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Computations of uncertainty mediate acute stress
responses in humans
Archy O. de Berker1,2, Robb B. Rutledge2,3, Christoph Mathys2,3, Louise Marshall1, Gemma F. Cross4,

Raymond J. Dolan2,3 & Sven Bestmann1

The effects of stress are frequently studied, yet its proximal causes remain unclear. Here

we demonstrate that subjective estimates of uncertainty predict the dynamics of

subjective and physiological stress responses. Subjects learned a probabilistic mapping

between visual stimuli and electric shocks. Salivary cortisol confirmed that our stressor

elicited changes in endocrine activity. Using a hierarchical Bayesian learning model, we

quantified the relationship between the different forms of subjective task uncertainty and

acute stress responses. Subjective stress, pupil diameter and skin conductance all tracked the

evolution of irreducible uncertainty. We observed a coupling between emotional and somatic

state, with subjective and physiological tuning to uncertainty tightly correlated. Furthermore,

the uncertainty tuning of subjective and physiological stress predicted individual task

performance, consistent with an adaptive role for stress in learning under uncertain threat.

Our finding that stress responses are tuned to environmental uncertainty provides new

insight into their generation and likely adaptive function.
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S
tress has broad ranging physiological consequences1.
Although acute stress is often characterized as a challenge
to homeostasis, the precise features of the environment that

contribute to the generation of stress responses are largely
unknown. Understanding the computations that underlie acute
stress responses is important for insight into how stress relates to
adaptive behaviour, potentially illuminating links between stress
and disease, and facilitating treatment of stress-related disorders2.

Extant work suggests that unpredictability and uncontroll-
ability are central features of stressful experiences3–7. Classic
experiments in rodents demonstrate that rats exposed to a series
of electric shocks show attenuated stress responses if they are able
to predict or control the timing of a stressor8, with subsequent
work in humans documenting increased pain and stress in
response to unpredictable stimuli9–11. However, such experi-
ments typically contrast conditions of complete unpredictability
to those of complete predictability4. Such binary comparisons do
not capture the dynamic nature of uncertainty, which varies as an
organism learns about and interacts with its environment12.
Furthermore, stress affects learning13, suggesting that reduction
of uncertainty may be a function of stress responses. Previous
approaches have thus left several key questions unanswered.

First, it remains to be demonstrated whether the subjective and
autonomic responses to acute stressors track fluctuations in
uncertainty over time, which would imply a link between the
processes underpinning learning and those of stress control.
Second, it is unclear whether such responses relate to objective
unpredictability or whether they are entrained to subjective
estimates of uncertainty. If so, interindividual variation in
assessment of uncertainty might provide insight into the
considerable variation in acute stress responses across indivi-
duals14. Finally, recent work has demonstrated that individuals
track separable forms of uncertainty during learning15, and it is
unclear which form of uncertainty is important for driving
subjective and autonomic responses to acute stressors16.

To address these questions, we here adopt a subject-specific
Bayesian model of decision making to track distinct forms of
uncertainty and examine their relationship to acute stress
responses during an aversive learning paradigm (Fig. 1).
Uncertainty can be parsed into several distinct forms17,18, for

which there exists a variety of theoretical and neurobiological
evidence12,15,19,20. For example, forecasters predicting the
performance of a football team over the coming season face
several distinct sources of uncertainty when formulating their
predictions. First, there is ‘irreducible uncertainty’, which
captures a chance slip by a goalkeeper or a fortuitously mis-
struck shot. Irreducible uncertainty reflects the randomness
inherent to any complex environment. Irreducible uncertainty
might increase if it begins to rain, decreasing the accuracy with
which players move. Second, after a series of summer signings, it
may be unclear how good a team is, producing uncertainty about
the probability of a team winning each match. As the season
progresses, this ‘estimation uncertainty’ falls as the strengths and
weaknesses of the team become evident, although it may vary
with local dips and surges in form. A third source of
unpredictability in this context is managerial instability.
Assuming the manager influences performance, uncertainty
about how long the current manager will remain in charge
makes it harder to predict performance. This ‘volatility
uncertainty’ is about the stability of the context. To appreciate
this, compare the stability in English football of Arsenal Football
Club (1 manager for the last 18 years) to the famous volatility of
Newcastle United (19 managers over the same period).

To dissect the role of these three forms of uncertainty in acute
stress, we utilized an hierarchical Bayesian perspective21 (Fig. 2a).
Importantly, the model is fit individually to each subject, with two
free parameters (W and o) capturing variation between
individuals and allowing for divergence between subjective and
objective uncertainty. In this framework, beliefs at several levels of
a probabilistic hierarchy are represented as Gaussian distributions
characterized by means and variances, the latter quantities
corresponding to uncertainty. This naturally captures the
sources of uncertainty described above: irreducible uncertainty
resulting from probabilistic relationships between predictors and
outcomes, estimation uncertainty resulting from imperfect
knowledge of those probabilistic relationships, and volatility
uncertainty reflecting potential environmental instability17. How
these different forms of uncertainty contribute to subjective and
autonomic responses to acute stressors is unknown.

We evaluated the contribution of different forms of uncertainty
to subjective and physiological stress responses, using a
commonly employed acute stressor over which we had precise
control, electric shock22–25. Participants completed a probabilistic
learning task (Fig. 1) in which electric shocks were delivered with
varying predictability. On each trial, a stimulus (rock A or rock B)
was presented and participants were asked to predict whether or
not there was a snake underneath (snake or no snake). Each time
a snake was presented, participants received a painful electric
shock to the hand. We used a computational model of learning21

(Fig. 2a) to estimate the dynamic fluctuations in uncertainty
experienced by each individual based on the predictions they
made. Although the sluggish dynamics of endocrine responses
preclude a detailed analysis of the relationship between cortisol
release and uncertainty26, we measured salivary cortisol levels by
way of confirmation of our stress induction. We complemented
this slow measure with high-frequency assessments of subjective
stress and sympathetic arousal, which vary on a timescale
equivalent to the forms of uncertainty in which we are
interested. This allowed us to examine the online evolution of
stress responses rather than merely their delayed endocrine
consequences, which may have distinct determinants and
function27,28. As acute stress involves the co-ordinated action of
emotional, physiological and motivational systems29, we
measured subjective stress ratings, pupil diameter and skin
conductance (Fig. 1d) throughout the task. Pupil diameter and
skin conductance provided established measures of activity
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Figure 1 | Task structure and stress measures. (a) Learning task. Visual

stimuli (rocks) were probabilistically associated with outcomes (snake or

no snake). Subjects made a prediction of the outcome on each trial. The

appearance of a snake was accompanied by the delivery of a painful electric

shock. (b) Example trial. Here the participant incorrectly predicts no snake.

