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ABSTRACT
Wireless mesh networks are expected to be widely used to
provide Internet access in the near future. In order to ful-
fill the expectations, these networks should provide high
throughput simultaneously to many users. Recent research
has indicated that, due to its conservative CSMA/CA chan-
nel access scheme and RTS/CTS mechanism, 802.11 is not
suitable to achieve this goal.

In this paper, we investigate throughput improvements
achievable by replacing CSMA/CA with an STDMA scheme
where transmissions are scheduled according to the physical
interference model. To this end, we present a computa-
tionally efficient heuristic for computing a feasible schedule
under the physical interference model and we prove, under
uniform random node distribution, an approximation factor
for the length of this schedule relative to the shortest sched-
ule possible with physical interference. This represents the
first known polynomial-time algorithm for this problem with
a proven approximation factor.

We also evaluate the throughput and execution time of
this algorithm on representative wireless mesh network sce-
narios through packet-level simulations. The results show
that throughput with STDMA and physical-interference-
based scheduling can be up to three times higher than 802.11
for the parameter values simulated. The results also show
that our scheduling algorithm can schedule networks with
2000 nodes in about 2.5 minutes.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
Networks
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1. INTRODUCTION
In wireless mesh networks, wireless backbone nodes (also

called wireless routers in the following) must convey a large
amount of traffic generated by wireless clients to a few nodes
that act as gateways to the Internet. For these networks,
the main design concern is increasing the traffic carrying ca-
pacity of the wireless backbone as much as possible, while
energy conservation (one of the main design goals in ad
hoc/sensor networks) is not an issue – wireless routers typ-
ically do not have energy constraints. In order to meet
the high traffic demand, wireless backbone nodes can be
equipped with multiple radios and/or operate on multiple
channels.

In order to understand whether forthcoming wireless mesh
networks will actually be able to meet traffic demands, sev-
eral recent papers have investigated the potential benefits
on network capacity of using multiple radio/channels. This
type of investigation requires addressing at least three prob-
lems – routing, channel allocation, and transmission schedul-
ing – which have been studied either separately or jointly.
For instance, [32] is concerned with routing, [21, 23] with
channel allocation, [3, 12, 18] with scheduling, while [1, 13,
15, 17, 29] jointly consider the three problems.

The main factor that limits capacity in mesh networks
(and in wireless networks in general) is interference, which
is a consequence of using a shared communication medium.
Hence, an accurate modeling of interference is fundamen-
tal in order to derive theoretical and/or simulation-based
results of some practical relevance. In the literature, two
main interference models have been proposed [8]: the pro-
tocol and the physical interference models.

In the former model, a communication between nodes u
and v is successful if no other node within a certain interfer-
ence range from v (the receiver) is simultaneously transmit-
ting. Due to its simplicity, and to the fact that this model
can be used to mimic the behavior of CSMA/CA networks



such as IEEE 802.11,1 the protocol interference model has
been mostly used in the literature.

In the physical interference model, a communication be-
tween nodes u and v is successful if the SINR (Signal to
Interference and Noise Ratio) at v (the receiver) is above a
certain threshold, whose value depends on the desired chan-
nel characteristics (e.g., data rate). This model is less re-
strictive than the protocol interference model: it may occur
that a message from node u to node v is correctly received
even if there is a simultaneous transmitting node w close
to v (for instance, because node u is using a much larger
transmit power than node w). As a result, higher network
capacity can in general be achieved by applying the physi-
cal interference model. Note that the physical interference
model is representative of a scenario that does not use CSMA
techniques; instead, transmissions should be carefully sched-
uled so that only sender/receiver pairs that do not conflict
with each other transmit simultaneously. In other words, the
physical interference model is suited for use with TDMA-like
channel access schemes.

Recent research indicates that CSMA/CA is not suit-
able to meet the high traffic demand of wireless mesh net-
works. The reason for this is that CSMA/CA is a very
conservative mechanism: due to the combination of car-
rier sensing and collision avoidance techniques, many net-
work nodes are silenced when a certain communication takes
place. The ‘silenced area’ grows quadratically (in an ideal-
ized setting) with the transmission range, hence CSMA/CA
becomes more and more conservative (with a negative im-
pact on capacity) as the nodes’ transmission ranges increase.
Since wireless routers typically have relatively long ranges
(ranges of several hundreds meters or a few kilometers can
be expected [4, 22]), CSMA/CA is deemed not adequate
to meet the high traffic demand of wireless mesh networks.
This is the reason why existing implementations of 802.11-
based mesh networks disable the collision avoidance mech-
anism (i.e., the RTS/CTS message exchange) [4], or com-
pletely new TDMA-like MAC protocols are proposed for
mesh networks [22, 31].

The above discussion motivates use of the physical inter-
ference model in investigations of the capacity of wireless
mesh networks. A major difficulty lies in the complexity of
handling physical interference. Let us consider the problem
of scheduling, which is fundamental to understand whether
actual capacity improvements can be achieved by the phys-
ical interference model. Assume that traffic demands on
each network link are known (for instance, by executing an
interference-aware routing algorithm – see, e.g., [1]), and
consider the problem of optimal conflict-free scheduling of
these transmissions. This problem is known to be NP-hard
even with the simple protocol model. However, in case of
protocol interference, the authors of [1] introduce a polyno-
mial time algorithm that computes a conflict-free schedule
that is at most a constant factor away from the optimal
schedule. Unfortunately, whether there exists a polynomial-
time algorithm that is within a provable approximation fac-
tor of optimal for scheduling under the physical interference
model is an open problem.

In this paper, we solve this open problem, presenting a
polynomial time heuristic called Algorithm GreedyPhysical
that computes a conflict-free schedule under the physical

1This can be done by using the concept of interference range both
at the sender and at the receiver of a communication (see [1]).

interference model. We formally prove an approximation
factor for the schedule computed by our algorithm relative to
the optimal schedule in case of unplanned (uniform random)
network deployments.

The approach presented in this paper makes the relative
advantage of the physical interference model over the proto-
col model tangible. We present extensive simulation results
that: 1) compare schedule length under the two models,
and 2) evaluate throughput under a TDMA approach with
our scheduling algorithm and compare it to 802.11 through-
put using a packet-level simulator with accurate models for
802.11 and physical interference. The results show signif-
icant performance benefits are obtainable with scheduling
approaches based on physical interference.

2. RELATED WORK
Our scheduling approach can be applied within the spa-

tial reuse TDMA (STDMA) access scheme defined by Nelson
and Kleinrock [19]. Most of the scheduling mechanisms pro-
posed for STDMA use the protocol interference model. Only
a few previous works have considered physical interference
in this context [5, 6, 7, 12, 18, 28].

