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ABSTRACT

Power integrity simulation for system-on-package (SoP) based
modules is a crucial bottleneck in the SoP design flow. In
this paper, the multi-layer finite difference method (M-FDM)
augmented with models for split planes has been proposed
as a fast and accurate frequency domain engine. Results
demonstrating the accuracy and scalability of the method
have been presented. In particular, the algorithm was em-
ployed to the analysis of a realistic 6 layer package with ∼
200k nodes.

Categories and Subject Descriptors

I.6 [Computing Methodologies]: Simulation and Model-
ing

General Terms

Algorithms, Design

Keywords

Signal/Power Integrity (SI/PI), System in Package (SiP),
multi-layer finite difference method (M-FDM)

1. INTRODUCTION
Consumer demand for convergent systems is forcing the

integration of multiple dissimilar components, such as high
speed digital, RF and passives into a mixed-signal system-
on-package (SoP) module.

An SoP containing four modules illustrating the various
modes of coupling that can occur is shown in Figure 1. The
digital module generates simultaneous switching noise (SSN)
at multiples of the clock frequency, which can then couple to
RF modules that are sensitive to SSN. For the case of a cell
phone receiver, a −60dB insertion loss between the digital
and RF modules can significantly degrade the performance
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of the front-end low-noise amplifier. Also, decreasing supply
voltages coupled with increasing power requirements tends
to place stringent requirements on the target impedance [11]
of the digital part. Clearly, time-efficient and accurate sig-
nal and power integrity (SI/PI) simulation will be a critical
component of the SoP design flow.

Figure 1: A System on Package Module.

Figure 2: Accuracy vs. time comparisons for com-
peting methods.

A system-level SI/PI co-simulation methodology was pro-
posed in [10]. A key input to the proposed technique is
the frequency response of the package. Figure 2 shows the
performance of various available tools with respect to exe-
cution time and accuracy. 3D full-wave EM simulators are
generally the most accurate tools available to obtain the fre-
quency response. However, the inherent time and memory
complexity involved relegates the use of these simulators to
final verification, at which stage, the cost of fixing SI/PI
problems can be prohibitive. On the other hand, circuit
modeling techniques such as those based on the transmis-
sion line method (TLM) [2] have been proposed as alternate
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methods. These methods are time efficient, but are not ac-
curate when the power distribution network (PDN) contains
holes. Recently, the multi-layer finite difference method (M-
FDM) has been proposed in [4] to address this issue. In this
paper, an overview of M-FDM will be presented. To en-
sure accurate results when the test structures contain split
planes, the M-FDM formulation needs to be modified to
model second order effects occurring due to fringe fields and
coupling across slots. Fringe and gap models for single plane
pair cases have been developed in [1] and will be extended in
this paper. Also, for the first time, M-FDM will be applied
to a six layer package structure to demonstrate its scalabil-
ity.

The rest of the paper is organized as follows. In section
2, a brief overview of SSN, and the need to model apertures
and split planes will be presented. The finite difference for-
mulation for single plane pair geometries will be discussed
in section 3, and its extension to multiple plane pairs (M-
FDM) will be described in section 4. Addition of fringe and
gap effects will be presented in section 5. Results illustrating
the accuracy and the scalability of the method are shown in
section 6, and conclusions are presented in section 7.

2. SSN COUPLING IN PACKAGE STRUC-

TURES
Figure 3 shows a three layer package PDN supplying power

to a mixed-signal IC. Multiple power supplies are typically
required in modern SoPs due to the various integrated com-
ponents. Split planes are required to provide DC isolation
to the different supply voltages. Also, holes are created in
the solid power/ground planes in order to route signals or
to provide via anti-pads. The switching activity of digital
circuitry causes a time varying current to be drawn from
its power supply terminals, Vdd1-Gnd1. Due to the asso-
ciated inductance of the loop, SSN is generated. SSN can
couple horizontally across a plane pair and across power
islands. Also, SSN couples vertically through vias, and
through apertures. This can be regarded as a coupling by
means of a wrap-around current on the edges of the planes.
Through these mechanisms, ground bounce can occur across
the Vdd2-Gnd2 planes. Thus, it becomes critical to model
split planes and apertures.