Timing was jittered; see Methods. (c) The probabilities governing stimulus–

outcome relationships shifted unpredictably over time, producing

fluctuations in uncertainty. (d) Subjective stress ratings were collected

every four to six trials. Measures of skin conductance (n¼45) and pupil

dilatation (n¼ 22) were collected in some subjects.
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in the autonomic nervous system, a key effector of acute stress
responses30–32. We found that all three were predicted by
subjective irreducible uncertainty. We further examined inter-
individual variance in the degree of coupling between uncertainty
and stress responses, which we related to the ability of parti-
cipants to learn in an uncertain dynamic environment.

Results
Unpredictable aversive threat induces stress. On each trial,
participants (n¼ 45) were shown one of two rocks and asked to
predict whether or not there was a snake underneath (Fig. 1a,b).
Participants were explicitly informed of the reciprocal prob-
abilities linking the two stimuli:

pðoutcome 1 j stimulus 1Þ ¼ 1� pðoutcome 1 j stimulus 2Þ

The probabilistic mapping from stimulus (rock) to outcome
(snake) shifted over the course of the experiment (Fig. 1c),
requiring participants to track this relationship over time. When
an outcome was revealed, the presence of a snake was
deterministically associated with an electric shock delivered to
the back of the left hand. Over the course of 320 trials, the
probabilistic mapping between stimuli and outcomes changed
every 26–38 trials, requiring participants to maintain and update

their beliefs about the probability of a snake being under either
rock. Participants chose correctly on 68% of trials on average. Our
use of electric shock proved an effective elicitor of cortisol release.
A Skillings–Mack test (used to account for non-normality and
missing data, see Methods) confirmed that cortisol concentrations
changed over the course of the experiment (Skilling’s Mack
T7¼ 18.48, P¼ 0.010). Paired tests indicated that this was due to
an elevation of cortisol above baseline 20min after the first shocks
were received (Wilcoxon rank sum, Z¼ 2.20, P¼ 0.028), in line
with the typical time course of endocrine responses26,28,33.

Hierarchical Bayesian learning explains predictions of shock.
We compared the performance of three learning models in
explaining the predictions that participants made on each trial,
defining our model space by reference to a recent study using a
similar prediction paradigm15. The simplest was a Rescorla–
Wagner model34, in which beliefs are updated by prediction
errors with a fixed learning rate. Our second model, the Sutton
K1 (ref. 35), allows the learning rate to vary as a function of
recent prediction errors. The third model was a three-level
Hierarchical Gaussian Filter (HGF)21 in which beliefs are
updated via prediction errors, with learning rates influenced by
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Figure 2 | Modelling of learning and stress. (a) Hierarchical Gaussian Filter model21. Beliefs are represented in probability distributions organized in a

hierarchy, with the speed of updating at each level influenced by the estimate at the level above. This allows learning to occur more quickly in volatile

environments. Each level is Gaussian, characterized by a mean (m) and a variance (s), which corresponds to uncertainty. These representations unfold over

time, with the model furnishing an estimate at each level, for each trial. We take these dynamic representations of uncertainty from this model (b) and use

them to predict stress responses (c) using linear modelling (d). The resultant regression coefficients (b1� n) quantify the influence of each form of

uncertainty on that stress measure. Note that X1� n are the regressors in the linear model, which include but are not limited to uncertainty trajectories; we

also include terms such as number of shocks, and nuisance variables such as gaze co-ordinates.
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uncertainty about the veracity of current beliefs and
environmental stability (Fig. 2a). The HGF is hierarchical in the
sense that learning occurs simultaneously on multiple levels. We
consider a three-level model, as this has been shown to describe
learning in a similar task where tone–picture associations were
learned in a non-stressful context15.

The first level of the HGF constitutes participants’ predictions
for each trial, the second level represents beliefs about
probabilities that give rise to those predictions, and the third
level quantifies the estimated volatility of the probabilities. On
each trial, the model provides an estimate for each level, before
the outcome is revealed and the estimate updated accordingly.
Circumflexes (^) are used to distinguish the pre-update
estimates from the updated versions. The model is Gaussian in
that predictions at each level are represented by a Gaussian
distribution, described by its mean, m̂i, and variance, ŝi, with i
denoting the level in question (1, 2 or 3 in our model). The
variance ŝi represents the uncertainty of the estimate at each
level. As previously alluded to, the first-, second- and third-level
variance (ŝ1,ŝ2 and ŝ3) correspond to irreducible, estimation and
volatility uncertainty, respectively. Updates of beliefs at each level
occur via prediction errors that propagate upwards and are
weighted by the ratio of the uncertainty of the level that generated
them to the uncertainty of the level being updated, a form of
precision weighting15.

We compared these three models (Rescorla–Wagner; Sutton
K1; HGF) in a Random-Effects Model Comparison36, using tools
freely available online37 (Fig. 3a). We found that the HGF was the
best model by a considerable margin (model frequency¼ 82%,
exceedance probability B1). This is a close replication of the
aforementioned study in which tone–picture associations were
learned in a non-stressful context15. Having ascertained that the

HGF was the model that best explained the predictions made by
our participants, we proceeded to examine the distribution of
fitted model parameters across the population. Fitting of the HGF
allows for variance between individuals15,21, which in this
instantiation is expressed by two parameters: o and W. o is a
constant component of the learning rate at the second level,
capturing variability in how rapidly people update their beliefs. W
determines the rate of update of the third level; this parameter can
be understood as capturing ‘metavolatility’, with higher values
implying a belief in a less stable world (Fig. 2a).

