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Computations of multi-fluid flows 
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Full numerical simulations of three-dimensional flows of two or more immiscible fluids of different densities and 
viscosities separated by a sharp interface with finite surface tension are discussed. The method used is based on a 
finite difference approximation of the full Navier-Stokes equations and explicit tracking of the interface between the 
fluids. Preliminary simulations of the Rayleigh-Taylor instability and the motion of bubbles are shown. 

1. Introduct ion  

The considerable recent progress in under- 

standing complex single-phase flows can be at- 

tributed to the development of experimental 

techniques that allow clear visualization of fluid 

structures (such as LIF) and detailed velocity 

measurements, and numerical methods that al- 

low simulations of realistic (although simple) 

unsteady, fully three-dimensional flows. For 

flows that consist of two (or more) phases, 

formidable difficulties are still encountered in 

both experimental and numerical work. The 

difficulty in penetrating the flow field visually 

limits the experimental observations (although 

ingenious techniques have been developed in 

special circumstances), while on the numerical 

side, the difficulties associated with the advec- 

tion of  interfaces between two dissimilar fluids 

have limited studies to simple cases. 

Multi-fluid systems are of  considerable impor- 

tance for a large number of  natural and tech- 

nological processes. A list of  just a few appli- 

cations includes spray combustion, boiling, air 

stripping of  contaminants, evaporative cooling, 

air-lift pumps, blending, mixing and emulsifi- 

cation. Many of these phenomena involve f lu- 
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ids undergoing phase change, but frequently the 

rate of phase change is smaller than the hydro- 

dynamic time scale; the phase change can there- 

fore be neglected for transient processes such 

as bubble breakup. However, even such "sim- 

ple" processes (without phase change) are still 

poorly understood. Since it is frequently the mi- 

croscopic structure of a two-fluid mixture (such 

as the size and density of  droplets in a fuel spray) 

that determines the overall property of  interest 

(e.g. how fast a spray burns), it is important to 

account accurately for the evolution at the small- 

est scales. In some cases, in particular when one 

fluid is dispersed in another one in small drops 

or bubbles, it is possible to assume that, although 

the dispersed fluid has a dynamic of its own, 

the motion of  the ambient fluid is minimally af- 

fected, see [ 1 ] for discussion of  such "active mi- 

crostructures". In most cases, however, the mo- 

tion of  both fluids is coupled, and in some cases 

the fluid motion itself is induced solely by the 

fact that the fluids have different properties. 

To fully understand the behavior of  a multi- 

fluid system one must have a good insight into 

the basic micromechanisms that govern the evo- 

lution of  a single structure (e.g., a bubble or a 

drop) and the interactions of  a few such struc- 

tures. In addition to the usual questions about 

the relative magnitude of  the various physical ef- 
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fects (inertia, viscosity and surface tension), the 

effects of surface phenomena such as contami- 

nants must be addressed for multi-fluid systems. 

Full numerical simulations are, in principle, ide- 

ally suited to provide this information. Not only 

are all the quantitative data readily available, but 

various physical processes can be turned on and 

off at will. In practice, however, simulations of 

multi-fluid problems are one of the difficult ar- 

eas of computational fluid dynamics. Almost all 

current studies of multi-fluid problems make a 

number of simplifications, such as inviscidness, 

Stokes flow, two-dimensionality or axisymme- 

try. Although such models capture some of the 

important behavior, they often put severe con- 

straints on the problems that can be investigated. 

Many of the fundamental processes in multi- 

fluid flow are fully three-dimensional, and both 

inertia and viscous effects must be accounted 

for. 

We have recently developed a front-tracking 

method for multi-fluid, incompressible flows 

that appears to be both accurate and robust [2 ]. 

The method has been implemented for two- as 

well as fully three-dimensional situations. In this 

paper we discuss the method briefly and present 

preliminary results for the Rayleigh-Taylor in- 

stability and the collision of two bubbles. 

For fluid mixing induced by unstable stratifi- 

cation, the Rayleigh-Taylor instability, where a 

heavy fluid falls into a lighter underlying fluid, 

is the classical example. Indeed, for such flows, 

its importance is similar to that of the Kelvin- 

Helmholtz instability for fluid mixing induced 

by a shear flow. The Rayleigh-Taylor instability 

has been a prototype problem for computational 

studies of multi-fluid flows. The early calcula- 

tions by Daly [ 3] using the well-known Marker- 

And-Cell (MAC) method examined the effect of 

stratification and set the stage for future work. A 

review of the literature with particular attention 

to numerical work is given by Sharp [4], and a 

brief review also appears in [ 5 ], which presents 

inviscid simulations for various density ratios. 

