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COMPUTATIONS OF SIEGEL MODULAR FORMS OF GENUS TWO

NILS-PETER SKORUPPA

Abstract. We explain the basic notions and theorems for doing computations
in the theory of Siegel modular forms of degree two, on the full modular group
and of even weight. This synopsis concludes with a handy and computationally
realistic algorithm for tabulating the Fourier coefficients of such forms and the
Euler factors of their Spinor zeta functions. In the second part of this paper
we present and discuss some of the results of actual computations which we
performed following this algorithm. We point out two (theoretically) striking
phenomena that are implied by the results of these computations.

Introduction

In 1978 Kurokawa computed explicit examples of Siegel modular forms of
genus 2 [10]. These examples led to the Saito-Kurokawa conjecture whose proof
focussed attention to Jacobi forms, which were then first studied by Eichler and
Zagier [5]. Meanwhile, Jacobi forms have been extensively studied and, in the
case of genus 1, they are quite well understood. In contrast to this, there are
still many gaps in the theory of Siegel modular forms of higher genus, and even
in the case of genus 2 many questions are still not answered: Is a Hecke eigen-
form uniquely determined by its eigenvalues? What is the arithmetic nature
of its Fourier coefficients? What is the relation between Hecke eigenforms and
Galois representations? Are there Hecke eigenforms of even weight and on the
full modular group whose first Fourier-Jacobi coefficient vanishes? What is the
relation between the eigenvalues of a Hecke eigenform and the scalar products
of its Fourier-Jacobi coefficients (cf. [9])?

At the time of Kurokawa's paper it took much effort and tricky manipulations
to produce explicit examples of Siegel modular forms at all. This was mainly
due to the lack of computationally realistic formulas for Siegel modular forms.
In the past decade there has been much progress in the theory of Jacobi forms,
as well as in computer hard- and software development. Exploiting this, one
can nowadays rather easily go beyond Kurokawa's computations and produce
explicit examples of degree-two forms.

The purpose of this paper is, first of all, to point out how such calculations
can be done. Moreover, we actually did such calculations. It turned out that
there are two striking, to our knowledge so far unobserved, phenomena, which
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might deserve further attention. The second purpose of this paper is to describe
these phenomena.

We computed the Siegel cusp Hecke eigenforms of genus 2 and even weight
on the full Siegel modular group which do not belong to the Maaß-Spezialschar.
The first of these forms occurs in weight 20, and for weight 20 up to weight
32, which is the range of our computations, the dimensions of the subspaces
spanned by such forms is 1,1,2,2,3,4,5, respectively. Quite expectedly,
these Hecke eigenforms can be distinguished by their Hecke eigenvalues (even
by the eigenvalue of T(2), the second Hecke operator), and their first Fourier-
Jacobi coefficient does not vanish. Let T20, T22, T24a, T24¿>, etc. denote
these Hecke eigenforms (suitably normalized). Then, in complete analogy to the
case of elliptic modular forms, it turned out that for weight k = 28, 30, 32 the
corresponding Hecke eigenforms are conjugate to each other, i.e., Tkb, Tkc,
etc. are obtained by applying an automorphism of C to the Fourier coefficients
of Tka.

The first of the phenomena mentioned above is that this does not hold true for
the two eigenforms in weight 24 and weight 26, respectively: these eigenforms
have rational Fourier coefficients. This is striking and contradicts common
expectation.

The second, though less striking, phenomenon is the existence of congruences
modulo various primes (or prime powers) between the Hecke eigenforms T*
and Hecke eigenforms from the Maaß-Spezialschar. These congruences are triv-
ial in the sense that they can be rather simply verified. On the other hand, they
extend to congruences between the corresponding Andrianov (or Spinor) zeta
functions and might have some less trivial implications in the (so far nonex-
isting) theory of Galois representations associated with the Hecke eigenforms
T*.

In the course of the numerical computations we had to handle quite large
integers at a reasonable speed (multiplication, factorization) and we needed a
certain amount of linear algebra (multiplication of matrices, inversion, charac-
teristic polynomials). All these computations could easily be performed using
the software package PARI (cf. [3]). I am very grateful to H. Cohen for in-
troducing me to this system and helping me to take the first steps in using this
great piece of software. More extensive tables of the examples considered in
this paper will appear in [4].

