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Abstract

Genome-wide association analysis of cohorts with thousands of phenotypes is computationally

expensive, particularly when accounting for sample relatedness or population structure. Here we

present a novel machine learning method called REGENIE for fitting a whole genome regression

model that is orders of magnitude faster than alternatives, while maintaining statistical efficiency.

The method naturally accommodates parallel analysis of multiple phenotypes, and only requires

local segments of the genotype matrix to be loaded in memory, in contrast to existing alterna-

tives which must load genomewide matrices into memory. This results in substantial savings in

compute time and memory usage. The method is applicable to both quantitative and binary phe-

notypes, including rare variant analysis of binary traits with unbalanced case-control ratios where

we introduce a fast, approximate Firth logistic regression test. The method is ideally suited to take

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.19.162354doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.19.162354
http://creativecommons.org/licenses/by-nc-nd/4.0/


advantage of distributed computing frameworks. We demonstrate the accuracy and computational

benefits of this approach compared to several existing methods using quantitative and binary traits

from the UK Biobank dataset with up to 407,746 individuals.

Introduction

Since the first large genome-wide association studies1 were carried out in 2007, there has been

a steady increase in sample sizes, now reaching 100,000s of individuals, enabled by a parallel

stream of methods with ever increasing computational efficiency. Initial methods used simple

linear regression and logistic regression using programs such as SNPTEST1 and PLINK2 (see

URLs), but these have largely been replaced by the use of linear mixed models (LMMs) and

closely related whole-genome regression (WGR) models. These approaches have been shown to

account for population structure and relatedness, and offer advantages in power by conditioning

on associated markers from across the whole genome3–7.

Initial methods were focused on quantitative traits3 for studies with a few thousand samples

and assumed a Gaussian distribution on SNP effect sizes. These approaches were extended to

datasets including 10,000s of individuals by computational strategies that avoided repeated matrix

inversions when testing each SNP7,8. Building on work from the plant and animal breeding liter-

ature9,10, even more efficient whole genome regression approaches were developed that allowed

for more flexible (non-Gaussian) prior distributions of SNP effect sizes11,12. The BOLT-LMM

method is one commonly used implementation of this approach13,14. In addition, the fastGWA
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LMM approach was recently introduced which reduces the computational time by using a sparse

representation of the genetic correlations present in the sample15. Extensions that allow for general

gene-environment effects to be inferred have also been developed16. For simple linear regression

of quantitative traits, the BGENIE method introduced the idea of simultaneous analysis of mul-

tiple quantitative traits, which required only a single pass through the genetic data and provided

substantial speed-ups over PLINK17.

BOLT-LMM and fastGWA have also been applied to binary (case-control) traits, when the

case-control ratio is reasonably balanced and relatively common variants are tested for association.

However, these approaches break down when applied to unbalanced case-control studies tested

and rarer variants, such as those produced through exome sequencing studies. The SAIGE method

implements a logistic mixed model approach that explicitly models the binary nature of the trait18.

When testing variants, SAIGE uses a saddle pointapproximation (SPA) to the test statistic null

distribution, and this is quite effective at controlling Type I error.

The BOLT-LMM, fastGWA and SAIGE methods all proceed in two main steps that are ap-

plied one trait at a time. In Step 1, a model is fit to a set of SNPs from across the whole genome,

such as all the SNPs on a genotyping array. The resulting model fit is then used to create either a

prediction of individual trait values based on the genetic data (in BOLT-LMM and SAIGE) or an

estimate of the trait variance-covariance matrix (in fastGWA). In Step 2, a larger set of imputed

or sequenced variants on the same set of samples are tested for association, conditional upon the

predictions or variance-covariance matrix in Step 1. This is usually carried out using the so-called
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LOCO (leave one chromosome out) scheme, where each imputed SNP on a chromosome is tested

conditional on the Step 1 predictions ignoring that chromosome. This approach avoids proximal

contamination, which can reduce association test power8,19.

In this paper, we propose a new machine learning method within this 2-step paradigm, called

REGENIE, that is substantially faster than existing approaches. Supplementary Figure S1 pro-

vides an overview of our REGENIE method. In Step 1, array SNPs are partitioned into consecutive

blocks of B SNPs and from each block a small set of J ridge regression predictions are generated.

Within each block, the ridge regression predictors each use a slightly different set of shrinkage

parameters. The idea behind using a range of shrinkage values is to capture the unknown number

and size of truly associated genetic markers within each window. This approach is equivalent to

placing a Gaussian prior on the effect sizes of the SNPs in the block and finding the maximum a

posteriori (MAP) estimate of the effect sizes and the resulting prediction. One can think of these

predictions as local polygenic scores that account for local linkage disequilibrium (LD) within

blocks. Combining the predictions together from across the genome results in a large reduction

in the size of the genetic dataset. In this paper, we use B = 1000 and J = 5 and this reduces

a set of M = 500, 000 SNPs to M = 2, 500 predictors. The method then uses a second ridge

regression (linear or logistic depending on the phenotype) within a cross-validation (CV) scheme

(either K-fold CV or leave-one-out CV) to combine the M predictors into a single predictor, which

is then decomposed into 23 chromosome predictions for the LOCO approach. These are then used

as a covariate in Step 2 when each imputed SNP is tested. This approach completely decouples

Step 1 and Step 2, so that the Step 1 predictions can be re-used when running Step 2 on distinct
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sets of markers (imputed and exome markers for example) or even when distinct statistical tests at

Step 2 are needed.

This approach exhibits a number of desirable properties. First, many of the calculations in

Steps 1 and 2 can be carried out for multiple traits in parallel. This leads to substantial gains in

speed since the files containing the SNPs in Step 1 and SNPs in Step 2 are read only once, rather

than repeatedly for each trait. In practice, we find that for Step 1 REGENIE can be over 150x

faster than BOLT-LMM and 300x faster than SAIGE when analyzing 50 UK Biobank quantitative

and binary traits with up to 407,746 samples (Tables 1-2). For Step 2, the differences between

methods are less extreme and depend upon the type of trait, test statistic and implementations of

file format reading and parallelization schemes, but we show that REGENIE is still substantially

faster than other approaches. In the Supplementary Methods and Supplementary Table S1 we

provide an analysis of the computational complexity of REGENIE.

Second, in Step 1 of REGENIE, only B SNPs need to be stored in memory at once, which

leads to a low memory footprint. Third, the method is applicable to both quantitative and binary

traits, and for binary traits we have implemented a new, fast Firth logistic regression test, as well

as a saddle pointapproximation (SPA) test. Finally, our algorithm is ideally suited to implemen-

tation on distributed computing frameworks such as Apache Spark, where both the data set and

application of the method and computation can be parallelized across a large number of machines.

The main implementation of REGENIE is a standalone C++ program, but these methods have also

been implemented for quantitative traits in the Glow project, which is based on Apache Spark (see
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URLs). All of the main experiments and results in the paper were obtained using the C++ program.

Results

Quantitative Traits Figure 1 shows the results of applying REGENIE, BOLT-LMM and fast-

GWA to 3 quantitative phenotypes measured on white British UK Biobank participants (LDL,

N = 389, 189; Body mass index, N = 407, 609; and Bilirubin, N = 388, 303) where Step 2 test-

ing was performed on 9.8 million imputed SNPs (see Supplementary Methods). The Manhattan

plots for all three phenotypes show good agreement between the methods (see also Supplemen-

tary Figure S2) with both REGENIE and BOLT-LMM showing increased power gains relative to

fastGWA at known peaks of association.

To demonstrate the advantages of analyzing multiple traits in parallel using REGENIE, we

compared it to BOLT-LMM and fastGWA on a set of 50 quantitative traits from the UK Biobank,

each with a distinct missing data pattern (see Supplementary Table S2). While REGENIE can

analyze all traits at once within a single run of the software, the BOLT-LMM and fastGWA soft-

ware must be run once for each of the 50 traits. Across all 50 traits, we find that REGENIE and

BOLT-LMM p-values are in very close agreement (see Supplementary Figure S3), but often the

fastGWA p-values look noticeably deflated compared to REGENIE and BOLT-LMM. The com-

putation time and memory usage of the 3 methods is given in Table 1. The table shows that in

this 50 traits scenario REGENIE is 151x faster than BOLT-LMM in elapsed time for Step 1 and

11.5x faster for Step 2, and this translates into >30x overall speed-up in terms of elapsed time.
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(a)

(b)

(c)

Figure 1: Comparison of methods on quantitative traits from UK Biobank Results from RE-

GENIE, fastGWA and BOLT-LMM on white British samples for (a) LDL (N = 389, 189), (b) BMI

(N = 407, 609) and (c) Bilirubin (N = 388, 303). Tests were performed on 9.8M imputed SNPs

with minor allele frequency above 1%. The lower dashed horizontal line represents the genome-

wide significance level of 5× 10−8 and the upper dashed horizontal line represents the breakpoint

for the different scaling of the y-axis. The dashed vertical lines separate the 22 chromosomes.
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Similar to BOLT-LMM, step 2 of REGENIE has been optimized for input genotype data in BGEN

v1.2 format which helped significantly reduce the runtime. In addition, REGENIE has a maximum

memory usage of 12.9 GB, which is mostly due to REGENIE only reading a small portion of the

genotype data at a time, whereas BOLT-LMM required 50GB. In order to keep memory usage low

when analyzing the 50 traits, within-block predictions are stored on disk and read separately for

each trait working across blocks. The added I/O operations incur a small cost on the overall run-

time but significantly decrease the amount of memory needed by REGENIE (see Supplementary

Table S3). When running analyses on cloud-based services such as Amazon Web Services (AWS),

these time and memory reductions both contribute to large reductions in cost, as cheaper AWS in-

stance types can be used and for less time. In the same 50 traits scenario, we find that REGENIE

is 2.8x faster than fastGWA, but fastGWA is very memory efficient and uses only a maximum of

2GB.

Binary Traits In addition to analyzing quantitative traits, REGENIE was also designed for the

analysis of binary traits, and it is in this setting that some of the largest benefits of using REGENIE

occur. Analysis of an unbalanced binary trait can lead to elevated Type 1 error if the imbalance

is not accounted for in some way18. REGENIE includes implementations of both Firth and SPA

corrections to also be able to handle this scenario (see Methods). Figure 2 (see also Supplemen-

tary Figure S4) show the results of applying REGENIE, BOLT-LMM and SAIGE to 4 binary

phenotypes measured on white British UK Biobank participants (coronary artery disease [CAD],

N = 352, 063; glaucoma, N = 406, 927; colorectal cancer , N = 407, 746; and thyroid cancer,

N = 407, 746) where Step 2 testing was performed on 11.6 million imputed SNPs (see Supple-
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Method Step Benchmark

CPU Time (hours) Elapsed time (hours) Memory usage (GB)

REGENIE MT 1 111 12 12.9

REGENIE MT-LOOCV 1 192 19 23.6

REGENIE MT 2 1,108 75 6.0

fastGWA 0∗ 454 201 −

fastGWA 1-2 3,546 243 2.0

BOLT-LMM 1

39,806

1,815

50

BOLT-LMM 2 863

Table 1: Comparison of runtimes of REGENIE, fastGWA, and BOLT-LMM when analyz-

ing 50 quantitative traits with UK Biobank data. For REGENIE and BOLT LMM, 469,336

LD-pruned SNPs were used as model SNPs when fitting the null model (step 1). For fastGWA,

these SNPs were used to compute the sparse GRM with the default relatedness threshold of 0.05

(step 0∗). Tests were performed on 11.4M imputed SNPs (step 2). For step 1, REGENIE was

run in multi-trait (MT) mode analyzing all traits together at once using 5-fold cross-validation

(REGENIE-MT) as well as using leave-one out cross validation (REGENIE-LOOCV). All runs

were done on the same computing environment (16 virtual CPU cores of a 2.1GHz AMD EPYC

7571 processor, 64GB of memory and 600GB solid-state disk) except for the GRM calculation

required for fastGWA, where we used 250 partitions in a computing environment with 4 virtual

CPU cores and 8GB of memory. The BGEN file input needed for step 2 was split by chromosome

so fastGWA had to be ran separately for each chromosome being tested. The sample sizes for the

50 traits range from 332,739 to 407,662 individuals (see Supplementary Table S2).
9
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mentary Methods). All four approaches show very good agreement for the most balanced trait

(CAD; case-control ratio=1:11), but as the fraction of cases decreases BOLT-LMM tends to give

inflated test statistics, as expected18. However both REGENIE with Firth and SPA corrections,

as well as SAIGE, which uses SPA correction, are all robust to this inflation and show similar

agreement for the associations detected.

