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COMPUTATIONS 'IN STATISTICAL MECHANICS 

B. J. Alder 

Lawrence Livemore Laboratory 
University of California 

-I . L i v m r e ,  California 94550 U.S.A. 

In this ser ies  of lectures,  I would l i k e  t o  give a survey of the 

e n o m u s  impact tha t  numerical calculations have had in the  f i e l d  of 

s t a t i s t i c a l  mechanics o r  , in other  words, i n  t h e  solution of the  m y -  

body problem. These calculations were made possible only through the 

avai labi l i ty  of high speed d i g i t a l  computers and through the  development 

of.new numerical techniques uniquely suited t o  these computers. By 

these means some of the  mathematical d i f f i cu l t i e s  which had prevented 

progress i n  the  f i e l d  could be circumvented and new physical insight 

in to  the  behavior of m y  interacting par t ic le  systems were gained. 

The purpose of these talks is t o  outline the numerical procedures 

without going in to  e i ther  excessive technical de ta i l s  on the  computational 

procedures o r  the  rigorous mathematical proofs justifying the  methcds used. 

These can be found in the  referencesapplied. Similarly, the  number of 

physical s i tuat ions t o  which these numerical methods have been applied 

have rapidly multiplied in recent years, so tha t  only the  highlights can 

be presented. The topics are  selected primarily on the  basis of t h e i r  

fa-.,# fundamental contributions t o  the  understanding of interest ing physical 

phenomena and the val idi ty of various mathematical methods t o  describe . 
them, with examples chosen chiefly from my own work. Further i l lus t ra t ions  

' 



and more d e t a i l  can again be found i n  the  references, although tha t  list 

is not intended; by any means, t o  be exhaustive. The intent  of the  lectures 

IS , is t o  give a flavor of the contribution these numerical methods can make 

t o  s t a t i s t i c a l  physics by discussing in  a general way ,same outstanding 

examples. 

I. GENERAL CONSIDERATIONS 

Sta t i s t ica1 .mechar . i~~ is a sui table f i e l d  in which t o  apply numerical 

techniques because 'the physics' has been well established f o r  many decades 

and the  d i f f i cu l t i e s  tha t  are faced are  of a mathematical nature. These 

d i f f i cu l t i e s  are basically due' t o  our inabi l i ty  t o  deal with multidimen- 

sional mathematical objects, whether they are integrals ,  d i f ferent ia l  

equations, Green's functions mwhat have you. To be sure, the  par t i t ion  

function, which is the basic multidimensional quantity t o  be evaluated in 

equilibrium s t a t i s t i c a l  mechanics, can be determined in a few simple 

situations, such as f o r  the perfect gas and the harmonic crystal;  however, 

i n  each of these cases, the  problem can be rigorously reduced t o  a 

product of one dimensional problems. Furthermore, much of the  interesting 

physics is los t '  in ,these models. 
. . 

For more realistic cases, because of the  mathematical d i f f i c u l t i e s ,  

the problem must be appro-ximated by reducing thc d k n 3 i o n d i t y  of ,thc 
, 

c y ~ t m  t o  low ordcr.' Mo~t  of the  oftcn uced ~ t a t i s t i o a l  meahanicdl 

ii theories, in fac t ,  reduce the cmplex physical s i tuat ion t o  a one par t ic le  

problem, where the  rest of the p a r t i c l g i n  the system merely provide an 



average (mean) f i e l d  with which the one particle interacts .  Escamples 

of these a .  the  .van d e r  Waals &el f o r  the  themdynamic properties 

,Q,\ and. the Langevin model of Brownian motion. Another class of one par t ic le  

theories might be called self-consistent models,such as the.Wigner-Seitz 

model f o r  a sol id,  the Lennard-Jones Devonshire model of a l iquid,  o r  

the  Hartree-Fock solution of an atom. I f  these models are only s l ight ly  

extended t o  deal with two independent par t ic les ,  such a s  i n  the  pa i r  

, product simplification used in the superposition approximation t o  describe 

f lu idsand  the  J a s t m w  wave function approximation t o  describe quantum ; 

mechanical systems, one is already faced with a formidable mathematical 

problem generally requiring numerical techniques f o r  its solution. 

' The ccnnputer , t o  be sure, also  can not evaluate an Avogadro number 

dimensional mathematical equation, which typically is required. On the  

other hand, the  cmputer can be made t o  simulate the behavior of a many- 

body problem involving a few hundred particles as accurately a s  is required 

from a physical point of view. Moreover, as sha l l  be seen, the  difference 

between dealing with a few par t ic le  approximation a s  required analytically,  

and a few hundred pa r t i c l e  approximation as i s  possible numerically i s  

the difference between a generally poor approximation and one t h a t  almost 

all the  time represents the properties of a macroscopic system very well. 

One of the outstanding exceptions i s i n  phase t rans i t ion  regions where 

fluctuations are large, involving more than a few hundred part icles .  In 

tha t  case, the  computer resul t s  a re  distorted as well, however, not so 

seriously tha t  one cannot reproduce some of the analytically known resul t s  



of the phase t rans i t ion  in the Ising model, for  example. To be sure the 

Ising model i t s e l f  represents a dras t ic  reduction in the  number of variables 

(degrees of freedam) with which t o  describe a phase t rans i t ion ,  since 
. . 

the  .analytical solution i s  res t r ic ted  t o  a two-dimensional system, the  

. . spins'.are confined t o  l a t t i c e  sites and can only assume two possible 
. . 

valb&, and there must be an equal number ' of each type. A measure of 

'1 the, ana ly t i ca l  d i f f i cu l t i e s  f o r  even this res t r ic ted  problem is t h a t  it 

has not yet been solved in three d&sions in sp i t e  of many t r i e s  by 

'outstanding sc ient i s t s .  

' .  (A) Limitations: 

. .  In fac t ,  all the limitations of the  numerical method are connected with 

the inabi l i ty  t o  deal with very large sized systems and t o  simulate t h e i r  

behavior f o r  very long times. This is basically due t o  the  finite memory 

s i ze  and limited speed of basic operations on even the  fas tes t  and biggest 

computers available. This s i tuat ion i s  not l ike ly  t o  significantly change 

in the forseeable future with even mre advanced computers. , 

The problem can palhaps best be i l lus t ra ted  by considering the  length of 

time f o r  which it is possible t o  follow a system of par t ic les  by the  numerical 

method called molecular dynamics. In molecular dynamics, the  classical  

Newtonian equations of rmtion of several hundred part icles ,  a l l  interacting 

simultaneously, a re  solved by brute force numerically by advancing the  posi- 

t ions of the  part icles  a snaall t& s tep  during which the forces on each. 

part icle  can be assumed t o  be constant. The efficiency with which even 

the most advanced computer can do these time steps, however, is many orders 

of magnitude slcwer than i n  a real system. Thus, during a run of 1 0  hours 

on such a computer, the motion of the part icles  i n  a real l iquid have 



been followed f o r  only l oe9  sec. This precludes using t h i s  method f o r  following 
\ 

r a t e  processes having longer relaxation times than that ' t ime.  

One would have thought t h a t  this would make it impossible t o  study any 

hydrodynamic ph&ontena since they w e r e  believed t o  occur on a very long time . . 

scale f o r  macroscopically large systems. As  w i l l  be seen, certain transport 

phenomena tha t  were studied on c q u t e r s  could be identified with hydrodynamic 

motion occuring on a microscopic scale. Yet, the computers w e r e  limited in 

following this hydrodynamic motion f o r  very long; not because, in t h i s  case, 

of time limitations but because the f ini teness of the system caused boundary 

interference effects  t o  occur. In general, t o  minimize boundary effects; 

periodic boundary. conditions are imposed, but even these d i s to r t  the resu l t s  

from inf in i te  systems. Serious effects  of boundaries are frequently investi- 

gated by studying a property fo r  several different  numbers of part icles .  

(B)  Advantages 

Another serious limitation of numerical solutions is  t h a t ,  l ike  an 

experiment, only a specific solution fo r  a given s e t  of conditions i s  obtained. 

Like experiments, they can sometimes be synthesized.into a general solution, 

which could only be recognized by having a few specif ic  examples worked out. 

More frequently, a general asymptotic solution can be recognized as valid only 

under more res t r ic ted  conditions. Most frequently approximate models can be 

tested fo r  t h e i r  val idi ty and if found wanting, be t ter  approximations can be 

suggested which summarize the specif ic  resul ts .  In these respects,  the  numeri- 

cal results are of-t;en.more helpful than experiments, because they can be - 

designed fo r  more mathematically t ractable situations. Fur themre ,  they can 



give more d e t a i l  than is easi ly experimentally accessible. For example, the 

potential  of interaction between the par t ic les  m b e  made s t r i c t l y  pair- 

wise additive and of a particularly simple form, such as  a hard sphere poten- 
c 

tial. For such a system, the Bolt~nann H-function o r  the t r i p l e t  spacial 

distribution function can be evaluated t o  t e s t  previous hypothesis about 

. t h e i r  behavior: These are  examples of functions which have not been 

experimentally measurable, but whose character is t ic  has been essent ial  t o  

the theoret ical  understanding of m y  par t ic le  systems. N& only is it 

numerically easy t o  evaluate these quantit ies , but it is. possible t o  

evaluate them over"a much wider range of conditions, such as deqsity and: 

temperature, than can usually be covered by e x p d e n t s .  

.The computer can out-perform experiments because it has a be t ter  

resolution f o r  small distances and short times. Most of our experimental 

tools  have great di f f icul ty  observing phenomena a t  e i ther  a distance 

.scale o f ' t h e  s i z e  of an atom o r  at the time scale of the time between 

collisions of two part icles  in a dense fluid,and tha t  is  just  the  scale 

a t  which. the computer simulation operates. For larger  distances a n d  larger  

times, as pointed out before, the computer simulation f a i l s .  Since most of 

the s t a t i s t i c a l  mechanical ef iec ts  occur a t  the  microscopic distance and 

time scale,  the  computer resul t s  have provided powerful insight in to  the 

mathematical structure of the my-body equations. By m v i n g  the restric- 

t ion .  t o  t ractable mathematics, it has become possible t o  investigate what 

CI essential  physical 'processes dominate various 'phenomena. With the  advan- 

' , tages of higher resolution thar, experiment it has even been possible t o  

discover previously unsuspected physical processes. 



11. NUMERICAL METHODS 

There are two basic numerical procedures that ,have been developed 

f o r  s t a t i s t i c a l  mechanical investigations which would have.been impossible 

t o  implement without f a s t  d i g i t a l  computers. One of these has already been 
, . 

mntioned; mlecu la r  dynamics.' With that  method it is possible t o  follow 

a system of part icles  t o  equilibrium and, f o r  example, study h m  the  EDltzmann 

H-function decays. In  order t o  obtain the average behavior of the  H-function, 

it is necessary t o  run a large number of systems f r o m  a ser ies  of initid. 

s ta tes  all of which are consistent with some sor t  of constraint. For example, 

f o r  the  H-function the constraint might be uniform spacial dis tr ibut ion df 

the part icles  (at ' l a t t i c e  p o s i t i o d  over the  available space but with a non- 

equilibrium velocity dis tr ibut ion such t h a t  each par t ic le .has  the  same speed 

but in a random direction. 
. . 

Once the  system has reached equilibrium, it i s  possible t o  determine-. 

the thermdynamic pmperties by taking time averages, fo r  example, of the  

average kinet ic  and potential  energy f m  which the temperature and the  

internal  energy can be obtained. By t h i s  procedure, the whole apparatus of 

equilibrium s t a t i s t i c a l  mechanics, tha t  i s  the  ergodic hypthes. is ,  i s  by- 

passed. Once equilibrium is reached, it i s  however a lso  possible t o  determine 

transport pmperties.  This is done by studying the fluctuations about 

equilibrium, tha t  i s  the  transport coefficients are determined by the  r a t e  

a t  which various fluctuations decay o r  dissipate.  Another possible way 

tha t  has recently been pursued t o  determine transport coefficients is t o  

'set  up a steady s ta te . . for  the part icles  i n  the presence of an appropriate 

external f i e l d ,  anal?gous t o  how such transport coefficients are t radi t ional ly 

experimentally detemined. 
3 



The other numerical method, misnamed the Monte Carlo method, u t i l i z e s  

the apparatus of equilbrium s t a t i s t i c a l  mechanics and, hence, can only 

4 
determine thermodynamic properties. By comparing the  results of these two 

different numerical procedures f o r  ident ical  systems fo r  som thermcdynamic 

property, it has been possible t o  get a specif ic  instance f o r  the  val idi ty 

of the ergodic hypothesis. Needless t o  say, the time averaged property 

obtained by. molecular dynamics has, i n  the  m y  instances tha t  it has been 

checked, agreed w i t h i n  s t a t i s t i c a l  accuracy of the resu l t  with the phase 

space average determined by the Monte Carlo mthod. 

Ironically,  the two n m r i c a l  procedures are generally indistinguishable 

i n  terms, of the  m u n t  of computer time required t o  obtain equilibrium 

properties t o . a  given accuracy. Thus, from a numerical point of view, the  

formulation of phase space averaging seems unnecessary, although i n  some 
. . 

mre ccanplex si tuat ions the Monte k l o  method does have some advantage in 

c q u t a t i o n a l  efficiency. One further  advantage of the  Monte Carlo method 

should be mentioned in.this connection. The molecular dynamics method is 

necessarily res t r ic ted  t o  microcanonical ensemble averages due t o  conservation 

of t o t a l  energy in the calculation. The Monte Carlo method, on the  other 

hand, is much mre versat i le  in this respect, although it is not always 

c lear  which ensemble 'is better in any given situation. 

(A) Random Processes. 

A t ru ly  random (Monte Carlo) method by which t o  evaluate the  multi- 

dimensional integral of the part i t ion function i o  not practical.' The 

dif f icul ty  is  tha t ,  the  part i t ion function is a highly dimensional integral 

of a shmply peaked function; namely, the exponential of the potential  

energy o f , t h e  system.. The potential  energy of the system for  mst of the  



a p r io r i  possible configurations of the  molecules in the  system is very 

large campared t o  those near the more probable configurations, namely 

, ..$ 
'those near the  potential  energy minimum. Thus, out of the t o t a l  number 

of possible arrangemensof molecules, only a very small f ract ion make any 

significant contribution t o  the integral ,  which is merely another way of 

saying the in tepand is highly peaked. The Monte Carlo evaluation of a highly 

dimensional integral  is d i f f i c u l t  enough, but a highly peaked one presents 
, 

further serious problems. 