Notation
Throughout, we shall use the following notation:

- Z, Q, C = integers, rational, and complex numbers, H = Poincaré
upper half plane, Y{ - SL2(Z) = elliptic modular group, Y2 = Sp2(Z) =
Siegel modular group of genus 2

- MkiY2) = space of Siegel modular forms of genus 2 and weight k on
the full Siegel modular group Y2

- Mk(Yx) = space of elliptic modular forms of weight k on the full
modular group Ti

- Jkm- space of Jacobi forms on SL2(Z) of index m and weight k
- When the M or J above is replaced by S, we always mean the corre-

sponding subspace of cusp forms
- q = e2niT,    C = e2Kiz,    d' = e2*'v   (t, r' e H, z e C)
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- Special elliptic modular forms:
OO mi       oo

ri = q*HH-qn),    ^ = r,24,     E2k = 1 - — ^^-liOfl'
n=l 2k 1=1

i Bk — k\Yi Bernoulli number)
- Special Jacobi forms:

ho = -A./r6 £ (-l)V*2+r2)/4Cr,
r,sGZ

r£smod2

<j>i2=A.t1-6'U   £   s\-\yq^l\r-E2   £  (-l)Vi2+r2)/4c)
\        r,sEZ r,sez /

r£s mod 2 r^s mod 2

- Special Siegel modular forms of genus two:

Xio = V((l)io),    Xi2 = V(<j>n),    Xi4 = V((j>ioE4),    Xi6a = Vi<f>l0E6).

The operator V (mapping Jacobi forms to Siegel modular forms) and the fact
that 010 and <f>l2 are elements of Sxo,i and Sl2^ will be explained below (cf.
the second theorem and the proposition in §1). For a basic reference on Siegel
modular forms, we refer to [6]; for Jacobi forms, cf. [5].

1. Theorems for computing Siegel modular forms
We are interested in Siegel modular forms of even integral weight on the full

modular group. Any such form F has a Fourier expansion of the form

F=    J2    aFin,r,m)qnCrq"n
r,n ,m£Z

r2-4mn<0
n,m>0

in which only those Fourier coefficients aFin, r, m) are possibly nonzero where
the binary quadratic form [n, r, m] (i.e., the form nX2 + rXY + mY2 ) is pos-
itive semidefinite. Moreover, the Fourier coefficient aF(n , r, m) depends only
on the GL2(Z)-equivalence class of the binary quadratic form [n,r, m]. Thus,
one wants to compute the Fourier coefficients aF(Q) for all positive semidefi-
nite GL2(Z)-reduced quadratic forms Q. The essential ingredient to tabulate
these Fourier coefficients is the following theorem of Igusa, which describes
the structure of the graded ring of all Siegel modular forms of even weight on
Sp2(Z).

Theorem [7]. Let y/4, %, Xio > #12 be nonzero forms in the one-dimensional
spaces M<x(Y2), M6(Y2), Sx0(Y2), Sl2(Y2), respectively. Then

M2*(Y2) := ($M2k(Y2) = C[^4, ye, *io. *12],

i.e., the modular forms y/4, %, #10, #12 are algebraically independent and any
element of M2t(Y2) can be written as a polynomial in these functions.

According to Igusa's theorem we have to look for a good method to compute
the y/4, ... . The most convenient method is provided by the following theorem,
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which is essentially due to Maaß.  Recall that any element <f> of Jkil has a
Fourier expansion of the form

1> =   £   c,(z>)ica-">/«cr
D,rEZ,D<0
D=r^ mod 4

(cf. [5, Theorem 2.2]).
Theorem [11]. For any integer k > 0, the map

<t>=     ¿2    Ctj>(D)q^-D^C ->    £    fl(n,r,/n)flr"fV»,
C,reZ,Z><0 n,r,m£Z
D=r2mod4 A— 4mn<0

n,m>0

fl(»,r,w):=    £    ^-'cJr2~Jm"V       a(0,0,0):=-^.Q(0),
a|(R,r,m)

defines a Hecke equivariant embedding

V:JktX^Mk(Y2).
It maps cusp forms to cusp forms, and Eisenstein series to Eisenstein series.

The Siegel modular forms occurring in the image of V are called Maafi-
Spezialformen. To compute such forms, we need to compute Jacobi forms of
index 1. Via the following proposition, this is reduced to the computation of
elliptic modular forms on the full modular group.

Proposition [13]. Let
A = n~6 £ 52(-i)Vi2+r2)/4Cr

r,s£Z
r£s mod 2

= 2 + q(2C _ 8C + 12 - 8C~' + 2Ç~2) + ■•• ,
B = n~6 £ (-i)Vi2+r2)/4r

r.sez
r£s mod 2

= 2 - C - C~' + ?(2£2 - 8C + 12 - 8C_1 + 2C"2) + • • • .
Then, for any integer k, the map

t/.ti~$/A-(,jLs)B + ,B
defines an isomorphism

I:Mk(Yx)®Sk+2(Yx)*JkA.
Proof. For the convenience of the reader, we sketch the short proof of this
theorem. Set

%= £ //4cr    (/> = o,i).
r€Z

r=p mod 2

In terms of these fundamental theta functions, any <j> e Jk t i can be written as

<f> = h0û0 + hx-ôx,        h„=    £   Q(Z))9"i    (/> = 0, 1).
Z><0,

D=/i mod 2
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From this equation we obtain

(a.,Ai)if=<«t,o),*„(t,o)),    *-($;§ £$;¡¡j

where the subscript zz indicates second partial derivative with respect to z.
But W is invertible: namely, using det(FF) = 2(27t/')2^? +cf(q*), and the well-
known transformation laws satisfied by the ûp (cf. [5, §5]), one easily verifies
that detiW)4 is an element of S,2(r,), i.e., equals A up to multiplication by
a scalar; whence

det(W) = 2(2?n)V.
Using this to write down the inverse matrix of W, we find

W~lWi)-\-B/2i2ni)2)
Summing up, we finally have

0(l, z) = itf(T, 0)A - _J_j¿„(t, 0)5,

which can also be written as

where

*-5^-(»¿/l* + «*.