We found that individuals’ metavolatility parameter correlated
with levels of chronic stress, as assessed by a questionnaire
measure of life stress, the Perceived Stress Scale38 (Fig. 3b;
Spearman r¼ 0.39, P¼ 0.014; non-parametric statistics used due
to non-normality of W (Kolmogorov–Smirnov test, Po0.001)).
This suggests that people who report higher levels of life stress
behave as if they believe that the environment is more uncertain,
indicating that chronic stress levels may be affected by prior
exposure to environments of high uncertainty. This confirms that
interindividual variability in stress relates to variability in beliefs
about uncertainty, as expected if stress responses are tuned by
exposure to uncertainty in the real world. Having established a
relationship between beliefs about uncertainty and a static
subjective measure of chronic stress, we next addressed the
coupling between uncertainty trajectories and dynamic stress
measures.

Current irreducible uncertainty predicts subjective stress.
Having found that the HGF was the appropriate model of
learning in our task, we asked how the dynamic quantities
represented in this model related to acute stress responses. In
fitting the HGF to each participant, we obtained estimated tra-
jectories of surprise (absolute prediction errors) and uncertainty
over time (Fig. 2b). To assess the influence of surprise and
uncertainty on subjective stress, we fit multiple regression models
(Fig. 2d) to subjective stress ratings for each participant (example
trajectory shown in Fig. 4a). We compared the ability of four
different models to predict stress ratings. All four models incor-
porated the previous stress rating and the number of shocks
received since the last rating. Our predictions therefore took the
following form:

Rating kð Þ ¼ b1 � rating
ðk� 1Þ þ

X

iðkÞ

iðk� 1Þ

b2 � shocks
ðkÞ þb3 � variable termðkÞ

Here k represents the rating number (1–65), and i(k) is the trial
number (1–320) associated with rating k (ratings occurred on
average every 4–6 trials). Hence, the shock term is the number of
shocks received since the last subjective stress rating.

Our first model summed the surprise experienced by a
participant since the last rating, as captured by the variable d1
in the HGF. The other three regression models quantified the
uncertainty represented at each level of the HGF: irreducible
uncertainty (ŝ1), estimation uncertainty (ŝ2) and volatility
uncertainty (ŝ3).

Subjective stress responses were best predicted by a model
incorporating solely the current level of irreducible uncertainty
(ŝ1; model frequency¼ 41%, exceedance probability¼ 0.849;
Fig. 4b). The resultant model is depicted in Fig. 4d. As predicted,
participants reported being most stressed when they believed the
current state was high in irreducible uncertainty. All parameters
were significantly greater than zero (single-sample t-tests on
parameters from multiple regression: previous rating b¼ 0.25,
t44¼ 7.60, Po0.001; shocks b¼ 0.074, t44¼ 3.58, Po0.001;
irreducible uncertainty b¼ 0.099, t44¼ 3.22, P¼ 0.0024). We
found no evidence for a model of subjective stress featuring
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r¼0.38, P¼0.014).
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multiple forms of uncertainty (Supplementary Fig. 1A). In
addition, we found that the estimates of subjective irreducible
uncertainty furnished by the HGF provided better predictions of
subjective stress than the objective irreducible uncertainty on
each trial (Supplementary Fig. 1B,C).

Subjective irreducible uncertainty is highest in our task
when the subject’s estimated probability of a shock is 50%,
corresponding to a situation where the environment is utterly
unpredictable, and maximal in entropy17,18. There is an inverted-
U relationship between irreducible uncertainty and proba-
bility, according to the variance of a Bernoulli distribution
(uncertainty¼ probability� (1� probability)). This relationship
was also reflected in participants’ behaviour, in that they were
slowest making decisions under conditions of maximal
uncertainty (Fig. 4c; Pearson correlation, r¼ 0.99, Po0.001).

We found that subjective stress responses are predicted by the
trajectory of irreducible uncertainty experienced by each
individual. The link between subjective and physiological indices
of stress is problematic, with proposals that stress responses
should exhibit coherence29 not well supported by extant data39.
Consequently, we next asked whether irreducible uncertainty also
predicts physiological arousal, examining its relationship with
two standard physiological stress measures, pupil diameter and
skin conductance (Fig. 2c).

Physiological stress reflects uncertainty and surprise. As a first
step in gaining insight into the role played by uncertainty, we
epoched physiological responses (pupil diameter, n¼ 22; skin

conductance, n¼ 37; see Methods) by trial, starting 2 s before an
outcome was revealed. On the basis of evidence that pupil dia-
meter and skin conductance reflect surprise40, and building on
our finding that subjective stress responses are predicted by
irreducible uncertainty, we implemented median splits, separating
trials according to whether they were high or low in irreducible
uncertainty and high or low in surprise. This resulted in four
groupings (high/high, high/low, low/high and low/low). Taking
the average across participants, we observed that uncertainty
increased pupil diameter throughout the trial (Fig. 5a), with an
additional, positive effect of surprise B2 s after outcome
presentation. The time course of skin conductance responses
was similar, albeit slower (Supplementary Fig. 2A). Two-way
analysis of variance demonstrated that both pupil diameter and
skin conductance were increased by irreducible uncertainty
(pupil: F1,21¼ 22.56, Po0.001, Z2¼ 0.051; skin conductance:
F1,36¼ 9.36, P¼ 0.004, Z2¼ 0.104) and surprise (pupil:
F1,21¼ 20.71, Po0.001, Z2¼ 0.045; skin conductance:
F1,36¼ 12.40, P¼ 0.001, Z2¼ 0.070), with no interaction (pupil:
F1,21¼ 0.51, P¼ 0.48; skin conductance: F1,36¼ 0.14, P¼ 0.71).

Within the framework of our model, information about
uncertainty on the current trial is available to the subject before
the trial begins, as it is computed on the basis of trial history21.
Consequently, we asked whether baseline pupil diameter and skin
conductance, as assessed at the start of each trial, reflected the
subjective belief of probabilities on that trial, as represented in our
learning model. We found that baseline arousal displayed an
inverted-U relationship with belief, strikingly reminiscent of the
relationship between reaction time and belief (compare Figs 4c
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and 5b). To confirm this relationship, we show that a curve fit to
the variance of a Bernoulli distribution, describing the relation-
ship between irreducible uncertainty and belief, captured this
relationship well (Pearson correlations, pupil: r¼ 0.96, Po0.001;
skin conductance: r¼ 0.84, P¼ 0.002).