(a) Multidimensional Integration 

Monte Carlo evaluation of integrals  involves placing random points in 
I 

the space over which the  integral  is t o  be performed, i n . t h i s  case it would 

be the  volume of the system, which,since i t  i s  supposed t o  be in f in i t e ,  

presents . . another diff icul ty.  For each point tha t  i s  placed in to  the  space 

it is  ascertained whether it is  under the  function o r  outside the function. 

With a suff icient  number of such random placing of points in t h i s  space, it 

i s 'poss ib le  t o  deterinhe the  area under the  integral since it is the fraction 

of the  points under the  function times the  known t o t a l  volume of the  space. 

The assumption is t h a t  a suff icient  number of Monte Carlo placements have 

been rnade t o  uniformly cover the available space. The a c c w c y  with which 

the  integral  has been deterrnhed depends not only on t h a t  but also,  on 

what might be loosely called the s m t h n e s s  of the function. The density 

of Monte Carlo points must be so large tha t  the average distance between 

. 
these points is small compared t o  the n m e s t  region of the integrand, 

otherwise t h a t  region would be poorly estimated. Thus, a highly peaked 

function i n  a large space requires a very large number of.Monte Carlo points. 

Ways t o  overcame that dif f icul ty  are by mthematical transfbrmationsthat lead 



t o  a smoother integrand in a more limited space. 

Even i f  t h a t  w e r e  possible, the high dimensionality would still  make 

the problem vi r tua l ly  impossible, since t o  cover such a space even sparsely 

,with points exceeds the limitation of computers. This can be seen from the 

..example of covering only a ten-dimensional space with only 1 0  points in . . 

each dintension. The l o l o  op&ations necessary, each requiring typically a 

minimum of sec., make t h i s  problem consume one hour of machine 

time, without even considering the time consunring task  of d e t e h ~ i n ~  

where the  points fall. For t h i s  reason, pract ical  Monte Carlo 

evaluation of multidimnsional integralswi-th any accuracy is confined t o  , 

less than 20 dimensions. A pract ical  s t a t i s t i c a l  mechanical application 

of this procedure can be found in the  evaluation of higher v i r i a l  coefficients.  
6 

Beyond the  fourth v i r i a l  coefficient analytical methods generally fail ,  even 

f o r  simple m d e l  potentials,  and hence the  above numerical procedure can be 

used t o  evaluate a few higher ones. Beyond the  eighth o r  so v i r i a l  coeffi- 

c ient ,  the  numerical procedure f o r  the above stated reasons becomes time 

consuming because of the  high dimensionality. 

(b) Ensemble 

Another form of the Monte Carlo scheme, which w a s  actually ti?ied, points 

out the same di f f icul ty  in a mre physical way. Suppose you want t o  rake up 

one member  of an 'ensemble a t  a given number density, N/", by randomly placing 

N molecules in a volume, V. After having done tha t ,  one would calculate the 
. . 

t o t a l  potential  energy of that systun and according t o  the  principles of 

s t a t i s t i c a l  mechanics, t h a t  part icular  configuration would be given a proba- 

b i l i t y  o r  weight of the exponential of tha t  potential  divided by KT, t h a t  i s  



the  Bo.ltzmann factor ,  where k is B o l t ~ ~ n n ' s  constant and T is the  given 

temperature. The temperature,together with the density,define the  thermo- 

dynamic s t a t e  of the  system. This process i s  repeated many times t o  make 

up many members  of the  ensemble so tha t  thermodynamic averages can be 

determined. 

The d i f f icul ty  with this procedure is  tha t  with overwhelming probability, 

a very improbable. configuration of the  system i s  selected, tha t  i s  one of ' 

very high potential  energy. For example, if  the pair interaction potential  

w e r e  chosen t o  be t h a t  corresponding t o  hard spheres, almost a l l  configurations 

a t  any but very 1ow.density would be such tha t  some hard spheres would ov&rlap. 

By overlapping is meant t h a t  the center of two hard spheres would be closer 

than the  diameter of the hard sphere. Thus , overlapping . spheres have i n f i n i t e  

potential  energy and hence the  configuration has z e m  probability. The 

reason f o r  the  high probability of overlap in  a randomly chosen configuration 

is tha t  even i n  a dense gas the  spheres have a sanewhat ordered configuration. 

The higher the  density, the mre it: is necessary t o  order the spheres so 

that they can be packed in to  the given volume. The greater the order of 

the corifiguration is ,  the less  l ikely it w i l l  be generated f m l  a rba-~dcan 

selection of positions. 

(c) Wrong Ensemble 

To overcome t h i s  d i f f icul ty ,  one might have thought one could place 

the part icles  into the  volurte urle at a time. 'l Thus, a sphcre would be 

.placed randomly in to  the volume only i f  tha t  sphere . did . not overlap with 

any of the  spheres'previously placed. I f  it did overlap, it would be rejected 

and another t r ied .  This pmedure  t o  build up amember of an ensemble has 

two gmious flaws. . One is a p~a.ct.i.ca3, one, namely, it is s t i l l  not possible 



t o  reach very high density. A t  a density approximtely corresponding t o  the 

one where a real system would be a t  i ts  c r i t i c a l  density, it i s  no longer 

'3 . pcssible t o  place another par t ic le  in to  the system, tha t  i s  ,vir tual ly 
. . 

every placement is rejected. This is again because random placements lead 

t o  ineff icient  packing with large spaces between the spheres which cannot 
. . 

accomodate another sphere after a ra ther  l o w  density is exceeded. 

. The other flaw is a fundamental one, narnely the method does not select  

' 

a proper: member  of an ensemble. The only s t a t i s t i c a l  mechanically sound 

procedure is t o  select  al l  the positims at one time from a set of,randan 

numbers, as w a s  first suggested, and then re jec t  o r  accept the configuration 

of s p h w  according t o  whether there are any overlaps. The procedure of 

putting the  spheresin one at a time se lec ts  a s e t  among the random numbers 

which leads t o  wrong weighting of the  members of an ensemble. Perhaps the 

simplest way t o  i l l u s t r a t e  tha t  is t o  show tha t  f o r  three hard spheres the 

probability of obtaining a given f ind l  configuration i s  different  i f  they 

are placed iri  one d t  a time depending on the  carder i n  which they are placed, 

thus invdidat ing  the  procedure. The probability of placing a sphere in to  

the volume is  proportional t o  the  volume accessible. As a consequence', i f  . the 
, . 

final configuration of the three spheres i s  such tha t  .two of them are so 

. close t h a t  a third sphere cannot be placed between them, then the probability 

of placing a t h i r d  one f a r  away. from these two i s  different  than i f  t h a t  th i rd  

one had been accepted first and one of the close in ones last. 
r 

(B) Monte Carlo Method ---- . -A- 

since the  random procedures f a i l ,  it is necessary t o  go t o  the  next 

order of stochastic complexity t o  evaluate statistical mechanical averages, 



and t h a t  is  by means of a random walk in configuration space. * That r a n d p  

walk generates a Markov chain in which each s t a t e  depends only 

on the  previous state. Fur themre ,  the t ransi t ion probability between 

, , two states must be such tha t  averages over a l l  the  s t a t e s  

developed i n  the Markov chain correspond t o  an ensemble average. The 

problem is t o  determine these t ransi t ion probabili t ies t o  achieve t h i s  aim, 

namely the  one that 'each s t a t e  generated recurs with a frequency corres- 

,pending t o  its Ebltzmann weighting.. If configurations could be preselected 

with Dltzmann probability, then B o l t m  averages can be obtained by 

weighting a l l  the generated configurations equally. This process correspnds 

t o  importance sampling where only configurations near the energy minimum 

are generated thus eliminating the wasteful procedure i n  random sampling 

where many improbable configurations have t o  be discarded. 

The t rans i t ion  probability is  not hard t o  find as i l lus t ra ted  for  a 

dense system of hard spheres. A number of spheres are i n i t i a l l y  placed in to  

the volume i n  any non-overlapping configuration, usually l a t t i c e  positions, 

'according t o  the  density t o , b e  investigated. Next, a sphere i s  selected 

randomly and displaced by a random amount in a random direction. The s i ze  

of the displacement i s  in principle i rrelevant;  however, in practice it 
. . 

determines the  r a t e  a t  which the  system wanders through phase space. This 

is easi ly visualized since too small displacements leave the  system l i t t l e  

changed for  many such displacements, while too large displacements have 

the same effect  since the displacements are rejected. This is because 
, . 

after an attempted random displ'acement of a randomly chosen, pa r t i c l e ,  the 

displacement is only accepted i f  it does not l ead . to  an overlap with any 

sphere in the  system. I f  it does not lead t o  overlap, another &r 



of the  Markov chain!has been generated. If overlapping resu l t s ,  the move is 

rejected,and the  par t ic le  replaced,and the old configuration must be counted 

again in any averaging over the  Markov chain. The latter require- 

mt must be imposed so tha t  the system s a t i s f i e s  microscopic reversibi l i ty .  

More loosely speaking, the configuration must be recounted because the  reject ion 

of the mve indicates the higher probability of the original  configuration. 

. A succession of such random displacements of randomly chosen par t ic les  

then constitutesarandom walk in phase space. The only other requirement 

on the  t ransi t ion probability besides micros~opic revers ib i l i ty  , and the' 

t r i v i a l  one t h a t  the probabj.lity is normalized, i s  tha t  it is possible t o  go 

from any accessible s t a t e  t o  any other by a ser ies  of f i n i t e  one par t ic le  

displacements; t h a t  i s , tha t  the  system is ergodic. That has more t o  do with 

the  choice of t h e i n i t i a l  state of the system and the  nunber of attempted m e s ,  

than with the choice of the form of t k t r a n s i t i o n  probability. One defines 

a system as being ergodic and in the  s m  class  i f  by a ser ies  of single 

mves one can reach any s t a t e  of the  system independent of the  i n i t i a l  s ta te .  
9 

In  proving ergcdicity f o r  the Markov chain under consideration, one can 

take advantage of the fac t  t h a t  on the computer one i s  necessarily dealing with 

a f i n i t e  chain, because the position of the part icles  can only be specified i n  

a discreet space since there is an upper l i m i t  t o  the  significant numbers by 

which the positions of part icles  can be specified. Hence, the  Markov chain 

is  necessarily ergcdic in the sense tha t  there is a mean f i n i t e  recurrence 

time f o r  each s t a t e  in the same class.  More troublesome i s  whether the f i n i t e  

time is suff icient ly short in terms of the number of moves required,so tha t  

reasonable computer runs can cover phase space suff icient ly w e l l .  There is 



no theoretical guidance on this point and usually no d i f f i cu l ty  is encountered 

as judged empirically by averages over runs of varying length. 

Some pract ical  d i f f i cu l t i e s  are,  hawever, encountered, as w i l l  be seen, 
. . . . 

when there are two separate o r  nearly separate regions i n  phase space. I f  

there are separate regions in phase space then only averages over each c lass  

' .of such s ta tes  i s  possible and the  class  i s  entirely determined by the choice 

of i n i t i a l .  states. '  ,An example i s  the glassy and crys ta l l ine  s t a t e  of hard 

spheres a t ' h igh  density. It is possible t o  so  jam up a f i n i t e  number of hard 

spheres in a given volume tha t  there i s  no way t o r e m a n g e  them in to  the 

thermodynamically more s table  crystal l ine s ta te .  This is a s i tuat ion where f o r  

a f i n i t e  system configuration space has been s e ~ a r a t e d  in to  two classes. For 

an i n f i n i t e  system, there is always an improbably large density fluctuation 

which w i l l  allow the glass t o  rearrange i t s e l f  in to  the crystal l ine form. 

In tha t  case the two classes of configuration in phase space are connected by 

a narrow passage,reflecting the improbability of t h a t  event. Thus, one has 

t o  face the problem tha t  for f i n i t e  systems phase space can be distorted 

and tha t  'rigorous proofs of ergodicity fo r  such systems are  l ikely t o  be 

1 0  ' 

confined t o  a g i v e  class.  

'  case where different  classes of phase space are  connected by a narrow 

occurs:also f o r  hard spheres i n  the fluid-solid phase t rans i t ion  

region; the two classes corresponding t o  the f lu id  and'sol id pockets. As w i l l  

be seen, the. f in i t e .  system jumps suff icient ly rarely fram.one pocket t o  the 

other tha t  it has not been possible a t  some densities t o  get a meaningful average 

over both pockets f o r  even the .  longest computer runs on the  fas tes t  machine 
. . 

available.. As a consequence, the average over each pocket.has t o  be giveh 
. . 

separately as if the themcdynamic functiors a t  these densities were two valued. 
, , . . 



(b) General Procedure 

The impression tha t  these problems only occwl f o r  hard sphere systems 

should be dispelled. For a more r e a l i s t i c  interaction potential  between a 

,pair of particles., . the  repulsive forces s t i l l  predominate a t  suff icient ly 

high density leading t o  similar d i f f i cu l t i e s .  For such a r e a l i s t i c  potential  

. the  random walk procedure must be s l ight ly  mdif ied .  This time a random 

displacement of a randomly chosen par t ic le  i s  allowed with Boltvrwn probability 

by evaluating the  energy change resul t ing from the  move. The move is  a l l w e d  

with probability of the exponential of t h i s  energy change divided by KT. This is  

technically achieved by comparing a random number with tha t  exponential. 
i 

I f  the random number is l e s s  than the  exponential,the move is allowed, i f  

not,  the move is  disallowed and the configuration obtained by replacing the 

par t ic le  at its original position is counted again i n  the  s t a t i s t i c a l  mechanical 

averaging. 

Starting from same a rb i t r a r i ly  chosen i n i t i a l  configuration, most moves 

i n i t i a l l y  w i l l  be allowed as the system movetowards its energy minimum. A f t e r  

r h e  SySfm 2s' near tha t  s t a t e ,  it moves away fmm that m i n h  only with 

B a l t m  probability: It is only then t h a t  the averaging procedure is  

inst i tuted;  the early par t ,  as the system moves toward equilibrium, being 

discarded. This initial phase i s  usually over very quickly. After equili- 

brium i s  reached, some unfavorable moves must be allowed, otherwise eventually 

the system would get frozen in to  its lowest potential  energy s t a t e ;  tha t  i s  
,r 

all possible mves would increase the potential  energy. Under those circum- 

stances it is no longer possible t o  take averages. 