'-£•       ^2¿¡fWl'°>-2(¿7P«'-0)-
From the transformation laws of 0 under T, it is easily deduced that / and g
are elliptic modular forms on the full modular groups of weight k and k + 2,
respectively, and g is even a cusp form. Vice versa, it can be shown, using
the transformation laws for the ûp , that the right side of the last equation for
0 always defines an element of Jk , if / e MkiYx) and g e ^+2(ri). This
completes the proof of the proposition.   D

Note that 0 is a cusp form if and only if / is a cusp form. Hence, the
first Jacobi cusp forms of index 1 occur in weights 10 and 12; these are the two
special Jacobi forms listed in Notation. In fact, one has

0,0 = 7(0,-A),        0,2 =/(A, 0).
Note that these Jacobi forms have integral Fourier coefficients and that they are
normalized in the sense C^l0(-3) = C^l2(-3) = 1.

Moreover, the proposition and its supplement concerning cusp forms shows
that dimSfc,, = dimS^r,) + dim5,fc+2(r,) = dimA4_12(r,) + dimA4_10(ri).
Since 0,0 and 0,2 are obviously linearly independent over the ring

MtiYx):=(¡)MkiYx) = C[E4,E6]
kez

i 012/010 does depend on z ), we conclude

Sk,i = Mk_xo(Yx)(j>xo ® Mk_x2(Yx)<f>x2-
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To sum up, by the proposition, or the last equation, we have explicit formulas
for Jacobi forms of index 1. Via Maaß's theorem we then also have explicit
formulas for the generators of the ring M2t(Y2), namely,

^4 = F(/(£4,0)),     n = V(I(E6,0)),    Xio=K(0,o),     X,2 = K(012);

hence, we have such explicit formulas for any Siegel modular form. These for-
mulas are easily implemented on a computer to tabulate the Fourier coefficients
of a basis of Siegel modular forms of given weight k . The only parts of this
procedure which are computationally expensive are the multiplications of Siegel
modular forms. To avoid some of these multiplications, it is reasonable to gen-
erate at least the Maaß-Spezialschar of a given weight directly, i.e., by applying
Maaß's theorem and the above proposition directly instead of writing members
of the Spezialschar as polynomials in y/4 to xn ■ We followed this procedure
for our numerical calculations (cf. §4).

2. Hecke theory

In this section we recall the theorems concerning the Hecke theory of genus
2 forms, which are necessary to handle and to compute Hecke eigenforms.

Theorem [1, p. 228, Example 4.2.10]. Let k, I be integers, and I > 1 ; let

F=       £       aiQ)q"Cq'm,        W)F =       £       a\Q)qnÇq'm,
Q=[n,r,m]>0 Q=[n,r,m]>0

where F is an element of Mk(Y2) and Til) denotes the Ith Hecke operator on
this space. Then

„,™      v^   k-7 k-\ v^ f\ln'    lr'    lm'~\\a*iQ)=YJt\2tk2l       E       a{ T'üh'T )'
í2|í,|/ «'er0(,1/,2)\r1 XL   1 2-1/

Q((X,Y)V)=ln' ,r> ,m')
l,|/l',l2|r'V

where the inner sum is over a complete set of representatives V for Y°i'f-)\Yx
satisfying the stated conditions, and where Y°iN) := (% N%) n T,.

We mention some special cases of the above theorem, which are important
for our numerical computations:

To begin with, assume that we have computed sufficiently many coefficients of
a basis of a Hecke invariant subspace of Siegel modular forms on T2, and that
we want to compute the Hecke eigenforms. The obvious method is to compute
the matrix of T(p) for some small prime number p and to diagonalize it.
Thus, one needs in particular the formula for the action of T(p) on the Fourier
coefficients a(Q) of a given form F . By the above theorem it is easily verified
that such an explicit formula can be given as follows:

aT(p)F(n,r, m) = a(p[n,r, m]) + p2k-3a^[n, r, m]) + pk~2a ( —, r, pn

k-2   sr^      (n + rv + mv2 \+ P        2^i   a\-,r + 2mv,pm\.
v mod p

Here, p is any prime number, and we set <z(ß) = 0 if Q is not integral.
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Secondly, assume that we have computed sufficiently many Fourier coeffi-
cients aiQ) of a Hecke eigenform F, and that we want to compute the pth
Euler factor of the Andrianov zeta function of F. As explained in the next
theorem, we thus need to compute the eigenvalues Xp and Xpi of T(p) and
T(p2), respectively. From the above theorem we find the formulas

kpail ,1,1) = aip, p, p) +pk~2 (l + (I)) «(1,1,1),>3>
Aj>«(p,P,P) = aip2, p2, p2) +p2k~3ail ,1,1) +/-2a(l, p, p2)