Other recent inviscid simulations include [6 ] for 

the single fluid case and [7] for finite density 

differences. Boundary integral simulations of a 

two-dimensional Rayleigh-Taylor instability in 

the Stokes flow limit, with fluids of identical vis- 

cosities are presented by Yiantsios and Higgins 

[8]. Calculations of the Rayleigh-Taylor insta- 

bility for inviscid, compressible fluids neglecting 

surface tension have been done by Glimm et. al. 

[9 ] using a two-dimensional front tracking tech- 

nique and by Youngs [10], who recently calcu- 

lated the full three-dimensional evolution of a 

multi-mode perturbation to large amplitude. 

For many multi-fluid, mixing problems, the 

final state consists of drops or bubbles of one 

phase dispersed in another phase. The motion 

of drops and bubbles is therefore of a funda- 

mental importance in many mixing processes. 

Introduction to the subject can be found in the 

book by Cliff, Grace and Weber [ 11 ], who dis- 

cuss the motion of a single bubble, drop and 

particle in considerable detail. Churchill [ 12 ] 

devotes a chapter to this subject, and several 

sections in various handbooks (e.g., [ 13]) con- 

tain discussions of the problem. The review by 

Harper [14 ] also gives a broad overview of the 

motion of single drops and bubbles. Reviews of 

more limited aspects are given by Wegener and 

Parlange [ 15 ] who discuss spherical-cap bubbles 

and by Rallison [ 16 ], who presents an overview 

of the deformation of small viscous drops and 

bubbles. This latter topic is also reviewed by 

Acrivos [ 17 ]. Computational studies have been 

limited, nearly exclusively, to the motion of a 

single bubble or a drop. For drops and bubbles at 

zero Reynolds number (Stokes flow) in a strain 

field, several investigators have applied bound- 

ary integral techniques to predict the deforma- 

tion. Youngren and Acrivos [ 18 ] considered a 

gas bubble in viscous extensional flow, and Ral- 

lison [ 19 ] considered the time-dependent defor- 

mation of a non-axisymmetric drop with a vis- 

cosity equal to the surrounding fluid. More re- 

cent work includes Stone and Leal's [20] study 

of the breakup of extended drops and an inves- 

tigation of the deformation of an initially non- 
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spherical drop by Koh and Lcal [21 ] and Pos- 

rikidis [ 22 ]. The last studies show that the spher- 

ical shape solution of Hadamart is indeed very 

stable, but the relaxation toward that shape in- 

cludes some rather remarkable processes, includ- 

ing the shedding of the fluid in the drop and, in 

other cases, engulfment of the outer fluid. Chi 

and Lcal [23] studied the axisymmetric motion 

of a viscous drop toward a fluid interface for a 

range of capillary numbers and viscosity ratios, 

and Martinez and UdeU [24 ] considered the mo- 

tion of drops through circular tubes. Stone and 

Lcal [25] recently investigated the influence of 

contaminants on the breakup of drops in an ax- 

isymmetric strain field. 

For non-zero Reynolds numbers, a rising bub- 

ble can deform considerably. Ryskin and Lcal 

[26] examined the steady-state shape of a rising 

axisymmetric bubble for a range of Reynolds 

and Weber numbers using a finite difference 

technique and boundary-fitted coordinate sys- 

tem. They also applied their numerical tech- 

nique to investigate the steady-state shape of 

bubbles in an axisymmetric strain flow. Dandy 

and Lcal [27] extended the method to the full 

two-fluid problem where the internal motion 

of the bubbles is calculated. Recent numerical 

calculations of the initial deformation of two- 

dimensional inviscid bubbles include [28] for 

the case where the density ratio is very small 

and [29] for the case of a bubble of zero den- 

sity. Unsteady, two-dimensional flow calcula- 

tions around deformable drops have bcen pre- 

sented by Fyfe, Oran and Fritts [30], who used 

a moving triangular grid. Inviscid calculations 

of fully three-dimensional bubbles for weakly 

stratified flows and excluding surface tension 

were presented by Brecht and Fcrrante [31 ]. 

More advanced three-dimensional, inviscid cal- 

culations taking the bubble fluid to have zero 

density and including surface tension have re- 

cently been presented by Chahine and cowork- 

ers [32]. They have also extended their method 

to bubbles in an external, rotational flows, where 

the bubble-induced flow remains irrotational. 