To examine more precisely this relationship between uncer-
tainty, surprise and skin conductance, we employed a model-
based approach (Fig. 2d), convolving response functions for
pupillary41 and skin conductance42 responses with our predictors
(see Methods for full details of model and Supplementary Fig. 3
for details of pupillary response function). We included surprise
as a regressor in our models to ensure that responses to
uncertainty were independent of the surprise at outcome
(Supplementary Fig. 2B). We found that the level of irreducible
uncertainty on each trial was a significant predictor of both
pupil diameter (robust regression b¼ 0.11, single-sample t-test
t21¼ 4.72, Po0.001) and skin conductance (b¼ 0.044, t36¼ 2.25,
P¼ 0.031; Fig. 5c).

Finally, we asked whether the sensitivity of physiological stress
to uncertainty related to that inferred from reported subjective
stress responses. We took the magnitude of the regression
coefficients (b) for irreducible uncertainty from our models of
pupil diameter and skin conductance, and compared them with
the equivalent terms from our subjective stress model. In both
cases, the two were positively correlated (Pearson correlation,
pupil: r¼ 0.52, P¼ 0.013; skin conductance: r¼ 0.38, P¼ 0.021;
Fig. 5d) such that individuals whose subjective reports were more
sensitive to uncertainty also showed a greater impact of
uncertainty upon their physiological stress responses. This

concordance between emotional and physiological state is
predicted by theories of emotion43, although direct evidence for
this relationship is rare44. Our computational perspective on the
cognitive dynamics of stress responses reveal a strong coherence
between emotional and physiological systems, although we note
that the sensitivity of the two physiological measures was not
themselves correlated (Supplementary Fig. 4).

Uncertainty tuning of stress predicts performance. We hypo-
thesized that if the tuning of stress responses to uncertainty is
adaptive, the degree of coupling between uncertainty and stress
responses would predict how well participants performed in our
task. We found this was indeed the case, as both subjective
(Pearson correlation, r¼ 0.37, P¼ 0.012) and pupillary (Pearson
correlation, r¼ 0.62, P¼ 0.0023) sensitivity to uncertainty
predicted task performance (Fig. 6a,b). Thus, the degree to which
stress responses track irreducible uncertainty in the environment
predicts learning under uncertain threat, in accordance with an
adaptive account of stress responses under uncertainty. No such
relationship was evident between gross measures of stress such as
the mean or variance of stress ratings, highlighting the utility of
our model-based approach (Supplementary Fig. 5). We also
observed a negative relationship between intolerance of uncer-
tainty and pupil diameter (Supplementary Fig. 6).

Discussion
Stress responses are co-ordinated physiological and behavioural
responses to environmental challenges1. The precise features of
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(robust regression b¼0.044, single-sample t-test, t36¼ 2.25, P¼0.031). Error bars represent s.e.m. (d) Across subjects, the sensitivity of subjective

stress to irreducible uncertainty correlated with the sensitivity observed in pupil diameter (Pearson correlation, n¼ 22, r¼0.52, P¼0.013) and skin

conductance (Pearson correlation, n¼ 37, r¼0.38, P¼0.021) models. Each data point is one participant.
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the environment that generate stress have proved hard to pin
down, particularly within a quantitative framework. Here
we reveal a strong relationship between stress and subjective
estimates of a quantifiable property of the environment, namely,
irreducible uncertainty. This demonstrates that computational
models of learning can provide quantitative metrics of
environmental and psychological variables that drive emotional
and physiological stress responses. In the present case, this
highlights a striking relationship between a specific form of
uncertainty and stress responses.

We built on recent progress in computational modelling of
subjective well being45, to inform a dissection of subjective stress
responses. This was made possible by a hierarchical Bayesian
model that allowed us to infer the trajectory of uncertainty
experienced by each individual in our experiment. The use of
computational models has proved indispensable in exploring the
relationship between stress, genotype and behaviour46, but has
not to our knowledge previously been applied to understand the
genesis of stress responses. Our finding that such models can be
used to link subjective uncertainty and stress responses adds
to a growing consensus that detailed quantitative models are
indispensable for the understanding of complex biological and
mental phenomena47–50.

Having identified that irreducible uncertainty best predicted
subjective stress responses, we next asked whether physiological
responses were similarly predicted by uncertainty. Pupil diameter
is a readout of central arousal thought to relate to noradrenergic
activity in the locus coeruleus51. Recent evidence suggests that
locus coeruleus firing correlates with pupil diameter in the
macaque monkey, and that stimulation of the locus coeruleus is
sufficient to induce changes in pupil diameter52. Although

noradrenergic dynamics are crucial in orchestrating acute stress
responses53 as well as their behavioural54 and mnemonic55

impact, pupillometry is not typically employed in studies of
stress (though see Henckens et al. for a notable exception). This is
surprising given that pupillary response metrics provide insight
into emotional31 and cognitive dynamics41,56,57. Our finding
that pupil diameter reflects the surprise associated with an
outcome, regardless of valence, replicates previous results56–58.
Furthermore, we also find a correlation between pupil diameter
and the current level of irreducible uncertainty, with greater
pupil diameter associated with higher levels of uncertainty. In
rewarding environments, pupil diameter has been shown to
reflect estimation uncertainty and, as we find here, irreducible
uncertainty, often referred to as risk56,57.

A recent study examining individual differences in aversive
learning found a post-outcome pupillary sensitivity to volatility58.
The authors found that learning-rate malleability in the face of
changing volatility was related to trait anxiety. We additionally
establish a link between chronic stress states and beliefs of
environmental volatility (Fig. 2c). However, the stimulus–
outcome contingencies used in the previous study kept
irreducible uncertainty roughly constant, precluding the
comprehensive characterization of multiple forms of
uncertainty and the relation to the dynamics of emotional and
physiological stress responses that we perform here. Our finding
that pre-outcome pupil diameter correlates with irreducible
uncertainty, and that this modulation is proportional to the
effect of uncertainty on subjective stress, is uniquely enabled by
our design, and not inconsistent with the volatility sensitivity
observed previously.

Fluctuations in skin conductance depend on activity in the
sympathetic nervous system42, a key component of physiological
stress responses53. Our finding that skin conductance tracks
uncertainty chimes with findings using the Iowa Gambling Task,
in which participants make choices between decks of cards that
produce rewards and punishments of varying magnitudes.
Greater skin conductance responses are elicited whenever
participants choose a card from the pack with higher risk, as
defined by the variance of the outcome distribution59. However,
binary choices in static environments do not reveal whether skin
conductance truly reflects uncertainty or instead some aspect
of the decision process. Our results suggest that even in
non-instrumental settings, somatic state relates closely to
uncertainty in the environment. Furthermore, we show that
these responses are dynamically driven by evolving internal
estimates of irreducible uncertainty.