In [12], Jain, et al., formulate the problem of schedul-
ing under physical interference as an LP problem. Un-
fortunately, this formulation requires computing the set of
all possible sets of non-conflicting transmissions, which re-
quires exponential time and is, therefore, computationally
intractable for more than a trivial number of nodes. Due to
this requirement, the authors were not able to provide any
simulation-based evaluation of scheduling with physical in-
terference, not even for very small networks. The work of [6]
also provides an exponential-time LP formulation. The ap-
proach of [28] is similar to that of [12] in that all maximal
sets of non-conflicting transmissions are considered, and this
approach also requires exponential time.

In [5], Gronkvist and Hansson describe the use of physical
interference in STDMA and compare it to an approach that
considers interference up to a certain distance from a node
and ignores it beyond that point. The scheduling algorithm
in this work is based on the algorithm presented in [7]. Nei-
ther [5] nor [7] provides an evaluation of the algorithm’s time
complexity nor compares its performance to the optimal.

In [18], Moscibroda and Wattenhofer consider the problem
of scheduling with physical interference under the assump-
tion that traffic demands are the same on every network link.
Although the analysis and algorithms presented in [18] are
interesting, they are not representative of the typical wire-
less mesh network scenario, in which traffic demands on the
links are in general very different – typically, links closer to
a gateway node experience higher traffic demands than links
on the border of the network.

In summary, our approach provides the first computa-
tionally efficient scheduling algorithm for the physical in-
terference model with non-uniform link demands for which
an approximation factor relative to the optimal schedule
has been proved. We also use this algorithm to evaluate,
through simulations, performance of physical-interference-
based scheduling relative to traditional protocol-model-based
scheduling for a variety of scenarios that are representative
of different wireless mesh network deployments. These re-
sults demonstrate that significant throughput improvements
can be obtained with physical-interference-based scheduling
in wireless mesh networks.



3. NETWORK AND INTERFERENCE MOD-
ELS

Consider a mesh network composed of n wireless routers.
The links among the wireless routers are represented by a
physical communication graph Gp = (V,E), where V is the
set of routers, and edge (u, v) ∈ E if and only if a link be-
tween nodes u and v exists in absence of interference from
other network nodes. We do not assume any specific radio
propagation model, nor that all nodes use the same trans-
mission power. Hence, unidirectional links can be present in
the physical topology of the network.

We assume that link-layer reliability is required for both
CSMA/CA and STDMA. Thus, an ACK packet is generated
by each receiver for every data packet it receives. This im-
plies that, although unidirectional links can be present, they
are not used by the protocols. Thus, in the logical topol-
ogy of the network, represented by a logical communication
graph G, every edge represents a bi-directional link. This
assumption is made so as to provide a fair throughput com-
parison between the STDMA approach and 802.11, which
mandates link-layer reliability. We note that removing this
assumption and making use of unidirectional links within
STDMA could potentially further improve throughput rela-
tive to 802.11, albeit at the expense of reliability.

We assume that each edge e = (u, v) in G is labeled with
a weight we, which represents the traffic demand on the link
for a single STDMA scheduling period. Note that, since edge
e is undirected, we represents the aggregated traffic in both
directions. We are not concerned with how weights we are
generated: our approach can be applied for any weight val-
ues, i.e., for arbitrary traffic patterns. In practice, the traffic
demand on each link depends on the distribution and traf-
fic pattern of wireless clients, and on the routing algorithm
used to convey data from/to the clients to/from the gate-
way nodes. We assume that the demands are known a priori
because, in this paper, we are primarily concerned with in-
vestigating the potential for throughput improvements with
STDMA scheduling, and not with implementation of practi-
cal protocols. However, if demands do not fluctuate rapidly,
it should be possible to measure the demands in an ac-
tual system and periodically adjust the input values to the
scheduling algorithm accordingly.

In this paper, we consider both the protocol and the phys-
ical interference models. To be specific, we use the following
variation of the protocol model (introduced in [1]) to accu-
rately mimic the behavior of CSMA/CA networks such as
802.11. Let rT and rI denote the transmission range and the
interference range (or carrier sensing range), respectively.
The transmission range rT represents the maximum distance
up to which a packet can be received, while the interference
range rI represents the maximum distance up to which a
node sensing the channel detects an ongoing transmission2.
The interference range is larger than the transmission range,
i.e., rI = q ·rT , with q > 1 (q = 2 is a typical value for 802.11
networks). Note that the actual values of the transmission
and interference ranges depend on the transmission power
used by the nodes. Since in our model we allow nodes to
use different transmission powers, we denote the transmis-
sion and interference ranges of node x as rT (x) and rI(x),

2Implicit in the definition of transmission and interference ranges
is the assumption of a deterministic signal propagation model,
such as the log-distance path model.

respectively. Due to carrier sensing and RTS/CTS/ACK
exchange, a transmission along link e = (u, v) (in either
direction) blocks all simultaneous transmissions within the
interference ranges of both nodes u and v. To be specific, de-
noting with D(x, rI(x)) the disk of radius rI(x) centered at
node x, all transmissions such that one of (or both) the end-
points of the link lies within IRe = D(u, rI(u))∪D(v, rI(v))
are blocked by the transmission along link (u, v). Here, IRe

stands for Interference Region associated with link e.
In the physical interference model [8], successful reception

of a packet sent by node u to node v depends on the SINR
at v. To be specific, denoting by Pv(x) the received power
at v of the signal transmitted by node x, a packet along link
(u, v) is correctly received if and only if:

Pv(u)

N +
P

w∈V ′ Pv(w)
≥ β ,

where N is the background noise, V ′ is the subset of nodes
in V that are transmitting simultaneously, and β is a con-
stant that depends on the desired data rate, the modulation
scheme, etc.

To be coherent with our assumption of link-layer reliabil-
ity, we extend the physical interference model as follows. We
assume that a packet sent by node u is correctly received by
node v if and only if the packet is successfully received by v,
and the ACK sent by node v is correctly received by node
u. Furthermore, for a transmission from node x to node y
that is concurrent with the packet on (u, v), we account for
the interference both from node x’s data packet and from
node y’s ACK. Since only one of x and y transmits at a time
but their data and ACK packets could both overlap with ei-
ther the data packet or the ACK along (u, v), we choose the
maximum of the interferences from x and y when calculating
the total interferences at u and v. Note that which of the
two (x or y) contributes the maximum interference could be
different at u and v. In light of this discussion, a packet sent
along link (u, v) (in either direction) is correctly received if
and only if:

Pv(u)

N +
P

(x,y)∈E′ max(Pv(x), Pv(y))
≥ β ,

and

Pu(v)

N +
P

(x,y)∈E′ max(Pu(x), Pu(y))
≥ β ,

where set E′ contains all links that have transmissions con-
current with the one on (u, v).