The SPA and Firth corrections are fundamentally different. The SPA approach calculates a

standard score test statistic and approximates the null distribution whereas the Firth correction uses

a penalized likelihood approach to estimate SNP effect size parameters in an asymptotic likelihood

ratio test. While both provide good control of Type 1 error for rare binary traits, we found that

SPA approach implemented in SAIGE can result in very inflated effect size estimates (see Sup-

plementary Figure S5). However, the Firth correction used in REGENIE not only provides good

calibration of the test, but also gives effect size estimates and standard errors which are robust to

inflation due to low minor allele counts (see Supplementary Table S4). The fast Firth correction

that we developed not only leads to similar effect sizes and p-values compared to the exact Firth

correction (see Supplementary Figures S7-S8), but is ∼ 60 times faster (see Supplementary

Table S5).

To assess the computational resources needed with a larger number of traits being analyzed,

we again ran REGENIE using Firth/SPA correction and SAIGE on a set of 50 binary traits from

the UK Biobank with a range of different case-control ratios and distinct missing data patterns (see

Supplementary Table S6). The computation time and memory usage details are given in Table 2.
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For Step 1, we find that REGENIE (using the leave-one-out CV scheme) was about 350

times faster (777 vs 275,070 CPU hours) and required only 40% of the memory used by SAIGE

(19.5GB versus 49GB). In Step 2, REGENIE Firth and SPA were 2x and 3x faster than SAIGE

in CPU time, respectively, but were 21x and 34x faster than SAIGE in elapsed time, respectively,

which suggests that REGENIE makes better use of parallelization in this step. Overall, in this 50

trait setting, REGENIE Firth was 8x faster than SAIGE in CPU hours and 26.8x faster in elapsed

time. The corresponding carbon footprint estimated using Green Algorithms (see URLs) is shown

in Supplement Table S7, where using REGENIE reduces the CO2 footprint by more than 85%

compared to SAIGE. Supplementary Figures S9-S14 compare the accuracy of REGENIE and

SAIGE across all 50 traits and show good agreement.

A large portion of the timings for Step 1 of SAIGE is spent fitting the null model following a

LOCO scheme, where for each left out chromosome a logistic mixed model is fitted. While the use

of the LOCO scheme is well established in the literature19 and is used by default in BOLT-LMM13

for quantitative traits, it has been suggested that for binary traits it makes little difference18. Our

experiments suggest it can be very beneficial for binary traits, as demonstrated in Supplementary

Figure S6 where the CAD phenotype is analyzed using SAIGE with and without using LOCO.

Cross validation scheme We implemented both a K-fold CV scheme and a leave-one-out CV

(LOOCV) scheme in Step 1 for both quantitative and binary traits (see Methods). We compared

the computational performance and accuracy of both approaches. On both quantitative and binary

traits both approaches provide almost identical accuracy (see Supplementary Figures S15-S16).
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Method Step Benchmark

CPU Time (hours) Elapsed time (hours) Memory usage (GB)

REGENIE MT 1 1,590 117 11.8

REGENIE MT-LOOCV 1 777 108 19.5

REGENIE MT-FIRTH 2 45,427 3,240 7.7

REGENIE MT-SPA 2 31,216 2,002 9.1

SAIGE* 1 275,070 21,428 49

SAIGE* 2 94,347 68,437 2.1

Table 2: Comparison of runtimes of REGENIE-FIRTH, REGENIE-SPA, and SAIGE when

analyzing 50 binary traits with UK Biobank data. 469,336 LD-pruned SNPs were used as

model SNPs when fitting the null model (step 1). Tests were performed on 11.8M imputed SNPs

(step 2). For step 1, REGENIE was run in multi-trait (MT) mode analyzing all traits together at

once using 5-fold cross-validation (REGENIE-MT) as well as using leave-one out cross validation

in step 1 (REGENIE-LOOCV). For step 2, REGENIE was run using Firth correction (REGENIE

MT-FIRTH) and using saddle pointapproximation (REGENIE MT-SPA). Step 1 of SAIGE did

not finish for 2/50 traits as it exceeded the 4-week limit, so SAIGE step 2 reported timings are

projections based on timings of the completed runs. All runs were done on the same computing

environment (16 virtual CPU cores of a 2.1GHz AMD EPYC 7571 processor, 64GB of memory

and 600GB solid-state disk). The sample sizes for the 50 traits range from 381,591 to 407,746

individuals (see Supplementary Table S6)
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On the 50 quantitative traits dataset LOOCV required 192 CPU hours and 23.6GB of memory,

whereas K-fold CV required 111 CPU hourse and 12.9GB of memory (see Table 1). On the 50

binary traits dataset LOOCV approach requires ∼ 50% of the CPU time used by the K-fold CV

approach (777 CPU hours versus 1,590 CPU hours) and 65% more memory, but the elapsed time

of the two methods is similar (108 hours versus 117 hours). The LOOCV approach requires fewer

relatively expensive logistic regression calls compared to K-fold CV, but the extra calls needed are

easily parallelized across multiple cores.

Missing phenotype data When analyzing multiple traits together with different missing data pat-

terns, we use mean imputation of missing phenotype values in Step 1, but only keep samples with

non-missing phenotypes in Step 2. Supplementary Figures S17, S18 and S19 compares this ap-

proximate method to an exact approach that only uses samples with non-missing phenotypes in

both Step 1 and Step 2, and shows they are almost identical for both quantitative and binary traits.

Implementation using Apache Spark A key advantage of REGENIE is that it can be naturally

parallelized over many independent machines using a distributed computing engine such as Apache

Spark or Apache Hadoop. By decomposing array SNPs into a block matrix, the subsequent ridge

regression and model fitting steps can be attacked with a map-reduce strategy that allows any

number of machines to operate independently on single blocks at a time, each of which are of

trivial size relative to the full matrix of genotypes. Furthermore, by keeping the block dimensions

constant, this strategy allows the method to scale linearly with number of samples or number of

SNPs up to arbitrarily large datasets. We implemented a version of this algorithm for quantitative

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.19.162354doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.19.162354
http://creativecommons.org/licenses/by-nc-nd/4.0/


traits in the Glow project (see URLs), an open source toolkit for genomic data analysis in Apache

Spark. Full details are given in the Supplementary Methods. When applied to the same set of

50 UK Biobank quantitative traits as reported in Table 1, this approach required 89 hours of CPU

uptime and 20.8 minutes of elapsed time for Step 1 when using a Spark cluster of 16 machines,

each with 16 cores and 128 GB of RAM, for a total of 256 executors. In terms of elapsed time,

this compares favourably to the C++ implementation of REGENIE, which required 12 hours (see

Table 1).

Inter-chromosomal LD in the UK Biobank While developing REGENIE, we identified an anomaly

in the UK Biobank array genotypes that led to reduced performance of some of the LMMs being

tested. We observed a sizeable number of SNP pairs that exhibited correlation across chromosome

boundaries. This issue has been identified independently by other researchers (see URLs).

We refer to this as inter-chromosome LD (ICLD). The presence of such SNPs breaks the

assumptions of the LOCO scheme used by many LMM and WGR methods, and it can result in

loss of power when any one of the SNPs in a pair is associated with a trait. For example, in a test

to detect a truly associated SNP that is affected by ICLD, a typical LOCO scheme would remove

some or all of that effect when computing phenotypic residuals, as the variant in the pair on the

other chromosome would be kept in the null model.

We found that REGENIE can be more robust to ICLD than BOLT-LMM. The effects of SNPs

on the trait are first combined within a block and so, if such a pair of ICLD variants were present,

the effect of the variants (if large) would be dampened by taking linear combination across the
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effects of all SNPs in the respective blocks they belong to. As the LOCO scheme in REGENIE is

based on the block effects rather than individual SNP effects, REGENIE would then be less prone

to a significant decrease in power.

An example of a chromosomal SNP pair found was chromosome 6 and chromosome 15,

where a pseudogene USP8P1 of USP8 on chromosome 15, a gene involved in cell proliferation,

is upstream of HLA-C in the major histocompatibility complex (MHC) region, which can harbour

large genetic associations for many traits and diseases. In the analysis of LDL with UKB unrelated

white British samples, ignoring ICLD resulted in lower strength of association from BOLT-LMM

when testing imputed SNPs on chromosome 6 compared to REGENIE. However, once the pairs of

SNPs involved in ICLD were excluded from the array SNPs used in step 1, BOLT-LMM resulted

in similar p-values as REGENIE (see Supplementary Figure S20). A full analysis of ICLD in the

UK Biobank data resulted in 3,697 SNP-pairs with significant ICLD (Bonferroni corrected) at the

5% significance level. Many of these pairs are explained due to the presence of gene/pseudogene

pairs (see Supplementary Methods and Supplementary Tables S8,S9 and 10 and Supplemen-

tary Figure S21).
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(a)

(b)

(c)

(d)

Figure 2: Comparison of methods on binary traits from UK Biobank Results from REGENIE

using Firth and SPA correction, BOLT-LMM and SAIGE on white British samples are shown for

(a) coronary artery disease (case-control ratio=1:11, N = 352, 063), (b) glaucoma (case-control

ratio=1:52, N = 406, 927), (c) colorectal cancer (case-control ratio=1:97, N = 407, 746), and

(d) thyroid cancer (case-control ratio=1:660, N = 407, 746). Tests were performed on 11 million

imputed SNPs. The lower dashed horizontal line represents the genome-wide significance level of

5× 10−8 and the upper dashed horizontal line represents the breakpoint for the different scaling of

the y-axis. The dashed vertical lines separate the 22 chromosomes.
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Discussion

In this study, we present a machine learning method that implements simultaneous whole genome

wide regression of multiple quantitative or binary traits. The method uses a strategy that splits

computation up into blocks of consecutive SNPs and does not require loading a genome wide set

of SNPs into memory. This approach also facilitates analysis of multiple traits in parallel. Overall

this results in substantial computational savings in terms of both CPU time and memory usage

compared to existing methods such as BOLT-LMM, fastGWA and SAIGE. As the number of large

scale cohorts with deep phenotyping grows, this approach will likely become even more relevant.

The parallel nature of the approach is ideally suited to distributed environments such as Apache

Spark. We have developed a first version of REGENIE for quantitative traits within the Glow

project, as well the full version of the method for quantitative and binary traits in a standalone C++

program with source code that is openly available.

One of the biggest computational savings occurs when REGENIE is applied to binary traits

and compared to SAIGE. In this setting, we have proposed an approximate Firth regression ap-

proach, which we show is almost identical to an exact Firth regression implementation, and much

faster. This approach has the added benefit that it avoids the parameter estimate inflation that

occurs when SAIGE is used to analyze ultra-rare variants.

The approach used in REGENIE is inspired by, but not the same as, the machine learning

approach of stacked regressions20. REGENIE uses ridge regression to combine a set of correlated

predictors, whereas the Breiman’s stacking approach used non-negative least squares (NNLS) to
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combine a set of highly correlated predictions in an ensemble learning approach. We have not

yet investigated whether NNLS might have advantages here. Additional changes to the method to

allow for more flexible priors on the effect size of predictors would also be possible.