For more complicated problems such as bub- 

ble/bubble interactions and bubbles in vortical 

flows where the assumption of a linear flow field 

is not valid, the literature is mostly confined to 

experimental studies and analytical models usu- 

ally based on rather far reaching simplifications. 

A number of workers have modeled such bub- 

bles by assuming inviscid flow and zero surface 

tension. The bubble is then essentially a dipole, 

and the interactions can be approximated by as- 

suming that the velocity of each bubble is its 

own self-induced velocity plus the contribution 

from the other dipoles (bubbles). Many of these 

bubble interaction and coalescence studies have 

been motivated by bubbling fluidized beds. For 

a review of analytical modeling, see [33]. For 

experimental studies on bubble coalescence, see, 

for example, [ 34 ]. 

2. Formulation and numerical method 

Sharp interfaces or fronts separating two rel- 

atively smooth flow regions appear in a wide 

variety of physical situation. Examples include 

shocks in compressible flows, vortex sheets, or 

slip lines, in high Reynolds number flows, and 

interfaces separating different fluids or phases in 

multi-fluid flows. Although fronts generally have 

an internal structure, it is frequently possible to 

approximate them as a surface where some prop- 

erties of the flow or fluid changes discontinu- 

ously. When present, fronts are often the most 

dominant feature of the flow, and it is essential 

to predict their movement accurately. However, 

simulations of flows with fronts are a difficult 

problem. 

Numerical methods specially designed to han- 

dle flows containing sharp fronts can be classi- 

fied into two main categories: front tracking and 

front capturing. In front tracking methods, the 

front is treated as a moving internal boundary, 

and separate grids, aligned with the interface, are 

used to calculate the smooth solution on either 

side of the front. The motion of the boundary is 
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calculated as a part of the solution, using the ap- 

propriate boundary conditions across the inter- 

face. Often, only the grid in the vicinity of the in- 

terface is aligned with the interface, and in gen- 

eral it is necessary to introduce a separate data 

structure to keep track of the moving interface. 

In front capturing, on the other hand, no addi- 

tional information is used to identify the posi- 

tion of the interface. The front appears directly 

on a fLxed grid as a region of steep gradient. Al- 

though the front is not treated separately from 

the rest of the flow, in most cases it is necessary 

to build operations into the algorithm that are 

effective only in the front regions. The reason 

is that classical schemes either lead to excessive 

diffusion of the jump if the method is of low or- 

der (first) or lead to oscillations for higher or- 

der methods. To keep the interface sharp, but 

without oscillations, the basic scheme is usually 

modified to provide a monotonic, but relatively 

sharp, interface. The introduction of artificial 

viscosity is the traditional method, but in the last 

decade several sophisticated methods have been 

introduced to achieve the desired result. For a 

recent review, see [35]. Generally, these meth- 

ods do well for shocks but less well for material 

interfaces. 

In integral form, the Navier-Stokes equations 

apply to any flow field, irrespective of whether 

it contains discontinuities or not. The integral 

properties of the equations are preserved if the 

so-called conservative form is discretized by con- 

ventional finite difference approximations (al- 

ternatively, finite volume methods work with 

the integral form directly). When the govern- 

ing equations are written for the whole domain, 

forces concentrated on the interface, such as sur- 

face tension forces, have to be introduced as 

body forces multiplied by a delta function that is 

non-zero only on the interface. With this modi- 

fication, the Navier-Stokes equations are 

0 
-~ (pu) + V .  (puu) 

= - V p  + pg + V . /z(Vu + Vu r)  

+ O'/~n~ (X -- x f ) .  ( l ) 

Here x f denotes the position of the front, p and 

/z are the discontinuous density and viscosity 

fields, respectively, x is twice the mean interface 

curvature, and other symbols follow customary 

convention. These equations are supplemented 

by the incompressibility condition 

V .  u = 0, (2) 

which, when combined with eq. (1), leads to 

an elliptic equation for the pressure. In general 

the pressure equation is non-separable for flows 

with non-uniform density, but if the Boussinesq 

approximation is applicable (weak stratifica- 

tion), a simple Poisson equation for the pres- 

sure is obtained. In addition to (1) and (2), 

equations of state for the material properties 

are needed. For immiscible, incompressible flu- 

ids, these state that the properties of each fluid 

particle remain constant, or 

Op 
O--t + u .  V p  = O, 

O# 
o-7 + u .  v/~ = o. (3) 

Here we have used the non-conservative form 

of these equations to emphasize that this is 

just the material derivative. In any case, in the 

method described below, the last two equations 

are not solved directly, but the fluid properties 

constructed from the tracked interface. 