+ pk~2   E   ail+v + v2,pil+2v),p2),
v modp

Ap2fl(l, 1, I) = aip2, p2, p2) + pk~2      E      ail+v + v2,pil+2v),p2)
v mod p

+v2 = 0 mod p

+
^ ((!)♦(£)) «'■'••>■

The eigenvalue Ap can be computed from the first of these equations (if
a(l, 1, 1)^0). However, it is computationally expensive to compute Ap2 di-
rectly from the third equation, since one would need to compute aip2, p2, p2),
i.e., one would need to compute a Fourier coefficient aiQ) where the discrimi-
nant of Q is of order p4 . To avoid this, one should eliminate the aip2, p2, p2)
in the third formula, using the second one. One can go even one step further
and eliminate then the aip, p, p), using the first formula, so as to obtain a
formula expressing Xpi in terms of a(l, 1, 1) and aiQ) with Q primitive
and of discriminant -3p2 . The precise formula that one obtains in this way is

V(i, i, i)
,2,^-vfc-2(i + (f))-^-3+p2fc-4((f) + (^)) «(1,1,1)

-pk~2ail, p, p2) -pk~2      E      a(l + v + v2,p(l+2v),p2).
v mod p

l+r+w^íO mod p

The arithmetically interesting object associated with a Hecke eigenform is
the Andrianov, or Spinor, zeta function:
Theorem [1, p. 165, Proposition 3.3.35; 2, Theorem 1.3.4, Theorem 2.2.1, and
Corollary]. The space Mk(Y2) has a basis consisting of simultaneous eigenforms
for all Hecke operators T(l) ( I e N). If F is a simultaneous eigenform with
eigenvalues k¡, then the Andrianov zeta function

ZF(s):=C(2s- 2k + 4)EtJ
i=i

has an Euler product of the form ZF(s) = Y[pQp(p~s)~l, where QP(X) is a
polynomial of degree 4:

QPiX) = 1 - lpX + (A2 - Ap2 - p2k~4)X2 - Ap/>2*-3X3 + p4k~6X4.

Note that we can write the Euler factor QP(X) in a more symmetric way as
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where
dp = -\X2p+Xpl+p2k-4 + 2p2k-\

This Euler factor is said to fulfill the Ramanujan-Petersson conjecture if all its
roots have absolute value p$~k , i.e., if

(^±4IP)2<4p2k'\

For the sake of completeness we mention the

Theorem [2, Theorem 2.4.1 and Theorem 3.1.1; 1, Theorem 4.3.16]. The Dirich-
let series ZFis) is absolutely convergent for !R(s) » 0. It can be meromorphically
continued to the complex plane and satisfies

ZFis) := i2n)-2sYis)Yis -k + 2)ZFis) = (-l)fcZ¿(2fc - 2 - 5).

If D < 0 is a fundamental discriminant, and x a character of the group KiD)
of positive quadratic forms modulo SL2(Z) with discriminant D, then

^X(Q)T/eijß-AxL(S-k + 2,x)-1ZF(s),
Q 1=1

where

Lis, x) = E x(Q) E r-^r •      Ax = £ X(Q)aF(Q)
Q 1=1 Q

(rQ.(l) — number of representations of I by Q). Here, the Q-sums are always
over a complete set of representatives Q for KiD).

3. Hecke invariant splittings
If we write an element / of MkiY2) in the form

00

F = E^""'
m=0

then the 0OT are known to be elements of Jk t m ; the above expansion is the
so-called Fourier-Jacobi expansion of F . The space of cusp forms Sk(Y2) is
the space of all such F with 0o = 0. This subspace is invariant under all Hecke
operators. It contains the Hecke invariant subspace VSk ,. This subspace, in
turn, is Hecke equivariantly isomorphic to S2k-2iYx) [5, §5].

By a result of Oda and Evdokimov, the subspace VSk >, can be characterized
as the subspace of Sk(Y2) which is spanned by all those Hecke eigenforms whose
ZF(s) has a pole (cf. [12]). From this it is clear that there exists one and only
one Hecke invariant complement of VSktx in Sk(Y2), namely the subspace
spanned by all Hecke eigenforms F with holomorphic ZFis). We denote this
space by Sl(Y2).

Finally, for any elliptic cusp form / in Sk(Yx), one can form the Klingen-
Eisenstein series

Kf=   E   f\k8       (7(t,z,t'):=/(t), ^ = 82,! as in [8]).
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The map /1-> KS defines a Hecke equivariant embedding

K:Sk(Yx)^Mk(Y2).

It has the property that the Oth Fourier-Jacobi coefficient of KS is /. In partic-
ular, we see that the dimension of C • VEk © KSk (T, ) equals the codimension of
the subspace of cusp forms in Mk(Y2), that this space contains no cusp forms,
and hence, that this space is a Hecke invariant complement of the subspace of
cusp forms.

