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Abstract—Inspired by the compute-and-forward scheme from
Nazer and Gastpar, a novel multiple-access scheme introduced
by Zhu and Gastpar makes use of nested lattice codes and
sequential decoding of linear combinations of codewords to
recover the individual messages. This strategy, coined compute-
forward multiple access (CFMA), provably achieves points on
the dominant face of the multiple-access capacity region while
circumventing the need of time sharing or rate splitting. For a
two-user multiple-access channel (MAC), we propose a practical
procedure to design suitable codes from off-the-shelf LDPC
codes and present a sequential belief propagation decoder with
complexity comparable with that of point-to-point decoders. We
demonstrate the potential of our strategy by comparing several
numerical evaluations with theoretical limits.

I. INTRODUCTION

The promise of non-orthogonal multiple-access communi-

cation schemes is to operate at rate points beyond the convex

combinations of single-user capacities (attained by orthogonal

resource sharing) in an attempt to achieve the MAC capacity

region. Several encoding and decoding schemes have been

proposed in the literature: simultaneous joint decoding, which

recovers all messages at once, is optimal in terms of achievable

rates but suffers from high complexity; successive cancellation

decoding is also first-order optimal but requires time sharing

to obtain all rate points on the dominant face; rate splitting

as proposed by Rimoldi and Urbanke [1] is also optimal

but requires superposition coding and additional decoding

steps, which in practical systems may entail some complexity

overhead.

Recently, the CFMA strategy proposed in [2], which is

based on nested and scaled lattice codes, was shown to achieve

the full capacity region of the Gaussian MAC when the SNR

is greater than 1 +
√

2. The underlying idea behind CFMA in

the two-user case is to first recover a weighted sum of the

lattice codewords, which is accomplished by extending the

compute–forward strategy originally proposed by Nazer and

Gastpar [3]. In the second stage, using the recovered linear

combination as side information, the decoder recovers any one

of the messages. Finally, since the receiver knows one linear

combination and one of the two messages, it can recover the

remaining message.

Based on the theoretical findings of [2], which uses random

lattice codes and lattice decoding as proof techniques follow-

ing ideas from [3], [4], the goal of this paper is to design

practical codes and efficient decoding algorithms that can

operate close to the boundary of the multiple access channel

capacity at reasonably low error probability without the need

of time sharing. With this goal in mind, we present a practical

CFMA strategy based on nested linear codes constructed

from off-the-shelf low-density parity check (LDPC) codes

that are originally designed for point-to-point communications.

From details presented in Section III, it will become apparent

that our proposed decoding algorithms for each of the two

decoding steps are only slight variations of the classical single-

user point-to-point belief propagation decoder, and as such,

enjoy similarly low complexity.

Boldface lower-case and upper-case denote vectors and

matrices respectively. The operator ‘⊕’ denotes the binary

(XOR) addition. The bracket [a : b] stands for the set of

integers contained in the interval [a; b].
II. SYSTEM MODEL AND THEORETICAL BACKGROUND

We consider the two-user Gaussian MAC, with input alpha-

bets X1, X2 and output alphabet Y. For input symbols x1, x2,

the output symbol is given by

Y = h1x1 + h2x2 + Z, (1)

where h1, h2 ∈ R denote the constant channel and Z ∼ N(0, 1)
is the additive white Gaussian noise (AWGN).
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Fig. 1. Block diagram of the two-user Gaussian MAC communication system

A (2nR1, 2nR2, n) code for the MAC consists of:

• two message sets
[
1 : 2nR1

]
and

[
1 : 2nR2

]
;

• two encoding functions E1 and E2 which respectively

assign codewords xk ∈ Xn
k

to each message wk ∈ [
1 :

2nRk
]
, k = 1, 2, with average power constraint

‖xk ‖2 ≤ nP; (2)

• a decoding function D which assigns an estimate (ŵ1, ŵ2)
of the message pair based on y ∈ Yn.