(C 1 Molecular 'Dynamics 

In capar ison t o  the  Monte Carlo method, the molecular dynamic method 
, . 



is c o m p l e t e l y ' d e t e ~ s t i c . l l  The part icles  are given positions and veloci t ies  

and the  equatiorsof m t i o n  are followed. This can be done m r e  accurately 

,- and fas te r  i f  the  potential  of interaction is chosen. t o  be of the  hard sphere 

o r  square-well type. For such potentials,  ,the only forces are impulsive ones 
. . 

a t  the -discontinuities. The system of simultaneous d i f ferent ia l  equations then 

reduces' to a system of simultaneous algebraic equations which can be solved 
. . 

f o r  t h e .  time t o  the  next col l is ion among all the  s e t  of part icles .  Proceeding 
. . 

coll is ion by col l is ion the time evolution of the  system is  obtained. There are 

. s.me obvious technical arrangements of the  calculation tha t  make t h i s  procedure 

ef f ic ient  h e n  a large number of par t ic les  are followed. In tne Monte Carlo 

calculation,as w e l l  as in molecular dynamics.,the calculation can be arranged 

such tha t  in a given amount the  number of col l is ions calculated 

is independent of the  s ize  of the  system. For more realistic, continuous 

potentials this i s  also  true. There one assumes t h a t  the  forces a re  constant 

over.some short. t ime interval  a f t e r  which the  forces are recalculated. The 

length of the  t h e  interval  over which it is  legitimate t o  assume constancy of 

the forces depends on the  accuracy with which one wanfs.to solve the equations. 

There are  standard predictor-corrector mthods with which these equations 

are solved which allow determination of the appmpriate time interval .  
1 2  

( a )  , Accuracy 

One rmst make sure tha t  the physical relaxation process one wishes t o  study 

has a shorter relaxation time than the the scale of build-up of numerical 

error.  This is not always easy since it is amazing how rapidly numerical 

imprezisbns accumulate. A simple demonstration of t h i s  can be obtained by 

-running a system forward fo r  a certain time and upon reversing a l l  veloci t ies  



ascertain whether the system returns t o  its original s t a t e  when it is run 

again f o r  the  same time. Even with twelve d ig i t  arithmetic f o r  the simple 

,- hard.sphere system, the time corresponds t o  only abouv 10,000 col l is ions,  

.pretty independ& of the  s ize  of the system. Different round-off errors 

'lead ev&tually t o  a hifferent  col l is ion history. One might argue t h a t  tha t  

should not a f fec t  the  physical resul t  since r e a l  systems are subject t o  random 

external. effects  a s  well; hwever, t o  be sure tha t  the,@ysical  r e s u l t  is 

not affected, i t  i s  wise t o  m some calculations with higher accuracy, such 

as double precision, t o  make sure tha t  the  numerical noise does not daminate 

the longer physical r a t e  processes that one studies. 

The si tuat ion i s  particularly bad in s t e l l a r  evolution calculations 
13 

where most of the  time the  stars areweakly interacting through the gravitational 

potential  and rarely strongly interacting through a coll is ion.  Furthermore, 

the system needs t o  be fo l lwed  f o r  a very long time. The accumulation of 

numerical errors is so severe (exponential growth) tha t  mst calculations 

have been dominated by numerical problems,putting the physical r e su l t s  i n  doubt. 

(U ) 'l'herincdynamic Properties 

In  molecular dynamics, the  energy as  well as some other conserved 

quantit ies are continuously monitored t o  check on gross computer errors  

as w e l l  as round off errors.  There is ,  hence, no problem i n  obtaining the 

internal  energy. The pressure can be obtained through di rec t  application of 

the v i r i a l  theorem since the forces are hown a t  each instant  of time o r  

through an indirect application of the v i r i a l  theorem, namely through averaging 

by means of the pair r ad ia l  dis tr ibut ion function. Although howledge of the 

, internal  energy and the pressure over the  ent i re  density and temperature regime 

completely determines all the thermodynamic functions of the system, it muld 



be highly desirable t o  have a di rec t  measurementof the  other thermodynamic 

properties at a given s ta te .  Oddly enough, the numerical schemes can d i rec t ly  

.- . determine thermodynamic properties which are derivatives of the par t i t ion  

function, but not the  t h h y n a m i c  properties which depend on the  par t i t ion  

function i t s e l f ,  -without s- additional calculations. Thus, it is 

possible t o  'get the Helmholtz free energy by integrating the  pressure with 

respect t o  volume f r o m  i n f i n i t e  volume t o  the  desired volume, but not by 

calculating it by means o f , t h e  logarithm of the par t i t ion  function, since 

the l a t t e r  is unobtainable direct ly.  

(a) Free Energy 

A number of special techniques have been developed to.circumvent t h i s  

problem, .s r t icular ly  for  the free energy o r  chemical potential  since t h a t  

quantity is very important in a number of applications. All  these tech- 

niques depend fundamentally on the  f a c t  tha t  the chemical potent ial  is the 

derivative of the  '~elmholtz  f r ee  energy w . r . t .  the number of part icles .  

Hence, the  of adding an additionalparticle t o  the  system i s  

just the  thermodynamic ac t iv i ty ,  whose logarithm is proportional t o  the 

chemical potential.14 The idea was used a long t i m e  &go i n  calculating 

the f ree  energy of a system of charged par t ic les  by slowing turning on the  

charge of one part icle .  In general, integration over a "coupling constant" 

is .called for,'whose furktion it i s  t o  turn whatever potential  one i s  

studying on,al l  the way t o  f u l l  strength. In t h i s  way the  free energy i.s 

ident if ied with the  reversible work necessary t o  add an additional par t ic le  

t o  the system. Although t h i s  s t i l l  calls f o r  a ser ies  of computer rmns fo r  

various strengths of the  interaction, with a subsequent integration over t h i s  

s t r q g t h  parameter, it sanetimes is preferable over the volume integration 
. . 



called f o r  by the d i rec t  thermodynamic formulation. 

The technique of determining the probability of acceptance of an 

addi t iondpar t ic le  i s  preferable whenever it is  possible t o  do it. 

As 'pointed out ea r l i e r ,  tha t  technique f a i l s  at higher density because 

. . .  
the probability of acceptance becomes too lm. This probability is deter- 

mined' by periodically stopping a mlecular  dynamics run f o r  hard spheres, 

for  example, ,and trying via m y  random -tries t o  insert another sphere some- 

where,into the volume of the  system. The probability of insert ion is  just 

jus t  the  r a t i o  of successful insertions, namely those that do not 

overlap with the  other spheres in the system, t o  the t o t a l  number of t r i e s .  

In general, the  ac t iv i ty  is the average of the exponential of the  energy 

change re la t ive  t o  KT caused by the  insertion. Since at high density the 

overwhelming number of insertions lead t o  very unfavorable energy changes, 

. i t , i s  not possible t o  obtain a proper measure of t h i s  probability and some 

other process, such as the coupling process,must be used. 

Later,use w i l l  be mde of another coupling process where each par t ic le  

in the system i s  confined t o  a single c e l l  which is then allmed To ge't 

larger  and larger.  In t h i s  .way the free energy of a sol id can be obtained 

by integration over the  s i ze  of the  ce i i .  Such a molecular dynamics run 

would have hard sphere par t ic les  col l ide e i ther  with other par t ic les  a s  

before o r  with the walls of the  confining c e l l .  

(El Quantum Systems 

So f a r  only numerical procedursfor the solution of the  c lass ica l  

vy-body problem have been discussed. The numerical procedures t o  solve 

quantum s t a t i s t i c a l  mechanical problems are  in a very much more rudimentary 

stage,and the  problem is so complex tha t  it taxes even the  most advanced 

computers by presently available schemes. To permit the  equilibrium quantum 



ky-body  problems t o  be solved by a p p b a b i l i s t i c  method, the  Schroedinger 

equation must ' be' transformed in to  the  form of a diffusion equation. This 

- i s  eas i ly  done by transformation t o  an integral equation incorporating 

, . -  the relevant boundary conditions. That integral  equation involves an 

unknown Green's function which must be f i r s t  generated by a Monte Carlo 

game, a f t e r  which. the diffusion-like equation can be solved by another 

. s 

Monte Carlo; game.'' This procedure has been successfully used t o  determine 

. . 
the properties of a few hundred Boson particles at zero degrees. Extensions 

I 

t o  higher tanperatures and Fermi statistics involve further  enormous 

pract ical  d i f f i cu l t i e s  . 
I 

,' To study the. mre spectacular transport properties of quantum system, 

the time dependent Schroedinger equation must be solved. This might be 

carried out via the  s e c a l l e d  Madelung transformation which converts the  

Schroedinger equation t o  a NavierStokes type hydrdynamic equation, one 

fo r  each' par t ic le  in the  system.16 One i s  then faced with the horrendously 

d i f f i c u l t  task of the  solution of a large nurmber of coupled Navier-Stokes 

equarions. En & much as these procedures are s t i f  1 in a very rudimentary 
. . 

stage with.no physical insight of general interest so f a r  for tkcomhg,  

the subject w i l l  not be pursued further  here. 

111. PHASE TRANSITIONS 

One of the  f i r s t  problems t o  which these n u m e r i c a l t e c h n i q ~ ~ s  were. 

, applied w a s  t o  the question of a solid-fluid phase t r a n s i t i o n  f o r  hard 
. . 

, spheres. .There had k e n  some theroet ical  work suggesting such a t ransi t ion,  

but of dubious r e l i a b i l i t y  because of the approximations intrcd.uced. The 

significance of the proof of such a melting t rans i t ion  lies in whether purely 



.repulsive forceS suffice,as had been suggested by more physically based 

models. Furthermore, i f  such a t rans i t ion  exis ts ,  the problem would have 

been reduced t o , i t s  simplest and essent ial  character is t ic ,  giving hope 

' 

tha t  a rigorous theoret ical  proof would be forthcanjng. 

Theories of phase t ransi t ions represent one of the great challenges 

in statistical mechanics. As mentioned before, only the Ising model hai 

so f a r  yielded t o  t h a t  challenge. The d i f f icul ty  i s  tha t  the  par t i t ion  

. function has a mathematical s ingulari ty at the  conditions of a phase 

I 

t rans i t ion  beyond which the nature of the solution changes. There have 

been' m y  suggestions of divergence of asymptotic .series representations 

of the  par t i t ion  function at the  conditiorsof. the  phase transi-tion. One 

of these is the  divergence of the v i r i a l  expansion which represents the  

part i t ion function in a power ser ies  in the  densi ty. .  The numerical 

resul t s  can shed some l ight  on whether t h i s  density ser ies  might diverge 

aid  how re l i ab le  Pad6 appmximants are in extrapolating such a ser ies .  

(A) Fluid Density 

In as  much as the  f i r s t  few v i r i a l  coefficients were known, the  hard 

sphere system was  f i r s t  rim a t  suff icient ly low density where the known 

v i r i a l  series converged i n  order t o r h c k t h e  numerical procedure. Once 

sa t i s f ied ,  higher virial coefficients w e r e  numerically obt3ined and the 

equation of s t a t e  (pressure-volume-temperature re la t ion)  w a s  extended t o  

higher densities by the  Monte Carlo and molecular dynamic techniques. 
17 

One of the important fac ts  t h a t  w a s  learned in these calculations w a s  that  

. ' once more than 100  part icles  were used, the resul t s  no longer depended 

signif icant ly on the  number .of par t ic les ;  tha t  is, the resu l t s  did not 

change by more than about I%', which is the typical  numerical uncertainty i n  

the results. Some studies w e r e  carried out t o  theoret ical ly predict t h i s  



number dependence, but in general, t ha t  turns out t o  be a mre d i f f i c u l t  p r o b  

l e m  than t o  solve the actual. infinite par t ic le  problem in the f i r s t  place. 

Hence, the  important conclusion which makes all these numerical simulation 

calculations so s ignif icant ,  namely tha t  100  par t ic les  represent the  pro- 

pert ies  of an i n f i n i t e  system w e l l  i n  alrnost all si tuat ions,  i s  based on 

such empirical observations. 

The v k a l  series represents the f lu id  equation of state well below 

a cer ta in  density. Beyond tha t  density, using Pad6 a p p r o x W t s  t o  extend 

the  s e r i e s  proved t o  be a hazardous procedure. The problem i s  t h a t  there 

exis t  several Pad'e appmximants by which t o  extrapolate and there i s  no 

theoret ical  guidance as t o  which one is  best. These several Pad6 approxi- 

mants all sa t i s fy  the  general feature t h a t  they a re  the  r a t i o  of two poly- 

nomials which, when divided,repmduce the known v i r i a l  coefficients.  They 

d i f fer in  the  degree of the polynomial in the  numerator and denominator. 

However, all of them gave no indication of any discontinuity in the  

equation of s ta te .  Instead, they seem t o  follow continuously from the f lu id  

phase in to  a g l a s y  phase. 'This glassy phase i s  generated on the c6il1puteF 

by slowly compressing the f lu id  phase, leading eventually t o  one of those 

isolated pockets in phase space spoken of ear l ie r .  For this "glassy" 

phase the pressure gaes continuously t o  in f in i ty  a s  the system approaches 

a s t a t e  of what' might be called random close-packing. 

Comparing the f lu id  properties with the  prediction of the  superposition 

approximation theory led t o  the conclusion tha t  tha t  approximation f a i l s  

rather  badly a t  high density and thus i t s  veracity in the prediction of a 

phase t rans i t ion  must be questioned. On the  other hand, the  Percus-Yevick 



o r  scaled par t ic le  theory, proved t o  be much more accurate and since the 

resul t s  can be expressed in simple analytical form, t h a t  approximation has 

become very popular, although the reason f o r  its validi ty remain obscure 

and how t o  extend the theory has proved d i f f i cu l t .  The hypernetted chain 

theory proved t o  be of intermediate accuracy compared t o  the above two 

theories. It is  an interest ing sidel ight  that, i n  general,, the numerical work 

required t o  solve the  above theories is of canparable mgnitude t o  t h a t  for  

the  numerically exact simulation procedures and this,usually,  without 

assurance of a unique solution. 

(B)  . Int'ermediate Density 

: A t  intermediate densities a peculiar behavior reminiscent of a phase 

t rans i t ion  w a s  observed when the system was s tar ted  i n i t i a l l y  i n  a sol id or 

crystal l ine phase. After a very long computer run where the pressure 

fluctuated a small m u n t  around the sol id pressure value, the pressure 

suddenly jumped and fluctuated a small amount around the extension of . 

the f lu id  branch of the equation of s ta te .  Only rare ly  did the pressure 

'. . 
3ump back down again; It w e s  nut p s s i b l r  LU p ~ v p l l y  *v.vms+e ~ V W  

these two branches since t ransi t ions were too rare.  The two branches 

wcrc ident if ied by vmious wajis as: I lu id  arid solid by such measumlmts 

as Ll~e diIIusiur.1 cvefficienes a i d ,  perhaps, n l o s t  convincingly by a 

grhphical display of the t ra jec twiesof  the  part icles .  These t ra jec tor ies  

showed the  localized excursion of the  par t ic les  in the sol id around , 

.. 
t h e i r  l a t t i c e  positions and the accessibi l i ty  of al l  of configuration 

space t o  the  particles i n  the  f lu id  phase. 