Our multiple stress measures reflect the view that stress is a
multidimensional construct, expressed through subjective and
physiological channels43. Some theoretical accounts highlight the
importance of ‘coherence’ between stress systems in response to a
challenge29, although discordance between the amplitude of
physiological and subjective stress responses is rife (reviewed by
Campbell and Ehlert39). This is in part because the stressors
typically used in laboratory experiments with humans,
such as social stress, are difficult to parameterise, precluding a
detailed quantitative analysis. Conversely, using a quantitative
computational approach, we show that emotional and physio-
logical stress responses track uncertainty and are correlated
within individuals. We do not claim that ours are exhaustive
metrics of stress, nor that chronic stress necessarily behaves
similarly to the acute stress examined here. Establishing how
acute stress accumulates to produce allostasis60, and what effects
such allostasis exerts on subsequent acute stress responses, is a
major challenge for the field.

An integrated understanding of normal brain function and its
perturbation in disease will require detailed analysis at multiple
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Figure 6 | Relationship between uncertainty sensitivity and task

performance. (a) Subjective stress sensitivity (the regression coefficient for

uncertainty in the subjective stress model) correlated with how frequently

participants predicted the correct outcome (Pearson correlation, n¼45,

r¼0.37, P¼0.012). (b) Pupillary sensitivity to uncertainty also predicted

performance (Pearson correlation, n¼ 22, r¼0.62, P¼0.0023). Each data

point is one participant.
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levels of description, from behavioural to cellular. Here we
provide a computational account of acute stress responses in
humans. Dysfunction of stress response systems is common to
many psychiatric disorders2, suggesting that a computational
decomposition of stress responses of the kind provide here may
prove a fruitful addition to the nascent field of computational
psychiatry61.

Methods
Participants. All experiments were approved by the University College London
Ethics Review Board. Participants (n¼ 45, 25 females, aged 19–35 years) were
recruited via the UCL Institute of Cognitive Neuroscience recruitment mailing list,
and gave their written informed consent before beginning any experiments. All
participants were healthy, with no history of neurological or psychiatric disorders,
and no family history of epilepsy. Sample size was based on recent experiments
involving stress33.

Task. Participants initially underwent a shock thresholding procedure (see below).
Participants then received thorough instruction (see below) that made explicit the
structure of the task, and completed a practice session of 30 trials of the prob-
abilistic learning task used in the main experiment. They were also familiarized
with the use of the subjective stress rating scale.

Our learning task was closely modelled on that used in a recent study leveraging
the same computational framework in a non-stressful context15. Timings on each
trial were jittered using a uniform distribution to allow us to maximally divorce
physiological responses to different events.

Each participant completed a set of 320 trials. On each trial, participants were
presented with one of two stimuli (in our case, rocks). These stimuli remained on
screen for 300ms (±50ms) before participants were asked to make a prediction,
signalled with a button press, as to which outcome (snake or no snake) was likely to
follow (Fig. 1a,b). This decision was made under time pressure, with a timeout
period averaging 1,000ms (±200ms).

Once the decision had been made, the prediction was displayed for an average
of 1,200ms (±200ms), before the outcome was revealed. Outcomes remained on
screen for 1,000ms (±200ms). In the case of the snake stimulus, outcome
presentation was coincident with the delivery of a shock. This was followed by an
intertrial interval of 2,000ms (±500ms), during which a fixation cross was
displayed.

The probabilistic mapping from stimulus to outcome shifted over the course of
the experiment (Fig. 1c), requiring participants to constantly track the relationship
over time. This resulted in fluctuations in the level of various forms of uncertainty.
Each session of 320 trials was divided into 10 blocks of different stimulus–outcome
probabilities, of lengths that varied between 26 and 38 trials. The transitions
between these blocks were not made explicit to the subject. The probabilities
governing each block varied from heavily biased (90/10), through moderately
biased (70/30) to unbiased
(50/50), allowing us to examine the effect of predictability on stress responses.
We used four repeats each of the biased probability blocks (2 for each bias
direction, that is, 70/30 and 30/70) and two repeats of the 50/50 to generate 10
blocks in total.

Participants were paid a base rate of d10 and informed that they would receive
an extra d0.05 for each correct prediction they made. Outcomes (correct/incorrect)
were not explicitly signalled. Participants were allowed to take a self-timed break
every 10min.

For 41 of the 45 subjects, we report questionnaire measures of life stress
(Perceived Stress Scale, PSS). Data from the remaining participants were lost due to
a technical error. Some subjects (n¼ 23) completed questionnaires on a separate
day, while the remainder (n¼ 22) did so after the main task. We also collected a
questionnaire measure of intolerance of uncertainty (n¼ 43; Supplementary Fig. 6),
depression (Beck Depression Index), and a questionnaire related to anxiety (Mood
& Anxiety Symptom Questionnaire). We do not report data from the latter two
questionnaires here.

Participant instruction. Participants were given detailed computerized instruction
on the structure of the task. This emphasized that the accuracy of their predictions
did not affect the number of shocks they received but did influence their earnings
on the task. Understanding was confirmed with the question: ‘How much do you
earn per correct prediction?’

We also attempted to ensure good understanding of the probabilistic
relationships governing stimulus:outcome relationships. We emphasized that the
probabilities were reciprocal (p(snake|rock A)¼ 1� p(snake|rock B)), and checked
for comprehension with the question: ‘If the probability of a snake being under
rock A is 40%, what is the probability of it being under rock B?’

Participants were further informed that the probabilities changed throughout
the task, and that at times might appear to be random, that is, the probability of an
outcome following each stimulus might be equal (50/50).

Shock thresholding procedure. Electric shocks were controlled using a Digitimer
DS5 system in conjunction with a National Instruments Data Acquisition Board,
which allowed control of shock amplitude via Matlab (Mathworks). Electrodes
were placed 0.5 cm apart on the first dorsal interosseous of the left hand. Electrode
sites were cleaned with alcohol and a mild abrasive (NuPrep Skin Prep Gel). Shocks
were delivered using BioPac Ag/AgCl electrodes filled with Sigma Spectra 360
Electrode Gel, attached using double-sided adhesive pads.