Given an interference model, we can build a conflict graph,
which can be used to determine whether a certain set of
transmissions can occur simultaneously. In the protocol in-
terference model, the conflict graph GProt is constructed by
having a node for each link in G, and by adding the undi-
rected edge (e1, e2) if and only if links e1 and e2 conflict with
each other (according to the rule described above). It is easy
to see that a set of transmissions along links e1, . . . , ek is fea-
sible if and only if the corresponding nodes in GProt form
an independent set3. This leads to the definition of feasible
scheduling under the protocol interference model:

Definition 1. Let G be the communication graph with
traffic demands we on each link, and let GProt be the conflict

3Given a graph G = (V, E), a set V ′ ⊂ V is an independent set
of G if and only if no edge in G has both endpoints in V ′.



graph under the protocol interference model. A schedule S
composed of T time slots t1, . . . , tT is feasible for G if and
only if the following conditions are satisfied:

– the set of transmissions scheduled at each time slot ti
is an independent set of GProt, and

– each link e is scheduled for at least we time slots.

Note that in the above definition we have made the as-
sumption that demands we on the links are expressed as a
multiple of the time slot used in the scheduling. This can
be easily accomplished in practice, once the link data rates
and the length of the time slot are known.

Let us now consider the physical interference model. A
major factor contributing to the complexity of dealing with
physical interference is the fact that the notion of ‘conflict
between transmissions’ cannot be modeled as a binary rela-
tion between edges, as it was the case with the protocol inter-
ference model. For instance, it might be the case that trans-
mission along links e1, e2 can successfully occur simultane-
ously if these are the only scheduled transmissions, while one
of them (or both) might be compromised if other nodes are
allowed to transmit simultaneously. In other words, whether
a certain set of scheduled transmissions is feasible can be
determined only by considering the SINR ratios at all the
endpoints of the scheduled links, and not by analyzing edge-
to-edge mutual interference as was the case with the protocol
interference model.

An edge-based notion of conflict graph for the physical in-
terference model has been introduced in [12], where a node
is introduced for each link in the network, and a weighted
edge is inserted between nodes e1, e2 (which represent links
in the communication graph) that can interfere with each
other, where the weight of the link represents the fraction
of the maximum permissible noise+interference level at the
node at the receiver end of link e2 that is contributed by
activity on link e1. This edge-based notion of conflict graph
is quite complicated, and can be considerably simplified by
observing that, under the assumption that no per-packet
transmit power control is used, the notion of interference in
the physical model is associated with nodes, and not with
edges. In other words, the interference level generated at
a receiver v by a transmitter u, which is transmitting to a
third node, say w, is independent of w, because u uses the
same transmission power for all communications (of course,
due to our link-layer reliability assumption, the interference
generated by w when sending its ACK packet must also be
included). This leads to the following definition of a node-
based conflict graph in the physical interference model. The
conflict graph GPhy has the same node set V as the commu-
nication graph, and edge set E′ ⊇ E, where directed edge
ei = (u, v) ∈ E′ represents the fact that the signal trans-
mitted by node u potentially contributes to the interference
level measured at node v. Edge (u, v) is assigned a weight
wi

uv, which corresponds to the received power at node v of
the signal transmitted by node u, i.e., wi

uv = Pv(u). Note
that edges in the conflict graph GPhy are directed, and that
wi

uv 6= wi
vu in general.

Concerning the relative complexity of GPhy as introduced
here and the edge-based notion of conflict graph introduced
in [12], we observe that in the physical interference model
every transmitter in the network contributes (possibly with
a very small, but greater than zero, amount) to the inter-
ference level measured at any receiver. Hence, every pair

of links in the network potentially conflict with each other,
and both GPhy and the interference graph defined in [12]
are complete graphs. The complete graph on m nodes has
m(m − 1) = Θ(m2) edges. The fundamental difference be-
tween GPhy and the conflict graph of [12] is that in our case
GPhy has a node for every node in the network, while the
conflict graph of [12] has a node for every link in the net-
work. Hence, GPhy has Θ(n2) edges, as compared to the
O(n4) of the conflict graph of [12], resulting in a significant
reduction in computational complexity just to construct the
conflict graph, and even greater complexity improvements
for scheduling based on the conflict graph.

Given the communication graph G = (V,E) and the con-
flict graph GPhy = (V,E′), we can determine whether a
certain set of transmissions E′′ = {e1, . . . , ek} ⊆ E is fea-
sible as follows. Let us denote with V (E′′) ⊆ V the set of
all nodes u ∈ V such that u is the endpoint of at least one
edge in E′′. First, we observe that if a node in V (E′′) is
an endpoint of more than one edge in E′′, then E′′ is not
feasible, since a node cannot transmit and receive on differ-
ent links simultaneously. Hence, a necessary condition for
transmission set E′′ to be feasible is that E′′ is a matching4

on the communication graph G.

Proposition 1. Given a communication graph G = (V,E),
a set E′′ = {e1, . . . , ek} ⊆ E of transmissions is feasible only
if E′′ is a matching of G.

In order to determine whether a matching E′′ on G is
feasible, we have to check for every node u ∈ V (E′′) whether
the SINR at u is above the desired threshold β. In order
for E′′ to be feasible, the condition on the SINR must be
fulfilled at every node in V (E′′). When computing the SINR
for node u which is incident into edge ei = (u, v) ∈ E′′, only
the nodes in V (E′′)−{v} contribute to the interference level
at u. For any such node x which is an endpoint of link e′ =
(x, y), x’s contribution to the interference measured at node
u equals wi

xu if Pu(x) ≥ Pu(y), and it is 0 otherwise (recall
the use of the max operator in our definition of the physical
interference model). Summarizing, we have the following
characterization of a feasible set of transmissions under the
physical interference model.

Definition 2. Given a communication graph G = (V,E)
and a conflict graph GPhy = (V,E′), a set E′′ = {e1, . . . , ek} ⊆
E of transmissions is feasible under the physical interference
model if and only if:

– E′′ is a matching of G, and

– for every u ∈ V (E′′), with ei = (u, v) ∈ E′′,

Pu(v)

N +
P

(x,y)∈E′′−{(u,v)} max(wi
xu, wi

yu)
≥ β .

We can now define a feasible schedule under the physical
interference model.

