Kalman filter (Fig. 6) and the
decentralized filter in Algorithm 4.1 (Fig. 7) diverge numerically, while Algorithm 4.2 still gives good
results (Fig. 8). Therefore, when the computation of equation (20) requires a matrix inversion,
Algorithm 4.1 is more sensitive to round-off errors (which effects are amplified when matrix Mhr has
large dimension) than Algorithm 4.2. In particular, it can be noted that the sequential Kalman filter is
numerically interesting only for a suitable partitionning of measurements (Mendel, 1971).

Conclusion
In this paper, computationally efficient output decentralized filters have been developed.

Particular attention has been focused on numerical aspects, as well as the implementation of the

11

proposed algorithms on computer systems. Various schemes presented give enough informations for
the application of the output decentralized estimation. Architectures presented increase the
performances and reduce computational requirements for the global Kalman filter implementation. By
means of the output decentralization, the problem of optimal decentralized estimation is solved both for
distributed and centralized sensors systems. The maximal performances are obtained when
measurements are processed one at a time. Since this feature is preserved whatever is the number of
processors, through Algorithm 4.2, and since this number is not a limitation in the implementation of
the decentralized schemes presented, these schemes are widely applicable without loss of
performances.

References
BIERMAN, G.J., 1973, A comparison between linear filtering algorithms. I.E.E.E. Transactions on

Aerospace and Electronic Systems, 9, 28-37.
DE SOUZA, C.E., GEVERS, M.R., and GOODWIN, G.C., 1986. Riccati equations in optimal

filtering of nonstabilizable systems having singular state transition matrices. I.E.E.E. Transactions
on Automatic Control, 31, 831-837.

FOULARD, C., GENTIL, S., and SANDRAZ, J.P., 1987. Commande et régulation par calculateur
numérique. Eyrolles, Paris, France.

GARDNER, W.T., and LEONDES, C.T., 1990, Gain transfert : an algorithm for decentralized
hierarchical estimation. International Journal of Control, 52, 279-292.

HASHEMIPOUR, H.R., ROY, S., and LAUB, A.J., 1988, Decentralized structures for parallel
Kalman filtering. I.E.E.E. Transactions on Automatic Control, 33, 88-94.

HASSAN, M.F., SALUT, G., SINGH, M.G., and TITLI, A., 1978, A decentralized computational
algorithm for the global Kalman filter. I.E.E.E. Transactions on Automatic Control, 23, 262-268.

HODZIC, M., and SILJAK, D.D., 1985, Estimation and control of large sparse systems. Automatica,
21, 277-292.

MENDEL, J.M., 1971, Computational requirements for a discrete Kalman filter. I.E.E.E.
Transactions on Automatic Control, 16, 748-758.

OGATA, K., 1987. Discrete-time control systems. Prentice-Hall, Englewood Cliffs, New Jersey.
RAO, B.S., and DURRANT-WHYTE, H.F., 1991, Fully decentralised algorithm for multisensor

Kalman filtering. I.E.E. Proceedings-D, 138, 413-420.
RHODES, I.B., 1990, A parallel decomposition for Kalman filters. I.E.E.E. Transactions on

Automatic Control, 36, 322-327.
SILJAK, D.D., and VUKCEVIC, M.B., 1978, On decentralized estimation. International Journal of

Control, 27, 113-131.
STANKOVIC, S., and SILJAK, D.D., 1989, Sequential LQG optimization of hierarchically structured

systems. Automatica, 25, 545-559.

Appendix
For the system described in the previous example, which satisfies equations (1), the matrices are

given by:

H =

H1

H2
 and A =

A11 A12

A21 A22
A31 A32

 with

H1 =

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

H2 =

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

12

A11 =

 1 0.0063 0
-0.5870 1 0.0546
 0 0 1
 0.0990 0 -0.8772
 0 0 0
 0.0558 0 0.0641
 0 0 0
 0.0532 0 0.01179

0 0 0
0 0.0336 0
0.0053 0 0
1 0.0600 0
0 1 0.0063
0 -0.7250 1
0 0 0
0 0.0478 0

 0 0
 0.0164 0
 0 0
0.0875 0
 0 0
 0.0389 0
 1 0.0063
-0.8246 1

 0 0
 0.0254 0
 0 0
 0.0417 0
 0 0
 0.0269 0
 0 0
 0.0254 0

A21 =

0 0 0
0.0706 0 0.0537
0 0 0
0.0123 0 0.0122
0 0 0
0.0440 0 0.0538
0 0 0
0.0012 0 -0.0019