Summarizing, one has the Hecke invariant splitting

Afjt(r2) = KSkiTi) ®VJkA® S\iY2).

For the Andrianov zeta functions associated with the Hecke eigenforms in the
former two spaces one knows the following (cf. [8, 5]):

f Lfis)Lfis -k + 2)    for F = KS,
F(S)     \Lfis)LE2is-k + 2)   forF = V(t>,

where, in the latter case, f denotes a suitable Hecke eigenform in S2k_2(T,)
and where, for any elliptic modular form / (or / = E2 ), we use

oo

L/(S) = fl/(i)-iE«/(0/-s
1=1

if / = Yl(¡loaA^ql anc* a/(l) 7e 0- The above identity shows in particu-
lar that the Ramanujan-Petersson conjecture fails for the Hecke eigenforms in
VSk ,. The common expectation is that the Hecke eigenforms which satisfy
the Ramanujan-Petersson conjecture are exactly those in the space 5¿(r2).

Thus, it is clear that attention has to be focussed on the space of interesting
Siegel modular forms Snk(Y2).

4. Computation of the first interesting Hecke eigenforms
From Igusa's theorem we deduce that the dimension of Mk(Y2) equals the

number of quadruples (a,b, c, d) of nonnegative integers satisfying 4a + 6b +
I0c+ I2d = k, i.e.,

OO j

-£dimM2kiY2)X2k = {l _ X4){1 _ X6){1 _ xxo){l _ Xi2y

Similarity, using
S,iYx):=®SkiYx)=A.C[E4,E6]

fcez
and the fact that K, V are injective and that S2ki is isomorphic to 5,4^_2(r,),
we find

oo yi2

gdim^ir,)^ ■(|_jpxi _p),
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and finally, by the results quoted in the preceding section,

EHim <?? (F \Y2k -        X    (1+ X   + X   - X     - X    )
2il2M    " (i - x*)(i - x6)(i - xi0)(i -xi2y

Table 1 in §6 lists the dimensions of the first few Hecke invariant subspaces.
The first candidate for an interesting Hecke eigenform, i.e., a non-Maaß-

Spezialschar cusp eigenform, is found in weight 20. Since Sl0iY2) is one-
dimensional, this first non-Spezialschar cusp eigenform is uniquely determined
(up to multiplication by scalars)—we call it T20. In [10] its first few Hecke
eigenvalues have been computed (our T20 equals -\ times Kurokawa's X2d )■
To write down a formula for it, we note first of all that the cusp form x\o *s
not a Maaß-Spezialscharform: in fact, its Fourier-Jacobi expansion starts with
4>20q'2 + ■■■ , i.e., its first Fourier-Jacobi coefficient vanishes, whereas the first
Fourier-Jacobi coefficient of a Maaß-Spezialform V<j> is 0 itself.

Thus, Xxo equals T20 plus a Maaß-Spezialscharform, i.e., T20 can be ob-
tained by adding a suitable cusp Maaß-Spezialscharform to x2o • The subspace
VS2o, i of Spezialscharformen in S2o(Y2) is two-dimensional; it is spanned by
V(<pxoE4E6) and V(<¡>x2E2). Hence, up to normalization,

T20 « Xw + aV(cf>ioE4E6) + bV(<t>nE2)

for suitable constants a and b. To find a and b, we computed sufficiently
many coefficients of x2o > V((j>xoE4E¿) » and V(<j>x2E2). Then we applied
T(2) to these forms, using the formula for Tip) in §2. This enabled us to
find the matrix M, which is uniquely determined by T(2)B = MB, where
B = (x20, Vi(j)ioE4E6), F(0,2^42))/. By well-known algebra we have x(M)B =
v • T20 with a suitable complex column vector v , where xiX) is the charac-
teristic polynomial of the restriction of jT(2) to VS2o,,. From the formula for
the Andrianov zeta function of a Maaß-Spezialform quoted in §3 one verifies
for the latter polynomial the identity xi%) = X~iX + 2k~2 + 2k~l), where xiX)
denotes the characteristic polynomial of the Hecke operator T(2) on the space
^(r,) of elliptic cusp forms of weight 38. The latter can be computed by
well-known procedures.

The other first few Hecke eigenforms T22, T24a, T24è, T26a , T26¿>, ...
of weights 22 to 32 can be found similarly. The particular results are given in
Table 2. In Table 3 we list the first few Fourier coefficients of these forms.

Note that Table 2 shows in particular that all the forms T22 up to T26è have
rational Fourier coefficients. For the Hecke eigenforms in 5,¿g(T2), 5"]0(r2),
Sl2(Y2), this is not true; their Fourier coefficients generate (after suitable nor-
malization) a cubic, quartic, quintic number field, respectively. This is easily
deduced from the fact that the characteristic polynomials Hk(X) of T(2) on
^1(^2) ( k - 28, 30, 32 ) are irreducible over Q. These characteristic polyno-
mials are listed in Table 5. This table also gives the prime decomposition of
the discriminants Sdk of the fields <Q)[X]/iHkiX)). Note, that these discrim-
inants contain only a small number of primes as compared to their impressive
size. It may be worthwhile to investigate whether this is part of a more general
phenomenon.
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Finally, using the formulas for Xp and Xpi from §2, one can compute the
first few Euler factors QP(X) of the Andrianov zeta function of T22 up to
T266. The resulting values of XP and dp are given in Table 4.