The front tracking method is described in 

detail in [2] and only a brief outline is given 

here. The method is best described as a hybrid 

between a front tracking and a front capturing 

method. The interface between the two fluids is 

tracked explicitly by additional computational 

elements to advance the density (and viscosity) 

field, but the flow field is advanced with con- 

servative differences, as in capturing methods, 
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without any special treatment for the interface, 

except that surface tension forces are calculated 

using the interface position. To provide sta- 

bility and smoothness the interface is not kept 

completely sharp but is given a finite thickness 

of the order of  the mesh size. This thickness 

remains constant for all time (no "numerical 

diffusion") but decreases with finer resolution. 

Since our fluids are incompressible, the inter- 

face simply moves with the fluid velocity, which 

is interpolated from the grfd. 

In our implementation, the computations pro- 

ceed through the following steps: Given a veloc- 

ity, density and viscosity at time t, the interface 

is advected to a new position at time t + At. The 

new density and viscosity field, corresponding 

to this new interface position is found as de- 

scribed below. The pressure is found by solving 

an elliptic equation given the velocity at t and 

the density at both the old and the new times. 

The pressure and the old velocity and viscos- 

ity, along with the density at both the new and 

the old times are then used to predict the ve- 

locity at the new time. Except for the update of 

the property fields, this procedure is exactly the 

MAC method (when a staggered grid is used) 

developed at Los Alamos [3] and described in 

standard textbooks. The method, as described 

here, is second order in space but only first or- 

der in time. We have implemented a second or- 

der version as a predictor-corrector for some of 

our two-dimensional calculations. However, it is 

generally necessary to take a very small time step 

to maintain stability, and in those cases where 

we have compared the results the second order 

method offers only a small improvement. Since 

the first order method is faster, we have used 

that in our three-dimensional calculations. When 

calculations are carded out for a long time, it is 

likely that a higher order method is required to 

reduce error accumulation. 

Methods that incorporate the basic features of 

our interface treatment are not completely new. 

The motivation for the present approach comes 

from the work of one of the authors (G.T.) us- 

ing a Vortex-ln-Cell method to simulate inviscid 

vortical flows with moving internal boundaries 

[5] and the work of C.S. Peskin and collabora- 

tors, who have simulated a number of viscous 

flows with moving internal boundaries using a 

front-tracking technique based on ideas some- 

what similar to those used in the Vortcx-ln-Cell 

method [36]. In both cases, a moving interface 

is combined with a fLxed grid by distributing the 

quantity carried by the interface (vorticity in the 

Vortex-In-Cell method; forces in Peskin's calcu- 

lations) onto the grid at each time step - creat- 

ing a smooth field - and then moving the inter- 

face with a velocity interpolated from the grid. 

The major difference with the new method 

is that the tracked interfaces carry the jump 

(or gradient) in properties across the interface. 

At each time step, the property field is recon- 

structed by distributing this jump onto the grid, 

taking the numerical divergence of the result- 

ing gradient field, and then solving a Poisson 

equation for the density (or the viscosity) by a 

fast Poisson solver. The primary advantage of 

this approach is that interfaces can interact in 

a rather natural way, since the gradients simply 

add, or cancel, as the grid distribution is con- 

structed from the information carded by the 

tracked front. This interaction, which is auto- 

matically taken care of in our method, is consid- 

ered one of the great difficulties of front-tracking 

methods [ 37 ]. 

A major complication with front tracking in 

three dimensions is the modification of the in- 

terface grid, necessary to retain sufficient reso- 

lution as the interface stretches and deform. In 

two dimensions, the front is simply a line, and 

these modifications are a relatively simple mat- 

ter. But, when the interface becomes a surface 

embedded in a three-dimensional flow, this as- 

pect takes on a whole new dimension (literally). 

The regriding problem is, of course, closely 

linked to the data structure used to represent 

the front. We currently represent the surface by 

triangular elements and use a standard finite 

element data structure to represent the nodal 
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points and the elements that link them. The r e -  

griding can be divided into several steps, such 

as node addition, node deletion, and rcconnec- 

tion or restructuring. Our current implementa- 

tion includes point insertion (for elements that 

become too large), point removal, and restruc- 

turing (to eliminate bad "aspect ratios," i.e., 

elements with small area but large perimeter). 