0 0 0
0 0.0374 0
0 0 0
0 0.0105 0
0 0 0
0 0.0356 0
0 0 0
0 0.0004 0

 0 0
 0.0269 0
 0 0
 0.0075 0
 0 0
 0.0474 0
 0 0
-0.0024 0

 1 0.0063
-0.7790 1
 0 0
 0.0107 0
 0 0
 0.0344 0
 0 0
 0.0026 0

A31 =

0 0 0 0 0

0.0317 0 0.0467 0 0.0248
0 0 0 0 0
0.0099 0 0.0087 0 0.0060

0 0 0 0 0
0.0248 0 0.0350 0 0
0 0 0 0 0
0.0060 0 0.0050 0 0

A12 =

 0 0 0
-0.0103 0 -0.0169
 0 0 0
 0.0167 0 0.0095
 0 0 0
 0.0026 0 -0.0066
 0 0 0
 0.0166 0 0.0072

0 0 0
0 -0.0300 0
0 0 0
0 -0.0125 0
0 0 0
0 -0.0293 0
0 0 0
0 -0.0190 0

 0 0
-0.0698 0
 0 0
-0.0440 0
 0 0
-0.0734 0
 0 0
-0.0478 0

 0 0
-0.0786 0
-0.5900 0
 0 0
-0.0720 0
 0 0
-0.0640 0
 0 0

A22 =

 0 0 0
 0.0162 0 -0.0004
 1 0.0063 0
-0.6230 1 0.0121
 0 0 1
 0.0736 0 -1.0420
 0 0 0
 0.0078 0 -0.0043

0 0 0
0 -0.0081 0
0 0 0
0 -0.0058 0
0.0063 0 0
1 0.0350 0
0 1 0.0063
0 -0.5580 1

 0 0
-0.0590 0
 0 0
-0.0570 0
 0 0
 0.0450 0
 0 0
-0.0420 0

-0.0560 0
 0 0
-0.0620 0
 0 0
-0.2750 0
 0 0
-0.0536 0
 0 0

A32 =

0 0 0 0 0

0.0380 0 0.0455 0 0.0500
0 0 0 0 0
0.0098 0 0.0033 0 0.0100

0 1 0.0063 0 0
0 -0.8820 1 -0.0029 0
0 0 0 1 0.0063
0 -0.0063 0 -0.6880 1

and the noises covariance matrices are V = I and W = 5I, with initial conditions:
 P(0/0) = 25 I , x̂(0/0) = 10 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]T

The canonical form transformation T outlined in section 2 is given by

T =

T11 T12

T21 T22
T31 T32

 with

13

T11 =

 0 1 0
-0.5870 1 0.0546
 0 0 0
 0.0990 0 -0.8772
 0 0 0
 0.0658 0 0.0641
 0 0 0
 0.0532 0 0.01179

0 0 0
0 0.0336 0
1 0 0
1 0.0600 0
0 0 1
0 -0.7250 1
0 0 0
0 0.0478 0

 0 0
 0.0164 0
 0 0
 0.0875 0
 0 0
 0.0389 0
 0 1
-0.8246 1

0 0
0.0254 0
0 0
0.0417 0
0 0
0.0269 0
0 0
0.0254 0

T21 =

0 0 0
0.0706 0 0.0537
0 0 0
0.0123 0 0.0122
0 0 0
0.0440 0 0.0538
0 0 0
0.0012 0 -0.0019

0 0 0
0 0.0374 0
0 0 0
0 0.0105 0
0 0 0
0 0.0356 0
0 0 0
0 0.0004 0

 0 0
 0.0269 0
 0 0
 0.0075 0
 0 0
 0.0474 0
 0 0
-0.0024 0

 1 0.0063
-0.7790 1
 0 0
 0.0107 0
 0 0
 0.0344 0
 0 0
 0.0026 0

T31 =

0 0 0 0 0

0.0317 0 0.0467 0 0.0248
0 0 0 0 0
0.0099 0 0.0087 0 0.0060

0 0 0 0 0
0 0.0350 0 0.0251 0
0 0 0 0 0
0 0.0050 0 0.0113 0

T12 =

 0 0 0
-0.0103 0 -0.0169
 0 0 0
 0.0167 0 0.0095
 0 0 0
 0.0026 0 -0.0066
 0 0 0
 0.0166 0 0.0072

0 0 0
0 -0.0300 0
0 0 0
0 -0.0125 0
0 0 0
0 -0.0293 0
0 0 0
0 -0.0190 0

 0 0
-0.0698 0
 0 0
-0.0440 0
 0 0
-0.0734 0
 0 0
-0.0478 0

 0 0
-0.0786 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0

T22 =

 0 0 0
 0.0162 0 -0.0004
 0 1 0
-0.6230 1 0.0121
 0 0 0
 0.0736 0 -1.0420
 0 0 0
 0.0078 0 -0.0043

0 0 0
0 -0.0081 0
0 0 0
0 -0.0058 0
1 0 0
1 0.0350 0
0 0 1
0 -0.5580 1

 0 0
-0.0590 0
 0 0
-0.0570 0
 0 0
 0.0450 0
 0 0
-0.0420

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

T32 =

0 0 0 0 0

0.0380 0 0.0455 0 0.0500
0 0 0 0 0
0.0098 0 0.0033 0 0.0100

0 0 1 0 0
0 -0.8820 1 -0.0029 0
0 0 0 0 1
0 -0.0063 0 -0.6880 1

and the permutation matrix used to form the specified subsystems fusion is

Q = [QT
1 QT

2 QT
3 QT

4]T with

Q1 =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q2 =

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

14

Q3 =

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Q4 = []0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Super Processor

Initialization
..
Measurement updating cycle
..
Data exchanges

Local Processor i

Initialization
..
Measurement updating cycle
..
Data exchanges

Local Processor 1 Last Local Processor

...............................