We checked within the range of Table 4 that the roots of X2 - ( \ ± ^fdp)X +
p2k-3 are complex conjugate.   Thus all roots of QP(X) have absolute value
p? k , i.e., within the range of our computations, the eigenforms T20 to T26è
satisfy the generalized Ramanujan-Petersson conjecture.

5. Congruences for the interesting Hecke eigenforms

A Siegel modular form is said to be defined over R (a subring of C ) if all
its Fourier coefficients are contained in R, i.e., if its Fourier expansion can be
viewed as an element of Rfq, Ç, q'J. Two Siegel modular forms which are
defined over Z are said to be congruent modulo N ( e Z ) if they have the
same image under the projection map

Z[[fl, £, q'l -» l\q, C, q'l/N%lq, C, q'l

A similar obvious terminology will be applied to Jacobi forms, elliptic modular
forms, and Dirichlet series.

Using this terminology, we note the following

Proposition. All the Siegel modular forms T20-T26Ô listed in Table 2 are de-
fined over 1. One has

„   1   ,.      (I   z/* = 20, 22, 24a, 26a,
[3   if* = 24b, 26b.

For each of these forms the g.c.d. of its Fourier coefficients is 1.
Proof. These assertions are easily read off from Tables 2 and 3. For the first
assertion one uses the following obvious facts: The Jacobi forms 0,o and 0,2
and the elliptic modular forms occurring in Table 2 are defined over Z. The
F-operator maps forms defined over Z to forms defined over Z. Therefore,
all Maaß-Spezialscharformen occurring in Table 2 are defined over Z. Thus
the T* are ¿Z-linear combinations of forms defined over Z, i.e., they have
rational Fourier coefficients with denominators at most equal to 6. That the
denominator 6 does not really occur has to be checked case by case, using the
fact that E4 and E6 are congruent to 1 modulo 24, and 0,o and 0,2 are
congruent modulo 12. The latter is immediately clear from the formulas in
Notation.   D

This proposition, together with Table 2, immediately implies that T20 is con-
gruent modulo 29-32-5-7-11 to the Spezialscharform Vi¿<j)i2E4l + \4>iqE4E(,) ,
that T22 is congruent to a Spezialscharform modulo 25 • 3 • 5 • 7 • 1423, etc.
Even more, it is clear from the explicit formulas in Table 2 that the number
29 • 32 • 5 • 7 • 11 is divisible by any N such that T20 is congruent modulo N to
a Spezialscharform, and similar statements also hold for the other eigenforms
in Table 2.

It is not hard to prove that congruences such as the ones just considered
imply congruences for the Andrianov zeta functions. More precisely, one has
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Proposition. Let N be a positive integer, and let F e VJkl be defined over Z
and such that the g.c.d. of its Fourier coefficients is prime to N. Assume that F
is a Hecke eigenform modulo N, i.e., that T(l)F = X¡F mod N for all I and
with suitable integers X¡. Then there exists an f € S2k_2(Yx), which is defined
over Z and is a Hecke eigenform modulo N, such that

OO      j

Ç(2s - 2k + 4) E yf = Lfis)LElis -k + 2)    mod N.
i=i

Proof. If F is a Hecke eigenform, one has for any Q

OO

C(2* - Ik + 4) E amFiQ)l-s = aFiQ)ZFis),
/=i

whence
OO

Ç(2s - 2k + 4) E amFiQ)l~s = aF(Q)Lf(s)LEl(s -k + 2)
i=i

with a suitable elliptic modular form f from M2k_2(Yi). Since VJk , has a
basis of Hecke eigenforms, and by linearity, the latter identity is true for any
element in VJk ,. In particular, it holds true for the F as in the proposition,
and since aT(i)FiQ) = X¡aFiQ) mod N, we conclude

OO

Ç(2s - 2k + 4)aF (Q) E A//_i = aF(Q)Lf(s)LEl(s -k + 2)    mod N.
i=i

Note that by assumption on F, and the foregoing identity, / is defined over
Z. Since by assumption the g.c.d. of the aF(Q) and N are relatively prime, we
deduce from the last identity the asserted one. This identity shows in particular
that Lfis) mod N has an Euler product, and by well-known arguments this
implies that / is a Hecke eigenform modulo N.   D

As we saw above, the T* are congruent to Spezialscharformen modulo cer-
tain N. These Spezialscharformen are then Hecke eigenforms modulo N, and
their Fourier coefficients are even relatively prime (cf. Table 3), i.e., they fulfill
exactly the assumptions of the proposition. Thus, the proposition shows that to
each T* and its associated N, there corresponds an elliptic modular form /,
which is a Hecke eigenform modulo N, such that

ZT« (s) = Lf(s)LEl (s-k + 2)    mod N.