There are many potential avenues for development of this approach. It will be easy to ex-

pand the functionality to include tests such as SNP × covariate interactions16, variance tests21 and

a whole range of gene-based tests22–24. An advantage of analyzing multiple traits simultaneously

is that multi-trait tests will be relatively easy to implement in Step 2. Multivariate probit regres-

sion for binary traits25, multivariate linear regression for quantitative traits26 and multi-trait burden

tests27 will all be straight-forward to implement, with substantial opportunities for application on

the cohorts being collected at the Regeneron Genetics Center and around the world.

We also plan to investigate whether REGENIE can be extended to handle time-to-event data28

and multinomial regression in a mixed model framework29,30, and also the combined analysis of

quantitative and binary traits. We suspect it may also be possible to leverage the REGENIE output

to estimate SNP heritability, polygenic scores and carry out multi-trait missing data imputation

using mixed models on a scale not possible using existing approaches31.

Cohorts will continue to grow in terms of sample size, the number of phenotypes and the

number of variants available for testing, either via imputation from whole genome sequenced ref-

erence panels or via direct whole genome sequencing of study samples. It seems clear to us that

Step 1 of the WGR paradigm is now more than computationally tractable using the REGENIE

approach. However, further advances will be needed to reduce the computation in Step 2 as whole
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genome sequencing produces ever increasing numbers of rare variants. These variants can be

stored efficiently using the sample indices of rare allele carriers and taking advantage of this can

substantially reduce the cost of computation of sums and products needed for test statistic calcula-

tions.

Online Methods

Whole genome linear regression

In a sample of N individuals, let y denote the N -element phenotype vector, G represent the N×M

genotype matrix, where Gij ∈ {0, 1, 2} is the allele count for individual i at the j-th marker, and

X represent the N × C matrix of covariates (including an intercept) which is assumed to be full

rank. We consider a whole genome regression model

y = Xα+GSβ + ǫ (1)

α are the fixed covariate effects, GS is a standardized version of G where the genotypes have been

transformed to have mean 0 and variance 1, β ∼MVN(0, σ2
g IM), and ǫ ∼MVN(0, σ2

e IN). This

is the standard infinitesimal model, which can also be re-written as

y = Xα+ g + ǫ (2)

with g ∼ MVN(0, σ2
aK), where K = GSG

T
S/M is usually referred to as a genetic relatedness

matrix (GRM) or empirical kinship matrix, and σ2
a = Mσ2

g is the additive polygenic variance.

Covariates effects are removed from both the trait and the genotypes in Eq(1) by first com-
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puting an orthonormal basis for the covariates, projecting the genotypes and the trait onto that

basis, and then subtracting out the resulting vectors to obtain the residuals. This is equivalent to

using a projection matrix PX = IN −X(XTX)−1XT with

ỹ = PXy (3)

G̃ = PXGS (4)

Both the genotype and phenotype residuals are then scaled to have variance 1.

Stacked block ridge regression

Fitting Eq(1) is computationally intensive since G has typically many hundreds of thousands of

columns. Instead, for Step 1, we transform the model to

ỹ = Wη + ǫ (5)

where W is a matrix derived from G with many fewer columns. Specifically, we divide G into

blocks of B consecutive and non-overlapping SNPs, and from each block we derive a small set of

predictors, using ridge regression across a range of J shrinkage parameters (see Supplementary

Methods). The idea behind using a range of shrinkage values is to capture the unknown number

and size of truly associated genetic markers within each window. This approach is equivalent to

placing a Gaussian prior on the effect sizes of the SNPs in the block and finding the maximum a

posteriori (MAP) estimate of the effect sizes and the resulting prediction. Another approach would

be to integrate out the effect sizes over the Gaussian prior to obtain the Best Linear Unbiased

Prediction (BLUP)32, but we have not investigated that approach in this paper.
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The ridge predictors are re-scaled to have unit variance and are stored in place of the genetic

markers in matrix W, providing a large reduction in data size. If, M=500,000 and B=1,000 and

J=5 shrinkage parameters are used, then the reduced dataset will have JM/B = 2,500 predictors.

We refer to this part of the method as the level 0 ridge regression.

In order to keep memory usage low when analyzing multiple traits, the within-block predic-

tions are stored on disk and read separately for each trait when fitting models at level 1 (see below).

The added I/O operations incur a small cost on the overall runtime and significantly decreases the

amount of memory needed.

The ridge regression takes account of linkage disequilibrium (LD) within each block, but

not between blocks. One option that we have considered, but not implemented yet, is to condition

the ridge regression on the estimates from the previous block, and this may better account for LD

across block boundaries.

The predictors in W will all be positively correlated with the phenotype. Thus, it is important

to account for that correlation when building a whole genome wide regression model. The predic-

tors will also be correlated with each other, especially within each block, but also between blocks

that are close together due to LD. We use a second level of ridge regression on W for a range of

shrinkage parameters and choose a single best value using K-fold cross validation scheme20. This

assesses the predictive performance of the model using held out sets of data, and aims to control

any over-fitting induced by using the first level of ridge regression to derive the predictors (see

Supplementary Methods). We refer to this part of the method as the level 1 ridge regression.
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The result of this model fit is a single N × 1 predicted phenotype ŷ∗, and this can be par-

titioned into 22 leave-one-chromosome-out (LOCO) predictions (denoted ŷ∗
LOCO) which are used

when testing SNPs for association in Step 2 to avoid proximal contamination (see Supplementary

Methods).

Association testing

In Step 2, when testing for association of the phenotype with a variant g, we consider a simple

linear model

ỹresid,LOCO = g̃β + ǫ̃ (6)

where ỹresid,LOCO = ỹ − ŷ∗
LOCO, refers to the phenotype residuals where the polygenic effects

estimated from the null model with LOCO have been removed, g̃ = PXg are residuals obtained

from removing covariate effects from the tested variant, and ǫ̃ = PXǫ with ǫ ∼ MVN(0, σ2
e IN).

A score test statistic for H0 : β = 0 is

Tlinear =
g̃T ỹresid,LOCO

[σ̂2
e · g̃

T g̃]1/2
(7)

where we use σ̂2
e = ||ỹresid,LOCO||

2
2 /N (note that in large scale applications, N is very large so that

N −C ≈ N ). In Eq(7), when estimating the variance of the term in the numerator, we assume that

the polygenic effects are given which leads to the denominator involving only O(N) computation.

While other methods make use of a calibration factor in the denominator to account for the variance

of the polygenic effects13,18,33, we found in applications that the results obtained using this simple

form match up closely to those using a calibration factor. Finally, we use a normal approximation
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T 2
linear ∼ χ2

1 to estimate the p-value. As with Step 1 above, the REGENIE software reads the genetic

data file in blocks of B SNPs, and these are processed together, taking advantage of parallel linear

algebra routines in the Eigen library.

Multiple traits

Both Step 1 and Step 2 above are easily extended so that multiple phenotypes can be processed

in parallel. The genetic data files in both steps can be read once, in blocks of B SNPs, which

means the method uses a small amount of memory. In addition, the linear algebra operations for

the covariate residualization, ridge regression and association testing can be shared across traits.

This is similar to the approach implemented in the BGENIE software (see URLs) for single SNP

linear regression analysis17. Fine details of the multiple phenotype approach are given in the Sup-

plementary Methods.

Binary traits

For binary traits we use exactly the same level 0 ridge regression approach, which effectively treats

the trait as if it were quantitative. However, at level 1, instead of a linear regression in Eq(5) we

use logistic regression

logit (pi) = XT
i α+WT

i η, i = 1, . . . , N (8)
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where pi = E(yi) = P(yi = 1) with yi indicating the case status of the i-th individual , Xi is the

covariate vector for the i-th inidividual, α are the fixed covariate effects, Wi are the (BR) within-

block predictions for the i-th individual, and η = (η1, . . . , ηBR)
T with ηi

i.i.d.
∼ N(0, 1/ω). This

model corresponds to logistic regression with ridge penalty applied to the effects of within-block

predictions in W.

We approximate the model in Eq(8), by first fitting a null model for each trait that only has

covariate effects

logit (pi) = XT
i α, i = 1, . . . , N (9)

and then using the resulting estimated effects as an offset in the model in Eq(8),

logit (pi) = XT
i α̂+WT

i η, i = 1, . . . , N (10)

where α̂ represent the effects estimated in Eq(9). As covariate effects are not expected to strongly

change (unless correlation between covariates and block predictions are very large), this approxi-

mation is expected to work well in most analyses.

As with quantitative traits, we use K-fold cross validation to choose the level 1 ridge re-

gression parameter. However, for extremely unbalanced traits, it may happen that one of the folds

contains no cases. To avoid this situation we also implemented an efficient version of leave one out

cross validation (LOOCV). While at first sight it may seem that LOOCV is more computationally

intensive than K-fold CV since the model has to be fitted N times (rather than K times) on data

with (N − 1) samples, the leave-one out (LOO) estimates can actually be obtained (approximately
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for binary traits) from rank 1 updates to the results from fitting the model to the full data once

(see Supplementary Methods). We have found in practice that LOOCV gives similar association

results as K-fold cross validation (see Supplementary Figures S15 and S16) and in some cases

can be computationally faster (see Tables 1-2). A LOCO scheme is applied to the polygenic effect

estimates and the resulting predictions ŵLOCO = WT
LOCOη̂LOCO are then stored.

In Step 2, we use a logistic regression model score test to test for association between each

marker and binary trait. Covariate effect sizes are estimated along with genetic marker effect sizes,

but we include the LOCO predictions from Step 1 as a fixed offset (see Supplementary Methods).

When rare variants are tested for association with a highly unbalanced traits (i.e. a trait

that has low sample prevalence), the use of asymptotic test statistic distributions does not work

well, and results in elevated Type I error rates. REGENIE implements several methods to handle

this situation. Firstly, it includes the saddle pointapproximation (SPA) test34 that is also included

in SAIGE18. This approach better approximates the null distribution of the test statistic, but we

have found that it can sometimes fail to produce good estimates of SNP effect sizes and standard

errors, which are higly desirable for meta-analysis applications (see Supplementary Table S4 and

Supplementary Figure S5).

Secondly, we use Firth logistic regression, which uses a penalized likelihood to remove much

of the bias from the maximum likelihood estimates in the logistic regression model. This approach

results in well calibrated Type 1 error and usable SNP effect sizes and standard errors. Since the

use of Firth regression can be relatively computationally intensive, we have developed an approx-
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imate Firth regression approach that is much faster (Supplementary Table S5), which involves

estimating covariate effects in a null Firth regression model, and then including covariate effects

along with the LOCO genetic predictor as offset terms in a Firth logistic regression test (see Sup-

plementary Methods). In practice, we have found this approximation to give very similar results

to using the exact Firth test (Supplementary Figure S7).

Handling missing data

As a key goal of our approach is to analyze multiple traits all at once, one issue that remains to

be addressed is the presence of missingness in the data, which could differ among the traits. We

consider different approaches based on the nature of the trait as well as whether the null model is

being fitted or whether association testing is being performed.

For quantitative traits, missing data when fitting the null model is addressed by replacing

missing values by the sample averages for each trait. In the association testing step, in addition

to the option of mean-imputing missing entries in the phenotypes, we also consider an alternative

where for each trait, individuals with missing observations are removed from the analysis. This

is done by ensuring that when taking sums over individuals, those with missing phenotype have a

zero contribution to the sum. This is similar to the approach implemented in the BGENIE software

(see URLs) for single SNP linear regression analysis17. We assume that covariates are fairly well-

balanced in the sample and project them out of the phenotypes using all the samples ignoring

the missingness within each trait. In the case where phenotypes have the same or very similar
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patterns of missingness, or if only a single phenotype is being analyzed, it may be more logical to

discard missing observations rather than impute them with the sample averages per trait. Hence,

we implement an alternative approach where in both the null fitting step and the association testing

step, all samples with missingness at any of the P phenotypes are dropped. An approach we have

not yet implemented, but may produce better results for quantitative traits would involve using a

multivariate normal model to jointly model correlation between the set of traits and impute missing

data, either before, or conditional upon the output of Step 1.