An additional complication is the calculation 

of the mean surface curvature, which is needed 

for the surface tension forces. We are currently 

using a method described by Todd and McLeod 

[38], modified slightly for our grid structure, 

that works well in most cases. 

3. Results  

In this section we show a few preliminary re- 

sults for two- and three-dimensional simulations 

of the Rayleigh-Taylor instability and bubble 

motion. Other results have been reported else- 

where, i.e; a brief discussion of the effect of 

three-dimensionality on the weakly stratified 

Rayleigh-Taylor instability is given by Tryggva- 

son and Unverdi [39] and several examples of 

two- and three-dimensional bubble motion for 

various density and viscosity ratios, as well as 

different surface tension values, are shown in 

[2]. 

In fig. 1 we show how our method predicts 

the evolution of a two-dimensional Rayleigh- 

Taylor instability for three different density ra- 

tios. The behavior exhibited is well known. For 

weak stratification (top row), the interface rolls 

up near the original position of the interface, 

and the evolution is nearly symmetric with the 

up-going bubble looking the same as the down- 

going spike. For stronger stratification (middle 

row), the rollup is less and takes place closer to 

the spike. For even stronger stratification (bot- 

tom row), the rollup is almost completely sup- 

pressed, and the heavy fluid falls down in a thin 

spike, but the light fluid rises in a round bub- 

ble. In the limit of the single fluid case (where 

t - ~ - -  t =  2.53 

= 2 . 8 3  

I 

i 

Fig. 1. The effect 

t = 3.16 I t = 4.43 

. J  

I = 3 . ~  = 3 . 9 5  

I 

t _ ~ 2 . 2  s - -  

of 

I = 4.52 

, / 
/ 

) 

density stratification O l l  

two-dimensional Rayleigh-Taylor instability. Time se- 
quence for three different density ratios. The Attwood num- 

ber, A = (Ph --Pt )/(,Oh + Pt ), is: 0.1 in the top row, 0.5 in 
the middle row, and 0.9 in the bottom row. The kinematic 
viscosity of  both fluids is the same in all runs and corre- 

sponds to the most unstable wave. The non-dimensional 

tx/ /-~/L,  is given in each frame. The amplitude of time, 
the initial perturbation is 5% of the period length L. 

the light fluid has zero density), the bubble rises 

with constant velocity whereas the spike is in 

free fag. These results agree with what has been 

calculated by several other methods, using both 

the full Navier-Stokes equations or assuming in- 

viscid fluids [3,5]. The major difference from 

inviscid calculations is that the rollup for the 

weakly stratified case is greatly reduced. Here, 

where the viscosity corresponds to the most un- 

stable wavelength, the interface folds over just 

once. Inviscid calculations predict, on the other 
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(a) 

Fig. 2. The effect of viscosity on weakly stratified, 

two-dimensional Rayleigh-Taylor instability. In (a), the 

viscosity corresponds to the most unstable wave but in (b), 

the viscosity is one tenth of that. The non-dimensional time, 

t AV/'~'L, is 2.5. The amplitude of the initial perturbation 

is 10% of the period length L. 

hand, the formation of  a well-developed vortex. 

To investigate the effect of  viscosity in slightly 

more detail, we show, in fig. 2a, the evolution 

of weakly stratified Rayleigh-Taylor instability 

for the same viscosity as in the top row in fig. 

1 (this calculation incorporates the Boussinesq 

approximation; the run in 1 does not) and a ten 

times smaller viscosity in 2b. This reduction in 

viscosity causes the interface to fold over once 

more, but then the arms appear to undergo sim- 

ilar stretching as in the top frames. This suggests 

that as the viscosity is decreased for a given per- 

turbation, more rollup would be observed. 

Although most computations of  the Rayleigh- 

Taylor instability have assumed two-dimensional 

evolution, there is - unlike, say, the Kelvin- 

Helmholtz instability - no stage at which the 

evolution is predominantly two-dimensional. 