Note that this identity implies a/(p) = Xp - pk~2 - pk~l mod N, where p de-
notes any prime and Xp the eigenvalue of Tk* with respect to T(p). Thus,
given yV and the first few eigenvalues Xp of Tk*, we can immediately iden-
tify the modular form / mod /V with respect to any Z-basis of the lattice of
elements of S2fc-2(ri) which are defined over Z. The particular / (and TV)
corresponding to the T* are listed in Table 6.
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Note that these congruences, together with the theory of congruences for
elliptic modular forms, imply further congruences. For example, from the first
row of Table 6 we can deduce the congruences

Z?20(s) = LE2(s - lS)LE2(s - 4) mod 5,
Zr20(s) = LEl (s - 1 %)LEl(s - 3) mod 7,
Zt2o(s) = LEl(s - l%)LEi(s -2)    mod 11.

To prove these congruences, recall first of all that for any prime p one has
E2 = Ep+i mod p, and that 6 := q-j^ maps Mk(Yx) to 5^+/,+,(r,), preserv-
ing Hecke eigenforms. Here, Mk(Yx) and Syt+p+i(r,) denote the reduction
modulo p of the Z-modules of modular forms in Mk(Yx) and Sk+p+l(Yi),
respectively, which have Fourier coefficients in Z. From this it is immedi-
ately clear that 82E2 mod 5, 64E2 mod 5, or 93E2 mod 7, d2E4 mod 7, or
62E4 mod 11, 8E6 mod 11 are Hecke eigenforms in S^(Yx) for p = 5, 7, 11,
respectively. Since the latter spaces are two-dimensional (over Z/pZ ), these are
all Hecke eigenforms in these spaces, and hence the / in Table 6 has to be con-
gruent modulo 5,7,11 to one of these eigenforms (up to multiplication by
a scalar), respectively. The particular congruences, which one finds in each of
these cases, are just the ones listed above.

We leave it to the reader to verify similar congruences for the other T* .
Finally, we mention another kind of congruence which can immediately be

read off from Table 2. Namely, if we look at the 2x5 matrix which has as
rows the rows of Table 2 corresponding to T24a and T24b, then we recognize
that the g.c.d. of its 2x2 minors is 4 • 31. This indicates that there should
be a congruence between T24a and T24b modulo 4 • 31, and that 4-31 is
the largest integer for which such a congruence holds true. In fact, consulting
Table 2, one easily verifies the congruence

3-T24a = T24¿>    mod 4- 31;

indeed, the coefficients 3 • (-25 • 32 • 5 • 7 • 11 • 157) and -27 • 3 • 7 • 132 • 83 in
the formulas for 3 • T24a and T24b in front of /,oXi4 are congruent modulo
31, and the same is true for the corresponding coefficients in front of x\2 >
0,2-E-2, etc. The claimed congruence modulo 4 can be verified similarily by
using additionally that 0i2£'| is congruent modulo 4 to <j>xoE2E6. In the same
way, it is deduced that

3 • T26a = T26¿>    mod 4 • 37

and that 4-37 is the largest integer for which such a congruence holds true. It
is easily checked (e.g., by using the formula expressing the Spinor zeta function
in terms of Fourier coefficients, as quoted in the last theorem in §2 ) that these
congruences imply corresponding congruences for the Spinor zeta functions.
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6. Tables

Table 1
Dimensions of Mk(Y2) and subspaces for 0 < k < 50

k     Mk(Y2) KSk(Yx)     VSk>l     S¡(Y2)

0 1 -

2 - -
4 1 -

6 1 -
8 1 -

10 2 -     1     -
12 3 11-
14 2 0     1-
16 4 12-

18 4 12-

20 5 12     1

22 6 13     1
24 8 2     3     2

26 7 13     2
28 10 2     4     3
30 11 2     4     4

32 12 2     4     5

34 14 2     5     6

36 17 3     5     8

38 16 2     5     8
40 21 3     6     11

42 22 3     6    12

44 24 3     6    14

46 27 3     7     16
48 31 4     7     19

50 31 3     7    20
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Table 2
Explicit formulas for the interesting Hecke eigenforms T20-T26&

T20 = -29 • 32 • 5 • 7 • 11 • x\o + V {\<t>i2E24 + \hoE4E6) ,
T22 =-25-3-5-1423-¿,0X12

+ V i-^<t>x2E4E, + £cf>xoE¡ + 24 - 3 • 61 • 0,OA) ,

T24a = -25 • 32 • 5 • 7 • 11 • 157 • XioXu + 25 • 3 • 52 • 11 • 157 • x\2

+ V (-^012^ - 24 - 3 - 67 - 0,2A + 2^0,0^6) ,

T24¿ = -27 • 3 • 7 • 132 • 83 • ¿ioZm - 26 • 3 • 7 • 132 • 83 • x\2

+V (& • fa2EI + 26 • 3 • 5 • 7 • 0,2A - g<t>xoE2E6) ,
T26a = -26 - 33 • 52 • 11 • 29 - XlQXl6a - 26 - 34 - 52 • 11 - 29 - xnXu