Assuming that the messages w1 and w2 are drawn uniformly

at random from the message sets
[
1 : 2nR1

]
and

[
1 : 2nR2

]
,

respectively, the average probability of error is defined as

P(n)
e = Prob

{(ŵ1, ŵ2) � (w1,w2)
}
. (3)

A rate pair (R1, R2) is said to be achievable if there exists a

sequence of (2nR1, 2nR2, n) codes such that limn→∞ P(n)
e = 0.

In the remainder of this section, we will briefly review

some theoretical results on the multiple–access channel and

the compute–forward multiple access (CFMA) scheme.
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Fig. 2. The MAC rate region achievable for a fixed input distribution
p(x1)p(x2) (light and dark shaded gray combined). The corner points A and
B are achievable by successive cancellation decoding, whereas points located
on the dominant face (i.e., the segment connecting A and B) can be achieved
by time sharing between A and B.

The capacity region of the MAC [5] is given by the set of

rate pairs (R1, R2) that satisfies

R1 < I(X1;Y |X2) (4a)

R2 < I(X2;Y |X1) (4b)

R1 + R2 < I(X1, X2;Y ) (4c)

for some joint distribution (X1, X2) ∼ p(x1)p(x2). When input

alphabets are set to X1 = X2 = R and the codewords are subject

to a power constraint (2), the capacity region [5] is attained

by setting Xk ∼ N(0, P), k = 1, 2. Throughout this paper, we

will refer to the rate region (4) with uniform discrete input

distributions as RMAC−UI.
The so-called corner points, labeled in Figure 2 as A

and B, are achievable by means of successive cancellation

decoding [5]. The remaining points on the dominant face

(that is, the segment that connects the corner points) can be

achievable by time sharing.
More recently, the authors of [6] presented a generalization

of compute–forward which is based on nested linear codes and

joint typicality encoding and decoding, rather than on lattice

codes as in [2], [3]. Assuming that the constellation size q is

a prime power, one defines field mappings ϕ−1
1 and ϕ−1

2 which

bijectively map constellation points x1 ∈ X1 and x2 ∈ X2 to

finite field elements u1 ∈ Fq and u2 ∈ Fq , respectively. In

analogy to the procedure with lattice codes described above,

the receiver first decodes a weighted field sum

s = a1u1 ⊕q a2u2

= a1ϕ
−1
1 (x1) ⊕q a2ϕ

−1
2 (x2)

(where uk = ϕ
−1
k
(xk) stands for the vector resulting from a

symbol-by-symbol application of ϕ−1
k

on the coordinates of

xk) and then uses the decoded s as side information to decode

either u1 or u2.
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Fig. 3. Block diagram for the MAC channel with CFMA decoding.

By specializing [6, Theorem 1], we can readily establish the

following theorem which describes a rate region achievable

with CFMA.

Let X1 and X2 have equal cardinality q, which we assume

to be a prime power. Let Fq denote a q-ary finite field. Fix

the input distribution p(x1)p(x2).
Theorem 1: A rate pair (R1, R2) is achievable with nested

linear codes and under the CFMA decoding strategy1 if for

some non-zero coefficient vector (a1, a2) ∈ F2
q and for some

bijective field mappings ϕ−1
1 and ϕ−1

2 , we have either

R1 ≤ H(X1) − max
{

H(S |Y ), H(X1, X2 |Y, S)
}
,

R2 ≤ H(X2) − H(S |Y ), (5a)

or

R1 ≤ H(X1) − H(S |Y ),
R2 ≤ H(X2) − max

{
H(S |Y ), H(X1, X2 |Y, S)

}
,

(5b)

where S = a1ϕ
−1
1 (X1) ⊕q a2ϕ

−1
2 (X2).
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Fig. 4. For some fixed (a1, a2) ∈ F2
q , inequalities (5a) and (5b) yield rate

points A’ and B’, respectively. If H(S |Y) ≤ 1
2 H(X1, X2 |Y), they lie on the

dominant face (as in the figure). Points dominated by A’ and B’ (in dark
gray) can be achieved without time sharing, using nested linear codes and the
CFMA decoding strategy. The uniform-input rate region RMAC−UI is shaded
in light gray.