...............................

..................................

..................................

Fig.1a: Hierarchical architecture with dedicated super processor

15

Local Processor i

Initialization
..
Measurement updating cycle
..
Data exchanges

Local Processor 1 Last Local Processor

...............................

...............................

..................................

..................................

 Measurement updating terms

Super Processor

Initialization..
Measurement updating cycle

Data exchanges

(Interconnection covariances calculations)

...................... ...

Fig.1b: Direct communication between local processors

16

Reconstitution Unit
(a shared Memory or a Processor)

Local Processor i

Initialization
..
Measurement updating cycle
..
Data exchanges

Local Processor 1 Last Local Processor

..............................

..............................

.................................

.................................

 Reconstitution of global Data

 (no calculation is required)

Shared Memory

Measurement updating
coordination

Logical Interface and Hardware Interface Circuitry

Fig.2: A shared memory coordination for the decentralized filtering.

17

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x108

0 100 200 300

n = 256

Number of measurements

ad
di

tio
ns

 +
 m

ul
tip

lic
at

io
ns

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016
x108

0 100 200 300

n = 256

Number of measurements

ad
di

tio
ns

 +
 m

ul
tip

lic
at

io
ns

CK
F

RUKF

DKF2

DKF1

DKF2

DKF1

(a) (b)

Fig. 3: Evolution of the number of elementary operations in term of the number of
outputs when all subsystems have the same dimensions.

18

0

500

1000

1500

2000

2500

0 10 20 30 40

iterations

Tr
ac

e o
f t

he
 g

lo
ba

l e
rro

r c
ov

ar
ia

nc
e m

at
rix

0

0.5

1

1.5

2

2.5

3
x107

0 10 20 30 40

iterations

Co
nd

iti
on

 n
um

be
r o

f t
he

 g
lo

ba
l e

rro
r c

ov
ar

ia
nc

e
m

at
rix

(a) (b)

Fig. 4: Effect of round-off errors on the conventional Kalman filter.

19

0

100

200

300

400

500

600

700

0 50 100

iterations

Tr
ac

e o
f t

he
 g

lo
ba

l e
rro

r c
ov

ar
ia

nc
e m

at
rix

22

24

26

28

30

32

34

36

38

0 50 100

iterations

Co
nd

iti
on

 n
um

be
r o

f t
he

 g
lo

ba
l e

rro
r c

ov
ar

ia
nc

e
m

at
rix

(a) (b)

Fig. 5: Effect of round-off errors on the RU Kalman filter and the RU output decentralized filter
with a component-wise partitioning of measurements and 10 local processors.

20

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40

iterations

Tr
ac

e o
f t

he
 g

lo
ba

l e
rro

r c
ov

ar
ia

nc
e m

at
rix

0

2

4

6

8

10

12

14

16
x105

0 10 20 30 40

iterations

Co
nd

iti
on

 n
um

be
r o

f t
he

 g
lo

ba
l e

rro
r c

ov
ar

ia
nc

e
m

at
rix

(a) (b)

Fig. 6: Effect of round-off errors on the RU Kalman filter when the partitioning of
measurements is not a component-wise.

21

0

100

200

300

400

500

600

700

0 10 20 30 40

iterations

Tr
ac

e o
f t

he
 g

lo
ba

l e
rro

r c
ov

ar
ia

nc
e m

at
rix

0

0.5

1

1.5

2

2.5

3

3.5
x105

0 10 20 30 40

iterations

Co
nd

iti
on

 n
um

be
r o

f t
he

 g
lo

ba
l e

rro
r c

ov
ar

ia
nc

e
m

at
rix

(a) (b)

Fig. 7: Effect of round-off errors on Algorithm 4.1 when the local measurements are not scalar.

22

0

100

200

300

400

500

600

700

0 10 20 30 40

iterations

Tr
ac

e o
f t

he
 g

lo
ba

l e
rro

r c
ov

ar
ia

nc
e m

at
rix

22

24

26

28

30

32

34

36

38

0 10 20 30 40

iterations

Co
nd

iti
on

 n
um

be
r o

f t
he

 g
lo

ba
l e

rro
r c

ov
ar

ia
nc

e
m

at
rix

(a) (b)

Fig. 8: Effect of round-off errors on Algorithm 4.2 when the local measurements are not scalar.