Even when the experimental setup is "two- 

dimensional," such as when the flow is con- 

fined to a narrow space between parallel wails, 

the growth of boundary layers at the walls in- 

duces three-dimensional motion. It is therefore 

of considerable importance to consider three- 

dimensionality in simulations of the Rayleigh- 

Taylor instability. Fig. 3 shows two calculations 

of a fully three-dimensional flow. In the top 

frame, the density of the heavier fluid is three 

times that of the lighter one, and in the bottom 

frame, the heavier fluid is twenty times denser 

than the lighter one. Only one large amplitude 

stage is shown for each run. To make the struc- 

ture of the interface a little clearer, we actu- 

ally show two periods, although only one was 

simulated. In these runs, the interface surface 

tension is taken as zero, and the interface grid 

has not been restructured. For small density 

stratification, wc have shown [39] that three- 

dimcnsionality can lead to a large-amplitude 

vortex structure that differs considerably from 

what two-dimensional simulations predict. The 

different vortical configuration leads to more 

rapid non-linear growth for the fully three- 

dimensional case, even though the linear growth 

rate is the same. The increased stratification 

modifies the interface in a way that might be 

expected from the two-dimensional results; as 

the density difference is increased the difference 

between the bubbles and the spikes becomes 

more apparent. The up-going fluid rises in rela- 

tively large round bubbles, whereas the heavy, 

down-going fluid falls in thin spikes. The initial 

perturbations used here are the same as in [39], 

and lead to symmetric penetration of each fluid 

into each other for weakly stratified flows. 

In the runs discussed above, the viscosity was 

selected so that the imposed perturbation corre- 

sponded to the most unstable wavelength (ex- 

cept in fig. 2b), and the kinematic viscosity of 

both fluids is the same. Since viscosity obviously 

has a strong influence on the evolution, it is nat- 

ural to look at what effect viscosity stratification 

Fig. 3. The effect of density stratification on the large • 
amplitude stage of a fully three-dimensional viscous, 
Rayleigh-Taylor instability. (a) A = 0.5, (b) A = 0.9. 
The up-going bubble is bigger, and the down-going spike 
sharper for the larger stratification. 
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(a); 

Fig. 4. The effect of viscosity stratification on the evolution of a wcaldy stratified, three-dimensional Rayleigh-Taylor 
instability. The bottom fluid is fifty times more viscous than the top fluid. 

has. In the run shown in fig. 4, the densities are 

close (so the evolution would be symmetric if  the 

viscosities were the same), but the bottom fluid 

is fifty times more viscous than the top one. This 

result should be compared with the calculations 

in [39] but may also be compared with the re- 

sult in fig. 3a, where the asymmetry due to finite 

density stratification is actually rather small. Ob- 

viously there are considerable differences. The 

low viscosity, top fluid falls down in a large blob, 

while the more viscous, but lighter, bottom fluid 

rises in relatively thin fingers. This difference in 

growth of the fingers and the blobs is also seen 

in fig. 5, where the amplitude is plotted versus 

time. The reason for this behavior may be sought 

by considering how the baroclinic vorticity gen- 

erated at the interface diffuses into the different 

fluids. Since vorticity diffuses more easily into 

the more viscous bottom fluid, the tip of the fin- 

ger travels faster upward than the tip of  the bub- 

ble goes downward, and, by continuity, the fin- 

ger slims down. This behavior has been observed 

experimentally under creeping flow conditions 

by Talbot and Jackson [40]. Other simulations, 

mostly for weak stratification and identical vis- 

cosities, suggest that asymmetry may also be in- 

duced by the presence of more modes in the ini- 

tial perturbations, sometimes leading one fluid 

to "mushroom" into the other, but not vice versa. 

A systematic study has not been done yet. 

We next turn to calculations of colliding bub- 

bles. These calculations have been run for a rel- 

atively long time, compared to the calculations 

of the Rayleigh-Taylor instability and require 

the continuous restructuring of the interface 

grid. Surface tension is also included here. Fig. 

6 shows two simulations of  a collision between 

two bubbles in a periodic bubble chain. Initially, 
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Fig. 5. The vertical position of  the tip of the more viscous 

finger and the less viscous blob, for the run in fig. 4, as a 

function of non-dimensional time tV /~ /L .  

two spherical bubbles are at rest in the middle 

of the computational domain, with their centers 

two diameters apart in the vertical direction and 

separated horizontally by a quarter of the diam- 

eter. The period in the vertical direction is five 

times the diameter of the bubbles, and the width 

of the computational domain in the horizontal 

directions is half this period. The computational 

domain is shown at the bottom of each frame. 

The height of the box is the period of the bub- 

ble chain, the left and right boundaries are peri- 

odic, and full slip boundaries are implemented 

in front and back. The bubbles can therefore 

move out of the original computational domain, 

and as they do so the bubble pair in the period 

below moves in. In fig. 6 we, however, follow 

the original pair. The first bubble pair, inside 

the box at the bottom, is shown shortly after the 

run started, and each subsequent pair shows the 

evolution of the interaction process between the 

original pair. For an infinite periodic domain, 

it is necessary to specify either the net volume 

flux or the total pressure difference across each 

period. Here we have done the latter and taken 

the pressure increase from top to bottom equal 

to the hydrostatic contribution from the fluid 

mixture. 