Definition 3. Let G be the communication graph with
traffic demands we on each link, and let GPhy be the conflict
graph under the physical interference model. A schedule S
composed of T time slots t1, . . . , tT is feasible for G if and
only if the following conditions are satisfied:

4A matching on a graph G = (V, E) is a set of edges E′ ⊆ E such
that no two edges in E′ share a common endpoint.
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Figure 1: Example Communication Graph
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Figure 2: Conflict graphs in the protocol (left) and
physical (right) interference models. In case of GPhy,
only the outgoing edges from node u1 are shown.
The weight of edge (u1, ui) represents the received
signal strength at node ui when only node u1 is trans-
mitting and is expressed in dBm.

– the set of transmissions scheduled at each time slot ti
is feasible under the physical interference model, and

– each link e is scheduled for at least we time slots.

We now present an example of a communication graph,
and the corresponding conflict graphs in the protocol and
physical interference models. Consider the node deploy-
ment of Figure 1, and assume all nodes have transmit range
rT = 200m, and interference range rI = 400m. The conflict
graph with protocol interference is shown on the left side of
Figure 2: since all nodes interfere with all other nodes, the
conflict graph GProt is a complete graph. This implies that
no two transmissions can occur concurrently in the network
for this example. Let us now consider the physical interfer-
ence model. Assume that radio signal propagation obeys the
log-distance path model with path loss exponent α = 3.5,
and that nodes have transmit power equal to 50mW. Part
of the physical conflict graph GPhy resulting from this set-
ting is shown on the right side of Figure 2. Since every
node potentially interferes with every other node in the net-
work, GPhy is also a complete graph. However, transmis-
sions along links e1 = (u1, u2) and e7 = (u5, u6) can occur
simultaneously (in either direction) in the physical interfer-
ence model. In fact, with the above setting and assuming
a typical value of the background noise N = −90dBm, the
SINR at node u1 (and, because of symmetry, also at the
other three nodes involved in the transmissions) is about
16dB, which is an adequate value for supporting 11 Mbps
data rate on both links [10, 20].

Algorithm GreedyPhysical:

Input: a weighted communication graph G
and the conflict graph GPhy

Output: a feasible schedule SPhy of length TPhy

under physical interference model

1. set available slots to ∅;
2. order the links in E according to the interference

number. Let e1, . . . , em be the resulting ordering;
3. for i = 1, . . . ,m

3a. schedule link ei in the first wei available slots tk
such that the resulting set of scheduled
transmission is feasible with the physical
interference model

3b. if currently available slots are not sufficient to
schedule wei slots for ei, add new slots at the
end of the schedule SPhy and schedule
link ei alone in these slots

4. return schedule SPhy, and schedule length TPhy;

Figure 3: Algorithm GreedyPhysical

4. SCHEDULING ALGORITHM
In this section, we present a computationally efficient heuris-

tic referred to as Algorithm GreedyPhysical for building a
feasible schedule under the physical interference model, and
we formally prove an approximation bound for our algorithm
in the case of nodes distributed uniformly at random in a
square of unit area.

Algorithm GreedyPhysical is reported in Figure 3. Greedy-
Physical is a simple heuristic, which is similar to the one used
in [1] to prove the approximation bound for the scheduling
problem with protocol interference. First, the links to be
scheduled are ordered according to the interference number,
which is defined as follows. The interference number of edge
e = (u, v) is the number of edges ei in the communication
graph such that ei does not have u or v as an endpoint and
E = (e, ei) is infeasible. All of these ei are definitely pre-
vented from communicating at the same time as e. The idea
behind the notion of the interference number is to measure,
to some extent, the amount of interference generated in the
network by a communication going on along a certain link.
Links are ordered in decreasing order, i.e. links which gen-
erate relatively higher interference (which are more difficult
to schedule) are scheduled first. Note that other criteria,
such as traffic demand, could have been used to order links.
The approximation bound proved in the following is valid
independently of the actual ordering used for the links.

After the links have been ordered, they are scheduled in a
greedy way, starting from the ‘largest’ link. A selected link
ei is scheduled in the first wei available slots such that no
conflict with previously scheduled transmissions occurs ac-
cording to the physical interference model. If there are not
enough slots in the current schedule, empty slots are added
at the end of the schedule, and link ei is scheduled in these
slots. It is immediate to see that Algorithm GreedyPhysi-
cal computes a feasible schedule SPhy of some length TPhy

according to the physical interference model.
We now prove that the schedule computed by Greedy-

Physical is at most a factor O(n
1− 2

ψ(α)+ε (logn)
2

ψ(α)+ε ) away



from the optimal schedule, where ε > 0 is an arbitrarily
small positive constant and ψ(α) is a constant which de-
pends on α. This result holds under the assumption that
network nodes are distributed uniformly at random in a
square of unit area5, and that radio signal propagation obeys
the log-distance path model with path loss exponent α. Sim-
ilarly to [8], we assume α > 2.

Random node deployment is representative of a scenario
in which positioning of the wireless routers forming the mesh
is not carefully planned, as is typically the case in commu-
nity networking. In this scenario, users in a community
(neighborhood, or even an entire city area) decide to share
their wireless resources (access points) so that to create a
Wireless Community Network (WCN). Several WCN are
being created worldwide (see [30] for a list), the most well
known examples being the Seattle and Houston Wireless
initiatives [11, 27]. In WCNs, network deployment is typi-
cally an unplanned and uncoordinated process, since users
autonomously decide to add or remove wireless resources
from the network. As a consequence, the topology of the
resulting mesh network is typically unstructured. Note that
recent research has observed that unplanned mesh networks
also have the potential to fulfill user requirements (in terms
of perceived bandwidth) [4].

The following details the uniform random assumption and
corresponding critical transmission range requirement needed
to prove our approximation result:

A1 a number n of nodes is distributed uniformly at ran-
dom in a square area of unit side. All the nodes have
the same transmission range r. In order to ensure con-
nectivity with high probability6 of the generated mesh
network, we set r = r(n) to the critical transmission
range for connectivity, i.e. (see [26], Corollary 4.1.2,
pg. 42)

r(n) =

r
lnn+ f(n)

πn
, (1)

where f(n) is an arbitrary function such that f(n) →
∞ as n→∞.