For binary traits, we use the mean-imputed phenotypes to fit the level 0 linear ridge regression

models within blocks, but discard missing observations when fitting level 1 logistic ridge regres-

sion. As the logistic ridge regressions are fitted separately for each trait, this makes it straightfor-

ward to account for the missingness patterns separately for each trait. Similarly, in the testing step,

we discard missing observations when fitting logistic regression separately for each trait as well as

when using Firth or SPA corrections.

UK Biobank data set

The UK Biobank17 is a large prospective study of about 500,000 individuals between 40-69 years

old with extensive phenotype information being recorded. Genotyping was performed using the

Affymetrix UK BiLEVE Axiom array on an initial set of 50,000 participants, and the Affymetrix

UK Biobank Axiom array on the remaining participants. Up to 11,914,699 variants imputed by the

Haplotype Reference Consortium (HRC) panel that either have minor allele frequency above 0.5%
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or have minor allele count above 5 and are annotated as functional in 462,428 samples of European

ancestry were used in the data analyses. We selected up to 407,746 individuals of white British

ancestry who had genotype and imputed data available and applied quality control filters on the

genotype data using PLINK235, which included MAF≥ 1%, Hardy-Weinberg equilibrium test not

exceeding 10−15 significance, genotyping rate above 99%, and LD pruning using a R2 threshold

of 0.9 with a window size of 1000 markers and a step size of 100 markers. This resulted in up to

471,762 genotyped SNPs that were kept in the analyses.

Statistical analyses

We used REGENIE to perform GWA analyses on up to approximately 11 million imputed variants

for 50 quantitative traits and 54 binary traits of up to 407,746 white British participants in the UK

Biobank. Quantitative phenotypes were converted to z-scores using rank-inverse based normal

transformation (RINT). In the statistical models used, covariates included age, age2, sex, age×sex

and the top 10 principal components provided by the UK Biobank. To assess the performance of

REGENIE in GWAS, we compared the results from REGENIE to those of existing approaches

for large-scale analysis, which included BOLT-LMM (version 2.3) and fastGWA (GCTA version

1.93.0beta) for quantitative phenotypes, and SAIGE (version 0.36.5.1) with the LOCO option for

binary traits. For all methods, Step 1 was run on a set of array SNPs stored in bed/bim/fam format

and Step 2 was run on imputed data stored in the BGEN format. All of the programs were called

from within R36, where we used the function system.time to keep track of CPU and wall clock
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timings for each run.

Data availability

The individual-level genotype and phenotype data are available through formal application to the

UK Biobank http://www.ukbiobank.ac.uk.

Code availability

The C++ source code for REGENIE is available from https://rgcgithub.github.io/

regenie/ under an MIT License.

URLs

REGENIE https://rgcgithub.github.io/regenie/

BGENIE https://jmarchini.org/BGENIE/

SNPTEST https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.

html

UK Biobank http://www.ukbiobank.ac.uk

PLINK https://www.cog-genomics.org/plink2

BOLT-LMM (version 2.3) https://data.broadinstitute.org/alkesgroup/BOLT-LMM/

SAIGE (version 0.36.5.1) https://github.com/weizhouUMICH/SAIGE

fastGWA (GCTA version 1.93.0beta) https://cnsgenomics.com/software/gcta/#Overview
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Glow http://projectglow.io

LDstore (version 2.0beta) http://www.christianbenner.com/

Green Algorithms http://www.green-algorithms.org
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Supplementary Methods

Block partitions The genotype matrix G̃ is partitioned into blocks, and only a single block is read

into in memory at a time. Let G̃ = (G̃1, . . . , G̃B) denote a partition of G̃ into B contiguous blocks

of SNPs, where all SNPs within the same block are from the same chromosome. Many choices

are available to determine how to define the blocks (e.g. physical or genetic distance, using LD

information). In practice, we fix the the block size to be the same (approximately) across blocks.

Let mi denote the number of SNPs within the i-th block, so that
∑

i Mi = M .

Level 0 ridge regressions Given a genotype block G̃i of Mi SNPs, we aim to reduce the number

of predictors in the block Mi to a much smaller number which would capture both the LD that

may exist between the markers in the block as well as any effects they may have on the trait. To

address the former, we consider fitting a penalized linear model with a L2 penalty (known as ridge

regression37,38)

ỹ = G̃iγ + ǫ (11)

where ǫ = (ǫ1, . . . , ǫN)
T with ǫi

i.i.d.
∼ N(0, 1), and we obtain an estimate for the marker effects γ

as

γ̂λ = argmin
γ

{||ỹ − G̃iγ||
2
2 + λ||γ||22} (12)

The parameter λ in Eq(12) is often referred to as the shrinkage parameter, as higher values induce

more shrinkage towards zero in the effect size parameter γ and lower values of λ reflect larger ef-

fect sizes. The estimate γ̂λ can be viewed from a Bayesian framework as the maximum a posteriori
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(MAP) estimator in the model in Eq(11) where a Gaussian prior is used for the marker effect sizes

γ = (γ1, . . . , γMi
)T with γj

i.i.d.
∼ N(0, 1/λ) (13)

Given these model assumptions, we can express the ridge penalty parameter as a function of the

SNP-heritability h2
g, where we have λ = M/h2

g. As we do not know what the true effects of the

markers on the trait are, we consider a set of parameter values Λ = {λ1, . . . , λR}, which aim to

reflect a comprehensive range of values for the SNP-heritability of the trait. More precisely, we

choose R evenly spaced values in [0, 1] for h2
g, where the minimum and maximum values are set

to 0.01 and 0.99, respectively, and compute the corresponding λ parameter values given the total

number of SNPs M . The solutions from ridge in Eq(12) can be computed analytically with the

closed-form expression

γ̂λ = (G̃T
i G̃i + λIMi

)−1G̃T
i ỹ, λ ∈ Λ (14)

and so for each block of size Mi, we end up with a much smaller set of R predictors,

Wi = (G̃iγ̂λ1
, . . . , G̃iγ̂λR

), i = 1, . . . , B (15)

Let W = (W1, . . . ,WB) be the resulting N × (BR) matrix obtained from fitting the ridge

regressions on all the B genotype blocks. Assuming that the block size and the number of ridge

parameters is kept reasonably small, (BR) should be much smaller than the number of markers M ,

so that memory usage would be much lower than when reading the whole genotype matrix at once.

For example, in a sample of N = 500, 000 individuals with M = 500, 000 markers and a block

size of T = 1, 000 with R = 5 ridge parameters, using this approach would save more than 52GB
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in memory usage (assuming that loading the genotype matrix costs MN/4 bytes of memory) and

the number of predictors would be reduced to BR = 2, 500.

Level 1 ridge regression To combine the predictors in W, we consider an approach commonly

used in the statistical and machine learning literature, referred to as stacking20, where the aim is

to obtain an optimal linear combination of the block predictions using penalized regression. This

approach has been shown to lead to better predictions than using a single predictive model to fit

the data. We re-scale the predictors in W to have unit variance and apply ridge regression, which

corresponds to the following model

ỹ = Wη + ǫ (16)

where ǫ = (ǫ1, . . . , ǫN)
T with ǫi

i.i.d.
∼ N(0, 1) and solutions for η are computed by adding a

L2 penalty to the log-likelihood function of the model in Eq(16) which results in the following

estimator

η̂ω = argmin
η

{||ỹ −Wη||22 + ω||η||22} (17)

Similarly to Eq(14), it has a closed-form expression

η̂ω = (WTW + ωIBR)
−1WT ỹ (18)

The hyper-parameter ω is selected from a set of Q shrinkage parameters Ω = {ω1, . . . , ωQ},

where given an assumed SNP-heritability value h2
g, we express the corresponding ridge penalty

parameter as ω = BR/h2
g. An optimal value ω∗ is chosen by minimizing the the prediction error

ω∗ = argmin
ω
||ỹ −Wη̂ω||

2
2 (19)
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K-fold cross-validation As the block predictions W are correlated with the phenotype, K-fold

cross-validation (CV) is used to reduce over-fitting. More precisely, we split the data into K folds

and using the subscript (.)(−k) to represent the data where the k-th fold has been removed and (.)(k)

to represent the data for the k-th fold, we obtain out-of-sample block predictions for each fold k

by fitting the model in Eq(11) in each block Gi leaving out fold k

ỹ(−k) = G̃i(−k)γλ + ǫ(−k), and, (20)

γ̂λ = (G̃T
i(−k)G̃i(−k) + λIMi

)−1G̃T
i(−k)ỹ(−k) (21)

Hence, out-of-sample predictions for fold k in the i-th genotype block are obtained as

Wi(k) = (G̃i(k)γ̂λ1
, . . . , G̃i(k)γ̂λR

), i = 1, . . . , B (22)

This is done within each block G̃i across all K folds. Let W∗ denote the N × (BR) matrix

containing the out-of-sample predictions across the B blocks. We obtain the prediction error for

fold k by leaving out the fold when fitting the model in Eq(16) and using the resulting estimates to

obtain the predictions

ŷ(k) = W∗
(k)η̂ω(−k), where, (23)

η̂ω(−k) = (W∗T
(−k)W

∗
(−k) + ωIBR)

−1W∗T
(−k)ỹ(−k) (24)

We select the value of ω in Eq(24) that minimizes the prediction errors over the K folds

MSE(ω) =
1

N

K∑

k=1

||ỹ(k) − ŷ(k)||
2
2 (25)

LOCO predictions Let ŷ∗ refer to the final predictions obtained from Eq(24) by using the op-

timal hyper-parameter chosen from CV over all the K folds. Instead of using ŷ∗ which captures
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the polygenic effects genome-wide, we use an approximate LOCO scheme so that the resulting

predictions only capture effects outside of the chromosome containing the SNP being tested. More

precisely, for each chromosome, we compute the whole-genome predictions by setting the entries

in η̂ω(−k) in Eq(23) corresponding to blocks in the chromosome to 0. This approach is less com-

putationally burdensome than a more exact LOCO scheme which would consist in leaving out all

SNPs within the tested chromosome before partitioning the genome into blocks. We have found

that it works well in practice.

Multiple traits In the context of multiple traits, we simply replace the N × 1 phenotype vector y

by an N × P matrix of P phenotypes when projecting out covariates in Eq(3) to obtain a matrix

of phenotypic residuals Ỹ. We then use this matrix in Eq(14) to obtain predictions for all traits

at once within each genotype block. This is one of the key steps of the method as the genotype

data only has to be read once for all the traits and many of the operations involved on the genotype

block are the same for all traits. Hence, it highly reduces the computational burden involved in the

null model fitting step when many traits are analyzed. Since the block predictions will differ across

traits, we then fit the model in Eq(16) separately for each trait. This increases the computational

burden in memory usage, as a N × (BR) matrix has to be stored separately for each of the P

traits (in our example above with N = 500, 000 individuals, M = 500, 000 markers, T = 1, 000

markers in a block and R = 5 ridge parameters, this would correspond to about 10GB of memory

used per trait). To address this, the block predictions can be stored on disk as each genotype block

is read in memory so that the memory usage when going through blocks is kept relatively low.

Then, when fitting the model in Eq(16) for each trait, only the block predictions for the trait being
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analyzed need to be stored in memory, which reduces the memory usage to the same as that used

when analyzing a single trait.

Whole genome logistic regression for binary traits For binary traits, a logistic regression model

is used at level 1. This model handles covariates by estimating their effects in a null model (Eq(9))

that only includes covariates, and these are then used as an offset term in a full logistic regression

model (Eq(8)). The Newton-Raphson algorithm is used to obtain parameter estimates in Eq(9) and

Eq(10). To obtain the optimal parameter from K-fold CV, we use the average log-likelihood as the

loss function to measure performance

l(η) =
1

N

K∑

k=1

∑

i∈fold k

yi log(p̂i) + (1− yi) log(p̂i) (26)

where for individual i in fold k, p̂i is the computed from Eq(10) using the estimate for η which

was obtained by fitting the model on the remaining (K − 1) folds. The covariate effects are not

re-estimated within each fold as we assume they should be fairly well-balanced across the K folds.