This two'branched behavior only occurred f o r  systems of greater  

than about 30 particles.18 For fewer par t ic les ,  the  system stayed in 



the sol id branch even though .it could be determined tha t  part icles  were 

. able t o  exchange l a t t i c e  positions. The point seems t o  be tha t  there 

' ,  were not enough part icles  present t o  create  a disordered s t a t e ,  since after 

such an exchange in a few par t ic le  system the  part icles  found themselves 

again in an ordered s ta te .  The lesson t o  be learned is t h a t  t o  obtain 

even the rudiments of a phase t ransi t ion it is necessary t o  deal with . 

a f a i r l y  large' number of degrees of freedom. The only way t h a t  can be 

done analytically is by the introduction df collective coordinates, 

. as. w i l l  be i l lus t ra ted  shortly. 

,Going to'  much ' larger systems than 100 part icles  proved f ru i t l e s s1  

in three dimensions. Systems as large as  4000 part icles  have fa i led  

t o  show the  coexistence of the two phases. Hcwever, in two dimensions, 

tha t  i s  f o r  hard disk, the e f fo r t  w a s  successful. lg Oscilloscope 

traces of the t r a j e c t o ~ i e s  showed the coexistence of sol id and f lu id  regions, 

and the equation of s t a t e  in tha t  region showed large pressure fluctua- 

t ions whose average connected the sol id and f lu id  branches by a van der 

W d s - l i k e  1 mp , &though f o r  infirL LC sys Lws IT can be proven t h a t  

such a loo? cannot exis t ,  f o r  f i n i t e  s y s t e m s i t i s  possib1.e. The loop 

was analyzed in t e rn  of the coril-~ibutionon of in te r t ac ia l  tension, 

which carnet; the pPedm~ldlL phase t o  force the part icles  in between 

the two different regions t o  take on more of i t s  characteristics.  
2 0 

In t h i s  way, it i s  possible f o r  a f i n i t e  system t o  have a region which 

would be, fo r  i n f i n i t e  systems, mechanically unstable, namely one where 

the pressure goes up as  the volume goes up. 

(C) Communal Entropy 

The numerical hard sphere results allowed f o r  the f i r s t  time an 

evaluation of the swcalled cammunal entropy tha t  dispell-ed some of the 



misconceptiors held a b u t  it. 21 The comnunal entropy concept 

. arises from the  difference between the  properties of a system when' it 

i s . t r e a t e d  i n  the one par t ic le  approxixition and when it is t reated as 

a many-body system; i n  other words, it is  the quantity one w a s  able 

only t o  speculate'about previously. One thing tha t  is  h o r n  about it, 

however, i s  tha t  in the high density (close-packed) l imit  of a hard 

. sphere sol id,  the one par t ic le  concept is rigorously valid.  22  On the  

.. 'other' hand, 'in the l c w  density l imit  the one par t ic le  concept leads 

t o  an error i n  the entropy, S/Nk, of unity; the er ror  ar ises  from 

the difference of a par t ic le  being confined t o  a region of a volume 

per .part icle  as opposed t o  having the en t i r e  volume of the system 

accessible. This difference in the  entropy, the c m a l  entropy, 

must .appear somewhere between the high and low density limit, and the  

logical place appeared t o  be a t  mel t in~when indeed the par t ic les  in 

the sol id,  confined t o  the  neighborhood of a l a t t i c e  s i t e ,  are released 

upon melting from that  res t r ic t ion .  The argument was considerably 

strengthened by the empirical observation tha t  melting' entropies f o r  

simple substances w e r e  of tha t  magnitude. A detailed analysis revealed, 

however, ' tha t  the 'communal entropy upon melting was only a s m a l l  fract ion 

of unity and tha t  the comnunal entropy appeared gradually over the 

ent i re  region from sol id t o  gas. 

The communal entropy concept could be ut i l ized  in two further  ways. 

One of these w a s  t o  predict the s h i f t  of the observed phase t rans i t ion  

with the  number. of part icles .  20 The nagging worry of the doubting 

Thomases about t h i s  h a .  sphere melting t r m s i t i o n  continues t o  be 

whether t h i s  phase t ransi t ion disappears f o r  i n f i n i t e  systems. It i s  

hence necessary t o  understand how the t rans i t ion  depends upon the number 

of part icles .  Besides the decrease of the amplitude of the van der Waals- 



like loop as the number of part icles  increases, a s  already discussed, 

the t ransi t ion s h i f t s  in pressure and in volume difference between solid 

and f luid.  The iatter can be investigated, but w i l l  not be pursued 
. . 

here. The p ressGe ' sh i f t  can be understood on the  basis 'of the 

communal entropy. This ar i ses  because the  f i n i t e  system of N part icles  

in a periodic c e l l  can be considered as differ ing in. entropy from an 
. . 

i n f i n i t e  system by the cammunal entropy of N par t ic les  per ce l l .  

The other use of the communal entropy was t o  establ ish the coexisting 

conditions f o r  the  sol id and f lu id  phase in three dimensions, where 

suff icient ly big systems could not be investigated on the  computer t o  / 

establish these conditions directly.22 What is hence necessary i s  t o  

establ ish the f ree  energy of the sol id t o  be equated with the laown 

free energy of the  fluid. The way t o  accomplish that is by 

extending the 'solid branch of the  hard sphere system a r t i f i c i a l l y  

t o l o w  density by imposing the res t r i c t ion  of single occupancy. 

Single occupancy leads t o  a continuous extension of the  sol id branch 

t u  Puw densiry which upon volume integration of the pressure leads t o  

a free energy all along the  real solid region. 

(Dl Mechanism , 

There is l i t t l e  doubt that  the phenomena observed on the  computer 

' corresponds indeed t o  melting. Using more rea l i s t i c '  potentials than 

hard spheres, the phase t ransi t ion observed on the  computer could be 

w e l l  correlated with actual data. Furthermore, the phenamena could be 

understood oi the basis of a well established eqirical m d e l  of melting, 

namely Lindemann's law. That law, which gives a very good account of 

melting in all. sor t s  of materials, s ta tes  t h a t  a substance w i l l  melt 



once its temperature and density are such that the  root man square 

displacement of a par t ic le  from i t s  l a t t i c e  s i t e  is about 10% of the  

l a t t i c e  spacing. Both the hard sphere and disk systems correspond 

well t o  t h a t  rule.  The problem now is t o  develop a mcdel o r  a mechanism 

which accounts for  t h i s  observation. 

The safe and 'pragmatic view i s . t h a t  a substance melts once i t s  

f ree  energy equals tha t  of a l iquid. . Proposals f o r  an ins tab i l i ty  i n  

the sol id associated with melting usually lead t o  an extension of the  

sol id branch in to  the  metastable region, o r  a van der Waals loop 

coexistence curve. The problem with ins tab i l i ty  theory hence is, 

that one has t o  find the f i r s t  ins tab i l i ty  mode which, i f  not ident ical  

t o  the phase t rans i t ion  condition, l i e s  a t  leas t  closest t o  it. Further- 

more, ins tab i l i ty  theories cannot identify the  new phase formed. However, J 

the universality of melting leads one t o  believe t h a t  there i s  a 

mechanism, namely one t h a t  destroys the long range order by an instabi- 

l i t y  t o  a long wave length shear d e .  Although there have been some 

Ilrguments t11aL Ul is  carlnor hold t o r  dlsks since there is  no long range 

order, the  arguments are deceptive. To be sure, it can be shown that no 

lcll-lg rwge order exists in a two dimensional sol id because the mean 

square displacement is  inf in i te .  This is because the system ac t s  l ike  

a jel ly.  However, there is  long range order r e l a t ive  t o  the  position 

of any part icle .  

The search f o r  a simple mechanism f o r  melting..led t o  a.soft mode 

ins tab i l i ty  which can be mocked up crudely in a correlated c e l l  mcdel. 

In the two' dimensional version of tha t  mcdel, a l ternate r o w s  of atoms 

. . 

move collectively re la t ive  t o  each other. A t  the point where one r o w  

of atoms can s l i p  past the neighboring ones, the &el leads t o  a 



discontinuity in the equation of s t a t e  represented by a 'd i s to r t ed  

.van der Waals-like loop. The conditions a t  which the  t rans i t ion  occurs 

i n  the &el correspond nearly quantitatively t o  the  ones found f o r  

disks. 

A search f o r  evidence tha t  r o w s  of atoms s l i p  past each other in 

molecular dynamics calculations in the  sol id phase of disks very close 

t o  melting proved successful. The sl iding rows consisted typically of 

5 atoms each i n  two neighbming r o w s ,  where the end atoms jumped 

across the rows t o  close the  loop. The loops got bigger closer  t o  
I 

melting u n t i l  f ina l ly  one end no longer closed the loop. That created 

a 'defect i n  the  sol id which propagated very rapidly, leading t o  melting. 
. . 

-There exis ts  a l so  some experimental evidence in the  bodycentered cubic 

phase of helium just  pr ior  t o  melting, tha t  the heat capacity has a 

small contribution due t o  t h i s  col lect ive mode. Usually t h a t  contribution 

t o  the  heat capacity is unobsemably small, but in helium a numb- of 

factors  rrake it m r e  favorable t o  obseme it. 

( E l  Lattice Models 

No theory has as yet been able t o  prove the existence of the 

melting tmns i t ion  f o r  hard spheres. Such a proof r e m i n s  one of the  

outstanding challenges in equilibrium s t a t i s t i c a l  mechanics. The 

question one might then ask i s  whether it is  possible t o  prove such a 

wansit ion f o r  l a t t i c e  models, such a s  was used in the  Ising M e l .  

For l a t t i c e  mde l s ,  such a proof might be easier  because, a s  pointed 

out before, they involve a reduced space. In  t h i s  case, the  continu- 

ous configuration space muld be replaced by a d iscre te  space, or  t o  

s t a t e  the problem mthematically , the  integration over volume Ln 

the par t i t ion  ,function is replaced by a s.um. Replacing an integral by 

a 'd i sc ree t  sum is done a l l  the time in numerical integration and as the  



mesh o r  grid is made suff icient ly f ine ,  the  approximation t o  the  integral 

can be made as accurate as desired. The analyt ical  problem, however, is 

tha t  for  f ine  meshes the  integral. can no longer be managed. The only 

l a t t i c e  problems t h a t  have been solved correspond t o  mesh points com- 

parable t o  the number of part icles  i n  the system. In other words, unless 

a grid spacing comparable t o  the s ize  of the par t ic le  suffices,  the  

evaluation cannot be handled analytically.  The unfortunate f ac t  i s  tha t  

such coarse spacing seriously dis torts  the  part i t ion function in dense 

f lu ids  and hence the  phase t rans i t ion  can not be adequately described 

by practically workable l a t t i c e  models. 

A one-dimensional mod21 using hard rods can d m n s t r a t e  the l i m i -  

ta t ions  very simply, since i t s  par t i t ion  function can be worked out 

exactly,no matter how f ine  the  grid. 25 A t  typical melting conditions, 

the spacing between . . par t ic les ,  a s  L i n d m p r e d i c t s ,  is  about 10% of 

the s i ze  of a part icle .  Under these conditions, i n  order t o  evaluate 

the  par t i t ion  function accurate t o  1%, tha t  10% space must be covered by 

50 grid points o r  there must be 450 grid points t o  cover the  space 

occupied by each part icle .  In three dimensions tha t  number must be cubed, 

and with t h a t  mesh s i ze  only 1% accuracy is achieved,and even then it i s  

not assured tha t  the narrow passages in phase space between t h e  f lu id  

and sol id pockets might not be missed. A t  the  c r i t i c a l  point, where the 

l a t t i c e  theories have been much applied, the  s i tuat ion is not nearly as  

bad. A t  the  c r i t i c a l  point the  spacing between par t ic les  is canparable t o  

the s i ze  of the par t ic le  i t s e l f .  In order t o  get 1% accurate thermodynamic 

properties., it would be necessary t o  cover a par t ic le  with only 50 
. . 

points in each dimension, s t i l l  way beyond analyt ical  capabil i t ies .  



However, .by covering each par t ic le  and each of the spaces in between par t ic les  

by a t  leas t  one grid point, a s  is typically done, one might hope t o  get a t  

leas t  the qual i tat ive behavior correct,  particularly f o r  the  very important 

long range behavior of the spacial correlation functions. These correlations, 

being of a range much larger than the s ize  of a par t ic le ,  should not be quali- 

ta t ive ly  dependent on the grid s ize  as long as it is also of the  s i ze  of a 

particle. 

. . 
The l a t t i c e  models, nevertheless, have found two useful applications 

in dense systems. One is t h a t  they can provide both upper and lower 

bounds fo r  the  part i t ion function. The bounds fo r  hard rods derive frbm 

the simple observation tha t  i f  one measures the non-integral length of a 

line by a discrete  number of equal sized elementary lengths t h a t  fit in it, 

one always overestimates the  length. The average error  due t o  edge ef fec ts  

is jus t  one half of the length of one of these elementary length,and it 

i s  t h i s  fact wh& Led t o  the  error estimates. The other pract ical  appli- 

cation is tha t  no matter how fine the p i d ,  the  l a t t i c e  model gives the 

wrong behavior i n  the close-packed limit, where the  space between the  part icles  

shrinks t o  zero. Thus , the computer calculations with the i r  exceedingly f ine  

grids,  determined by the  number of significant d ig i t s  with which the  

positions are specified, cannot properly determine the properties of dense 

systems very near close-packing. This has not been a serious limitation, ard, 

in fact,  -L~-Eo@I Lhe cuinputers it has been possible t o  establ ish the  correct 

asymptotic behavior of 11ad syllere solids.22 This w i l l  be discussed in 

connection with critical behavior in sol id systems. 



I V .  VAN DER W S  MODEL 

One of the resul t s  of the numerical work has been t o  gain more 

insight in to  the val idi ty of the man f i e l d  models of which the  van der 

Waals rrlodel i s  a prime example. The van der Wads &el, which i s  now just  

over a hundred years old, was neglected by theor is t s  f o r  a long time 

during which they grappled with many unphysical models a s  they t r i e d  t o  

! cut through, mostly unsuccessfully, the mathematical d i f f i cu l t i e s  by 

approximations tha t  would make the  mathematics tractable.  These e f fo r t s  

ignored the mounting empirical evidence tha t  the  van der W a a l s  model 

correlated the  experimental data remarkably well outside the  c r i t i c a l  

region. The numerical work circumvented these mathematical d i f f i cu l t i e s ,  

showed the val idi ty of the  van der W a a l s  model i n  the  asymptotic high 

temperature l imi t  f o r  part icles  with a hard core interaction potent ial ,  

showed tha t  the  correctionsto the model were small, and showed t h a t  a l l  

three phases of matter could be obtained by t h a t  model. 