Participants first underwent a thresholding procedure that allowed us to map
their subjective sensitivity to shock. Thresholding consisted of a sequence of 80
shocks, with currents of magnitudes between 0.1 and 10mA chosen according to a
staircasing procedure. After each shock, participants were asked to report how
painful it was, from a rating of 1 (not painful) to 5 (very painful). We used an
automated thresholding procedure inspired by Gracely et al.62, in which separate
staircases are used to estimate the transition points between each rating (1/2,2/3,3/
4,4/5). For robustness, we used two independent staircases, running the QUEST
thresholding algorithm63 for each transition. This gave a total of eight independent
staircases, with trials from each staircase randomly interleaved. At the end of
thresholding, we averaged the two estimates for the 4/5 boundary to set the shock
intensity for the rest of the experiment. Participants were given a sample shock at
this intensity and in three cases we reduced the amplitude of the experimental
shock by 20% at the participant’s request. Shock sensitivity was also measured at
the end of the task, and on average showed a slight decrease (single-sample t-test,
t44¼ 2.70, P¼ 0.097, d¼ 0.403), equivalent to an 11% reduction in subjective pain.

Stress measures. Each participant was asked to make 65 subjective stress ratings
at semiregular points throughout the probabilistic learning task (every 4–6 trials).
These required participants to move a marker along a line to answer the question
‘How stressed do you feel at this moment?’ (Fig. 1d). All analyses were conducted
on z-scored ratings to obviate between-subject differences in use of the scale.

Pupil diameter was recorded in a subset of participants (n¼ 22) using an
EyeLink 1000 System (SR Research), sampled at 100Hz. Participants were seated in
a darkened room, and asked to maintain fixation wherever possible. Stimuli were
luminance matched, with the no snake outcome signalled by a scrambled version of
the snake picture.

Skin conductance was recorded from the index and middle fingertips of the left
hand using 8mm BioPac AgCl electrodes. Electrodes were filled with a 0.5%-NaCl
paste (BioPac Gel 101) and attached using double-sided adhesive pads
supplemented by tape. We utilized a custom recording system based on the
provision of a constant current between the two electrodes and the measurement of
the resultant voltage, allowing calculation of the conductance of the skin (AT64,
Autogenic Systems). This signal was converted to an optical pulse and then
digitally recorded at 100Hz in Spike2 (v6.17).

In a subset of subjects (20), we collected saliva samples at 8 time points, from
which we measured cortisol concentrations. To avoid baseline elevation due to
anticipatory stress we collected two baseline readings (samples 1 and 2) on a
separate day, on which participants were aware that no shocks would be received.
On the day of the experiment, we collected the following samples: (3) on arrival;
(4) immediately before task (B15min after shock thresholding); (5) 10min into
task; (6) 20min into task; (7) 30min into task; and (8) post task. Participants
salivated through straws into 2-ml polypropylene tubes. Samples were frozen on
the day of collection. Analysis was performed by Viapath at King’s College
Hospital, using a competitive immunoassay. Briefly, cortisol in the sample
competes with cortisol conjugated to horseradish peroxidase for binding sites on a
microtitre plate. Unbound reagents are then washed away. Bound cortisol enzyme
conjugate is measured by the reaction of the horseradish peroxidase enzyme to the
substrate tetramethylbenzidine, producing a blue colour. A yellow colour is formed
after stopping the reaction with an acidic solution. The concentration of cortisol in
the sample is calculated as a function of the optical absorption at 450 nm; more
absorption implies greater concentration of cortisol enzyme conjugate, and
therefore lower concentration of cortisol in the sample. For further details, see
Arakawa et al.64. Some samples were not suitable for analysis due to damage in
storage (28/160). To accommodate for these missing values, we used a Skilling–
Mack test to assess changes in cortisol over time. One subject was excluded due to
baseline concentrations 43 s.d.’s away from the mean (60.59 nmol l� 1; population
mean¼ 6.92 nmol l� 1; population s.d.¼ 13.57 nmol l� 1). To verify that this did
not affect our conclusions, we repeated our analyses without excluding this subject,
and found comparable results. All data were log transformed before analysis to
render data close to normal33.

Analysis of pupil diameter. Data were exported using the EDF2ASC plugin, and
imported as ASCII files into Matlab. Pupil diameter measurements were down-
sampled to 100Hz, and low-pass filtered (4Hz, third-order Butterworth)41. Blinks
were automatically detected by the EyeLink software, and removed by linear
interpolation of samples 140ms either side of the blink. Data were then z-scored
and detrended. No further artefact removal was necessary.

Linear modelling involved a mixture of delta and boxcar regressors convolved
with a canonical pupillary response function (see below for details of response
functions)41. For phasic responses, we also convolved regressors with the first and
second derivatives of the canonical response function, a standard method in
magnetic resonance imaging65 designed to accommodate inaccuracies in the
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modelling of the amplitude and timing of induced responses. These were
subsequently orthogonalised to their respective regressors, to apportion shared
variance to the primary regressor. We took an additional step to remove signal due
to changes in luminance, which produces pupil constrictions discernible from
emotional/cognitive pupillary changes by their short latency31. We estimated a
luminance response function for each subject on the basis of passive viewing of the
images in our task (each image presented 50 times, displayed for 1,000ms, with a
jittered intertrial interval of between 9,000 and 1,100ms). This provided a response
function that could then be convolved with each presentation of an image, allowing
us to discriminate fast, luminance-dependent constrictions from slower dilatations
relating to cognitive variables (Supplementary Fig. 3). Following convolution of
predictors with their response functions, predictors were z-scored. Details of the
full linear model can be found in Supplementary Table 1.

Analysis of skin conductance. Data were first visually inspected and eight
participants were rejected due to low recording quality.

Data from the remaining 37 participants were imported and preprocessed using
tools from the SCRalyze suite42. Data were downsampled to 10Hz and low-pass
filtered (5Hz, first-order Butterworth). We used a custom artefact rejection regime
based on the second differential of the signal; non-physiological signals were
identified by their very rapid rate of change. Subjects took self-paced breaks every
10min, which caused substantial changes in skin conductance amplitude due to
movement of the arm, and so we discarded the first five trials following a break.
The time series was then concatenated, detrended and z-scored.