The optimal parameter chosen for η is the one that minimizes −l(η).

As with quantitative traits, a LOCO scheme is applied to the polygenic effect estimates and

the resulting predictions ŵLOCO = WT
LOCOη̂LOCO are then stored for step 2.

Logistic regression for case-control association tests To test a variant g = (g1, . . . , gN)
T for

association with a single binary trait, we consider the following model

logit (pi) = XT
i α+ giβ + ŵi,LOCO, i = 1, . . . , N (27)
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where the polygenic effects predictions ŵLOCO = (ŵ1,LOCO, . . . , ŵN,LOCO)
T stored from step 1 are

included as an offset in the logistic model. A score test statistic for H0 : β = 0 is

Tlog =
g̃T (y − p̂)

[g̃T Γ g̃]1/2
(28)

where Γ = diag{p̂i(1− p̂i)} with p̂i being the estimated mean of the trait under the null hypothesis

for the i-th individual, and g̃ = g − X(XTΓX)−1XTΓg is the genotype residual vector after

adjusting for covariates. Similar to with quantitative traits, no calibration factor is used in the test

statistic to account for the variance in the polygenic effects estimate. The p-value is estimated

using a normal approximation with T 2
log ∼ χ2

1.

Firth logistic regression When rare variants are tested for association with a highly unbalanced

traits (i.e. a trait that has low sample prevalence), quasi-complete separation can occur in logistic

regression where none of the cases contain the minor allele which leads to very unstable estimates

of the effect sizes and standard errors. One solution to address this is with Firth correction39,40,

where a penalty based on the observed Fisher information matrix is added in the log-likelihood

f(α, β) =
N∑

i=1

yi log(pi) + (1− yi) log(pi) +
1

2
log |I(α, β)| (29)

where I(α, β) = UTΓU with U = (X g), and Γ = diag{pi(1− pi)} where the linear predictor is

the same as in Eq(27). This penalized likelihood function is equivalent to the posterior distribution

function using Jeffreys invariant prior39. The last term in Eq(29) is maximized when pi = 0.5

which occurs when α = 0 and β = 0, and hence, adding this penalty shrinks the coefficients

towards 0. When rare variants are tested with highly unbalanced traits, the literature suggests40

that a Wald test within the Firth regression approach may not work well. A score test may be
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a possibly fast solution that we implement in future versions, but in this first version we use a

likelihood ratio test (LRT) to test the null hypothesis H0 : β = 0

TFirth = 2{f(α̂, β̂)− f(α̂0, 0)} (30)

where (α̂, β̂) is the maximum of the penalized likelihood function and α̂0 is the maximum of the

penalized likelihood when β = 0. The p-value is estimated using TFirth ∼ χ2
1. As the penalty term

in Eq(29) involves the tested variant g, the second term in Eq(30) has to be re-evaluated for each

tested variant, which means the penalized likelihood Eq(29) with β = 0 has to be maximized for

each tested variant. This can render the test very computationally burdensome, all the more when

many covariates are included as it determines the dimension of the matrix involved in the penalty

term in Eq(29).

Approximate Firth logistic regression To ease the computational burden, we also consider an

approximation to the test in Eq(30), where we first estimate covariate effects in a null model where

we include a modified penalty term,

f ∗(α) =
N∑

i=1

yi log(pi) + (1− yi) log(pi) +
1

2
log |I∗(α)| (31)

where I∗(α) = XTΓX with Γ = diag{pi(1−pi)}, and the linear predictor is the same as in Eq(27)

with β = 0. The penalty term in f ∗ does not depend on the tested variant which means that f ∗ only

needs to be maximized once per chromosome tested to obtain an estimate for the covariate effects.
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Let α̂∗ denote the resulting estimate of the covariate effects. We consider the modified test statistic

T̃Firth = 2{f̃(β̂ )− f̃(0)}, with, (32)

f̃(β) =
N∑

i=1

yi log(pi) + (1− yi) log(pi) +
1

2
log |Ĩ(β)|, and, (33)

logit (pi) = XT
i α̂

∗ + g̃β + ŵi,LOCO , i = 1, . . . , N (34)

where g̃ are residuals obtained from removing covariate effects (i.e. g̃ = PXg), and the observed

Fisher information Ĩ(β) = g̃TΓg̃ is a scalar which means the computations due to the penalty term

are O(1) rather than O(K+1). The mean function in Eq(34) incorporates covariate effects through

an offset term, which reduces the number of predictors from K + 1 down to a single predictor, the

tested variant. In practice, we have found this approximation to give very similar results to using

the exact Firth LRT.

Saddle Point Approximation (SPA) test In the same context where rare variants are being tested,

several methods have proposed using a saddle pointapproximation (SPA) rather than a normal

approximation to evaluate significance of the test in Eq(28) and found that it resulted in better

calibration of the test statistic when traits were highly unbalanced18,34. Rather than relying on the

first two moments of the test statistic to approximate its null distribution, SPA approximates the

cumulant generating function of the test statistic, which involves all of the higher order moments.

Hence, SPA can lead to better approximations in the tail of the null distribution compared to the

normal approximation. For the test statistic in Eq(28), which is a linear combination of Bernoulli
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random variables, the cumulant generating function (CGF) is

KT (t) = logEH0
(etT ) = logEH0

(e
t

c
g̃
T
y · e

−t

c
g̃
T
p̂)

=
N∑

i=1

log(1− p̂i + p̂i exp{t g̃i/c})−
t

c

N∑

i=1

g̃i p̂i (35)

where T = Tlog, and c = [g̃T Γ g̃]1/2 is the denominator of the test statistic. The first and second

derivative of KT (t) can also be obtained from Eq(35) as

K ′
T (t) =

1

c

N∑

i=1

g̃ip̂i
p̂i + (1− p̂i) exp{−t g̃i/c}

−
1

c

N∑

i=1

g̃i p̂i (36)

K ′′
T (t) =

1

c2

N∑

i=1

g̃2i p̂i(1− p̂i) exp{−t g̃i/c}

[p̂i + (1− p̂i) exp{−t g̃i/c}]2
(37)

Given an observed test statistic value tobs, the distribution function of T is obtained using a saddle

pointapproximation41 as

P (T < tobs) ≈ Φ(z), where, (38)

z = w +
1

w
log

v

w
, with,

w = sign(δ∗)
√

2[tobs δ∗ −K(δ∗)], v = δ∗
√
K ′′(δ∗)

where Φ denotes the standard normal distribution function and δ∗ is obtained by solving the equa-

tion K ′(t) = tobs, which we do using a modified Newton-Raphson algorithm that uses the bisection

method. To avoid having to solve the equation twice for both tails of the distribution (as the statis-

tical test performed is two-sided), we use the fact that K−T (t) = KT (−t) so that we only need to

approximate one of the tails of the null distribution. The SPA approximation can fail for extremely

rare variants (e.g. minor allele count [MAC] less than 5) so we use a minimum MAC filter in our

implementation where the default is set to 5. Similarly to previous methods18,34, we also make use
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of the sparsity in the genotype vector when the MAC is low by approximating the CGF KT and

its derivatives using a normal approximation in order to obtain functions which only involve sums

over the non-zero entries of the genotype vector rather than sums over all of the entries.

Short derivation of the SPA approach We have found the description of the SPA approximation

in the statistical genetics literature to be rather opaque18,34, so here we provide a brief derivation of

the result stated in Eq(38), based on the material in Butler (2007).

Suppose X is a continuous random variable with probability density function (pdf) f(x), ∀x ∈ R.

The moment generating function (mgf) of X is defined as

M(s) = E
[
esX

]
=

∫ ∞

−∞

esxf(x)dx

over all values of s for which the integral converges.

The cumulant generating function (cgf) of X is defined as

K(s) = lnM(s), s ∈ (a, b)

where (a, b) is the largest interval of convergence. Some basic properties of the mgf and cgf are

M (k)(0) = E
[
Xk

]
, K ′(0) = E [X] and K ′′(0) = Var (X).

The mgf can be re-expressed as

M(s) = eK(s) =

∫ ∞

−∞

esx+ln f(x)dx =

∫ ∞

−∞

e−g(s,x)dx

where g(s, x) = −sx− ln f(x), and then approximated using Laplace’s method as

eK(s) =

∫ ∞

−∞

e−g(s,x)dx ≈

√
2π

g′′(s, xs)
e−g(s,xs) =

√
2π

g′′(s, xs)
esxsf(xs) (39)
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where xs = argmin
x

g(s, x) is the solution of

0 = −g′(s, xs) = s+
∂ ln f(xs)

∂xs

. (40)

At this point, it is useful to recognize that xs is a function of s and vice-versa.

Eq(39) can be expressed as

ln f(xs) ≈ (K(s)− sxs)−
1

2
ln

2π

−∂2 ln f(xs)/∂x2
s

and assuming the second term is constant with respect to xs, we have

∂ ln f(xs)

∂xs

≈ (K ′(s)− xs)
∂s

∂xs

− s

and then Eq(40) becomes

0 = −g′(s, xs) = (K ′(s)− xs)
∂s

∂xs

so the definition of xs reduces to xs = K ′(s). We also have

g′′(s, xs) = −
∂2 ln f(xs)

∂x2
s

by differentiating Eq(40)

=
∂s

∂xs

since Eq(40) implies s = −
∂ ln f(xs)

∂xs

=
(∂xs

∂s

)−1

= K ′′(s)−1 since xs = K ′(s)

The saddle pointapproximation to the pdf of X is then the re-expression of Eq(39) as

f̂(x) =
1√

2πK ′′(sx)
eK(sx)−sxx

where sx is a function of x that satisfies x = K ′(sx).
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The SPA to the cumulative density function (cdf) of X , defined as F (y) = P (X < y) can be

approximated using the SPA of the pdf of X as

F̂ (y) =

∫ y

−∞

f̂(x)dx =

∫ y

−∞

1√
2πK ′′(sx)

eK(sx)−sxxdx

Then define t = sgn(sx)
√

2(sxx−K(sx)), which is a function of x. This means the integral can

be re-expressed to involve the standard normal density function φ(.) as

F̂ (y) =

∫ y

−∞

1√
K ′′(sx)

φ(t)dx

It can be shown41 that

dx

dt
=





t/sx if sx 6= 0

√
K ′′(0) if sx = 0

and changing variables from x to t results in

F̂ (y) =

∫ w

−∞

t

sx(t)
√

K ′′(sx(t))
φ(t)dt (41)

where sx(t) is sx expressed as a function of t, w = sgn(sy)
√

2(syy −K(sy)) is a function of y and

K ′(sy) = y.

We then use the Temme approximation, which states that if φ(.) and Φ(.) are the standard normal

pdf and cdf respectively, then

∫ t0

−∞

h(t)φ(t)dt ≈ h(0)Φ(t0) + φ(t0)

{
h(0)− h(t0)

t0

}

Applying this to Eq(41) using h(t) = t/sx(t)
√

K ′′(sx(t)) and t0 = w, for which it can be shown

that h(0) = 1, and defining u = sy
√

K ′′(sy), we get

F̂ (y) ≈ Φ(w) + φ(w)
( 1

w
−

1

u

)
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Finally, defining r∗ = w − 1
w
ln w

u
results in the final SPA shown in Eq(38)

F̂ (y) ≈ Φ(r∗)

where the approximation occurs via a first order Taylor approximation of both Φ(.) and ln(.).