Before presenting the proof, we give a high level sketch
intended to provide an intuitive understanding. The main
difficulty in trying to prove an approximation bound for the
scheduling problem with the physical interference model lies
in the fact that any given scheduled link e potentially con-
flicts with every other link in the network. This is because,
even if the interference induced by the sender/receiver side
of e might be very low on a far away link e′, there might be
many interferers in the network, and the small interference
induced on e′ by e can be sufficient to drive the SINR at
one of the endpoints of link e′ below the acceptable thresh-
old β. Hence, for any scheduled link e, we cannot separate
the deployment area into a ‘close-in’ region (where the in-
terference generated by e matters) and a ‘far away’ region
(where the interference generated by e is negligible). This
separation between ‘close-in’ and ‘far away’ region is a fun-
damental building block in the proof of the approximation
bound for the scheduling problem with the protocol interfer-
ence model reported in [1]. To circumvent this problem, we

5With some minor technicalities, the proof can be easily adapted
to the case where the deployment area is a disk of unit area.
6In this paper, w.h.p. means with probability that converges to
1 as n→∞.

note that while the above observation holds true in a gen-
eral mesh network scenario where the position and transmit
power of nodes can be arbitrary, it might be the case that
under certain circumstances we are indeed able to separate
the deployment area into a ‘close-in’ and a ‘far away’ region
even in the physical interference model. The idea is to use a
close-in radius rin centered at each receiver of a communi-
cation, and to show that, under Assumption A1, the aggre-
gated interference level generated by nodes outside rin can
be neglected. Then we can use an argument similar to the
one used in [1] to prove the approximation bound: for any
scheduled link e, at most all links within the close-in region
centered at e are silenced by the transmission along e, while
all links outside the close-in region are not influenced by
the transmission along e. Since GreedyPhysical, when con-
sidering link e, schedules this link as soon as possible, and
scheduling e in a certain slot possibly prevents only links
within the close-in region of e to be scheduled concurrently,
an approximation bound on GreedyPhysical’s performance
can be obtained by counting the maximum number of links
that are silenced by a transmission along any link, which is
upper bounded by the number of nodes within its close-in
region.

We start with some lemmas needed in the proof.

Lemma 1. Assume the deployment area A = [0, 1]2 is di-
vided into C = 1

r2 square cells of side r = r(n), and that
we are under the conditions of assumption A1. Let us set
f(n) = f̄(n) = (π − 1) lnn in (1). Then, the number of
nodes in every one of the C cells is Θ(logn) w.h.p.

Proof. Let us first prove that the number of nodes in
every cell is O(logn) w.h.p. We use the following result
from occupancy theory (see [14], Thm. 2, pg. 96):

Proposition 2. Assume n nodes are distributed uniformly
at random into C cells, and let η = n

C
. If η

ln C
→ x as

n,C → ∞ and k = k(η, C) is chosen so that Cpk → λ,

where x and λ are positive constants and pk = ηk

k!
e−η, then

Prob{Max ≤ k + g} → exp


−λγ

g+1

1− γ

ff
,

where Max denotes the number of nodes in the maximally
occupied cell and γ is the root of the equation

γ + x(ln γ − γ + 1) = 0

in the interval 0 < γ < 1.

Setting C and r = r(n) as in the statement of Lemma 1,
we have that η = lnn and η

ln C
→ x = 1 as n,C → ∞. By

setting k = lnn, we have Cpk → λ = e, and we can apply
the result above to prove that

Prob{Max ≤ lnn+ g} → exp


−eγ

g+1

1− γ

ff
. (2)

Since x = 1 implies that γ = 1
e
, we can rewrite (2) as follows

Prob{Max ≤ lnn+ g} → exp


− 1

eg−1(e− 1)

ff
. (3)

It is easy to see that the term on the right hand side of (3)
converges to 1 if and only if g = g(n) is an arbitrary function
of n such that g(n) → ∞ as n → ∞. The proof of the first
part of the theorem follows by selecting as g(n) an arbitrary



function in o(logn) such that g(n) → ∞ as n → ∞ (e.g.,
g(n) = ln lnn).

The proof that the number of nodes in every cell is Ω(logn)
w.h.p. is similar, using Thm. 5, page 111, of [14].

Before presenting the next lemma, we recall that in this
section we are assuming α > 2.

Lemma 2. Assume that Assumption A1 holds, and let
f(n) in (1) be defined as in Lemma 1. Consider a family
of functions gi(n) defined as follows:

gi(n) =
“ n

lnn

” 1
2−

1
i
.

If i > ψ(α), where ψ(α) is a constant that depends on α
defined as follows:

ψ(α) =
1

2
+

√
9α2 − 20α+ 4

2(α− 2)
,

then the total interference level generated by transmitters at
distance d(n) · r(n) from a certain receiver, with gi(n) �
d(n) = O(gi+1(n)), converges to 0 as n goes to infinity,
w.h.p.

Proof. Let us consider an arbitrary intended receiver u,
and let v be the intended transmitter for u. Since the com-
munication range is r, the distance between u and v is at

most r = r(n) =
q

ln n
n

. Let us consider the contribution to

the interference level measured at u coming from nodes at
distance d(n) · r(n) from u, where d(n) is defined as in the
statement of the lemma. Each of these nodes wj contributes
an interference level of P/(d(n)r(n))α at u, where P is the
transmit power of the node. Since we are considering the
SINR ratio, and P is the same for all the nodes in the net-
work under assumption A1, we can rewrite the interference
level generated at u by any of the wj ’s as 1/d(n)α. Let us
now evaluate how many nodes are within distance d(n) ·r(n)
from u. By using the same cell subdivision as in the proof
of Lemma 1, we can prove that a circle of radius d(n) · r(n)
centered at u intersects Θ(d2(n)) cells of side r(n) (this is
easy to see by circumscribing a square to a circle of radius
d(n) ·r(n)). Hence, by Lemma 1 the number of nodes within
distance d(n) · r(n) from u is Θ(d2(n) logn) w.h.p. In order
to prove the Lemma, we have then to show that

lim
n→∞

d2(n)

dα(n)
lnn = 0

We observe that d2(n) = O(g2
i+1) and dα(n) � gα

i (n), so in
order to prove the lemma it is sufficient to show that

lim
n→∞

g2
i+1(n)

gα
i (n)

lnn = 0

The above can be rewritten as follows:

lim
n→∞

lnn`
n

ln n

´α
2 −

α
i
−1+ 2

i+1

If i > ψ(α), then α
2
− α

i
− 1 + 2

i+1
> 0 and the above limit

is 0. This completes the proof of the lemma.

For the next lemma, we need an additional definition.

Definition 4. Consider an arbitrary set of links E′′ =
{e1, . . . , ek} in the network, and a link ei = (u, v) ∈ E′′.

The set of transmitters for the endpoint u of link e, de-
noted by Tu(E′′), is defined as {x ∈ V |((x, y) ∈ E′′ −
{(u, v)}) and (Pu(x) ≥ Pu(y))}.