For linear models, we used a mixture of delta and boxcar regressors to represent
phasic and sustained influences on skin conductance. These regressors were then
convolved with the canonical skin conductance response function outlined in ref.
35 and provided in SCRalyze (http://scralyze.sourceforge.net/) (see below for
details of response functions). We utilized a variety of nuisance regressors to isolate
changes in skin conductance relating to our cognitive variables of interest. All
predictors were z-scored before modelling. Details of the full linear model can be
found in Supplementary Table 2.

Modelling of learning. We modelled learning in our task using several models.
Three of these (Rescorla–Wagner, Sutton K1, Hierarchical Gaussian Filter) were
implemented using the HGF toolbox (http://www.translationalneuromodeling.org/
hgf-toolbox-v3–0/). For a full list of priors, see Supplementary Table 3. For details
of each model, see Supplementary Table 4.

The model that best explained our data was the HGF (Fig. 2a). Introduced by
Mathys et al.21, the HGF is a Bayesian learning model not constrained by the
optimality typically assumed by such models; instead, subject-specific fitting allows
for interindividual variability in learning. A recent functional magnetic resonance
imaging study using the HGF highlighted its utility in assessing learning under
uncertainty and its neural correlates15; our task and analysis were inspired by the
ones used there. For a full description of the structure of the HGF, the reader is
referred to the start of the Results section.

The HGF was fit to each individuals’ choices using Variational Bayes, with two
free parameters: W, a metavolatility parameter that determines step size at the third
level of the HGF; and, o, which is a constant component of the learning rate at the
second level.

The four quantities utilized in our analyses of stress measures are all trajectories
over time, with a value that evolves according to the predictions made and
outcomes experienced by that subject.

The first of these is surprise (|d1| in the HGF). This is the difference between the
observed outcome (1¼ snake /0¼ no snake) on trial k and the subject’s belief about
the probability of that outcome:
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(k) is the actual outcome (1 or 0) and s(m̂
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2 ) is the sigmoid

transformation of belief about probabilities before seeing the outcome, that is, the
subject’s expectations. By taking the absolute value of d1

(k), we therefore obtain a
quantity that represents surprise about outcomes.

The three forms of uncertainty we consider are as follows:
ŝ
ðkÞ
1 : uncertainty of predictions at the first level on trial k. Because beliefs at the

first level take the form of a Bernoulli distribution, the variance is a function of the
mean m̂1 , namely, m̂

ðkÞ
1 � (1� m̂

ðkÞ
1 ). This means that uncertainty has an inverted-U

relationship with belief, as depicted in Figs 3c and 4b. Intuitively, this form of
uncertainty represents an individual’s estimate of the entropy of the environment
at that moment in time; that is, how surprising they expect things to be. We refer to
it as irreducible uncertainty.

ŝ
ðkÞ
2 : this is a form of informational uncertainty on trial k, representing lack of

knowledge about the current stimulus:outcome relationship. Over time and in a
stable environment, this uncertainty would fall to zero as the probabilities
underlying the task are learned. In volatile environments, however, this is not the
case. In the HGF, this form of uncertainty is approximately equivalent to a time-
varying learning rate, used to update beliefs quickly when they are uncertain and
slowly when they are supported by plentiful evidence. We refer to it as estimation
uncertainty.

ŝ
ðkÞ
3 : this can also be considered a form of estimation uncertainty, this time over

the volatility of the environment at trial k. Again, it controls the speed of learning

about volatility, weighting prediction errors from the probability space at the
second level. We refer to it as volatility uncertainty.

We ran an additional pair of Rescorla–Wagner learning models to test the
validity of two assumptions made by the models in the original comparison. The
first is that we assume participants update probabilities symmetrically on each trial:
if p(outcome|stimulus 1) increases then p(outcome|stimulus 2) decreases by the
same amount, as constrained by our task and explained to participants. To
accommodate for departures from this scheme, we used a Rescorla–Wagner model
in which the probabilities for each stimulus were updated independently. Second,
we examined the possibility that beliefs were updated differently following trials on
which shocks were delivered by fitting two learning rates (ashock and anoshock) for
each subject. We then compared these two models to the original Rescorla–Wagner
model (in which probabilities were updated symmetrically with a single learning
rate). Bayesian Model Comparison showed that the simple model comprehensively
outperformed the two variants (exceedance probability¼ 1). We concluded,
therefore, that the assumptions of symmetric probability updating and balanced
learning across shock/no shock trials were justified.

Modelling of stress. We used multiple regression models to examine the
relationship between task variables, including the trajectories from the HGF
outlined above, and stress responses. We used least-squared error to fit data from
subjective ratings, using Matlab function glmfit. For physiological data, we used
robust fitting to avoid spurious fits due to unidentified artefacts. These were
implemented in Matlab with the function robustfit. In both cases, we used
two-tailed t-tests to assess whether parameters were different from zero, that is,
whether, at the population level, a given parameter meaningfully and consistently
contributed to the dependent variable in question.

We compared several multiple regression models to examine the effect of
uncertainty on subjective stress. All models included parameters for the previous
rating and the number of shocks received since the last rating. The third term
varied between models, and captured the effects of absolute prediction error
(model 1), and uncertainty at each level (models 2–4).

Model 1: surprise. Model 1 omitted an explicit representation of uncertainty, but
summed the absolute prediction errors (|d1|, bounded 0–1 on each trial) since the
last rating, reflecting surprise in response to outcomes given an individual’s beliefs.

Model 2: irreducible uncertainty. Irreducible uncertainty is the variance of the
Bernoulli distribution representing subject’s beliefs, captured by the HGF
parameter ŝ1 . It is highest when p(outcome|stimulus 1) and p(outcome|stimulus 2)
are both equal to 0.5, that is, the sequence of outcomes is totally unpredictable.
Irreducible uncertainty is also correlated with the magnitude of surprise (surprise is
on average higher in uncertain situations).

Model 3: estimation uncertainty. Uncertainty about the probabilities currently
governing the observed outcomes is known as estimation uncertainty. This is
represented in the HGF by the variance of the Gaussian distribution representing
beliefs at the second level, ŝ2 .

Model 4: volatility uncertainty. Finally, we tested the hypothesis that subjective
stress related to uncertainty at the third level, corresponding to uncertainty about
the volatility of the generative process. Again, this is explicitly represented in the
HGF as the variance of the Gaussian representing beliefs at the third level, ŝ3 .