Leave-one out cross-validation (LOOCV) As an alternative to K-fold CV, we implement LOOCV

which is equivalent to performing N -fold CV. With binary traits, LOOCV can be very useful when

the number of cases in the sample is low, which in K-fold CV can result in a fold that only con-

tains controls. While at first sight it may seem that LOOCV is more computationally intensive than

K-fold CV since the model has to be fitted N times (rather than K times) on data with (N − 1)

samples, the leave-one out (LOO) estimates can actually be obtained (approximately for binary

traits) from rank 1 updates to the results from fitting the model to the full data once. For example,

with a quantitative trait where we consider the following ridge regression model

y = Xα+ ǫ (42)

where X is a N ×C matrix of predictors and a L2 penalty is applied to the parameter α, the LOO

estimate for the i-th individual is

α̂LOO
i = α̂−

H−1xT
i

1− γ
(yi − xiα̂), where, (43)

α̂ = H−1z, H−1 = (XTX+ λIC)
−1, z = XTy, γ = xiH

−1xT
i

with xT
i representing the C × 1 vector of predictors for the i-th individual and λ being the ridge

penalty parameter. Both H−1 and z in Eq(43) are already computed when fitting the model on the

full data set and α̂ is the resulting estimate of that fit. The remaining operations needed to obtain
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the LOO estimate only involve at most matrix-vector operations. We perform these operations

for groups of individuals at a time in order to have matrix-matrix operations which use multiple

threads in the Eigen C++ library. Also, when considering a range of penalty parameters, many of

the operations in Eq(43) are the same, and so we only compute them once and re-use them for each

penalty parameter.

For binary traits, we consider a logistic ridge model where the penalized log-likelihood func-

tion is

f =
N∑

i=1

yi log(pi) + (1− yi) log(pi) + λ||α||22, with logit (pi) = xiα (44)

and pi is the marginal phenotypic mean for the i-th individual. The parameter estimate α̂ is then

obtained by maximizing the function in Eq(44) using the Newton-Raphson algorithm starting at

the origin. Assuming that the estimate obtained after removing a single observation should be

fairly close to that obtained from the full data fit, we approximate the LOO estimate for individual

i by solving the function in Eq(44) where individual i has been excluded, and where we start at the

solution α̂ instead of starting at the origin, and we perform only a single iteration of the algorithm.

The resulting parameter estimate can be expressed in closed-form

α̂LOO
i = α̂−

H−1xT
i

1− γ
(yi − p̂i), where, (45)

H−1 = (XT Γ̂X+ λIC)
−1, γ = Γ̂ii · xiH

−1xT
i (46)

and Γ̂ = diag{p̂i(1 − p̂i)} with p̂i being the estimated mean from the whole data fit. The matrix

H−1 is also computed from that same model fit so we only need to perform at most matrix-vector

operations, for H−1xT
i , which can be done for groups of individuals at a time to have matrix-matrix
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operations. The remaining vector-vector operation xi · (H
−1xT

i ) needed is O(C). Using these

computational tricks, we are able to efficiently obtain LOO estimates based on a ridge regression

model for both quantitative and binary traits.

Time complexity of REGENIE Supplementary Table S1 gives an overview of the computa-

tional complexity of the REGENIE method. It can be broken down based on the two main steps,

which are whether the null model is being fitted (step 1), or whether variants are being tested for

association (step 2). In step 1, two levels of models are considered which correspond to linear

mixed models applied within genotype blocks (level 0) and across all genotype blocks (level 1).

By leveraging the fact that many of the operations done within a block are the same for all the

phenotypes, we are able to reduce the time complexity involved in the level 0 models where the

operations done once for all traits have time complexity of about O(B3J0) times the total number

of blocks. This is due to the spectral decomposition of the genetic correlation matrix within each

block, which only needs to be computed once with a time complexity about O(NB2), where both

the number of SNPs within a block B and the number of level 0 ridge parameters J0 are kept rel-

atively small (e.g. B = 1, 000, J0 = 5). Similarly, the computation time for the level 1 models is

driven by the spectral decomposition of the correlation matrix based on the R level 0 within-block

predictions, where R is still relatively small compared to the total number of SNPs in step 1 (e.g.

R = 2, 500 for M1 = 500, 000). Hence, step 1 of REGENIE can lead to better computational effi-

ciency relative to BOLT-LMM and SAIGE which are O(N1.5M) times the number of phenotypes,

where in large scale applications N , in addition to M , would be large (e.g., N = 500, 000). For

step 2, all three methods have the same order of complexity which is O(M2N) times the number
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of phenotypes, where M2 is the number of variants being tested for associations.

Optimization of the association testing step in REGENIE Step 2 of REGENIE can become

a major computational bottleneck when millions of SNPs have to be tested for association with

multiple traits. Hence, we optimized this step when the genotype file input is BGEN v1.2 format

with 8-bit encoding, which is the file format used by UK Biobank for the tens of millions of

imputed SNPs. More precisely, REGENIE has been optimized to read the BGEN file with multiple

threads by taking advantage of the highly structured format of BGEN files. We initially do a first

pass though the BGEN file to get the index of the markers in the file while skipping over the

genotype data. We process the tested SNPs in blocks and for each block, we first open the file using

the index information of the first variant in the block and then read the compressed genotype data

for each variant. We decompress the genotype data, impute missing data, remove covariate effects,

scale the residuals and compute the association test statistics for each variant. We experimented

using the multi-threading in Eigen to efficiently parallelize as many matrix × matrix operations

as possible. However, we found that a better strategy was to disable this feature and instead use

OpenMp to parallelize the computations over the markers.

Details of Apache Spark implementation The following procedure describes the map-reduce

strategy used in Glow (see URLs) for transforming the standardized genotype matrix G into the

matrix of ridge predictors W for a set of quantitative phenotypes Y using a set of ridge regulariza-

tion parameters J . Let each block g in matrix G be indexed by a sample block bn and a SNP block

bm, and each block y in phenotype matrix Y be indexed by a sample block bn.
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Algorithm 1 Map each block index (bn, bm) to the corresponding genotype matrix block g and

phenotype matrix block y, then emit the products gT g and gTy.

Input: Block matrix index (bn, bm)

Output: key-value pairs where the key is a SNP block and the value is a 3-tuple of sample block,

matrix product gT g, and matrix product gTy.

1: for each block (bn, bm) do in parallel:

2: g ← G[sample ∈ sample block bn, snp ∈ snp block bm]

3: y ← Y [sample ∈ sample block bn]

4: gtg ←matrix multiply(transpose(g), g)

5: gty ←matrix multiply(transpose(g), y)

6: emit key : value < bm : (bn, gtg , gty) >

7: end
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Algorithm 2 For each key bm and value (bn,gTg,gTy) pair emitted from Algorithm 1, generate new

keys corresponding to block matrix indices (bn, bm) and new values representing the element-wise

sums over gT g and gTy where sample group bn has been left out.

Input: key-value pairs where the key is a SNP block and the value is a 3-tuple of sample block,

matrix product gT g, and matrix product gTy

Output: key-value pairs where the key is a block matrix index (bn, bm) and the value is a 2-tuple

of the element-wise sums gT g|−bn =
∑

b′n 6=bn
gTb′n,bmgb′n,bm and gTy|−bn =

∑
b′n 6=bn

gTb′n,bmyb′n .

1: for each key bm generate by key:

2: for each sample block bn do:

3: for each value (b′n, gtg, gty) where b′n 6= bn

4: gtg sum←elementwise sum(gtg sum, gtg)

5: gty sum←elementwise sum(gty sum, gty)

6: end

7: emit key : value < (bn, bm) : (gtg sum, gty sum) >

8: end

9: end
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Algorithm 3 For each key (bn, bm) emitted from Algorithm 2, map value (gT g|−bn , g
Ty|−bn) to a

new value with sample block bn and ridge predictor matrix block w corresponding to block (bn,

bm) with key equal to SNP block bm.

Input: key-value pairs where the key is a block matrix index (bn, bm) and the value is a 2-tuple of

the element-wise sums gT g|−bn =
∑

b′n 6=bn
gTb′n,bmgb′n,bm and gTy|−bn =

∑
b′n 6=bn

gTb′n,bmyb′n .

Output: key-value pairs where the key is a SNP block bm and the value is a 2-tuple containing the

sample block bn and the ridge predictor matrix block w corresponding to block matrix index (bn,

bm).

1: for each key : value < (bn, bm) : (gtg sum, gty sum) > map:

2: for each ridge parameter λ ∈ J do:

3: γ ←column concat(γ, ridge solve(gtg sum, gty sum, λ))

4: end

5: g ← G[sample ∈ sample block bn, snp ∈ snp block bm]

6: w ←matrix multiply(g, γ)

7: emit key : value < bm : (bn, w) >

8: end
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Algorithm 4 For each key bm emitted from Algorithm 3, reduce values (bn, w) by row-wise con-

catenation of matrices w.

Input: key-value pairs where the key is a SNP block bm and the value is a 2-tuple containing the

sample block bn and the ridge predictor matrix block w corresponding to block matrix index (bn,

bm).

Output: key-value pairs where the key is a SNP block bm and the value is a ridge predictor matrix

column block wm corresponding to SNP block bm.

1: for each key bm reduce by key:

2: for each value (bn, w) do:

3: wm ←row concat(wm, w)

4: end

5: emit key : value < bm : wm >

6: end
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Algorithm 5 Reduce values wm emitted from Algorithm 4 by column-wise concatenation and

return ridge predictor matrix W .

Input: key-value pairs where the key is a SNP block bm and the value is a ridge predictor matrix

column block wm corresponding to SNP block bm.

Output: final ridge predictor matrix W .

1: reduce

2: for each key : value < bm : wm > do:

3: W ←column concat(W, wm)

4: end

5: return W

6: end
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Inter-chromosomal LD in the UK Biobank To identify how prevalent inter-chromosome LD

is in the UK Biobank array genotypes, we used LDstore42 (version 2.0beta) to compute pairwise

Pearson correlation coefficients for a set of 343,784 genotyped SNPs with MAF ≥ 0.05, Hardy-

Weinberg equilibrium test not exceeding 10−12 significance and missingness rate below 5%, in

a random sample of 5,000 unrelated white British individuals. This resulted in over 59 billion

SNP-pairs for which we computed correlation, among which about 56 billion corresponded to

SNP-pairs on different chromosomes. Using Bonferroni correction with a significance level of

5% resulted in a significance threshold of R2
crit = 0.1147 to identify significant SNP-pairs on

different chromosomes. Supplementary Figure S21 displays the 3,697 SNP pairs that were found

and that spanned a total of 12 chromosomes. The full list of 3,697 SNP-pairs is available in the

Supplementary Table 10 and the 50 SNP-pairs with the highest correlation coefficients are listed

in Supplementary Table S8. For many of the SNP-pairs involved, they corresponded to known

gene/pseudogene pairs (see Supplementary Table S9). For the remaining SNP pairs, it could be

that the gene/pseudogene pairs involved have yet to be annotated.
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Supplementary Tables

Trait type Step Level Model Time complexity

Quantitative

1 0 Linear ridge regression O(TNB2) +O(TB3J0) +O(TNBP )

1 1 Linear ridge regression O(NR2P ) +O(R3J1P )

2 − Simple linear regression O(NM2P )

Binary

1 0 Linear ridge regression O(TNB2) +O(TB3J0) +O(TNBP )

1 1 Logistic ridge regression O(SNR2J1P ) +O(SR3J1P )

2 − Logistic regression O(NM2P )

Table S1: Time complexity of the REGENIE method. Step 1 level 0 is the within-blocks models

and Step 1 level 1 is the across-blocks models. Step 2 is the association testing step.

M1, number of variants used in step 1;

M2, number of variants tested in step 2;

N , sample size (assumed to be the same for all traits);

P , number of phenotypes;

B, number of SNPs in a genotype block;

J0, number of ridge parameters at level 0;

J1, number of ridge parameters at level 1;

T = M1/B, total number of genotype blocks;

R = J0T , number of predictors from level 0 models;

S, number of iterations to reach convergence in logistic ridge regression.