Lemma 3. Assume that Assumption A1 holds, and that
f(n) is set as in Lemma 1. Let us consider an approxi-
mate version of the physical interference model, in which the
contribution to the interference level generated by all trans-
mitters beyond distance gi∗(n) · r(n) from a certain receiver
is ignored, where gi∗(n) is defined as in the statement of
Lemma 2 and i∗ = ψ(α) + ε, for some arbitrarily small
constant ε > 0. Then, any set of transmissions which is fea-
sible under this approximate physical interference model is
also feasible under the complete physical interference model
w.h.p.

Proof. Let us consider the SINR at a receiver u, and
consider a hierarchy G of functions gi∗(n), gi∗+1(n), gi∗+2, . . . ,
where gi(n) is defined as in Lemma 2. To ease notation, de-
note with D(u, x) the ball of radius x centered at u, with
Γ(u, 0) the ball of radius gi∗(n)·r(n) centered at u, and with
Γ(u, j + 1) the annulus D(u, gi∗+j+1(n)) − D(u, gi∗+j(n)).
Now, let E′ be an arbitrary set of links in the network. By
hierarchy G, and observing that: 1) the transmitter/receiver
distance is at most r(n), and 2) the distance between a node
in Γ(u, j + 1) and u is at least gi∗+j(n), we can decompose
the contribution to the interference level measured at u ac-
cording to G as follows:

SINR(u) ≥ P

r(n)α
/

24N +
X

w∈Γ(u,0)∩Tu(E′)

P

dα
uw

+

X
w∈Γ(u,1)∩Tu(E′)

P

(gi∗(n)r(n))α
+ . . .

35 ,

where dwu is the distance between w and u. We can rewrite
the right hand term of the above inequality as follows:24Nrα(n)

P
+

X
w∈Γ(u,0)∩Tu(E′)

„
r(n)

duw

«α

+

X
w∈Γ(u,1)∩Tu(E′)

1

gi∗(n)α
+ . . .

35−1

. (4)

By Lemma 2, we know that each of the termsX
w∈Γ(u,j)∩Tu(E′)

1

gi∗+j(n)α

converges to 0 as n → ∞. However, there are an infinite
number of terms in the hierarchy G, so this is not sufficient
to prove that the sum of the terms converges to 0 as well,
which would imply that the contribution to the interference
of the nodes beyond distance gi∗(n) · r(n) can be ignored.

However, let us consider the function ḡ(n) =
`

n
ln n

´ 1
2 . It

follows directly that a ball of radius ḡ(n)·r(n) corresponds to
the entire deployment area (in asymptotic terms), i.e. a ball
with this radius includes all n nodes. Let us now consider

the function giη (n) =
`

n
ln n

´ 1
2−η

, for some η > 0. Consider
the contribution to the interference level of all nodes beyond
distance giη (n) · r(n) from u. Then,

lim
n→∞

n

giη (n)α
= 0 (5)



whenever η < 1
2
− 1

α
. Now, denote by i′ the minimum value

in the sequence i∗, i∗ + 1, i∗ + 2, . . . such that 1
i′ <

1
2
− 1

α
(note that this value always exists and is finite). By (5), we
can truncate the hierarchy at i′. Thus, in the denominator
of (4), the interference contribution of all nodes beyond dis-
tance gi∗(n) · r(n) from u can be expressed as a constant
sum of terms, each of which individually converges to 0 as
n→∞. We have thus proved that the total contribution to
the interference level measured at u due to transmitters lo-
cated beyond distance gi∗(n) · r(n) from u can be neglected
w.h.p. It follows that, w.h.p., any set of feasible transmis-
sions under the approximate physical interference model in
which only the interference generated by all the transmitters
within distance gi∗(n) · r(n) from a receiver is also feasible
under the complete physical interference model in which all
transmitters are considered.

Theorem 1 (Approximation bound). Let G be a com-
munication graph with given link demands and let GPhy be
its corresponding conflict graph. Let Topt be the minimum
possible value of T such that a schedule of length T is feasible
for G under the physical interference model, and let TPhy be
the length of the schedule computed by GreedyPhysical. Un-

der assumption A1,
TPhy
Topt

∈ O(n
1− 2

ψ(α)+ε (logn)
2

ψ(α)+ε ), for

any arbitrarily small constant ε > 0, w.h.p.

Proof. By Lemma 3, for any scheduled link e = (u, v)
we can divide the deployment area into a ‘close-in’ region
(the union B of the balls of radius gi∗(n) ·r(n) centered at u
and v, respectively), in which the transmission along link e
generates non-negligible interference level, and a ‘far away’
region (the rest of the deployment area, i.e. A − B) which
is not affected by the transmission along e. Let us now con-
sider a certain set E′ of links which are assigned the same
slot at the end of GreedyPhysical’s execution. It is imme-
diate to see that E′ is a feasible set of transmissions. Let
{e1, . . . , ek} be the links in E′, and consider the union R of
their ‘close-in’ regions. We now upper bound the maximum
number M of links that can be scheduled concurrently in R
under the physical interference model. Since a node cannot
transmit and receive in the same slot, it follows that an up-
per bound to M is given by the maximum number of nodes
within R, which in turn is upper bounded by k times the
maximum number of nodes within the ‘close-in’ region of e,
for any possible scheduled link e. Observing that the ‘close-
in’ region of any link in E′ is at most as large as the union
of two balls of radius gi∗(n) · r(n), and that each of these

balls contains Θ(gi∗(n)2 logn) = O(n
1− 2

ψ(α)+ε (logn)
2

ψ(α)+ε )
nodes w.h.p. by Lemma 1, we can conclude that M ∈
O(k · n1− 2

ψ(α)+ε (logn)
2

ψ(α)+ε ). Observe that GreedyPhys-
ical schedules k transmissions in the slot, while at most

O(k ·n1− 2
ψ(α)+ε (logn)

2
ψ(α)+ε ) can be scheduled by any algo-

rithm obeying the physical interference model, and that the
above argument can be applied to every set of links sched-
uled by GreedyPhysical in the same slot. Furthermore, by
the nature of GreedyPhysical, either R covers the entire re-
gion or any links outside of R have zero demand (other-
wise GreedyPhysical would have scheduled at least one link
outside of R in the slot). We can therefore conclude that
TPhy
Topt

∈ O(n
1− 2

ψ(α)+ε (logn)
2

ψ(α)+ε ).

The approximation bounds obtained for some values of α
are reported in Table 1. Note that we can get arbitrarily

close to these bounds (to an arbitrarily small constant ε >
0)).

α bound

2.1 n0.714(ln n)0.286

2.5 n0.460(ln n)0.540

3 n0.333(ln n)0.666

4 n0.219(ln n)0.780

5 n0.164(ln n)0.836

6 n0.131(ln n)0.868

Table 1: Approximation bounds for various α.