Throughout the paper, we will refer to the rate region (5)

evaluated with uniform discrete inputs as RCFMA−UI. Note that

1The reader is referred to [6] for a precise description of the nested linear
code construction, and the encoding and decoding strategies used for the proof
of achievability.



Theorem 1 can be extended by a discretization approach [6,

Theorem 3] to infinite constellations and continuous signal

distributions, by way of which, in particular, Zhu and Gastpar’s

original achievability result proved using lattice codes [2,

Theorem 2] can be recovered.

Figure 4 illustrates the rates achievable with CFMA accord-

ing to Theorem 1, for some fixed coefficient pair (a1, a2) ∈ F2
q .

The coordinates of points A’ and B’ are given by the right-hand

sides of Equations (5a) and (5b), respectively.

III. CFMA WITH BINARY CODES

In this section we devise a practical design of CFMA

for a two-user Gaussian MAC, inspired by the theoretically

achievable rate region established by Theorem 1, and based

on off-the-shelf binary linear error-correcting codes. One im-

portant feature of the proposed implementation is that while

operating near the dominant face of the achievable rate region

(other than the two corner points), we keep the decoding

algorithm essentially the same as that for a point-to-point

system. This low complexity design makes it attractive for

practical implementations.

A. Code construction and encoding

Let (R1, R2) be the target rate pair (R1, R2 ≤ 1 for binary

codes) and assume R1 ≥ R2 without loss of generality. We

need to find two linear channel codes C1, C2 with respective

rates R1, R2 and satisfying the inclusion C2 ⊆ C1.

Code construction with binary LDPC codes: Assuming

R1 ≥ R2, we pick an LDPC code C2 of rate R2 for user 2, with

its parity check matrix H ∈ F(n−k2)×n
2 . To construct the code

C1 for user 1 while ensuring C2 ⊆ C1, a “merging” technique

is used. For example, let hT
i , h

T
j ∈ F1×n

2 be two rows of the

parity-check matrix H . Since any codeword u from C2 satisfies

hT
i u = 0, hT

j u = 0,

it also satisfies

(hi ⊕ h j)Tu = 0.

Replacing two rows hT
i , h

T
j in H by the new row (hi⊕h j)T we

obtain a new code C′. The parity check matrix H ′ of C′ is of

dimension (n− k2 − 1) × n hence has a higher rate. Obviously,

any codeword u ∈ C2 satisfies H ′u = 0, hence is a codeword

of C′. This merging procedure is illustrated in Figure 5 using

the Tanner graph of the LDPC code, where two check nodes

are merged into one.

Example 1: We give an example of constructing two nested

LDPC codes in Figure 5 by merging check nodes. The

original LDPC code is shown in Figure 5a with four check

nodes f1, f2, f3, f4 where check nodes f3 and f4 impose the

constraints:

x3 ⊕ x5 ⊕ x6 ⊕ x8 = 0
x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0

We merge the check nodes f3 and f4 to obtain a new code in

Figure 5b with three check nodes f ′1 , f ′2 , f ′3 . Since f ′3 is formed

by merging f3 and f4, it imposes the constraint:

x3 ⊕ x4 ⊕ x7 ⊕ x8 = 0

The check nodes f ′1 and f ′2 give the same constraints as f1
and f2 respectively. The rate of the new code is increased to

5/8 from the original code with a rate 1/2.

x1 x2 x3 x4 x5 x6 x7 x8

f1 f2 f3 f4

(a) Original Tanner graph

x1 x2 x3 x4 x5 x6 x7 x8

f ′1 f ′2 f ′3

(b) Tanner graph after merging

Fig. 5. How to construct nested linear codes by parity-check merging.
Tanner graph and parity-check matrix of the original code (a); of the derived
supercode (b).

Encoding and modulation: Given two messages w1,w2, the

binary codewords u1, u2 are generated using nested codebooks

C1, C2. The codeword bits u1,i and u2,i are each mapped to

real-valued BPSK symbols using the constellation mappings

ϕ1 and ϕ2, i.e.,

(x1,i, x2,i) = (ϕ1(u1,i), ϕ2(u2,i)), i = 1, . . . , n (6)

where ϕk : F2 → X is defined as ϕk(uk,i) =
√

P(2uk,i − 1) for

k = 1, 2.