59

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.19.162354doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.19.162354
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trait# Phenotype N %missing
1 Townsend Deprivation Index At Recruitment 407,271 0.1
2 Body Mass Index Bmi 407,609 0.0
3 Body Fat Percentage 401,772 1.5
4 White Blood Cell Leukocyte Count 396,621 2.7
5 Red Blood Cell Erythrocyte Count 396,625 2.7
6 Haemoglobin Concentration 396,624 2.7
7 Mean Corpuscular Volume 396,624 2.7
8 Platelet Count 396,621 2.7
9 Mean Platelet Thrombocyte Volume 396,616 2.7
10 Lymphocyte Count 395,949 2.9
11 Monocyte Count 395,949 2.9
12 Neutrophill Count 395,949 2.9
13 Eosinophill Count 395,949 2.9
14 Basophill Count 395,949 2.9
15 Creatinine Enzymatic In Urine 396,837 2.7
16 Potassium In Urine 395,995 2.9
17 Sodium In Urine 396,020 2.9
18 Albumin 357,968 12.2
19 Alkaline Phosphatase 389,883 4.4
20 Alanine Aminotransferase 389,733 4.4
21 Apolipoprotein A 355,859 12.7
22 Apolipoprotein B 388,022 4.8
23 Peak Expiratory Flow Pef 374,599 8.1
24 Aspartate Aminotransferase 388,490 4.7
25 Direct Bilirubin 332,739 18.4
26 Urea 389,608 4.5
27 Calcium 357,831 12.2
28 Cholesterol 389,864 4.4
29 Creatinine 389,678 4.4
30 C Reactive Protein 389,057 4.6
31 Cystatin C 389,834 4.4
32 Gamma Glutamyltransferase 389,672 4.4
33 Glucose 357,580 12.3
34 Glycated Haemoglobin Hba1c 389,889 4.4
35 Hdl Cholesterol 357,810 12.2
36 Igf 1 387,834 4.9
37 Ldl Direct 389,189 4.5
38 Phosphate 357,302 12.4
39 Shbg 354,620 13.0
40 Total Bilirubin 388,303 4.8
41 Testosterone 353,805 13.2
42 Triglycerides 389,562 4.5
43 Urate 389,404 4.5
44 Vitamin D 373,045 8.5
45 Diastolic Blood Pressure Automated Reading 385,801 5.4
46 Systolic Blood Pressure Automated Reading 385,798 5.4
47 Hand Grip Strength Left 406,552 0.3
48 Waist Circumference 407,661 0.0
49 Hip Circumference 407,662 0.0
50 Bone Mineral Density 365,403 10.4

Table S2: Phenotype information for the 50 quantitative traits analyzed using UK Biobank

data of 407,746 white British samples. The percentage missing reported is for the full 407K

sample.
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Method Benchmark

CPU Time (hours) Elapsed time (hours) Memory usage (GB)

REGENIE MT 62 9.4 390

REGENIE MT-WD 79 11 13

Table S3: Comparison of runtimes for REGENIE model fitting step when analyzing 50 quan-

titative traits with UK Biobank data of 407,746 individuals. REGENIE was used in multi-trait

mode analyzing all traits together either storing block predictions in memory (REGENIE MT) or

writing them to disk (REGENIE MT-WD). 469,336 LD-pruned SNPs were used as model SNPs

when fitting the null model. All runs were done on the same computing environment (64 virtual

CPU cores of a 2.5 GHz Intel Xeon Platinum 8175M processor, 512GB of memory and 2.4TB

solid-state disk) and REGENIE was run using up to 16 threads.
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Estimated effect β̂ (log OR) SE(β̂)

SNP MAC REGENIE SAIGE PLINK REGENIE SAIGE PLINK

4:82827568:G:A 5.7 -8.1 -468.1 -7.4 1.5 125.4 1.4

5:131807265:A:G 5.4 -8.3 -708.8 -8.7 2.2 184.2 2.3

11:55936336:C:A 19.0 -6.5 -381.4 -6.8 1.4 106.0 1.4

11:18446202:A:T 5.3 -10.0 -1039.3 -13.4 3.7 269.7 3.6

1:228148490:C:T 5.1 -11.1 -985.6 -13.7 3.8 259.5 3.8

3:12156938:A:G 5.7 -10.9 -424.9 -10.6 2.3 136.2 2.3

1:161998091:T:A 6.3 -9.4 -370.7 -9.2 2.3 131.2 2.4

10:125833896:A:C 7.5 -8.3 -287.3 -7.5 2.0 110.5 2.1

6:152168123:C:T 8.2 -4.7 -233.4 -6.4 1.3 68.6 1.3

5:38406872:G:T 6.5 -8.4 -454.1 -8.2 2.2 121.1 1.9

Table S4: Comparison of rare variant effect size estimates from different methods Results

shown for thyroid cancer (case-control ratio 1:660) using UK Biobank data of 407,746 white

British samples. Estimates for the top 10 imputed SNPs with the most discrepancy between RE-

GENIE and SAIGE are displayed. The estimates are compared between REGENIE using approxi-

mate Firth correction, SAIGE, which uses SPA correction, and PLINK using Firth correction. For

PLINK, only covariates are adjusted for when testing each variant for association (i.e. no polygenic

effect predictions are included in the model).
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Method Benchmark

CPU Time (hours) Elapsed time (hours) Memory usage (GB)

REGENIE-FIRTH Exact 5232 420 4.8

REGENIE-FIRTH Approx 87 7.5 2.8

Table S5: Comparison of run time of exact and approximate Firth logistic regression Runtimes

for REGENIE association testing step when analyzing 4 binary traits with UK Biobank data of

407,746 individuals. REGENIE was run using either the exact Firth correction (REGENIE-FIRTH

Exact) or using an approximation of that test which adjusts for covariates through an offset term in

the model (REGENIE-FIRTH Approx). 516,196 imputed variants were tested for association with

each of the four binary traits. All runs were done on the same computing environment (16 virtual

CPU cores of a 2.5 GHz Intel Xeon Platinum 8175M processor and 64GB of memory).
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Trait# Phenotype N CC ratio %missing
1 Mood Swings 407,746 1:1 0.0
2 Miserableness 407,746 1:1 0.0
3 Irritability 407,746 1:3 0.0
4 Guilty Feelings 407,746 1:2 0.0
5 Risk Taking 407,746 1:3 0.0
6 Seen Doctor For Nerves Anxiety Tension Or Depression 407,746 1:2 0.0
7 Hearing Difficulty Problems 407,746 1:3 0.0
8 Dd Vascular Heart Problems 4 High Blood Pressure 407,746 1:3 0.0
9 Pain Types Experienced In Last Month 1 Headache 407,746 1:4 0.0
10 Allergicrhinitis 407,746 1:3 0.0
11 High Cholesterol 407,746 1:7 0.0
12 Asthma 401,847 1:7 1.4
13 Seen Psych Nerves Anxiety Tension Or Depression 407,746 1:8 0.0
14 Chest Pain Or Discomfort 407,746 1:5 0.0
15 Fractured Bones In Last 5 Years 407,746 1:9 0.0
16 Reason For Glasses Contact Lenses 1 For Short Sightedness 407,746 1:8 0.0
17 Pain Types Experienced In Last Month 6 Hip Pain 407,746 1:7 0.0
18 Medication For Cholesterol Blood Pressure Or Diabetes 407,746 1:8 0.0
19 Any Parental History Of Alzheimers 407,089 1:7 0.2
20 Any Parental History Of Lung Cancer 407,521 1:8 0.1
21 Depression 407,746 1:17 0.0
22 Osteoarthritis 407,746 1:11 0.0
23 Angina 397,554 1:17 2.5
24 Cholelithiasis Gall Stones 404,405 1:21 0.8
25 Urinary Tract Infection Kidney Infection 397,867 1:18 2.4
26 Type 2 Diabetes 406,831 1:20 0.2
27 Hypothyroidism Myxoedema 405,357 1:16 0.6
28 Back Problem 402,528 1:19 1.3
29 Inflammatory Bowel Disease 404,781 1:24 0.7
30 Eye Problems Disorders 4 Cataract 407,746 1:24 0.0
31 Pulmonary Embolism DVT 407,746 1:115 0.0
32 Epilepsy 407,746 1:117 0.0
33 Retinal Detachment 403,643 1:100 1.0
34 Muscle Soft Tissue Problem 407,746 1:117 0.0
35 Allergy Hypersensitivity Anaphylaxis 407,498 1:102 0.1
36 Bronchitis 407,746 1:116 0.0
37 Atrial Fibrillation 407,746 1:111 0.0
38 Cystitis 381,591 1:112 6.4
39 Retinitis Pigmentosa 403,833 1:115 1.0
40 Macular Degeneration 403,837 1:106 1.0
41 Bells Palsy Facial Nerve Palsy 407,746 1:1072 0.0
42 Spinal Cord Disorder 407,746 1:1092 0.0
43 Sjogrens Syndrome Sicca Syndrome 407,746 1:1095 0.0
44 Clotting Disorder Excessive Bleeding 407,746 1:1122 0.0
45 Thyroid Goitre 407,746 1:1069 0.0
46 Insomnia 407,746 1:1078 0.0
47 Psoriasis 407,746 1:991 0.0
48 Type 1 Diabetes 407,746 1:1034 0.0
49 Acute Infective Polyneuritis Guillain Barre Syndrome 406,298 1:1088 0.4
50 Cellulitis 407,746 1:1101 0.0

Table S6: Phenotype information for the 50 binary traits analyzed using UK Biobank data of

407,746 white British samples. The percentage missing reported is for the full 407K sample.
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Method Carbon emissions Carbon sequestration Car distance From NY

(kg CO2e) (tree-years) (km) to

REGENIE-FIRTH 349 15 1390 Virginia

REGENIE-SPA 220 10 876 New Hampshire

SAIGE 2,780 122 11,073 California

Table S7: Carbon footprint of REGENIE-FIRTH, REGENIE-SPA, and SAIGE when ana-

lyzing 50 binary traits with UK Biobank data. Carbon emissions represent the amount of CO2

that would have the same impact on global warming as that due to the mix of gases generated from

running the software. Carbon sequestration measures how long it would take for a mature tree to

absorb the CO2 generated from running the software. Car distance measures the travel distance

of a passenger car that would emit the same amount of CO2 as that generated from running the

software. The last column represents the equivalent round-trip car distance between New York

(NY) and other states in the US. The calculations were performed based on a cloud computing

environment with 16 virtual CPU cores of a 2.1GHz AMD EPYC 7571 processor with a thermal

design power of 15W per core. The usage factor was estimated as (CPU hours / Elapsed hours)/16,

with the runtimes obtained from Table 2 where we used the results based on leave-one-out cross-

validation (LOOCV) for REGENIE.
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SNP pair (A,B)
SNP A Chr A SNP B Chr B R
rs13203895 6 rs148783236 15 0.998
rs10484554 6 rs148783236 15 0.997
rs116354825 6 rs555649 11 0.994
rs10456057 6 rs148783236 15 0.991
rs35611389 4 rs11263320 9 0.989
rs78977277 4 rs11263320 9 0.987
rs12191877 6 rs148783236 15 0.983
rs114226799 2 rs117601100 8 0.981
rs78977277 4 rs35478119 9 0.979
rs201947198 6 rs77421625 17 0.978
rs199833934 6 rs77421625 17 0.978
rs145346169 6 rs34592472 9 0.977
rs145346169 6 rs41316516 9 0.976
rs35611389 4 rs35478119 9 0.973
rs199833934 6 rs9635680 17 0.973
rs201947198 6 rs9635680 17 0.972
rs3930434 1 rs200979099 2 0.971
rs13218306 6 rs148783236 15 0.968
rs78977277 4 rs13291409 9 0.967
rs13203722 6 rs148783236 15 0.966
rs9468929 6 rs148783236 15 0.964
rs35611389 4 rs13291409 9 0.962
rs145346169 6 rs3747495 9 0.959
rs145346169 6 rs2045731 9 0.955
rs9461684 6 rs146125856 15 0.955
rs28732109 6 rs148783236 15 0.952
rs17192757 6 rs148783236 15 0.942
rs77081633 6 rs72814860 16 0.933
rs116354825 6 rs494459 11 0.923
rs11729374 4 Affx-89009975 9 0.903
rs78267720 6 rs34728702 16 0.889
rs116354825 6 rs57719838 11 0.869
rs199833934 6 rs62073687 17 0.866
rs201947198 6 rs62073687 17 0.865
rs199833934 6 rs2240600 17 0.864
rs201947198 6 rs2240600 17 0.864
rs199833934 6 rs62073688 17 0.862
Affx-25340122 5 Affx-52341161 6 0.861
rs201947198 6 rs62073688 17 0.861
rs2316260 1 rs199993343 2 0.858
rs12189871 6 rs148783236 15 0.851
rs28894993 6 rs148783236 15 0.851
rs78267720 6 rs17788654 16 0.845
rs77081633 6 rs79699765 16 0.843
rs28894983 6 rs148783236 15 0.840
rs28894990 6 rs148783236 15 0.838
rs12199223 6 rs148783236 15 0.835
rs112985609 6 rs146125856 15 0.830
rs61736219 11 rs2294075 17 0.826
rs78267720 6 rs17725554 16 0.822