Bubbles and drops can be characterized by the 

E6tv6s number, Eo, and the Morton number, M, 

defined as 

M = gg4o/Potr3, Eo = pogd2/tL 

in addition to the density ratio, Po/Pb and the 

viscosity ratio, /ao/gb. Here, subscript o refers 

to the outer fluid and b to the bubble fluid, dc 

is the diameter of the initially spherical bubble. 

In the calculations in fig. 6, Eo = 10 and the 

density ratio is Po/Pb = 40 in both runs. In (a), 

M = 10 -2 and the viscosity ratio is go/#b = 28, 

but in (b), M = 10 -3 and the viscosity ratio is 

go/gb = 16. The difference between the runs 

is, therefore, only the viscosity of the outer fluid 

(smaller in b). Both calculations are carried out 

on a 32 by 32 by 64 grid and use about 5000 

elements to represent the bubble surface. Surface 

elements are added and deleted during the run, 

so the actual number varies. 

Initially, the bubbles rise relatively indepen- 

dently of each other and deform towards the 

steady-state shape of a single bubble in free rise. 

For this values of the governing parameters the 

bubbles have a relatively round top and a nearly 

flat bottom, with the bubbles in the low viscos- 

ity fluid in (b) becoming flatter and having a 

sharper "rim". The top bubble remains more or 

less of the same shape as the pair rises, but the 

bottom bubble is accelerated upward and elon- 

gated in the strain field induced by the motion of 

the top bubble. In both runs, the bubbles line up 

into a nearly axisymmetric configuration. The 

bottom bubble then accelerates and collides with 

the top bubble. Both bubbles now become flat- 

ter, particularly in the low viscosity fluid (b). Af- 

ter having risen together for a short distance, the 

top bubble slides to the side, and the the bottom 

bubble moves toward the side of the top one. 

In fig. 7, the vertical coordinate of the cen- 

troid of each bubble is plotted versus time, in 

(a) for the high viscosity outer fluid (6a) and 

in (b) for the low viscosity outer fluid (6b). Ini- 
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Fig. 6. Non-axisymmetric merging of  two bubbles on a 32 by 32 by 64 grid. Time is non-dimensionalized here by (a/pog 3 ) [/4. 

(a) Left two columns. Eo = 10, M = 10 -2, Po/Pb ---- 40, and/zo//~b = 28. The times shown are: 2.26, 13.58, 22.64, 29.43, 
36.22, 43.01, 49.80, 56.59, 63.38 and 69.04. The second column is a continuation of the first one. (b) Right two columns. 

Eo = 10, M = 10 -3,  Po/Pb = 40, and #o//~b = 16. The times shown are: 2.26, 11.32, 18.11, 22.64, 27.16, 31.69, 36.22, 
40.75, 45.27, 49.80, 54.33, 58.85, 63.38 and 67.91. The second column is a continuation of  the first one. 
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Fig. 7. The vertical position of the center of mass of the bubbles in fig. 6 versus time. Here, t and b denote the bubbles that 

are initially on the top and bottom, respectively. (a) and (b) as in fig. 6. 
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Fig. 8. The path of  the center of  mass for the bubbles in fig. 6. The vertical scale is one tenth of  the horizontal scale. Here, 

t and b denotes the bubbls that are initiall on the top and bottom, respectively. (a) and (b) as in f~,s. 6 and 7. 

tially, both bubbles move with nearly constant 

velocity which is slightly larger for the bottom 

one. The bottom bubble then rises rapidly and 

collides with the top bubble. The bubble pair ac- 

celerates slightly during the collision and then 

moves with constant velocity for a while. As the 

bubbles tumble over and start to rise side by side 

they both slow down. Because the Morton num- 

ber is smaller, the bubble pair in (b) rises faster 

and the interaction time is shorter. 