B. Decoding algorithm

Now we derive the decoding algorithm for the CFMA

scheme using binary LDPC codes, and show that the same

sum-product algorithm for the point-to-point LDPC decoding

can be directly applied to our scheme with only a slight modi-

fication to the initialization step. We set a1 = a2 = 1, which is

the only non-trivial choice for binary codes, since setting either

a1 or a2 to zero will reduce the decoder to plain successive

cancellation. Hence, we define s = u1 ⊕ u2 and choose to de-

rive the algorithm for decoding the pair (s, u1). The decoding

of (s, u2) is similar. Ideally, we target a bit-wise maximum

a posteriori (MAP) estimation, i.e., argmaxsi ∈{0,1} p(si |y).
However, since p(y |s) is not memoryless, the sum-product

algorithm does not directly approximate the bit-wise MAP in

this case. Nonetheless, as an approximation to the bit-wise

MAP rule, we perform a bit-wise MAP estimation as follows:

ŝi = argmax
si ∈{0,1}

∑
∼si

n∏
i=1

p(yi |si)�
{
H̃ s = 0

}
, (7)

where the summation is over all coordinates of s except si .
Here, we have made use of the fact s = u1 ⊕ u2 is uniformly

distributed over C̃ as a consequence of u1 and u2 being

uniform over the nested codebooks C1 and C2, respectively,



hence p(s) = �
{
H̃ s = 0

}/|C̃ | where C̃ is the code with the

larger rate among C1, C2 and H̃ is its parity check matrix.

As shown in [7], the formulation in (7) already permits a

low-complexity sum-product algorithm for the bit-wise MAP

estimation of the sum codewords s. Also notice that the

complexity of this algorithm is the same as for a point-to-

point system where the receiver decodes one codeword from

the code described by H̃ .

Similarly, given the sum codeword s = u1 ⊕ u2 ∈ C̃, the

bit-wise MAP decoding of one codeword, say u1, is given by

û1,i = argmax
u1, i ∈{0,1}

p(u1,i |y, s)

= argmax
u1, i ∈{0,1}

∑
∼u1, i

n∏
i=1

p(yi |u1,i, si)�
{
H1u1 = 0

}
. (8)

For the above equality we have used the fact that the channel

is memoryless, as well as the fact that (u1, s) is uniform over

C1 × C̃, hence

p(u1, s) =
�
{
u1 ∈ C1

}
�
{
s ∈ C̃}

|C1 | |C̃ |
, (9)

where we recall that s is the decoded codeword from C̃ hence

it always holds that s ∈ C̃, namely �
{
s ∈ C̃} = 1. Furthermore

u1 ∈ C1 is equivalent to H1u1 = 0.

It is important to realize that both decoding steps (7) and (8)

can be tackled by standard sum-product algorithms like those

commonly used for LDPC decoding in point-to-point systems.

Thus, CFMA decoding can be implemented efficiently using

a standard sum-product algorithm, albeit with modified initial

log-likelihood ratio (LLR) values:

LLR1 � log
p(yi |si = 0)
p(yi |si = 1)

= log
cosh

(
yi
√

P(h1 + h2)
)

cosh
(
yi
√

P(h1 − h2)
) − 2Ph1h2 (10a)

LLR2 � log
p(yi |u1,i = 0, si)
p(yi |u1,i = 1, si)

=

{
−2yi

√
P(h1 + h2) for si = 0

−2yi
√

P(h1 − h2) for si = 1
(10b)

Algorithm 1 describes the decoding procedure for the CFMA

scheme with binary LDPC codes. The function SPA(H,LLR)
executes the standard sum-product algorithm on the Tanner

graph given by the parity-check matrix H with initial input

value LLR. Details and efficient implementations of this

standard algorithm can be found in the literature, e.g. [8].