Theorem 2 (Time complexity). Let G = (V,E) be a
communication graph with traffic demands we on each link;
let n = |V |, m = |E|, and let TD =

P
e∈E we be the total

traffic demand in the network. Then, Algorithm Greedy-
Physical executed on G has O(m · TD · n) time complexity.

Proof. Ordering the links at Step 2 requires O(m logm)
time. For each considered link ei, finding the first wei avail-
able slots requires at most O(TD · n) time, since the max-
imum number of slots in the schedule is TD (which corre-
sponds to scheduling each link sequentially), and verifying
the feasibility of a set of transmissions requires O(n) time
– in fact, since any node can be either a transmitter or a
receiver in a feasible slot, O(n) links are present in a feasi-
ble set of transmissions. Steps 3a and 3b are repeated for
each of the m links, hence the time complexity of step 3 is
O(m ·TD ·n). It follows that Algorithm GreedyPhysical has
O(m(logm+ TD · n)) time complexity, which is equivalent
to O(m · TD · n).

Considering that in the worst case m ∈ O(n2), the time
complexity of GreedyPhysical can be rewritten as O(n3 ·
TD). Concerning TD, we observe the following. Let lmin

and lmax denote the minimum and the maximum of the
load offered by nodes to the network. Under the assump-
tion that lmax

lmin
is upper bounded by a constant, we have that

the aggregated demand on each link of the network is O(n).
Since there are at most O(n2) links in the network, we have
that TD ∈ O(n3), and GreedyPhysical’s time complexity is
O(n6) for arbitrary networks. However, if tree-based routing
is used to convey traffic to the gateway(s), there are O(n)
active links in the network, and TD becomes O(n2), imply-
ing an O(n4) time complexity. If balanced trees are used,
there are O(log(n)) levels in each tree, and the aggregated
traffic at each level is O(n). Hence, TD ∈ O(n logn), and
the time complexity of GreedyPhysical is O(n3 logn).

5. SIMULATION RESULTS

5.1 Simulation Setup
We present two sets of simulation results. The first set

compares the schedule lengths generated by Algorithm Greedy-
Physical and the algorithm of Alicherry, et al. [1], for the
protocol interference model. The second set of results com-
pares the throughput of Algorithm GreedyPhysical against
a real protocol-interference-based approach, namely 802.11.
The throughput simulations were done using the GTNeTS
simulator [24], which is a packet-level simulator with a com-
plete 802.11 MAC model. We did not compare GreedyPhys-
ical against other physical-interference-based scheduling al-
gorithms because, as detailed in related work, the existing



algorithms are not computationally feasible even for a small
number of nodes. We also do not report throughput results
of STDMA with protocol-interference-based scheduling, be-
cause we found that the schedules generated were almost
always infeasible under a realistic interference model and
the resulting throughputs were thus extremely low.

To simulate Algorithm GreedyPhysical, we modified GT-
NeTS to include calculation of physical interference over all
nodes (not just those within the carrier sensing range, as is
done by most network simulators). For both sets of simula-
tions, the approaches were evaluated under the log-normal
shadowing model for signal propagation with path loss expo-
nents of two and three. We also consider both planned (grid)
and unplanned (uniform random distribution) deployments.

The following approach was used to generate the link de-
mands for all simulations. Each node is assigned a demand
that is uniformly distributed from 1 to 10 units. For each
node, a shortest path to a nearest gateway node is found.
The collection of shortest paths forms a set of shortest-path
trees, one for each gateway. Demand is then aggregated on
the links of these shortest-path trees, i.e. the demand on
a link of the tree is the sum of the demands of all nodes
in the sub-tree below that link. Note that we have not
tried to jointly optimize schedule length and routing, nor
to use an interference-aware routing mechanism. Both of
these approaches are the subject of future research and could
improve performance under physical interference even more
compared to the results presented in this paper.

In order to evaluate the approaches for different node den-
sities, we used the standard approach of fixing the num-
ber of nodes and scaling the size of the region in which the
nodes are distributed. We used 100 nodes in the schedule
length and throughput simulations. We also performed a set
of simulations to evaluate the execution time of Algorithm
GreedyPhysical in which the number of nodes ranged up to
2000.

We use the following notation for simulation parameters:
n denotes the number of nodes, GW denotes the number of
gateways, and α represents the path loss exponent.

5.2 Evaluation of Schedule Lengths
95% confidence intervals were computed for all data points

reported in this section. The number of simulations was
chosen in order to reduce the confidence interval to a mean-
ingful value. We first study the performance improvement
of scheduling with physical interference versus node density
for a fixed number of gateways, and we then investigate how
the results change as the number of gateways is varied.

Figure 4 shows the percentage improvement, relative to
the protocol model, in the schedule length generated by Al-
gorithm GreedyPhysical for a path loss of three and several
different scenarios. The scenarios shown in the figure in-
clude a planned grid deployment, an unplanned deployment
with node locations generated uniformly at random and in-
dependently, and the same unplanned deployment but with
heterogeneous transmit powers. Figure 4 shows that perfor-
mance improvements of up to 45% are achieved compared
to the optimistic protocol-model-based schedule. The per-
formance benefits of the physical model become smaller as
the density increases, approaching a steady-state value of
about 7% improvement. For very high densities, all nodes
are within range of all gateways and the schedule generated
under the protocol model is completely serialized. Such high

Figure 4: Schedule Length Improvement in Physical
Interference Model: Log Normal Shadowing, α = 3,
GW = 10, n = 100

Figure 5: Schedule Length Improvement in Physical
Interference Model: Log Normal Shadowing, α = 2,
GW = 10, n = 100

densities generate strong interference in the physical model
also, but we are still able to achieve some concurrency in
transmissions even in this situation. In terms of the differ-
ent scenarios simulated, the relative performance compared
to protocol-based scheduling for the grid deployment and
the random deployment with common transmission power
are similar. The curve for heterogeneous transmission pow-
ers has almost identical shape to the other two but is shifted
right (to higher densities). Due to some nodes having lower
transmission powers, a level of interference that is equiva-
lent to the other two cases at a given density is generated
at a higher density for the heterogeneous case.

Figure 5 shows the schedule length improvement with a
path loss exponent of two. The results are similar to those
for a path loss exponent of three. Peak improvements for the
homogeneous settings are actually slightly higher, around
50%. However, for very high densities, the improvements
are lower, only around 3%. Since a path loss of two is the
worst case for physical interference (it generates the largest
amount of interference for a given transmission), these re-
sults are a strong indicator of the potential performance
benefits of scheduling with physical interference, particu-
larly when node densities are not extremely high.