Fig. 8 shows the paths of the bubble centroids 

for the pairs, in the center plane of the box: (a) 

and (b) are as in figs. 6 and 7. In both cases, the 

bubbles initially rise straight up but then drift 

toward the center of the box. The bottom bub- 

ble movies more laterally than the top one, in 

both cases. This motion is slower in the high vis- 

cosity fluid and when the bubbles collide, the 

bottom bubble in the high viscosity fluid is still 

slightly to the left of the top one as it was ini- 

tially. In the low viscosity fluid (b), the bottom 

bubble oveshoots the centerline and then moves 

back again toward the middle and collides with 

the top bubble. Although the subsequent evolu- 

tion similar in that both pairs tumble over and 

the bottom bubble catches up with the top one, 

the configuration just before collision makes an 

important difference: in (a), the top bubble is 

pushed to the right, but in (b), it goes to the left. 

Since the bottom bubble in (b) appears to be un- 

dergoing oscillatory motion around the center- 

line as it approaches the top one, it is likely that 

the post collision motion depends on the phase 

of this oscillation and thus on the initial separa- 

tion as well as the viscosity of the outer fluid. As 

the bottom bubble catches up with the top one, 

it is bumped slightly outward before it settles 

down on a trajectory that is nearly parallel with 

the other bubble. The whole process takes place 

faster in the low viscosity fluid, as expected. In 

(a), the bubbles are still not moving parallel at 

the end of the run, while in (b), it appears that 

the bubble initially behind has actually passed 

the other one. Whether the final state consists of 

a bubble pair rising side by side, or if the bub- 

bles exchange positions and the collision process 

is repeated, is not yet known. 

Both runs are at a relatively high Morton num- 

ber, and the calculations of Ryskin and Leal [26] 

suggest that no recirculating wake is present for 

this parameter values. Fig. 9 shows the velocity 

field for both pairs after the initial deformation 

has taken place, but before collision. The veloc- 

ity field is with respect to a frame of reference 

moving with the bottom bubble, and no recir- 

culation behind the bubbles is visible. A similar 

plot in a frame moving with the top bubble is 

nearly identical. Although a recirculating wake is 

absent, it is clear that the top bubble shields the 

bottom one from the oncoming flow and that the 

momentum defect in the wake of the top bub- 

ble causes the upward acceleration of the bottom 
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Fig. 9. The velocity field due to the bubbles in fig. 6 before 
the bubbles collide. (a) and (b) as in figs. 6-8. 

one. 

We note that for calculations that involve 

complicated interactions such as these and that 

consist of thousands of time steps, it is likely 

that a higher order time integration, than the 

first order used here, would improve the re- 

suits. Nevertheless, we believe that the calcu- 

lations are reasonably accurate and correctly 

represent the physical processes simulated. In 

two-dimension, similar calculations have been 

checked extensively by grid refinement, and 

those tests suggest that the resolution used there 

is sufficient in the parameter range simulated. 

Consultation with experimental results [34] 

also suggests good agreement but different setup 

and uncertainties about contamination effects 

call for a more detailed study. We have also 

found good qualitative agreement with the ax- 

isymmctric, steady-state calculations of Ryskin 

and Lcal [26] and Dandy and Leal [27]. A di- 

rect comparison is, however, not possible with 

our current setup. Our bubbles arc confined to 

a rather small domain but Leal and coworkcrs 

could afford a much larger domain for their 

axisymmctric computations. 

4. C o n c l u s i o n s  

Full numerical simulations of multi-fluid 

flows are discussed and examples of the 

Rayleigh-Taylor instability and bubble motion 

are presented. These preliminary results, as well 

as results presented elsewhere, suggest that full 

simulations of relatively complicated multi-fluid 

systems are well within reach. 

Full simulations will, naturally, always be lim- 

ited to somewhat modest-sized systems. Our ex- 

perience suggests that for a high viscosity and 

surface tension a meaningful resolution of a sin- 

gle bubble can bc achieved on as little as a 163 

grid. A simulation on a 643 or even 1283 grid 

would be able to include several bubbles. Nev- 

ertheless, a full simulation of most mixing pro- 

cesscs is obviously as much out of the question 

as full simulations of a realistic turbulent flow. 

The utility offuU simulations is in developing an 

insight into the basic micromechanisms, much 

as analytical solutions do when they are obtain- 

able. In addition to information about the bubble 

motion itself- some of which may be obtained 

more easily experimentally, such as shapes and 

interactions - full simulations allow examina- 

tion of quantities that arc difficult to measure, 

such as the velocity field, as wcU as direct eval- 

uation of macroscopic quantities controlled by 

the microscopic motion, such as how fluxes of 

mass and momentum depend on the bubble con- 

figuration. In addition to complementing exper- 

iments in providing a fundamental insight, full 

simulations arc therefore of great utility for an- 

alytical modchng, both on the microscopic and 

macroscopic levels. 
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