Algorithm 1 CFMA: Decoding algorithm with binary LDPC

codes. LLR1 and LLR2 are given in (10).

1: ŝ = SPA(H̃,LLR1) � Decode the sum codeword s
2: û1 = SPA(H1,LLR2) � Decode the codeword u1
3: û2 = ŝ ⊕ û1 � Decode the codeword u2

IV. NUMERICAL SIMULATIONS

In this section, we provide numerical simulations of our

proposed CFMA codes and compare them with the theoretical

limits described by Theorem 1. As regards the latter, we

evaluate Theorem 1 with different discrete inputs.

Throughout our simulations we use the sum-product al-

gorithm with maximum number of iterations set to 25. We

assume that a rate pair (R1, R2) is achieved for a given power

and channel gains if the bit-error rate (BER) is below 10−3

over 500 independent trials. We compare the corresponding

value of transmit power against the value that achieves the

target rate pair in Theorem 1 evaluated with discrete inputs.

For ease of presentation, for a fixed input distribution, we

will reference the corner points of RMAC−UI as points A and

B, and the corner points of RCFMA−UI (for fixed coefficients

a1 and a2) by A’ and B’ (cf. Figure 4).

A. CFMA: binary codes with BPSK modulation

In this scenario we set the pair of channel gains to (h1, h2) =
(1,√3). The target rate pair is (R1, R2) = (0.9742, 0.9355)
which corresponds to the point B’ shown in Figure 6 (evaluated

based on Theorem 1). The LDPC blocksize is 4376. For this

particular setup, points B and B’ coincide with one of the

corner points of rate region (4). The theoretical rate regions

and performance evaluation for this case is given in Figures 6

and 7, respectively. We use the base LDPC code to construct

our CFMA code rate R = 0.9355, and under the point-to-point

AWGN channel, the code has 0.66 dB gap from the Shannon

limit. On the other hand, our CFMA strategy has 0.846 dB gap

from the corresponding theoretical bound.

(0.9742, 0.9355)
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Fig. 6. Target rate pair B’ for case of BPSK modulation. The point B’ in this
case achieves the corner point B of RMAC−UI. Note that axes are cropped.

B. CFMA: binary codes with 4-QAM modulation

In this scenario, we assume that the input symbols are

complex-valued and set both channel gains to unity, i.e.,

h1 = h2 = 1. The target rate pair is (R1, R2) = (1.885, 1.871),
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Fig. 7. Bit error rate simulation results for each decoding step for BPSK
modulation and target rate pair (R1, R2) = (0.9742, 0.9355). For reference,
we include the base code performance (solid black line) and the corresponding
Shannon limit for the binary-input AWGN channel.

and the LDPC blocksize is 4376. The theoretical rate regions

and performance evaluation for this case is given in Figures 8

and 9, respectively. The base code is the same as in section

IV-A. In the simulation for this case, we observe that our

CFMA strategy has 1.57 dB gap from the corresponding

theoretical bound.
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Fig. 8. Target rate pair B’ for the 4-QAM modulation case. The achievable
rate pair B’ of the CFMA strategy achieves a non-endpoint on the dominant
face of RMAC−UI. Note that axes are cropped.

V. CONCLUDING REMARKS

In this paper, we presented a practical CFMA coding

strategy with sequential decoders that has low complexity

comparable with that of point-to-point decoders. We have

shown that the CFMA strategy achieves additional points on

the dominant face of the joint decoding rate regions unlike

the conventional successive cancellation strategy which is
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Fig. 9. Bit error rate simulation results for each decoding step for 4-QAM
modulation and target rate pair (R1, R2) = (1.885, 1.871). For reference, we
include the base code performance (solid black line) and the corresponding
Shannon limit for the binary-input AWGN channel.

restricted to the corner points. Several case studies have been

presented with off-the-self point-to-point LDPC codes that

show the potential of our strategy. This property itself can

be desirable in many cases where backward compatibility is

an issue. As future work, it would be interesting to see how

the performance of the CFMA strategy can be improved by

further optimization of the codes.
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