+ V i-^l2E2E6 + \4>xoE4 - 25 • 32 • 31 • 0,OA£4) ,

T26Ä = -26 . 33 • 53 • 7 • 132 • XwXita + 25 - 33 - 52 - 72 - 132 • XnXu

+V (^ • 012£42£6 - 2%<l>ioE44 + 24 • 3 • 5 - 251 • 0,OA£4)

T*

Table 3
The first few Fourier coefficients of T20- T26è

i, i, i    i, o, i       i, i, 2 i, o, 2 i, i, 3
T20

T22

T24a

T24è

T26a

T26¿>

1 22 23-7 23 • 3 • 109 -3-11-1669

1 -22-3 26-3-7 23-33 34 • 5059

1 -24 —23 -11-23 —25 - 3 - 11 - 19 -3-11-23-563

3 22 • 19 —23 -7-11 —23 - 3 - ll2 3-11-131-491

1 -23 -25-233 24 • 3 • 317 -3-11-83-431

3 22 - 31 24- 7-461 -23 • 3- 17-269 3-2433059
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Table 4
The first few Euler factors of the Andrianov zeta functions of T20-T26Ä

zT.(*)=n (i-^+vï^+p*-3-*)"'

'--^ficjp-'+pu-^y1
4, = -|a2 + V+p2í:-4 + 2p2í:-3

T20

T22

T24a

T24è

T26a

T266

-28 • 32 • 5 • 73

23 • 35 • 5 • 7 • 5099
-22-32-53-7- 166103087

24 • 52 • 73 • 673 • 28346749

-28 • 3 • 5 • 577

-23-35-5- 19-97- 167

22 • 3-53-60700091989

-2" -3-5-181

-23-36-5-7-232-491

-22-3-53-7-29- 109438961

-29 - 32 -23 • 61

-23-36-2328401

22-32-53- 1562781531383

-213-32-5-72

-23-35-5-307-61091

_22.32.55. n. 37. 293
•1847-3067

-29 • 32 • 5 • 229

-23-37-5-7- 1061 • 1579

22 • 32 • 53 • 7 • 37 • 757
•2713-51713

214-32-7- 13- 19-241

26.310. 19.47. 150628997

28 • 32 • 56 • 19 • 47 • 1396135808326877

28 . 36 . 76 . 29 . 1097 • 41713094306662453

214. 34. 132 . 3 j .439

28-310- 11 -61 -8364437759
2io . 34 . 56. 7193 . 9888524030928593

220-32-7- 17-61559

26.312.73.413057028823

28.32.56.72. 13. 192. 157.659
•74293331977811

216. 32. 5. 112.97.373

26.312.5. i)2. 132. 1163672669

28 . 32 . 56. 112 . 132 . 50368985463609956441

224 . 32 . 859 . 5779

210.310. 1Q7 . 1093- 16123577711

212.32.510. 17.373. 165515489
•74684067301

216.32.7.67. 163-33703

210. 314. 41 . 1153-594719897

212.32.56. n .206009

•13183364794216242331
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Table 5
Characteristic polynomials Hk o/T(2) on Sk(Y2) and discrim-
inants Sdk oS ®[X]/iHkiX)) Sor k = 28, 30, 32

i/28 = X3 + 137681664Z2 + 4794374687293440Z

+4100431555335920025600,
Sd2S= 5-13-73693-1418741,
H30 = X4 + 374036736X3 - 38240213642772480X2

-1675860454758443227545600X

+3326494782878021681883906048000,

/«"30= 3-769896956241058733183,
#32 = X5 + 2026982400*4 - 1037849863848984576Z3

-1460765778655696250606714880X2

+197850685506224024897745617682432000X

+186323642358004277344714415914598409437184000,

/d32 = 22- 3 • 7 -170912892945636421076635084794644759.

Table 6
Congruences S°r  the Andrianov  zeta functions   ZT»(i)    =
LElis -k + 2)Lfis) mod N

T* _f__
E¡-E6-A + 146016£2 • E6 • A2

N

T20

T22

T24a

T24¿>

T26a

T26¿>

E$ • E6 • A + 4200240£3 • E6 • A2 + 4200240£6 • A3

E\ • E6 • A + 92736£4 • E6 • A2 + 33120£4 • E6 • A3

£/, • £6 • A + 18655488£4 • E6 • A2 + 12111936£4 • E6 • A3
£| • £6 • A + 50760OEJ • £6 • A2 + 13694400E2 • E6 • A3

£| • £6 • A + 46602000£45 • E6 ■ A2 + 22420800£2 • £6 • A3

29 • 32 • 5 • 7 • 11

25 • 3 • 5 • 7 • 1423

25 • 3 - 5 - 11 - 157

26.3.7. 132. 83

26 • 33 • 52 • 11 • 29

26.33.52.7. 132
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