(A) Perturbation Theory ' I  

As a iiuL L a 1  u1 Tact ,  he usefulness o t  the van der ,  Waals model and i t s  

corrections from a numerical point of view t ransends  i t s  usefulness as a 

plijisical nlodel. F r o m  a numerical point of view, it is  'highly desirable t o  

ovewome the limitations of numerical calculations t h a t  they are  specif ic  

t o  al l  the conditions imposed in the  solution. One of these conditions is 

the choice of the  specif ic  interaction potential  between a pair of particl.es, 

f o r  example, the  hard sphere potential .  It would be very.valuable i f  this 

specif ic  solution could be extended by analyt ical  mans t o  a class  of s l ight ly  

different  interaction potent ia ls , . for  example, those'which have a weak 

a t t rac t ive  potential  added on t o  the core. It tuns out tha t  i f  t h i s  
. 



at t rac t ive  potential  is suff icient ly weak so tha t  f i r s t  order 

perturbation theory suffices,  and suff icient ly long range 

so tha t  t h i s  perturbation theory can be extended over the  en t i r e  density 

regime, one recovers rigorously the van der Waals model. Such a per- 

turbation theory w i l l  not only lead t o  the gas-liquid coexistence region 

f o r  which it was originally proposed, but a l so  t o  the solid-fluid phase 

t ransi t ion region, since, as  has just  been seen, t h i s  is cmtained in the  

: hard sphere system by i t s e l f .  Without the addition of a t t r ac t ive  forces, 

the hard sphere f lu id  cannot distinguish between a l iquid and a gas phase. 

Having a rigorous proof on the  conditions under which the van der Waals 

node1 i s  valid,  it is  now of interest t o  ascertain what the corrections t o  
. . 

the model a .  when these conditions are  not met:, since f o r  m y  r e a l i s t i c  

potentials the.conditions on the range and strength of the a t t r ac t ive  

potential  are f a r  from being met. The limitations imposed by the short range 

of many r e a l i s t i c  a t t rac t ive  potentials cari be, overcome by res t r i c t ing  the 

density range over which the van der Waals model is applicable. A t  sufficient- 

l y  high densi,ty ( f o r  pract ical  purposes usually greater than the  c r i t i c a l  

density of a substance) the mean space between par t ic les  is  suff icient ly 

small compared t o  the  range of the a t t rac t ive  forces, so tha t  the par t ic les  

rarely escape the interaction potential  of t h e i r  neighbors, which, i n  e f fec t ,  

provides the  mean potential. One must investigate why, in s p i t e  

the large value of parameter of the  perturbation expansion (the 

strength of the a t t r ac t ive  potential  r e l a t ive  t o  kT) the  m d e l  gives 

accurate results-.when only the f i r s t  term, tha t  is the  van d q  Waals model, 



i s  used. For typical  l iquid conditions the parameter,of the potential  

re la t ive  t o  KT is of the order of unity and hence the precision with 

which the  van der k a l s  &el  describes the l iquid state.means t h a t  the 

higher order cmrections must be smll. 

(B) Pure System ' 

I 

There i s  a w e l l  founded s t a t i s t i c a l  mechanical theory f o r  each coefficient 

of the power series expansion in the  perturbation parameter.27 The l a t t e r  i s  

the  reciprocal of the reduced temperature; t h a t  is  the tempemture reduced 

by the  strength of the a t t rac t ive  potential. For evaluation of each successive 

coefficient in t h i s  expansion, higher order correlation functions of the' 
I 

uriperturbed system must be hown,or equivalently,higher order fluctuations 

in the a t t rac t ive  potential  about the mean ( m r e  precisely curnulants) must 

be evaluated. 28 The l a t t e r  approach is numerically much more convenient 

since it avoids having t o  tabulate .highly dimensional correlation functions 

f o r  the  unperturbed system. As  is  typical  of perturbation theory, each 

successive term requires more detailed information about the  unperturbed 

system, w h i c h , i n  t h i s  case, must be numerically qbtained. 

A s  expected, even the f i r s t  correction t o  the van der Waals model made 

only a small contribution. This is the square term in the reciprocal 

temperature, involving quadratic fluctuations about the  mean potential .  The 

reason t h a t  the s t i l l  higher order terms a re  negligibly.snal1 was found t o  

be due t o  the near Gaussian character of the  fluctuations. For a Gaussian 

distr ibut ion the higher order cumulants can be shown t o  be s t r i c t l y  zero. 

The half width of the  Gaussian distr ibut ion,  needed fo r  evaluation of the 

first correction t o  the van der Wad.s model,was found t o  be renarkably 

insensitive t o  density over the en t i r e  f luid '  range; corresponding t o  a ' k t  



mean square fluctuation of about half a par t ic le  around the  mean of about 

twelve part icles  a t  normal l iquid densities.  A t  lwer densi t ies  the  mean 

number of par t ic les  within the range of the  a t t r ac t ive  potential  decreases 

t o  about.three par t ic les  near the c r i t i c a l  density of a f lu id ;  however 

the fluctuation about t h i s  lower  mean is still  about half a part icle .  

The reason f o r  the re la t ive  larger  fluctuations a t  the lower density is, 

of course, the  looser packing of the hard spheres. It is, hence, ent irely 

a matter of the geometric behavior of hard spheres tha t  leads t o  the  near 

volume independence of the  Gaussian half width f o r  typical  ranges of the  

a t t rac t ive  forces. The significance of the  volume independence is tha t  it 

makes t h a t  quadratic correction t e r m  t o  the van der Waals model negligible 

f o r  the  equation of s t a t e . .  Since the still  higher order terms were negligible 

i n  the  f i r s t  place, the val idi ty of the  mean f i e l d  approximation,even f o r  

strong a t t rac t ive  forces,can be understood. 

Only near the  c r i t i c a l  point, where the fluctuations are  large,does t h i s  

expansion not converge. The hard sphere system h& no premonition of such 

large fluctuations and hence it is not surprising t h a t  it does not even give 

the  qualitatively correct singular behavior of the c r i t i c a l  point. Neither 

does a f i n i t e  system of part icles  interacting v i a a  r e a l i s t i c  potential ,  when 

studied by the Monte Carlo o r  molecular dynamics method. The c r i t i c a l  

s ingular i t ies .a re  distorted by any calculation tha t  constrains the long 

range fluctuations. Nevertheless, these calculations o r  the  perturbation 

calculation c m  locate the  c r i t i c a l  point occurrence as  t o  pressure, volume 

and tempeflature very w e l l .  

There w e r e  several interest ing questions regarding mixtures t h a t  could be 

' 
pursued tjji nmer'ictll calculations. Une of these concerns- the possibi l i ty  



of t k e x i s t e n c e  of two f lu id  phases f o r  mixtures of hard spheres. This could 

be ruled out on the '  basis of these calculations. *' In  fac t ,  it was  found 

tha t  these mixtures of spheres behaved nearly ideally.  Their non-ideality 

could be identified with a small negative excess volume of mixing, t h a t  is 

the  volume of the mixtures w a s  s l igh t ly  smaller than the sum of the two volumes 

of the  pure hard spheres systems tha t  are mixed. This corresponds t o  the 

'elementary observation,that it is possible t o  pack mixtures of spheres s l ight ly  

more eff ic ient ly  than the  pure spheres separately. The near idea l i ty  of these 

sphere mixtures does not correspond at all t o  what is.found i n  r e a l  mixtures, 

so tha t  we conclude t h a t  the a t t r ac t ive  forces play an essent ial  r o l e  in 

determining the excess properties of mixtures. 

Hence one i s  l e d - t o  an application of the  van der,Waals m d e l  t o  mixtures. .. 

Though'that model does very well in  the  prediction of the qual i tat ive 

features of mixture properties, as sha l l  be discussed in the next section 

fo r  gas-gas phase separation, it leaves something t o  be desired in i t s  

quantitative aspects. The reason f o r  the greater inadequacies of the  van 

der Waals model f o r  mixtures than fo r  pure ,systems is readily apparent. In 

the f i r s t  place, the excess properties, representing a difference, are g&erally 

an order of magnitude srnaller than the pure properties, thus higher precision 

is requi red- to  predict them well. Secondly, deviations from the  mean f i e ld  

theory are  not only due t o  potential  fluctuations as in pure f lu ids ,  but 

a lso  due t o  concentration flubtuations. These have been ignored or  were 

poorly represented in previous mixture theories tha t  t r i e d  t o  improve upon 

the  van der Waals. model. T e s t k n y  t o  tha t  f ac t  is tha t  no previous theory 

gave signif icant ly be t ter  r e su l t s  than the  van der Waals model. That model 

necessarily assumes randm mixing;whereas i n  real mixtures, part icular ly 



when phase separation is approached, significant clustering must occur. 

This clustering, corresponding t o  concentration fluctuations, can be accounted 

f o r  by calculating the corrections t o  the mean f i e l d  model i n  the perturbation 
, . 

series .  

Although tha t  ser ies  can account f o r  the major quantitative de fec t . in  

the  v& der Waals mixture theory, the  convergence of the  ser ies  i s  not a s  . .  

f a s t  as .one would l ike.  This shows up part icular ly in the  heat capacity, 

which is ent irely dependent on the  fluctuations; the."an der Waals model 

predicting zero' excess heat capacity. In  fac t ,  due t o  large concentration 

fluctuations, the heat capacity i n  a mixture is frequently. larger  than tk 
sum of the separate heat capacities of the  pure components at the same density 

and t k r a t u r e  as the  m i x t u r e .  30 The f i r s t  correction t o  the  van, der Waals 

model, the quadratic term in the fluctuations, cannot account f o r  t h i s  

phenomena, so one i s  forced t o  go t o  higher order i n  the ser ies .  Instead 

of performing these ra ther  time consuming numerical calculations, an e f fo r t  
/ 

w a s  made t o  reorder . the  perturbation se r i e s  in p e r s  of the  r e c i p m a l  temper- 

ature by graph theoret ical  techniques so as t o  achieve fas te r  convergence. 
3 1  

. . 

In  t h i s  way, certain classes of graphs occurring i n  each t e r m  of the  i n f i n i t e  

reciprocal temperature ser ies  w a s  summed, such as  ring graphs,for example. 

, The evaluation of these graphs does not require more howledge a b u t  the  

unperturbed system than is already necessary f o r  evaluation of the mean f i e ld .  

The disadvantage of t h i s  method i s  tha t  one loses the simple p e r  ser ies  behav- 

i o r  in temperature .and t h a t  one no longer has a simple parameter character- 

izing the expansion. The l a t t e r  d i f f icul ty  is  related t o  the  well hown 

problem of ordering se t s  of graphs according t o  the  magnitude of t h e i r  contri- 

bution. .One .can, however, use physical arguments t o  show why the summed graphs 



make the  daminant contributions and the omitted ones a re  of lower order. 

The t e s t  of such .an approach lies i n  i ts  predictive power and judging by the 

calculation of the .heat  capacity of mixtures, the  approach proved very success- 

fu l .  Thus, the  nmer ica l  approach w a s  able t o  pinpoint the type of correction 

required t o  the.van der Waals model of mixtures, and a re la t ive ly  simple 

'graph theoret ical  calculation was able t o  account fo r  it, making deviations 

. f r m  randam mixing calculable. 

I 

V. SYSTEMS WITH CRITICAL BEHAVIOR 

As was mentioned before, the numerical schemes dealing with a f i n i t e  
\ 

number of part icles  seriously d i s to r t  the nature of the.s ingulari ty at 

the  c r i t i c a l  point which crucial ly depmds on the  large distance behavior 

of correlations. Thus, it cannot be expected t h a t  the  exponents signifying 

the nature of the singularity at the c r i t i c a l  point can be r e a l i s t i c a l l y  

obtained. One might, however, again ask hcrw large the system has t o  be 

i n  order to  approximate the macroscopic system w e l l  with respect t o  the  

onset of the singularity close t o  the c r i t i c a l  pint. In other words, is it 

possible t o  observe deviations from class ica l  (van der Waals) behavior close 

t o  the c r i t i c a l  point f o r  the very s m a l l  systems t h a t  can be investigated 

on c q u t e r s .  Sufficiently far from the c r i t i c a l  point, the fluctuations 

might be small enough so  tha t  these f i n i t e  systems might r ea l i s t i ca l ly  

~-epresalt them and yet  the fluctuations are not so  small -that the  mean 

f i e l d  theory predictions are accurate. 

Very l i t t le  work has been done in this connection because of the  

enormous-cquter  t h e  requirements t o  get suff icient ly precise .results.  ' 

A very preliminary investigation shows p h s e  tha t  such investigation 



might be f r u i t f u l  f o r  some properties.38 The resu l t s  indicated t h a t  the  

pressure-volume-temperature relat ions on the coexistence curve around the 

c r i t i c a l  point had too small a deviation from class ica l  behavior t o  be 

observed within the accuracy of the data. However, the heat capacity 

did show enhanced values in the c r i t i c a l  region tha t  are inconsistent 

with mean f i e l d  theory predictions. Extracting an exponent from t h i s  

numerical data i n  a fashion analogous t o  the way r e a l  data is handled, 

led t o  a divergence consistent with what is  experimentally observed. The 

conclusion appears t o  be tha t  small scale fluctuations s ignif icant ly 

contribute t o  the  heat capacity some distance away from the  c r i t i c a l  point 

and they can be quantitatively evaluated i n  small systems. Closer t o  the 

c r i t i c a l  point, the  heat capacity f o r  these f i n i t e  systems does not assume 

the large values found experimentally, again because the  large scale 

fluctuations tha t  are ignored have a large effect .  

(A) Solid-Fluid 

, The computer methods have been applied i n  a number of ,cases  t o  the 

question of whether a c r i t i c a l  p i n t  exis ts ,  ignoring the  nature of the 

singularity. One of these examples concerns the question of the existence 

of a solid-fluid c r i t i c a l  pint. The previous work on the  hard sphere 

solid-fluid phase t ransi t ion showed tha t  i f  the intermolecular repulsive 

potential  is suff icient ly repulsive, there i s  no such c r i t i c a l  point since 

it w a s  found tha t  a t  suff icient ly high density, no matter what the temperature,, 

a sol id phase is  formed. Since r e a l  systems have sof ter  repulsive poten- 

tials than hard spheres, the question is then whether f o r  these a sol id 

can always be formed. The hard sphere calculations were, hence, repeated 



f o r  the repulsive Coulombic potential ,  which represents the  interaction 

potential  between atoms at very high pressure,once the  electronic she l l  

structure has been pressure ionized.32 The electrons can then be considered' 

as forming a uniform background i n  which the  charged nuclei '  swim.  These 

nuclei, because of t h e i r  heavy mass, behave classical ly and interact  

via the  sof tes t  hown repulsive potent ial ,  namely the Coulcanbic one. 