In [1], split planes have been modeled by employing lumped
coupling elements. The values for these elements can be de-
rived from closed form expressions based on the geometry
of the problem. For narrow apertures, a transmission-line
based model has been proposed to take into account inter-
layer coupling [7]. Electric and magnetic polarization cur-
rents have also been considered to compute coupling through
electrically small cut-outs [9]. To the best of the authors’
knowledge, M-FDM is the only efficient method available to
analyze such structures with arbitrarily large holes in the
planes.

3. M-FDM FOR SINGLE PLANE PAIR GE-

OMETRIES
The underlying elliptic partial differential equation for the

modeling of planes is a Helmholtz equation
`

∇2
t + k

2
´

u = −jωµdJz (1)

where ∇2
t is the transverse Laplace operator parallel to the

planar structures, u is the voltage, d is the distance between

Figure 3: SSN coupling mechanisms in a realistic
package.

Figure 4: Discretization of the Laplace operator.

the planes, k is the wave number, and Jz is the current
density injected normally to the planes [13]. The problem
definition is completed by assigning homogenous Neumann
boundary conditions, which correspond to assuming a mag-
netic wall, or an open circuit, on the periphery of the planes.
One method to solve the Helmholtz equation is by applying
the finite-difference scheme. The 2-dimensional Laplace op-
erator can be approximated as

∇2
t ui,j =

ui,j+1 + ui+1,j + ui,j−1 + ui−1,j − 4ui,j

h2
(2)

, where h is the mesh length and ui,j is the voltage at node
(i,j) for the cell-centered discretization shown in Figure 4.

This discretization results in a well-known bedspring unit
cell model [4] for a plane-pair consisting of inductors (L) be-
tween neighboring nodes, and capacitors (C) from each node
to ground. Figure 5 shows the equivalent circuit obtained
by discretizing a plane-pair into unit cells. This equivalent
circuit model can be solved using a standard circuit solver.
However, direct solution of the M-FDM equation using a lin-
ear equation solver can improve the memory requirements
and speed, since the resulting admittance matrix is a sparse
banded matrix. Based on the plane model in Figure 5, a lin-
ear equation system can be obtained which can be written
in matrix form as:

YŪ = I (3)

where U and I are the cell voltage and current vectors. The

matrix Y is the nodal admittance matrix. If the unit cells
are numbered using natural ordering, Y has the following
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Figure 5: Electrical model for a plane-pair.

form:
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where, A = jωC+ 1

jωL
and B = − 1

jωL
. If the plane pair were

to be discretized with M1 cells horizontally and M2 cells ver-

tically, then the matrix Y is N × N where N = M1M2. If

unit cells are numbered along columns, the bandwidth of Y
is M2. Using a direct solver, the computational complex-
ity for equation 3 is O(N × M2

2 ). For typical geometries,

M1 ≈ M2 ≈
√

N , resulting in a complexity of O(N2). Also,
if sparse storage is used, memory required is O(N1.5). The
method can be further enhanced by the use of nested dis-
section, which is an asymptotically optimal node ordering
method. This can improve the flop count to O(N1.5) and

memory to O(N log2

√
N) [5].

4. M-FDM EXTENSION TO INFINITE LAY-

ERS
The unit cell model used in Figure 5 uses a common

ground node. In a multilayered structure consisting of more
than two planes, unit cells of different plane pairs can assign
this ground potential to different planes. Therefore, such
unit cells cannot be stacked on top of each other without
any modification to model a multilayered plane. A straight-
forward stacking would short-circuit the elements between
two ground connections, resulting in a completely erroneous
model. To obtain a model for the combined unit cell repre-
senting all the planes in the structure, consider the inductor
elements in a unit cell as shown in Figure 6(a). L1 is the per
unit cell (p.u.c.) inductance between plane 1 and plane 2,
whereas L2 is the inductance between plane 2 and 3. Hence,
reference planes are different in both models in Figure 6(b)
and L2 would be short-circuited if the same nodes on plane 2
were connected with each other. In order to avoid that, the
p.u.c. inductances can be combined as shown in Figure 6(c)
using a mutual inductance and assigning plane 3 as the ref-
erence plane. This model can be extended in a similar way
to any number of planes. Physically, this model is based on
the fact that there is a complete coupling of the magnetic
field when the return current is on plane 3, as represented