Table S8: List of 50 inter-chromosome LD (ICLD) SNP pairs from UK Biobank array data

with the highest amount of correlation. The Pearson correlation coefficient R is obtained from a

sample of 5,000 unrelated white British participants (see Supplementary Methods). The full list

of 3,697 SNP-pairs is available in Supplementary Materials.
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Gene (chromosome) Pseudogene (chromosome)

HS6ST1 (2) HS6ST1P1 (1)

BCLAF1 (6) BCLAF1P2(16)

FOXO3 (6) ZNF286B/FOXO3B (17)

GJA1 (6) GJA1P1 (5)

GLDC (9) GLDCP1 (4)

DDX6 (11) DDX6P1 (6)

USP8 (15) USP8P1 (6)

Table S9: List of gene/pseudogene pairs detected in the inter-chromosome LD (ICLD) analy-

sis of UK Biobank array data.
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Supplementary Figures

Figure S1: Overview of the REGENIE method. REGENIE consists of two steps: (1) In Step

1, the dimension of the genetic data is reduced using ridge regression applied to blocks of SNPs,

and then the resulting predictors are combined using a second round of linear or logistic ridge

regression to produce an overall prediction for each trait, split into 23 LOCO predictors. (2) In Step

2, these LOCO predictors are used when testing each phenotype against a set of either imputed,

exome or CNV markers.
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(a) (b) (c)

Figure S2: Scatter-plots comparing three LMM methods for three quantitative traits using

UK Biobank white British samples. Results from REGENIE, fastGWA and BOLT-LMM are

compared for (a) LDL (N = 389, 189), (b) BMI (N = 407, 609) and (c) Bilirubin (N = 388, 303).
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Figure S3: Scatter-plots comparing association results of three LMM methods for 50 quanti-

tative traits using UK Biobank white British samples. 9.8 million imputed SNPs are tested for

association with each trait. Information on the traits is available in Supplementary Table S2. The

scaling of the axes varies over the 50 traits.
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(a) (b)

(c) (d)

Figure S4: Scatter-plots comparing results from different mixed model methods for 4 binary

traits using UK Biobank white British samples. Results from REGENIE using Firth and SPA

correction, BOLT-LMM and SAIGE are compared for (a) coronary artery disease (case-control

ratio=1:11, N= 352,063), (b) glaucoma (case-control ratio=1:52, N= 406,927), (c) colorectal can-

cer (case-control ratio=1:97, N= 407,746), and (d) thyroid cancer (case-control ratio=1:660, N=

407,746). Tests were performed on 11.6 million imputed SNPs.
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(a) (b)

(c) (d)

Figure S5: Scatter-plots comparing effect size estimates from two mixed model methods for

4 binary traits using UK Biobank white British samples. Results from REGENIE using Firth

correction and SAIGE are compared for (a) coronary artery disease (case-control ratio=1:11, N=

352,063), (b) glaucoma (case-control ratio=1:52, N= 406,927), (c) colorectal cancer (case-control

ratio=1:97, N= 407,746), and (d) thyroid cancer (case-control ratio=1:660, N= 407,746). Only

tests with p-values less than 0.05 in both REGENIE and SAIGE are shown, where 0.05 is the p-

value threshold below which Firth/SPA correction is applied. The magnitude of the ratio of the

standard errors for the estimated effect sizes from both methods (on log2 scale) is represented by

the color of the points.
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Figure S6: Scatter-plots comparing association results from different mixed model ap-

proaches for coronary artery disease using 337,484 unrelated white British participants from

UK Biobank. For REGENIE, BOLT-LMM and SAIGE-noLOCO, 329,641 genotyped SNPs from

chromosomes 1-22 are included as model SNPs in step 1, and for SAIGE-LOCO all SNPs from

chromosome 9 are excluded which results in 314,309 SNPs. In step 2, 482,884 imputed SNPs on

chromosome 9 are tested for association. The red dashed horizontal line represents the genome-

wide significance level of 5× 10−8.
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Figure S7: Scatter-plots comparing association results from REGENIE using a Firth-based

correction for 4 binary traits using UK Biobank white British samples. Step 2 of REGENIE

was run using the Firth correction (Firth Exact) and it was also run using an approximation to the

Firth correction (Firth Approximation). 504,441 imputed SNPs on chromosome 9 are tested for

association with each of the traits.
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Figure S8: Scatter-plots comparing effect size estimates from REGENIE using a Firth-based

correction for 4 binary traits using UK Biobank white British samples. Step 2 of REGENIE

was run using the Firth correction (Firth Exact) and it was also run using an approximation to the

Firth correction (Firth Approximation). 504,441 imputed SNPs on chromosome 9 are tested for

association with each of the traits.
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Figure S9: Comparison of REGENIE-FIRTH and SAIGE for 16 of the 50 binary traits using

UK Biobank white British samples. 11 million imputed SNPs are tested for association with each

trait. Association results are shown for 16 traits with minimum p-value ≥ 10−10 for REGENIE-

FIRTH. Information on the traits is available in Supplementary Table S6.
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Figure S10: Comparison of REGENIE-FIRTH and SAIGE for 16 of the 50 binary traits using

UK Biobank white British samples. 11 million imputed SNPs are tested for association with each

trait. Association results are shown for 16 traits with minimum p-value between 10−10 and 10−30

for REGENIE-FIRTH. Results are omitted for traits which took longer than 4 weeks to fit the null

model in SAIGE (DNF = did not finish). Information on the traits is available in Supplementary

Table S6. 77
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Figure S11: Comparison of REGENIE-FIRTH and SAIGE for 18 of the 50 binary traits

using UK Biobank white British samples. 11 million imputed SNPs are tested for association

with each trait. Association results are shown for 18 traits with minimum p-value ≤ 10−30 for

REGENIE-FIRTH. Results are omitted for traits which took longer than 4 weeks to fit the null

model in SAIGE (DNF = did not finish). Information on the traits is available in Supplementary

Table S6.
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Figure S12: Comparison of REGENIE-SPA and SAIGE for 16 of the 50 binary traits using

UK Biobank white British samples. 11 million imputed SNPs are tested for association with each

trait. Association results are shown for 16 traits with minimum p-value ≥ 10−10 for REGENIE-

SPA. Information on the traits is available in Supplementary Table S6.
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Figure S13: Comparison of REGENIE-SPA and SAIGE for 16 of the 50 binary traits using

UK Biobank white British samples. 11 million imputed SNPs are tested for association with each

trait. Association results are shown for 16 traits with minimum p-value between 10−10 and 10−30

for REGENIE-SPA. Results are omitted for traits which took longer than 4 weeks to fit the null

model in SAIGE (DNF = did not finish). Information on the traits is available in Supplementary

Table S6. 80
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Figure S14: Comparison of REGENIE-SPA and SAIGE for 18 of the 50 binary traits using

UK Biobank white British samples. 11 million imputed SNPs are tested for association with each

trait. Association results are shown for 18 traits with minimum p-value ≤ 10−30 for REGENIE-

SPA. Results are omitted for traits which took longer than 4 weeks to fit the null model in SAIGE

(DNF = did not finish). Information on the traits is available in Supplementary Table S6.
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Figure S15: Comparison of REGENIE K-fold and leave-one-out cross validation schemes

for quantitative traits. Scatter-plots comparing association results of three quantitative traits

using UK Biobank white British samples where null model fitting step of REGENIE is ran with

different cross-validation schemes. The null model fitting step 1 of REGENIE is ran using 5-fold

cross validation (REGENIE 5-fold CV) and also using leave-one out cross validation (REGENIE

LOOCV). 504,441 imputed SNPs on chromosome 9 are tested for association.
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Figure S16: Comparison of REGENIE K-fold and leave-one-out cross validation schemes for

binary trait. Scatter-plots compare association results of 4 binary traits using UK Biobank white

British samples where null model fitting step of REGENIE was run with different cross-validation

schemes. The x-axis is 5-fold cross validation (REGENIE 5-fold CV) and y-axis is leave-one out

cross validation (REGENIE LOOCV). 504,441 imputed SNPs on chromosome 9 are tested for

association. 83
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Figure S17: Evaluation of REGENIE’s multi-trait missing data approximation for quantita-

tive traits. Scatter-plots comparing association results with REGENIE for 50 quantitative traits

using UK Biobank white British samples. Both step 1 and 2 of REGENIE are ran once for all

50 traits (REGENIE MT), and they are also ran separately for each trait (REGENIE ST), where

missing observations are dropped from the analysis. 11.6 million imputed SNPs are tested for as-

sociation with each trait. Information on the traits is available in Supplementary Table S2. The

scaling of the axes varies over the 50 traits.
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Figure S18: Evaluation of REGENIE’s multi-trait missing data approximation when using a

Firth test for binary traits. Scatter-plots comparing association results with REGENIE-SPA for

50 binary traits using UK Biobank white British samples. Both step 1 and 2 of REGENIE were run

once for all 50 traits (REGENIE-FIRTH MT) shown on the y-axis, and compared to running each

trait separately (REGENIE-FIRTH ST), where missing observations are dropped from the analysis

on the x-axis. 11 million imputed SNPs are tested for association with each trait and FIRTH

correction is used in REGENIE. Information on the 50 traits is available in Supplementary Table

S6. The scaling of the axes varies over the 50 traits.
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Figure S19: Evaluation of REGENIE’s multi-trait missing data approximation when using a

SPA test for binary traits. Scatter-plots comparing association results with REGENIE-SPA for

50 binary traits using UK Biobank white British samples. Both step 1 and 2 of REGENIE were

run once for all 50 traits (REGENIE-SPA MT) shown on the y-axis, and compared to running each

trait separately (REGENIE-SPA ST), where missing observations are dropped from the analysis on

the x-axis. 11 million imputed SNPs are tested for association with each trait and SPA correction

is used in REGENIE. Information on the 50 traits is available in Supplementary Table S6. The

scaling of the axes varies over the 50 traits.
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Figure S20: Effect of inter-chromosome LD (ICLD) on different methods The scatter-plots

show association results for LDL in 321,179 UK Biobank white British samples for REGENIE and

BOLT-LMM in the presence of inter-chromosome LD (ICLD). Step 1 of REGENIE and BOLT-

LMM were run including (with ICLD) and excluding (no ICLD) SNP-pairs involved in inter-

chromosomal LD. 745,696 imputed SNPs on chromosome 6 are tested in step 2.
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Figure S21: Circle plot of the inter-chromosome LD (ICLD) present in the UK Biobank array

data. Each colored region in the perimeter of the circle represents a chromosome. Each link going

through the circle indicates the chromosome and physical positions of the pair of SNPs involved

in ICLD. The magnitude of the correlation between the SNPs in ICLD is represented by the color

of the link. A total of 3,697 SNP-pairs are displayed in the plot (some of the links overlap). The

distance between consecutive tick marks represents 20Mb.
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