This potential ,  because of its long range nature,must be handled with 

some care in f i n i t e  systems with periodic boundary conditions. It can 

be s h m  tha t  be t ter  r e su l t s  are obtained at high density, if 

one aLandons periodic boundary condithmand instead considers the  f i n i t e  

system as constituting a unit cell, periodically repeated, t o  form an 

i n f i n i t e l y  large crystal.  The pract ical  difference is  tha t  a par t ic le  not 

only interacts  with a l l  the '  par t ic les  ir. the c e l l  but a lso  all t h e i r  

periodic images. The contribution of the periodic images i s  evaluated 

analogously t o  the  methods used in evaluating potential  contributions in 

. ionic crys ta ls ,  namely by the &ald l a t t i c e  sum method. The use of the 

mre camplicated boundary conditions slows the  calculation down, 

but not prohibitively. 

The resu l t s  .were tha t  again a sol id is formed when the  potential  

energy of the  system excehds a certain multiple of the kinet ic  energy. That 

multiple is not of the order of unity as it is with most ordinary materials, 

but about a factor  of onc hundrcd lmgcr. Neverthele~s, the mlting 

t ransi t ion is still  well described by the Lindemann law in the sense tha t  

melting occurs when the root mean square excursiondistance f m  a l a t t i c e  

s i t e  i s  about;twenty per cent of the l a t t i c e  spacing. This is t o  be 

compared t o  the ten per cent value f o r  more repulsive potentials.  



Although these resul t s  lead t o  the conclusion tha t  no solid-fluid 

c r i t i c a l  point exis ts ,  one must, at suff icient ly high density, consider 

tha t  the  nuclei start t o  behave quantum mechanically. A t  these very 

high densities,  it can easi ly be shown tha t  the  zero point energy must 

eventually exceed the l a t t i c e  potential  energy of a C o u l d i c a l l y  

interacting system. This is  because the zero point energy r i s e s  as the  

reciprocal square of the l a t t i c e  spacing while the  potential  energy r i s e s  

only as the  reciprocal l a t t i c e  spacing i t s e l f .  Thus, there is a density 

even a t  O°K above which a so l id  cannot exis t .  This density corresponds t o  

a lattice spacing of about 0 . 1  Bohr radius f o r  protons and is obtained by 

an approximate numerical calculation, since the full quantum mechanical 

many-body solution procedure is as  yet too cumbersome t o  be practical.  
3 3 

The scheme involves approximting the  t o t a l  wave function as a pair 

product wave function of a specified functional form. The form involves 

a few parameters, which have t o  be optimized variationally.  This can be 

achieved by a ser ies  of c lass ica l  Monte Carlo calculations with the  intro- 

duction of a f i c t i t i o u s  interaction potential  related t o  the  specified pa i r  

wave functions. This approximation has been shown t o  be quite adequate 

in explaining the melting t rans i t ion  in helium. 
3 4 

The conditions under which the  Coulomb gas has been found t o  melt, again 

corresponds quite well t o  Lindemann's law,  except tha t  in t h i s  case, the 

part icles  osc i l l a t e  about t h e i r  l a t t i c e  position due t o  zero point energy 

instead of thermal energy. A melting curve fo r  the  quantum Coulomb gas 

can be obtained at other than O°K by u t i l i z ing  Lindemnnls~law,where the 

exbursion distance i s  a resu l t  of a combination of zero point and thermal 



motion. This l eads ' to  a closed region in density and temperature below 

which a sol id exists. The surprising prediction of t h i s  theory is t h a t  

f o r  protons above about 3000° K it is  not possible t o  have a solid.  That. 

temperature is very low by astrophysical standards and indicates tha t  mst 

protonic stars have l iquid inter iors .  This does not appear t o  be t rue  fo r  

pulsar f o r  which star quakes seem t o  be observed. Hence,, e i ther  the  

potential  o r . t h e  density donot  conform t o  the  above conditions i n  these 

stars. 

It should be emphasized t h a t  the limited region over which a sol id is  

stable in a Coulomb gas does not imply the  existence of a c r i t i c a l  point 

a s  it is usually understood, namely an existence of a phase t rans i t ion  

which is l e s s  than f i r s t  order. It can be argued tha t  such a t rans i t ion  

would inplausibly imply tha t  one could continuously go from a sol id 

of long range order t o  a f lu id  of short range order. The above calculations, 

in fac t ,  predict a f i r s t  order solid-fluid t ransi t ion.  

(C> Helium 

Another prediction,very similar t o  the above, of a closed sol id  

region of s t a b i l i t y  is i n  the case of helium. In this case, the  sol id region 

i s  surrounded by another sol id phase and agah the  t ~ n s i t i o n  is charac- 
' 

ter ized as f i r s t  order and a temperature above which the  specified crys ta l  

struct&e cannot exist. 35 The reason f o r  taking t h i s  system up br ief ly  

here is t o  point out tha t  such a phase t rans i t ion  is extremely hard t o  

study numerically because the difference between the  two crystal structures 

i s  so extremely small. The two crys ta l  structures,  face-centered-cubic 

and hexagonal -close-packed are so similar tha t  numerical methods 

have not yet established t h e i r  nelative s tabi l i ty .  A determined 

e f fo r t  was made t o  establ ish f o r  c lass ica l ly  behaving hard 



spheres which of the two phases would be stable as a '.function of density. 3 6 

The f ree  energy difference could not be rel iably established. Even a t  

high density where special methods related t o  the  single occupancy calcula- 

t i o n  w e r e  used t o  calculate the  coefficients of the expansion in the  f ree  

volume, the f i r s t  two coefficients proved t o  be the same within 5 signi- 

f icant  numbers. The third coefficient,  but not outside statistical 

. . error, favors facecentered cubic. For a h ~ n i c . o s c i l l a t o r  it can be 

shown by still other numerical methods peculiar t o  t h a t  potent ial ,  namely 

by the solution of the Born-van Karman m W i x  f o r  the. frequency modes, tha t  

the face-centered crys ta l  i s  stable.  
37 

The above calculations of the  s t a b i l i t y  of the face-centered cubic 

phase i n  the  high temperature classical  region agrees with experimental 

observations on helium. The s t a b i l i t y  of the  hexagonal c rys ta l  s t ructure 

of helium a t  'low temperature is  no doubt due t o  the quantum mechanical 

nature of these crystals.  In f a c t ,  it can be rigorously proven in the  

single occupancy approximtion f o r  hard spheres, by rnaking use merely of 

thk symmetry of the  crys ta l ,  t h a t  at low temperature the  hexagonal phase 

is more stable than the fac+centered phase. 38 Thus, hard spheres are 

l ike ly  t o  exis t  in a t  l eas t  two different  c rys ta l  s t ructures,  but t o  

establ ish the  phase t ransi t ions by numerical techniques requires higher 

precision methods than are presently available f o r  even the simpler 

c lass ica l  calculations. In  t h i s  connection it is  worthwhile t o  point out 

t h a t  hard spheres are not stable in the  body-centered phase, at least clas- 

s ical ly.  This phase is also h a w n  t o  exist f o r  helium, but its s t a b i l i t y  

in a classical system requires at leas t  non-nearest neighbor forces. 



In confirmation, a body-centered crys ta l  of hard spheres par t ia l ly  melts 

a t  ' any sol id density when investigated by numerical means. 

.Another interest ing point emerged from the study of hard spheres a t  

high density. This is a value of t h e  entropy a t  close-packing, which is a 

measure of the  f r e e '  volume available t o  a sphere.3g It turns out tha t  

the self-consistent model makes an enormous error in tha t  estimate. A much 

I 

more accurate value is obtained by the so-called Lennard-Jones Devonshire 

m d e l  which allows a central  sphere t o  have access t o  the en t i r e  volume 

of a c e l l  formed by holding the nearest neighbors fixed at t h e i r  l a t t i c e  

positions. The moral appears t o  be tha t  self-consistency is not always: 
. . 

advantageous f roma  quantitative point of view. Disappointing too was  

the  slow convergence of various sol id c lus ter  theories that t r i e d  t o  

estimate this f r e e  v o l m  more accurately by calculating corrections t o  

the  single par t ic le  c e l l  models. 

The numerical calculations can a l so  help t o  elucidate certain elec- 

t ronic t ransi t ions which are known t o  have r e a l  c r i t i c a l  points in the 

sol id phase. Such a c r i t i c a l  point is believed t o  be possible only i n  

the  sol id phase i f  the  transformation is between two identical  crystal  

structures. The only known example, n m l y  cerium, c o n f o m  t o  tha t .  The 

transformation is believed t o  be caused by the s t a b i l i t y  of a different  

electronic configuration of the atom in the two phases. The change of 

electronic configuration with pressure comes about because of the s h i f t  

of electronic energy levels when the  atom is  confined t o  a smaller space. 

Confinements favor those energy levels  where the wave function has a 



higher ~ m b a b i i i t y  t o  be, so t o  speak, inside the atom. 'For present 

purposes, such a sudden shift i n  electron configuration can  be idealized 

as a sudden s h i f t  i n  the radius of an atom. Thus, a numerical s t ~ d y  

. . 

with two step hard sphere interaction potential ,  tha t  is t repulsive 

square w e l l  potential ,  might mock up this ,physical  s i tuat ion w e l l .  
/ 

Although l i t t le  work has been carried out f o r  such a potential  

as yet ,  it can be predicted tha t  if the  change of radius is l e s s  than l o % ,  

the  system might show a c r i t i c a l  point. This is because, recal l ing 

Lindemann's l a w ,  a sol id system canlhverage"over such distances before 

it melts. I f  the  radius change i s  larger  than l o % ,  rnen one muld predict 
. . 

tha t  the solid-solid phase t rans i t ion  extends all  the way t o  melting. Upon 

melting, however, the  phase change would disappear since a l iquid can 

'hveragdl over such distances. One would, in f a c t ,  predict a melting 

maximum in the neighborhood of the sol id and melti-ng phase line inter- 

section. There is  one known examp1.e of t h i s ,  namely cesium, which is  

l ikely t o  have a very large s i ze  change in  its electronic t ransi t ion.  

In any case, the numerical calculations with such potentials could confirm 

the  prediction tha t  no f i r s t  order phase change would be observed in 

liquids. There is no h o r n  observation of one. 
4 0 

(E l  Gas-Gas 

For mixtures, the  critical point of pure systems becomes a critical 

l ine  in the pressure-temperature plane. Gas-gas c r i t i c a l  behavior is  

then said t o  occur i f  t h i s  critical line reaches temperatures greater than 

the c r i t i c a l  temperature of e i ther  pure camponent. The conditions under 

which such behavior can occur has been worked out long ago through the 



van der Waals equation. Experimental confirmation of this phenomenon i s  

also quite old'. The cr i te r ion  f o r  which t h i s  effect  w i l l  be observed 

requires that '  the. mixture consists of two components with largely different  

a t t rac t ive  forces. With the  revival of interest in the critical point 
. - 

. of mixtures,. particularly t r i c r i t i c a l  points, it i s  worthwhile ' t o  point 

'out . that the  numerical procedures can a lso  be u t i l ized  t o  make more 

accurate predictions . .. of c r i t i c a l  l ines  and t h e i r  intersection than the  

' 4 1  
van der W a a l s  .predictions ! 

V I  . TRANSPORT PROPERTIES 

(A) Previous Models 

The first numerical e f fo r t  in the  study of transport properties went 

in to  critical t e s t s  of existing n-dels. One of these d e l s  proposed 

tha t  transport in f lu ids  was primarily of the  type occuring in sol ids 

with vacancies. In such a sol id a par t ic le  would typically osc i l l a t e  for  

long periods of t ime around i t s  l a t t i c e  position and occasionally, when 

it is near a vacancy, make a jump of the order of a l a t t i c e  spacing in to  

the  vacancy position., A c r i t i c a l  test of t h i s  mechanism appears t o  be a 

study of the  dis tr ibut ion of f r ee  paths in a f lu id .  'The f r e e  path i n  

> 

a h a .  sphere f lu id  is the distance a sphere traverses between successive 

collisions. If the  above rrcdel were applicable, one wuld  expect t h i s  . 

f ree  path dis tr ibut ion t o  be b k d a l .  This i s  because one w u l d  expect 

two character is t ic  distances t o  be of importance, namely the  s m a l l  distance 

corresponding t o  the  f ree  length and the one correspbnding t o  

the  average spacing between centers of part icles .  Instead, the  f ree  path 



distr ibut ion showed no significant structure.  42 It proved t o  be nearly 

exponential with .distance and nearly independent of density when scaled 

by the  mean f r e e  path. Thus, from t h i s  evidence, there appears t o  be 

no significant new mechanism of transport in dense f luids.  The simple 

kinet ic  theory valid at low density describes the  f ree  path dis tr ibut ion 

well a t  all densities.  

Another &el proposed tha t  the t rajectory of a typical  par t ic le  

consisted of two unrelated parts, namely hard sphere col l is ions tha t  

could be described by kinet ic  theory and interaction with the  a t t rac t ive  

potential  in between the hard core col l is ions tha t  could be described by 

E k u d h  motion. The'use of Brownian motion was thought t o  be applicable 

because 'the int'eraction with the a t t r ac t ive  potential  w a s  thought t o  be 

we'& and frequent. A numerical study of the frequency of interaction with 

the  a t t rac t ive  interaction in a square-well system revealed tha t  such 

interactiorswere rare a t  f lu id  d e n ~ i t i e s . ' ~  In a typical  l iquid,  the 

m j o r i t y  of successive hard sphere col l is ions were found t o  be minter- 

rupted by an a t t r ac t ive  interaction. I n  f a c t ,  t h i s  study led t o  the 

conclusion tha t  the  essent ial  character is t ic  of transport in l iquids 

could be understood i f  transport coefficients f o r  h a .  spheres could be 

calculated. ?his is in conformity with the  acduracy of the mean f i e l d  

approximation f o r  equilibrium properties. In the mean f i e l d  approximation, 

the a t t r ac t ive  potential  does not a f fec t  the  transport properties a t  all, 

since a constant potential  cannot exert a force and, hence, a f fec t  the 

t rajectory of a part icle .  These preliminary numerical studies,hence, 

proved the l inear  o r  f ree  f l i g h t  t rajectory model t o  b e  the most appropriate. 



Hence, a de ta i led  study of hard sphere transport properties w a s  undertaken. 