Figure 6: (a) Side view of a unit cell for a 3 plane
structure showing the current loops associated with
the p.u.c. inductances. (b) P.u.c. inductance of each
plane pair. (c) Combining the p.u.c. inductances by
changing the reference planes.

by the mutual inductance that is equal to L2.
In terms of the admittance parameters, this model can be

derived using the indefinite admittance matrix [3]. Follow-
ing the formulation provided in [4], the total unit cell can be
obtained as shown in Figure 7(b) for the example of three
planes, where the bottom plane is chosen as the voltage ref-
erence plane. The equivalent circuit that would be obtained
for a three layer geometry is shown in Figure 7(c). For solid
multilayered rectangular planes, discretized with M1 cells
in the x-direction and with M2 cells in the y-direction, the

admittance matrix Y can be written as

Y =

0
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and

¯̄B =

0

B

@

− ¯̄Z−1
uc

. . .

− ¯̄Z−1
uc

1

C

A
(7)

Here, A and B are kM1 × kM1 matrices for (k + 1) planes,
assuming that the nodes are numbered starting from the top
node in the lowest row, increasing in the vertical direction to
the bottom node, then starting with the next cell in the x-
direction until the last cell, and then starting with the next
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Figure 7: (a) Geometry and p.u.c. parameters. (b)
Combined unit cell model for three planes. (c) Plane
model consisting of multilayer unit cells.

row. Hence, Y is a (kM1M2) × (kM1M2) matrix. The unit

cell matrices, ¯̄Yuc and ¯̄Z−1
uc are tri-diagonal and are given by
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where Yi and Zi can be obtained similar to the unit cell
parameters for a single plane pair structure as

Yi = jωCi + ωCi tan δi (10)

Zi = 2jωLi +
2

σt
+ 2

r

jωµ

σ
(11)

By an analysis similar to what was provided in the pre-
vious section, it can be shown that the computational com-
plexity of M-FDM applied to k + 1 layers is O(N2) where
N = (kM1M2). Typically in the presence of mutual induc-
tor elements such as what has been shown in Figure 7, the
unit cell inductance matrix ¯̄Z−1

uc will be full-dense. How-
ever, the nature of the loop inductances considered lends to

Figure 8: (a)Geometry (b)Representation with the
FDFD model (c)Correction for fringe effect by ad-
dition of elements Cf and Lf .

the tri-diagonal form shown in (9) and hence to the unique
advantages of M-FDM.

5. INCLUSION OF SECONDARY EFFECTS

5.1 Fringe Effect Models
The M-FDM formulation discussed in the previous sec-

tions assumes that each unit cell sees plane-pairs of infinite
extent along the lateral directions. However, fringing fields
occur at edge discontinuities. This implies that both the per-
unit-length (p.u.l) inductance and capacitance will be differ-
ent from that obtained from parallel plate formulae. This
problem has been considered in [6], which proposes building
a library that maps various geometries to model elements,
and interpolating between these values. However, this tech-
nique requires the development of a large database that ac-
counts for variations in dielectric height and permittivity,
trace width and metal height, and can suffer from interpo-
lation errors. On the other hand, the technique proposed
in [1] relies on well characterized closed form expressions
which are easy to implement. The fringe fields are corrected
by adding additional elements to edges. A microstrip line of
width W , dielectric height h and metal thickness t is shown
in Figure 8(a). The M-FDM model for this microstrip is
shown in Figure 8(b). The fringe effect is modeled by the
addition of Lf and Cf , as shown in Figure 8(c), and are
given by [1]

Cf =
Cpul − Cpp

2
w (12)

Lf =
2µhwLpul

µh − WLpul

(13)
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Figure 9: Gap model with addition of gap elements,
Cm and K.

Figure 10: Equivalent circuit to model splits on both
planes.

where, Cpul and Lpul are the p.u.l capacitance and induc-
tance of a microstrip line of equivalent width, dielectric
height h and permeability µ. Cpp is the p.u.l parallel plate
capacitance and w is the unit cell width.