Figure 6 shows the percentage improvement for physical-
interference-based scheduling versus the number of gateway
nodes, for two different density values and a path loss of
three. The figure shows that adding more gateways, up to a
point, improves performance relative to the protocol model,
particularly for higher densities. For the lower density value,
the performance improvement stays fairly constant above 10
gateways, finally dropping off slightly beyond 70 gateways.



Figure 6: Schedule Length Improvement vs. Num-
ber of Gateways in Physical Interference Model:
Log Normal Shadowing, α = 3, n = 100

Figure 7: Throughput vs. Data Rate for 802.11 and
STDMA with GreedyPhysical Scheduling: Grid,
Log Normal Shadowing, α = 3, GW = 10, n = 100,
density = 8,000 nodes/sq km

At the higher density value, the improvement with 10 gate-
ways is 38%, which increases to a maximum of close to 50%
with 50 gateways. Once each node is within one hop of
a gateway, adding further gateway nodes does not improve
performance relative to the protocol model. This point oc-
curs earlier for higher densities, because each transmission
reaches a higher number of nodes than a transmission that
occurs at a lower density.

5.3 Evaluation of Throughput
The simulations in this section were done with GTNetS

and use a path loss exponent of three, which is more repre-
sentative of real environments than a path loss of two.

Figure 7 shows the average throughput per node of 802.11
and a STDMA approach, which is based on the schedule pro-
duced by Algorithm GreedyPhysical, versus the data rate of
each node for a density of 8,000 nodes/km2. Note that the
figure uses a log-log scale. As can be seen in the figure, the
throughputs of the approaches are identical at lower data
rates, as is to be expected. However, with 802.11, the net-
work reaches saturation significantly earlier and at a much
lower throughput than with STDMA with GreedyPhysical
scheduling. The throughput of STDMA is approximately
three times that of 802.11 for high data rates.

Figure 8 shows the average throughputs of 802.11 and
STDMA versus density, again on a log-log scale. For densi-
ties in the range of 1,400 to 10,000 nodes/km2, STDMA with
GreedyPhysical scheduling has average throughputs from
1.5 to 2 times better than are achieved with 802.11. At
very high densities, STDMA’s average throughput is about

Figure 8: Throughput vs. Density for 802.11 and
STDMA with GreedyPhysical Scheduling: Grid,
Log Normal Shadowing, α = 3, GW = 10, n = 100,
data rate = 1MBps

Figure 9: Throughput vs. Data Rate for 802.11 and
STDMA with GreedyPhysical Scheduling: Uniform
Random, Log Normal Shadowing, α = 3, GW = 10,
n = 100, density = 8,000 nodes/sq km

25% higher than that of 802.11. Figure 8 also illustrates an
important difference between 802.11 and STDMA for wire-
less mesh networks, related to fairness. The vertical bars in
the figure show the range of node throughputs for 802.11,
indicating that the minimum throughputs are either zero or
very close to zero, while some nodes get many times the
mean value. With 802.11, nodes that are far from a gate-
way are starved, while ones that are one hop from a gateway
get very high throughput. This behavior is contrasted with
that of the STDMA approach where every node achieves the
same throughput.

Figures 9 and 10 show the throughput vs. data rate and
throughput vs. density curves for the uniform random node
deployment. The results for uniform random deployments
are similar to those produced with the grid deployment. The
throughput vs. data rate figure matches fairly closely Fig-
ure 7 for grid deployments. In this case, the performance
of STDMA with physical scheduling is about twice that of
802.11 at high data rates, which is somewhat lower than
with grid deployments. The throughput vs. density curves
for uniform random deployments are very close to those for
grid deployments. Again, the STDMA throughput is as high
as twice that of 802.11 and at steady-state densities, it is
25% higher. The fairness problem with 802.11 is clearly
illustrated in this scenario, as well.

These GTNeTS results are somewhat optimistic for STDMA
relative to a practical setting in that they ignore overhead for



Figure 10: Throughput vs. Density for 802.11 and
STDMA with GreedyPhysical Scheduling: Uniform
Random, Log Normal Shadowing, α = 3, GW = 10,
n = 100, data rate = 1MBps

Figure 11: Execution Time of Algorithm Greedy-
Physical vs. Number of Nodes: Uniform Random,
Log Normal Shadowing, α = 3, GW = n/10

achieving synchronization (required in case GPS is not avail-
able on all nodes) and the scheduler has global information
about the topology and link demands. Nevertheless, the re-
sults suggest that significant throughput improvements rel-
ative to CSMA/CA (up to about three times) might be
possible in certain situations if effective and low-overhead
distributed scheduling protocols can be developed.

5.4 Execution Time of GreedyPhysical
One of the primary advantages of our scheduling approach

is that it is the first physical-interference-based scheduler
with a proven polynomial-time complexity. Figure 11 shows
the execution time of Algorithm GreedyPhysical vs. the
number of nodes for four different node densities. Even for
2000 nodes, the execution time is only about 2.5 minutes.

The execution time in Figure 11 seems to exhibit a poly-
nomial growth rate as analyzed in Section 4. That analysis
also pointed out that execution time is sensitive to the link
demands. Figure 12 shows the total demand correspond-
ing to the execution time values reported in Figure 11. At
the lowest density, paths to a gateway require multiple hops
for many nodes and this results in aggregated demand on
the links near the gateway. This increases total demand
substantially in this case and drives up the execution time
accordingly. For the three higher densities, most nodes were
within one hop of a gateway and, as a result, total demand
remained lower, as did execution time.

Figure 12: Total Demands for Figure 11

6. CONCLUSION
We have presented a polynomial-time algorithm for schedul-

ing under the physical interference model, proved an approx-
imation bound on its performance relative to optimal, and
evaluated it extensively through simulation under represen-
tative wireless mesh network scenarios. There are several
interesting avenues of future work opened by this research.
The first is the possibility to integrate our efficient schedul-
ing algorithm with routing to provide even better perfor-
mance. One could consider these as a joint optimization
problem on the length of the schedule, or simply use an
interference-aware routing algorithm instead of the current
minimum-hop routing algorithm employed in our work. An-
other interesting possibility is to develop a distributed sched-
uler based on our algorithm. While distributed scheduling
algorithms that try to account for interference exist, none of
these are based on a centralized algorithm with proven per-
formance. A fundamental problem facing such an approach
is how to gather interference measurements from nodes for
which communication links do not exist. We have shown
in this work that such nodes can not be safely ignored in
constructing a schedule, and yet no work that we know of
has addressed this problem.
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