Jus t  to,make sure of the val idi ty of the hard sphere m d e l ,  a com- 

parison with experiments was undertaken using an approxinaate hard sphere 

transpart theory. '3 That theory, developed by R ~ s k o ~ ,  assumes t h a t  the 

tmnsport coefficients calculated a t  l o w  density, where the B o . l t m  

equation is assumed t o  be a 'va l id  description, can be scaled t o  higher 

density by merely scaling the time between collisions. Jus t  a s  the  f ree  

path dis tr ibut ion was found t o  be accurately scalable by the  mean f ree  

path, so  it is  a s s h e d  tha t  if  there is no new mechanism of transport with 

dms.ity, the transport coefficients need only be scaled in time o ~ i n g  t o  

the  fac t  t h a t  the  col l is ion r a t e  increases with density. Since the  col- 

l i s ion  r a t e  can b e . d h c t l y  related v ia  the v i r i a l  theorem t o  the equation 

of s t a t e  previousl'y determined, the comparison t o  experiment on such sub- 

stances as the  rare gases could be eas i ly  carried out. The r e s u l t  f o r  the 

diffusion coefficient,  the viscosity and the thermal conductivity was in 

agreernent within about 1 0 %  in the dense f lu id  region. Applicability of 

the  model, just  as. in equilibrium, i s  res t r ic ted  t o  the dense f lu id  region 

and, in fac t ,  the  single parameter necessary f o r  t h i s  experimental comparison, 

namely, the hard sphere diameter, w a s  obtained from thermodynamic data 

analyzed by mears.of the van der Waals model. By using the somewhat 

empirical scheme of making the  hard sphere diameter temperature dependent 

t o  account f o r  the softness of real repulsive potentials, ' - the -twnperature 

dependence of the  transport coefficients could a l so  be well explained 

without invoking the customary device of an activation energy. It i s  



t h i s  latter concept which had been disproved by the f ree  path study. 

( C )  Perturbation Th&ry 

The conclusion from t h i s  study is that the correlations in 

the  hard sphere systems, omitted in the  Ehskog theory, make a s m a l l  con- 

t r ibut ion t o  the  transport coefficients. The s m a l l  deviations t h a t  were 

observed in the  experimental comparison are certainly also par t ia l ly  

caused by the  neglect of the a t t r ac t ive  forces in the hard sphere mde l .  

Thus, it is not only necessary t o  get accurate properties f o r  hard spheres 

by molecular dynamic computer studies,  but t o  develop a perturbation 

theory f o r  the  a t t r ac t ive  potential ,  just  as f o r  equilibrium properties. 

The latter theory has m e t  severe obstacles. 

The basic d i f f i cu l ty  is that a small potential  perturbation can in 

certain circumstances lead t o  vast changes in the t rajectory of a particle.  

For example, such a small perturbation can, by bending the path of one 

par t ic le  a small m u n t ,  cause two hard spheres t o  col l ide which would 

not have otherwise, changing the whole subsequent history of the system. 

Another example is t h a t  a small potential  perturbation can lead t o  orbit-  

ing i n  what would have been without such a perturbation a glancing encounter. 

Although some individual t ra jec tor izs  can thus be vastly changed, it is 

hown f r o m  the  above experimental comparison, tha t  on the average, the 

a t t rac t ive  potential  has a re la t ive ly  minor effect .  The d i f f icul ty  appears 

i n  the theory through divergences in the perturbation expansion when it 

is applied d b e c t l y  t o  the individual t ra jec tor ies .  It is, hence, necessary 

t o  perfom the  averaging over the t ra jec tor ies  first, before carrying out 

the a t t rac t ive  potential  perturbation. When t h a t  is  done, the expansion 



ser ies  i s  no longer a simple power s s r i e s  in reciprocal temperature. 3 0 
. . 

Frm a numerical point of view, it has not been possible t o  get an expl ic i t  

expression f o r  the  coefficients in the perturbation expansion, o r  in fac t ,  

the form of the  expansion. Instead, one is forced t o  the cumbersome device 

of calculating the transport coefficients by molecular dynamics a t  several 

high temperature values, f o r  example ,, fo r  , a  squme-well potential ,  and 

from tha t  data by differencing schemes extract the  expansion coefficients . 
(Dl Method 

There are t w  basic approaches by which t o  determine transport coeffi- 

c ients  by the  numerical schemes. One i s  analogous t o  the  typical  c lass ica l  

experkent whereby an external gradient is imposed. Since this necess&ily 

involves imposing steep gradients on such small systems so t h a t  a flow 

car' be determined outside s t a t i s t i c a l  fluctuations, these .calculations are  

not favored. Other disadvantages are t h a t  frequently. a r t i f i c i a l  boundary 

conditions must be imposed and tha t  only the transport coefficients themselves, 

ard not the  detailed correlations underlying them, can be obtained. This, 

coupled with the  fac t  tha t  these calculations a re  not even computationally 

significantly f as te r ,  has led t o  the  use of the fluctuation-dissipation 

approach. This approach is also  increasingly being used t o  determine the 

tnmsport coefficients expa1ireiitally. 

Taking the  simplest transport coefficient as an a m p l e ,  the diffusion 

coefficient is defined as the long time l i m i t  of the mean .square displacement 

of a par t ic le  i n  an inf in i te ly  large system divided by the time. It has 

' ,  always been c a u t i o ~ ~ c d  by the careful investigator tha t  t h i s  limit w i l l  

only ex i s t ,  t h a t  i s  t h a t  the diffusion coefficient is  a constant, if the  pa r t i c l e  

forgets its past his tory sufficiently f as t .  The usual argument presupposes 



that a f t e r  a suff icient ly long t h e  has elapsed, the  par t ic le  assunes a 

stationary Markov process, tha t  i s  it executes the randam walk of a drunk- 

ard, f o r  which this , l i m i t  can be proven t o  exist .  There are, of course, 

well known examples where t h i s  does not occur. One is  the  perfect gas 

i n  which a par t ic le  never col l ides,  so tha t  the distance it t ravels  is 

proportional t o  the time elapsed. Hence, ' the diffusion coefficient 

diverges l inearly in time. A t  the other extreme i s  the  par t ic le  bound 

by a harmonic osci l la tor .  ! In t h a t  case, the par t ic le  is confined t o  a 

f i n i t e  region in space, and the diffusion coefficient vanishes in the  long 
I 

time l i m i t .  

The above expression fo r  the  diffusion coefficient is called theEinstein 

expression and there exist equivalent ones f o r  all the other transport 

coefficients and these have, i n  f a c t ,  been prograrruned on the computers. 7 4 

A single t rajectory in equilibrium phase space is run,and the mean of the  

square of the  displacement f o r  the diffusion coeff icient ,  f o r  example, is 

determined by chopping this single t rajectory up in to  a number of equal 

segments. Each i n i t i a l  s t a t e  of these segments can be considered as  

another member of an ensemble. Alternatively, averaging can be achieved 

by generating members of an ensemble by the Monte Carlo method whose time 

evolution is subsequently followed by molecular dyanmics. 

(E l  Autocorrelation Function 

Although a rigomus p ~ w f  of the  identif icat ion of the  measured trans- 

port  coefficients with the theoret ical  Einstein expression is lacking, there 

is no diff icul ty showing the equivalence of the Einstein expression t o  an 

autocorrelation function expression. By straight  forward mathematical ' 



m i p u l a t i o n s  one can show the equivalence of the  mean square displacements 

over time t o  the  time integral  of the velocity autocorrelation function, 

provided the  diffusion coefficient i t s e l f  exists .  This equivalence has a l so  

been shown numeri&Lly and sometimes one o r  the other expression is 

preferred f o r  technical reasons. For discussion purposes, it is  preferable 

t o  speak of these autocorrelation functions, because they show most clearly 

the ef fec t  of correlation. More precisely, the deviations of these auto- 

correlation fwlctions from the exponential behavior predicted by the  

Enskog model of uncomlated  events, reveal what the dominant correlations 

are t h a t  have t o  be accounted f o r  in a more accurate theory of the  transport 
! 

coefficients of hard spheres. 

V e r y  l i t t le  is  rigorously hm about these autocomelation functions. 

The B~skog theory predicts rigorously only the  initial slopesince f o r  very 

short times no correlations can build up. The next term in the  Taylor expansion 

in tim of the  autocorrelation function already involves ternary col l i -  

sions which could be correlated through such cyclic events a s  par t ic le  

1 colliding with 2,  2 with 3 and subsequently 3 with 1 again. This 

contribution, which Ehskog neglects, is already hard t o  ' d c u l a t e  . The 

numerical work confirmed the very early time behavior as predicted by the 

Dskog theory,and shmed,that the relaxation time detersnined by it, when 

introduced in to  an exponential autocomelation function, reproduced the  

f u l l  a u t o c w . 1  ation f ~ ~ n c t i o n  f a i r l y  well. 

Although the  deviations from exponential behavior found by molecular 

dyanmics were small, they were of a puzzling nature a t  intermediate 

d e n ~ i t i e s . ~ '  A t  high densities,  the  velocity autocolTelation function became 

negative, as expected, due t o  the solid-like character of the  fluid, which causes 



the velocity of a .part icle ,on the average,to be reversed after a few col- 

l is ions.  A t  intermediate densi t ies ,  however, the velocity correlations were 

positive and lasted f o r  many collisions. A typical p t i c l e  seemed t o  : 

' p e r s i s t  i n  its original  direction of motion a f t e r  having undergone many 

collisions. To be sure, the persistence w a s  qui te  weak,,at a level  of about 

, one one hundredth of its original velocity, but such tha t  it led t o  a 

significant dependence of the resul t  on the  number of pmt ic les  used in 

the moiecular dynamic computations. This number dependence, which f o r  

more than one hundred part icles  is usually hardly detectable, as w e l l  as 
. . 

the  long nature of the  persistence indicated tha t  a highly col lect ive 

ef fec t  ' was  involved. 

(F) Hydrodynamic Model 

After some fa l se  starts, t h i s  persistence was eventually quantitatively 

explained as being due t o  a hydrodynamic vortex rmde. 46 The hydrodynmic m d e l  
4 

tha t  was used involved a moving volume element, representing the part icle ,  

in an otherwise stationary viscous, compressible mediqrepresenting all t h e  

other part icles  of the system. The moving' volume element pushes the  f luid 

ahead of it and leaves a smaller than average pressure behind it. The 

pressure equalized, by the generation of a compressional sound wave ahead 

of the volume element and a d i la t ional  one behind it. The speed with 

which t h i s  sound wave propagates depends on the compressibility, but in 

any case does not lead t o  any persistence. The pressure can, however, a l so  

equalize by the  generation of a double vcrtex flow around the moving volume 

element. A t  long times, t h i s  flow dominates since the  sound speed by simple 

dimensional arguments can be shown t o  propagate f a s te r  than the  diffusion 



The vortex flow leads t o  positive persistence, since some of the 

momentum transferred t o  the  medium is fed back in to  the  par t ic le  i t s e l f .  

On a molecular scale ,  the  par t ic le  col l ides w i t h  the neighbor ahead of it, 

which subsequently collides with the other neighbors such that some of 

the original velocity is  returned. One then expects t h a t  the  maximum 
. 

positive persistence should appear when a p p r o d t e l y  1 0  coll is ions,  

.correspondkg t o  the number of nearest neighbors a t  l iquid densi t ies ,  have 

&curred. The numerical resul t s  verify this expectation and furthermore 

show tha t  a t  lawer densi t ies  the  maximum persistence appears a t  fewer 

col l is ions,  till a t  very low densi t ies ,  the  persistence is so  weak t h a t  it 

cannot be observed. The clinching numerical verif icat ion of these ideas 

was  a determination of the velocity f i e l d  i t s e l f .  47 This was  determined by 

a.s tudy of the velocity correlations between a par t ic le  and its neighbors 

a t  various positions re la t ive  t o  t h a t  par t ic le  at various t h s .  Clear evi- 

dence of a .double vortex f i e l d  a t  a l a t e r  time was obtained. 

(G I  Divergence 

The hydrodynamic mcdel required the  solution of the Navier-Stokes 

equation f o r  the given initial conditions. An analyt ical  solution is only 

possible a t  large times. UimensionaL arguments at large times showed tha t  

the velocity autocomelation function decays as the reciprocal time t o  the 

dimensionalityof the system divided by two. Hence, the  correlations 

do not decay exponentially as previously expected and,,  in f a c t ,  in two 

dimensions decay slowly enough so tha t  the diffusion' coefficient diverges. A 

computer study of the detailed behavior of the autocomelation function in two 

dimensions at long times c o n f i m d  not only the power law decay of reciprocal time 

but a lso  the proportionality constant of that decay. 46 ' In three dimensions 



the  systems were not qui te  large enough t o  observe the  asymptotic decay, 

because boundary interference ef fec ts  spoiled tha t  observation. The sound 

... as well as the  vortex waves constructively in ter fere  a t  periodic boundaries; 

an ef fec t  which could be quantitatively accounted for .  With sti l l  larger  

systems, . . however, these ef fec ts  can be suff icient ly delayed so as t o  observe 

the  power l a w  decay in three dimensions as  well. 

For shorter times, the Navier-Stokes equation must be solved 
' 

numerically and the n m r i c a l  solution caf~ be compared both t o  the  vortex 

f i e ld  and-the velocity autocorrelation. The comparison worked well  except 

a t  very short times; less  than the  time corresponding t o  a few coll is ions.  

For such short times, the hydrodynamic model i s  just  not applicable. It 

is necessary t o  consider the detailed molecular s t ructure of the f luid.  

To be :sure, by the  use of generalized hydrodynamics, which uses time and space 

dependent transport coefficients in the  Ikvier-Stokes equation, it is possible 

t o  apply hydrodynamics at a shorter time scale,  but s t i l l  not at a level  

of a time between collisions. In f a c t ,  t he  remarkable aspect of these 

calculations is tha t  the usual hydrodynamics is alraady valid at such a 

short time and distance scale,  namely a t  the  time corresponding t o  the  order 

of 1 0  coll is ions per par t ic le  and a distance scale of the  order of a few 

molecular diameters. Previously .it was thought t h a t  the  molecular and 

hydrodynamic time scales w e r e  f a r  separated. The fac t  , that  they are inti- 

mately mixed i s  the r e a l  novelty of the molecular dynamics resul t s .  The 

other is  the applicabili ty of the hydrodynamic model t o  tk description 

of the correlation. The m d e l  i t s e l f  has been studied long ago by Stokes. 