5.2 Gap Effect Models
Coupling occurs between physically separated metal patches

when the distance of separation between them approaches
the dielectric thickness. The coupling can be especially sig-
nificant when the patches resonate. Figure 9 shows split
planes of width W separated by a spacing s, with a dielec-
tric height h. The gap is modeled by considering both the
E-field and H- field coupling The E-field coupling is rep-
resented by a capacitor, Cm, connected between the nodes
that lie across the gap. The H-field coupling is modeled by a
mutual coupling factor, K, as shown in Figure 9. The values
of Cm and K are obtained by applying coupled line theory
as explained in [1]. However, this method has been pro-
posed only for single plane pair geometries with split planes
on one of the layers with the second layer being solid. It is
possible to extend this to cases where split planes can occur
on both layers. In Figure 10, an equivalent circuit is shown
for this case. A third metal layer is introduced far away
to act as a solid reference plane. The M-FDM formulation
is now applied for this three layer geometry. The mutual
elements Cm and K are introduced as shown in Figure 10.
These parameters are obtained as before. A test structure
containing split planes on both layers is shown in Figure 11.
The method-of-moments based full-wave solver Sonnet was
used for comparison. The insertion loss results have been
plotted in Figure 12, and it can be seen that the results
from M-FDM match well with Sonnet. This example illus-
trates how the gap models can be extended to multi-layer
geometries.

The addition of the fringe models do not increase the com-
plexity of the problem as they represent only a correction
to existing circuit elements. However, the addition of the
gap elements will increase the bandwidth of the admittance
matrix, as the width of a split plane may be discretized by
more than one unit cell. However, it is known that coupling
between patches becomes less significant as the ratio of the
gap spacing s to the dielectric height h becomes large, for

Figure 11: Test case with split planes on both layers.
Size: 10 mm*10mm, ǫ = 4.4, dielectric height = 300
µm.

Figure 12: Insertion loss results for test case of Fig-
ure 11.

which the gap model may not be applied. This allows the
computational complexity of the proposed approach to be
maintained at O(N2).

6. RESULTS
The methodology described in prior sections has been im-

plemented in a CAD tool. Simulations were performed to
compare the methodology against full-wave simulations and
measurements, and to demonstrate the scalability of the
method. All simulations were performed on an Intel Xeon
workstation with a 3.2 GHz processor and 3.5 GB of RAM.
Full-wave simulations were performed with the method-of-
moments based solver, Sonnet.

The layout for two of the power distribution layers from
a realistic package has been shown in Figure 13. The layers
were discretized using a unit cell size of 0.185 mm, result-
ing in 38,800 nodes per layer. Table 1 shows the scalability
of the simulation tool as the number of layers, and hence,
the number of nodes is increased. These results do not fol-
low the strict O(N2) characteristics predicted, as a generic
sparse solver was used. For the six layer simulation with
194,000 nodes, the CAD tool required 12 minutes per fre-
quency point. In comparison, even the simulation of the 2
layer example was intractable with Sonnet due to insufficient
memory available.

To demonstrate the accuracy of the method, we consider a
single plane pair example with the geometry of the top layer
shown in Figure 14. This is an example containing several
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Figure 13: Layouts for two package layers. Dimen-
sion is 34mm × 34mm.

Table 1: Simulation results for realistic package.
Layers Nodes Time/Freq Point (s)

2 38, 800 1.5
3 77, 600 5.2
4 116, 400 72.5
5 155, 200 276.2
6 194, 000 725.27

holes as well as split planes, and hence can be used to es-
tablish the validity of the M-FDM formulation augmented
with fringe and gap models. However, even for this exam-
ple, Sonnet required 50 GB of memory. To create an exam-
ple which could be simulated with Sonnet, the two outlined
metal patches were considered in isolation, and the mesh
was made coarse. This reduces the memory required by the
full-wave solver to 200 MB. The insertion loss results have
been plotted in Figure 15, and are virtually indistinguish-
able. The runtime for M-FDM was 2.1 s/freq. point vs. 124
s/freq. pt. for Sonnet, representing a speedup of 60X.

Figure 14: Geometry of split planes, dielectric thick-
ness = 100 µm, ǫr = 4.4. All dimensions are in mm.

7. CONCLUSION
The emergence of package level integration as a dominant

contender for convergent systems has led to the need for effi-
cient CAD tools for power integrity analysis. In this paper,
a fast and accurate method based on finite differences was
proposed. Results demonstrating the accuracy and scalabil-
ity of the method have been shown.

Figure 15: Insertion loss (dB) results for highlighted
structure of Figure 14.
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