For physiological stress measures, we convolved predictors with canonical
response functions (see below) to account for the time course of physiological
responses41,42.

Model comparisons. We performed two sets of model comparisons. In the first,
we determined the best learning model to explain predictions made by the subjects,
and in the second the best model for subjective stress responses. In each case, for
each model and each subject, we took the model evidence (F-values for learning
models or Bayesian Information Criterion66 for multiple regression models), and
used these to assess model fit by Random-Effects Bayesian Model Selection36, as
implemented in the VBA toolbox37. Random-Effects Bayesian Model Selection
allows for heterogeneity in the population; the best model for each individual is
allowed to vary, producing an estimate of model frequency in the population
(that is, for how many participants that model is the best model) and an
exceedance probability (the probability that the model in question is the most
frequently utilized in the population).

Response functions used in pupillary and skin conductance measures. We
used linear modelling to elucidate the impact of different events on pupil diameter
and skin conductance. This approach is well-established in the functional magnetic
resonance imaging literature, where the use of General Linear Model (GLM) to
interpret haemodynamic responses is common.

In this approach, a response function is used to describe how the output of a
system (the measured variable) relates to its inputs. This response function is then
convolved with a representation of the putative inputs to the system, and the
resultant time course is used as a predictor in the GLM. A common further step is
to create secondary and tertiary regressors that are convolved with the first and
second derivative of the response function65. These ‘dispersion regressors’ allow for
inaccuracy in the timing or form of modelled responses; we utilize this approach in
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our modelling of events (this is unnecessary when the modelled process is extended
over time, and represented by a boxcar).

Our response functions were drawn directly from previous studies. For skin
conductance, we used the skin conductance response functions provided in
SCRalyze (http://scralyze.sourceforge.net/), which are based on a gamma function
convolved with a Gaussian kernel67.

Response functions for pupillary dilatation were first discussed by Hoeks et al.68

and we use the response function described there, which takes the form of a gamma
function:

DiameterðtÞ ¼ tne� nt=tmax

The constants n and tmax dictate the shape of the response function. As
advocated in the original paper, we use values of n¼ 10.1 and tmax¼ 930ms; we
note that a recent study using this response function41 demonstrated that this
algorithm is robust to changes in the values of the constants used (see the
Supplementary Information in ref. 41).

We took an additional step in our modelling of pupillary responses. As the
appearance of stimuli and outcomes involved increases in luminance, they evoked
light-related pupil constrictions. Importantly, such luminance responses are faster
than the dilatations evoked by cognitive or emotional factors31. We accounted for
light-related constrictions by convolving stimulus and outcome onsets with a
luminance response function, which was fitted to each subject on the basis of a
separate data set in which subjects were passively exposed to each of the image used
in our experiment (see above and Supplementary Fig. 3). The best fitting
parameters were found using least-squared fitting implemented by the Matlab
function fmincon. Calculated in this way, average n¼ 3.6 and tmax¼ 839ms.

Statistical analysis. All data analysis was completed in Matlab (Mathworks).
All statistical tests were two-sided. We used one-sample t-tests to test for the
significance of parameters in multiple regression models, and two-way repeated-
measures analysis of variance to analyse the time-course data for skin conductance
and pupil diameter. We used Pearson correlation coefficients except in the one case
in which the data were a priori not normal, having been fit in a logit space
(W; Fig. 2c). In this instance, we confirmed non-normality using a Kolmogorov–
Smirnov test, and used Spearman’s Rank to assess the correlation non-
parametrically.

Code availability. Custom Matlab code for analysis of skin conductance and pupil
diameter is available on request to the corresponding author. We used the HGF
toolbox (http://www.translationalneuromodeling.org/hgf-toolbox-v3-0/) for mod-
elling of learning, the VBA toolbox for model comparison (mbb-team.github.io/
VBA-toolbox/), and the SCRalyze suite for preprocessing of skin conductance data
(http://scralyze.sourceforge.net/).
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13. Joëls, M., Pu, Z., Wiegert, O., Oitzl, M. S. & Krugers, H. J. Learning under stress:
how does it work? Trends Cogn. Sci. 10, 152–158 (2006).

14. Russo, S. J., Murrough, J. W., Han, M.-H., Charney, D. S. & Nestler, E. J.
Neurobiology of resilience. Nat. Neurosci. 15, 1475–1484 (2012).

15. Iglesias, S. et al. Hierarchical prediction errors in midbrain and basal forebrain
during sensory learning. Neuron 80, 519–530 (2013).

16. Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an
integrated neurobiological and psychological perspective. Nat. Rev. Neurosci.
14, 488–501 (2013).

17. Payzan-LeNestour, E. & Bossaerts, P. Risk, unexpected uncertainty, and
estimation uncertainty: Bayesian learning in unstable settings. PLoS Comp. Biol.
7, e1001048 (2011).

18. Bland, A. R. & Schaefer, A. Different varieties of uncertainty in human
decision-making. Front. Neurosci. 6, 85 (2012).

19. Bach, D. R. & Dolan, R. J. Knowing how much you don’t know: a
neural organization of uncertainty estimates. Nat. Rev. Neurosci. 13, 572–586
(2012).

20. Payzan-LeNestour, E., Dunne, S., Bossaerts, P. & O’Doherty, J. P. The neural
representation of unexpected uncertainty during value-based decision making.
Neuron 79, 191–201 (2013).

21. Mathys, C., Daunizeau, J., Friston, K. J. & Stephan, K. E. A Bayesian
foundation for individual learning under uncertainty. Front. Hum. Neurosci. 5,
39 (2011).

22. Keinan, G. Decision making under stress: scanning of alternatives under
controllable and uncontrollable threats. J. Pers. Soc. Psychol. 52, 639–644
(1987).

23. Robinson, O. J., Overstreet, C., Charney, D. R., Vytal, K. & Grillon, C. Stress
increases aversive prediction error signal in the ventral striatum. Proc. Natl
Acad. Sci. USA 110, 4129–4133 (2013).

24. Averill, J. R. & Rosenn, M. Vigilant and nonvigilant coping strategies and
psychophysiological stress reactions during the anticipation of electric shock.
J. Pers. Soc. Psychol. 23, 128–141 (1972).

25. Bali, A. & Jaggi, A. S. Preclinical experimental stress studies: Protocols,
assessment and comparison. Eur. J. Pharmacol. 746, 282–292 (2015).
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