The three dimensional behavior of the  autocorrelation function leads t o  

a convergent diffusion coefficient,  however, previous theories have t o  be 



mdif ied  since they all assumed the  val idi ty of a Markovian description a t  

long times. The previous theories can be recovered by projecting out the  

hydrodynamic part, although, as pointed out ahove, the separation is not 

clean cut. Another way t o  obtain the long time behavior is by means of 

graph theoret ical  techniques. These techniques had previously given in- 

dication of unusual behavior in the calculation of the density corrections 

t o  t h e - - B o l t m  low density results. These corrections were shown not 

t o  be expressible i n  a pawer ser ies  in density but involved logarithmic 

' terms i n  the density. These arose because whole classes of r ing  diagrams 

I 
had t o  be summed in order t o  get convergent resul t s .  For the long t ime'  

behavior,ring diagrams t o  al l  orders must a l s o  be summed. These 

are similar t o  the  cyclical correlations mentioned e a r l i e r  and the  physical 

analogy t o  vortex motion is tempting, although t h i s  connection has not so 

f a r  been clearly established. 

In two dimensions, because of the  divergence, the  s i tuat ion is  much 

more cbnfusing. Neither the Ealtzmann equation nor ~avier-Stokes hy-amks 

' i s  valid and a new formulation has not yet been clearly found. Even the  

long time behavior of the velocity autocorrelation function is not l a o w  

fo r  certain. Although the  moleculm dynamics calculation established the 

reciprocal time behavior, whichhas been confirmed by both the  hydrodynamic 

&el and graph theoret ical  r e s u m t i o n  techniques, it is unlikely the 

corredt behavior,in as much as  the  computer calculations are res t r ic ted  t o  

small hydrodynamic times and the graph theoret ical  techniques have similar 

restr ict ions.  The theoret ical  hydrodynamic resul t  cannot be believed 

because it assumes the val idi ty of the Navier-Stokes description which is 



the very thing tha t  has been proven inapplicable. The real izat ion of t h i s  

dilermna manifests i t s e l f  in the  assuonption of the existence of a viscosity.  

The viscosity and thermal conductivity (at leas t  t h e i r  kinet ic  parts) can 

be shown t o  diverge a lso  in two dimensions. These transport coefficients 

haveakinet ic  as well as a potential  partyand whether the potential  part 

diverges is at the moment still  an open question.44 In any case, the  

divergence of the  kinet ic  part of the viscosity puts the  asymptotic 

behavior of the velocity correlation in doubt. A hand waving, self-  
I 

consistency cr i te r ion  predicts a velocity autocorrelation divergence a s  

the reciprocal of the product of the time and the square root of the  log- 

arithm of the  t-." Such a behavior would also be consistent with the  

limitinglong time behavior observed by molecular dynamics, since it is  

numerically impossible t o  distinguish t h i s  behavior from t h a t  of reciprocal 

time. 

(H) BraJnian Motion 

There are same interest ing considerations a s  t o  what happens t o  th is .  

vortex correlation as the mass and s ize  of the  diffusing par t ic le  varies.. 

Both in the l i m i t  of very l ight  and very rraassive par t ic les  t h i s  correlation 

should disappear. 'In the  Lorentz l i m i t ,  t h a t  is  the l igh t  par t ic le ,  the  

par t ic le  sca t te rs  among a s e t  of stationary part icles .and,  hence, does not 

have the  momentum necessary t o  generate a vortex. An.interesting question 

is then whether such a l ight  par t ic le  s t i l l  has a slowly decaying velocity 

correlation function. Such a slow decay has been found f o r  a perfect gas 

par t ic le  scattered f r o m  part icles  of square-shape i n  two dimensions. 
4 9 

The origin of t h i s  decay is not related a t  a l l  t o  the hydrodynamic vortex 

mode, but arises from t ra jec tor ies  which a f t e r  many scat ter ing events return the  

par t ic le  t o  its origin. The long return paths a re  intimately connected w i t h  the  

geometry and dimensionality of the sca t ters  and it would be interest ing t o  study 



these correiations ' f o r  scattering from ipheres . Such studies could determine 

the  size. above which the l igh t  par t ic le  istrapped amongitsneighbors a t  any 

given density. A t  that size,  the diffusion coefficient would vanish because 

of the high p ~ b a b i l i t y  of backscattering. The velocity autocornlat ion at 

tha t  point does not necessarily have a long t a i l .  Furthermore, the  

m k o g  theory f a i l s  badly because of the neglect of backscattering i n  

tha t  theory. 50 A more appropriate theoretical model would be a percolation 

model. 
. . 

For the  'mssive part icle ,  tha t  is the Brownian motion l imi t ,  the I 

persistence should be enhanced. However, in the i n f i n i t e  mass o r  stationary 

particle l imi t ,  it is off-hand hard t o  see how the 'vortex mode is established 

when the par t ic le  has no velocity at all. A preliminary study shows t h a t  

the  vortex is created by natural fluctuations leading t o  a thermally 

generated sound wave which smashes in to  the  stationary sphere. 51 This 

sound wave manifests i t s e l f  by repeated successive col l is ions of the  same 

solvent par t ic le  with the Browllian part icle .  This shows up i n  an unexpected 

positive s t r ~ ~ c t u r e  i n  the force autocorrelatioil function, whose time inte- 

wcil determines the f r i c t ion  constant. This sound wave then leads t o  a 

' reiripclrary positive pressure on one side of the stationary object tha t  

relieves i t s e l f  a lso  by a vortex flow. Thus, the  force autocorrelation 

function of a finite sized i n f i n i t e  mss par t ic le  a i so  has a p e r  law 

decay in t ime,  just  l i k e  the velocity autocorrelation function, Only for 

the i n f i n i t e  s ize  and mass par t ic le  does t h i s  vortex flow make a 

vanishing contribution. 

In tha t  l imi t ,  the  Stokes hydrodynamic model makes a prediction o f . t h e  

value of the  . ,friction constant. The proportionality constant in t l l a t  



prediction depends on the nature of the boundary conditions between the 

f lu id  and the  Brownian part icle .  For a perfectly e l a s t i c  sphere the  

prediction L s  tha t  the f r i c t i o n  constant is  4 .rr times the  viscosity of 

the medium times the  radius of the sphere. ~ u r i o u s l ~ ,  by molecular dynamics, 

it w a s  found at densities where the  mean f ree  path i s  s m a l l  canpared t o  

-the s ize  of the stationary par t ic le ,  and,hence, where hydrodynamics should 

be applicable, tha t  the  proportionality constant was 6 ~ ;  a value obtained 

only with sticking boundary conditions hydrodynamically. The implication 

is t h a t  boundary conditions are poorly understood from a mlecu la r  point 

of view, and tha t  very l ike ly  in t h i s  case there must be, on a rnolec4ar 

scale,  a boundary layer of solvent spheres around the stationary par t ic le ,  

whose net effect  is t o  allow momentum transverse t o  the col l is ions a lso  

t o  be transferred, so a s  t o  jus t i fy  the  val idi ty of the sticking boundary 

conditions. 

In this connection, it should be pointed out t h a t ,  nevertheless, 

the  empirical observations f o r  pure hard spheres are nearly in conformity 

with the  Stokes-Einstein relat ion t h a t  uses 4 ~ r . ~ ~  The significance, 

however, is unclear, since the  Stokes-Einstein fomrula, which re la tes  the  

diffusion coefficient with the  viscosity,  i s  not meant t o  apply fo r  spheres 

of the  same mass and s ize  a s  the  solvent. 

(I) Burnett Coefficients 

Although the ordinary transport coefficients were found t o  ex i s t  

in three dimensions, the hydrodynamic and graph theoret ical  rndels 

predict divergence of the higher order transport coefficients.  These 

transport coefficients,  called Burnett coefficients,  a .  concerned with 

w a r e  length and gradient depmdence. The wave length dependcncc, 
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characterized by the  l inear  Burmett coefficients,  accounts f o r  the dependence 

of the  transport coefficients on the  r a t e  a t  which the  external f i e l d  is 

'applied, w h i l e  the gradient dependence described by the  non-linear 

Burnett coefficients accounts for  the dependence on the amplitude of the 

external f ie ld .  The linear Burnett coefficients can.be evaluated by higher 

order autocorrelation functions. The f i r s t  l inear  Burnett coefficient 

f o r  diffusion, for example, car] be expressed as  the integral of an auto- 

correlation function of the  velocity at  four different  times. Alternatively, 

the Einstein-like expression fo r  t h i s  Burnett coefficient involves the 

mean of the  fourth cumulant of the displacement of a part icle .  This can 

be easi ly programmed f o r  mlecu la r  dynamics. 

It was indeed shown tha t  this Burnett diffusion i n  two dimensions, 

namely f o r  hard disks, does diverge with k e  higher power i n  time than 

the  ordinary diffusion coeff icient ;  in agreemet with the  predictions 

of the  models. The proportionality constant is ,  however, not in agreement 

with the prediction. Its density dependence i s  such t h a t  in the lm density 

l i m i t  disagreement with the Chapman-Enskog expansion of the  Boltzmann 

equation was found. Although these resu l t s  have not been completely 

digested as yet ,  it is already c lear  tha t  a p o w w  ser ies  expansions about the  

hydrodynamic l i m i t  i n  three dimensions diverges. How t o  formulate the 

higher order corrections t o  the NavieStokes  equation is, hence, an open 

quest-iorl. A clue, sti l l  preliminary, as t o  the reason t o r  these divergences 

was obt&ied f:r̂ urr~ a moleculam~ dynamics study of the distr ibut ion in displace- 

ments. Since all the c m l a n t s  of this distr ibut ion higher than the f i rs t  

seem t o  be divergent, it appeared possible that the dis tr ibut ion muld not be 

rdiissian in the Long t h  limit, Indication& arc tha t  th io  i o  thc cc13ci 



It appears tha t  the  vortex mde r e s t r i c t s  the large displacements of 

part icles ,  because the  flow pattern is  such tha t  these par t ic les  have 

velocity components tha t  returns them t o  the origin. What w a s  found, 

qualitatively consistent with t h i s  idea, was t h a t  the  Gaussian distr ibut ion,  

previous thought valid,  was  only accurate fo r  small displacements. The 

distr ibut ion had fewer large 'displacements than predicted by the Gaussian 

distribution. 

(J) Depolarized Light 

The trouble so f a r  is  tha t  none of these long correlations have been 

d i rec t ly  observed experimentally. Besides the' computer generated evidence, 

the  only real manifestation of this vortex mode appears t o  be an indirect  

measment,namely an enhanced diffusion coefficient a t  intermediate 

densities f r a n  what mewould have predicted i f  the vortex correlations w e r e  ... 

l e f t  out.52 The lack of experimental evidence is n i t  surprising i n  view 

of the  smallness 'of the  effect .  The ef fec t  is largest  fo r  the  diffusion 

coefficient;  about 40% enhancement a t  intermediate densities.  Indeed, 

the few accurate diffusion experiments at these densi t ies  and high 

temperatures are considerable m r e  accurately predicted when interpreted 

by a hard sphere theory wfiich includes the  long ta i l  car rec t~on ,  than 

by the  ~ n s k o ~  theory, which ignores these correlations. 

It m u d  be desirable t o  obtain mre evidence, and, therefore, an 

interpretation of a l igh t  scattering experiment w a s  undertaken. 53 The 

line shape of depolarized l igh t  in f lu id  rare  gases can be expressed as  

the  Fourier transform of an autocorrelation f~.mction, namely, the  

induced dipole autocorrelation function. The idea was t h a t  the l ine  shape 

close t o  the  center of the band was a sensitive prok. of the long time 



correlations. Although the  l ine  shape 'near the center presents some 

experimental. d i f f i cu l t i e s ,  it could potentially be obtained by special 

techniques. Furthemore, ik must be realized t h a t  perhaps not a l l  auto- 

correlatiori functions have long tails, so tha t  the one appropriate t o  l i g h t  

scattering may.not be the one t o  study. 

Although t h i s  study was  interesting in its own r ight ,  it fa i led  t o  
. . 

give evidence of long tails. The autocorrelatibn function calculation 

could explain the  band shape,in so f a r  a s  it is  hown experimentally, 

remarkably well. There is, so f a r ,  no experimental evidence of a long 
i 

ta i l  because. the  central shape has not yet been determined,and the 1 

computer results w e r e  largely negative tha t  there would be one. It appears 

tha t  only velocity. dependent correlations have l o n g . t a i l s ,  while only 

spatially dependent correlations, as the induced dipole autocorrelation, 

may behave normally in tha t  respect. Much further  work is required t o  

understand both when long las t ing  correlations occur and what t h e i r  

consequencesare, if  they do. 
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TABLE I 

,Correction t o  the van der Waals model 
,, 

of the Helmholtz free energy, - WW. 

M.C. O.F. O.C.T. 



TABLE I1 

Thermcdynamic p r o p e r t i e s  of three mixtures 

and  also t h e i r  e x c e s s  p r o p e r t i e s  on  mixing a t  

c o n s t a n t  t e m p e r a t u r e  and p r e s s u r e  

pvlNkT 
( a  > 

u / N k ~  G/NKI. S/Nk 

M.D.' 2.53 -0.53 1 . 7 4  . -0.75 

O.F. 2.56 . -0.40 1 . 8 4  -0.67 
! 

O.C.T. 
I 

2.53 -0.53 1 . 7 5  -0.75 

(b) 
e x c e s s  0.17 0.60 0.47 0 . 3 0 ( ~ )  

M.D. 

O.F. 

O.C.T. 
(d ) 

e x c e s s  

M.D. 

O.C.T. 1 . 3 1  -0 .41 -0.96 0'. 8 6 

t excess 0.27 0.97 0.42 0; 82. 
. . 

( 1  Nmnkrsin p.rerlthecia are Jtlelived f rom the p a i r  c o r r e l a t i o n  f u n c t i o n  

w h i l e  all t h e  o t h e r  numbers are d e r i v e d  by d i f f e r e n t i a t i n g  t h e  Helmholtz 

free energy .  F o r  t h e  o t h e r  iwn s t a t e c  , t h e  t - u  alternative methods g i v e  
i~ l d i s t h g u s h a b l e  results. 



TABLE I11 

Comparison of contributions to the virial 

pressure for an 80% square-well mixture 

: M.D. O.C.T. M.D. O.C.T. M.D. O.C.T. 

(B) at T of about 1 . 4  

V/ T M.D. O.C..T. M.D. 'O.C.T. 
"0 



TABLE I V  . 

Comparison of the compressibility.factor 

for & 80% square-well mixture at V /  = 3 
. . .vo  

. . 

M.D. 

: 2.30 

2.00 

- 

1.31 

O.C.T.A. 



. . 

TABLE V 

Comparison of the  excess i n t e rna l  energy, -U/NH. 
. . 

. . 

Y M.D. O.F. 0.C.T.g. 



TABLE VI 

Configurational excess heat capacity a t  constant volume. 
. . 

. . 

Variation with m l e  fract ion at  V / V  = 3 and T near  2 

0 

Other resul t s  

the heat capacity r esu l t s  a re  e s t k t e d  t o  be accurate t o  i 10% 




