
Compute-unified device architecture implementation of a block-

matching algorithm for multiple graphical processing unit cards

Francesc Massanes, Marie Cadennes, and Jovan G. Brankov1

Illinois Institute of Technology, Medical Imaging Research Center, Chicago IL 60616, USA

Abstract

In this paper we describe and evaluate a fast implementation of a classical block matching motion

estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified

Device Architecture (CUDA) computing engine. The implemented block matching algorithm

(BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for

finding optimal block displacement. In this evaluation we compared the execution time of a GPU

and CPU implementation for images of various sizes, using integer and non-integer search grids.

The results show that use of a GPU card can shorten computation time by a factor of 200 times for

integer and 1000 times for a non-integer search grid. The additional speedup for non-integer

search grid comes from the fact that GPU has built-in hardware for image interpolation. Further,

when using multiple GPU cards, the presented evaluation shows the importance of the data

splitting method across multiple cards, but an almost linear speedup with a number of cards is

achievable.

In addition we compared execution time of the proposed FS GPU implementation with two

existing, highly optimized non-full grid search CPU based motion estimations methods, namely

implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified

Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU

implementation still showed modest improvement even though the computational complexity of

FS GPU implementation is substantially higher than non-FS CPU implementation.

We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used

in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion

estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards.

I. Introduction

Motion estimation in an image sequence has many potential uses such as detecting and

tracking of moving objects in video surveillance [1], removal of temporal redundancy in

video coding [2]-[4], motion compensated filtering applied along a motion trajectory in

medical imaging [5], or motion compensated digital subtraction in angiography [6]. In all

these applications a potential drawback is computation time needed for motion estimation.

Current applications requiring real-time motion estimation often use parallel designs for

Very-Large-Scale Integration (VLSI) devices. For example, in [7][8] the block-matching

algorithm was implemented on a VLSI device. It is well known that these implementations

are usually costly, difficult, and time consuming to develop. Some alternative non-GPU

(Graphical Processing Unit) configurable architecture approaches targeting video coding

application are reviewed in [9].

1 Corresponding author: brankov@iit.edu.

NIH Public Access
Author Manuscript
J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

Published in final edited form as:

J Electron Imaging. 2011 ; 20(3): . doi:10.1117/1.3606588.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

There have been a number of reported efforts to use GPU cards for motion estimation as a

part of a video coding scheme, see [3] for a review. Most of the GPU implementation

attempts originated before introduction of The Compute Unified Device Architecture

(CUDA) [10][11], a computing engine developed by NVIDIA to facilitate easy use of the

GPU. The early GPU implementations without CUDA are often complex and hard to

understand. For some recent implementation of variable block size motion estimation as a

part of H.264/AVC coding using CUDA, see [4], [12].

In this work we present an easy to understand, general purpose block-matching algorithm

(BMA) with full grid search (FS) using CUDA computing engine and multiple NVIDIA

GPU cards. Our intention is twofold: to develop a fast and accurate motion estimation for

use in real-time video sequence processing and to develop a good case example for

understanding the CUDA environment with use of a single or multiple GPU cards.

There are many other relevant motion estimation models (see [13] for a review), such as

pixel based [14] or region based [15], even with variable region size [13]. In this work we

choose a block matching model with the blocks to be equal and rectangular, however

implementing different estimation models will not significantly change the presented CUDA

implementation. As such, the speedup should not be diminished. In addition we chose the

BMA because it has a very high computational cost; also, it is commonly used in video

coding such as in MPEG and H.264/AVC [16], and as such can benefit from parallel

implementation on single or multiple GPU cards. Therefore, the presented evaluation is not

only a case study but a relevant implementation that one may consider using in video coding

applications.

CUDA allows easy and straightforward implementation of motion estimation algorithms

using standard C, with NVIDIA extensions, making program development fast. In addition,

the GPU computation hardware like NVIDIA Tesla (C1060-CUDA compute capability: 1.3,

released Q2 2008) delivers a staggering 933 GFLOPS in single precision at a cost of less

than $1000 per single unit where six core Intel Core i7 980 XE delivers theoretical 40.0

GFLOPS (as of March 2010).

It is therefore possible to have great achievements with CUDA technology such as the

computation of a shortest path in a 10 million vertex graph in less than 2 seconds [17] or an

implementation of a simple color electroholography reconstruction system which are 1000×

faster than the traditional computation platforms [18].

In Section II we will explain the basics of motion estimation using BMA followed by a

description of GPU hardware. The algorithm design and implementation are given in

Section III; Section IV contains experimental results.

II. Background

In this section we will explain, briefly the basics of the BMA motion estimation method and

introduce the CUDA computational model. Knowledge in both areas is needed to fully

appreciate the algorithm design described in Section III.

A. Block-matching algorithm for Motion Estimation

The block-matching algorithm [19] is the most popular method for the motion estimation

[13] of local motion in an image sequence. This method essentially splits an image, of I × J

pixels in size, into K × L blocks and estimates each block displacement vector v (also called

the motion vector). For each block Bk l,k = 1,...,K, l = 1,...,L this is achieved by minimizing

Massanes et al. Page 2

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

the matching criterion between the reference and target image over all possible candidate

displacement v within the search window S, as illustrated in Figure 1.

There are several choices for matching criterion [19]. In this work, we adopted block

summed absolute difference (SAD) between the reference and target image pixel defined as:

(1)

Here v = [v1 ,v2]T is the block displacement, It(i, j), i = 1,2,..., I, j = 1,2,..., J represents the

reference image intensity of the (i,j) pixel at a time frame t, It+1(i,j) represents the target

image intensity at a time frame t+1, and wB, hB are the block width and height.

Now we can define optimal displacement for block Bk,l as:

(2)

where S denotes the search window of wS, hS pixels in width and height.

In order to make this problem computationally feasible, we will restrict the possible

displacement values of v to a discrete regular grid (see Figure 2):

(3)

where Δv is the grid step size and and are the number of grid points.

In addition, if the search grid locations are restricted to integer values, e.g. Δv = 1, then the

Jk,l(v) calculation will not require interpolations of It+1(i+v1,j+v2) image values. In this

work we will examine both integer and not-integer valued search grids.

Finally, in order to avoid influence of noise and false displacement vectors, e.g. in uniform

regions, Eq (2) is modified to suppress motion of blocks where the SAD is too small. This is

described mathematically as:

(4)

Here is the final Bk,l block displacement estimate and C can be empirically optimized for

a given type of image sequence.

Note that for the BMA a proper selection of the number of blocks and the search window

size is needed. This is usually adjusted empirically, visually or quantitatively, until

satisfying results are obtained. Alternatively, for the motion estimation of a known object

the search window size can be estimated using expected object velocity.

B. Computational complexity of the block-matching algorithm

The block-matching algorithm's (BMA) computational complexity increases directly with

the size of the search window and how the search is performed. The full search (FS) used in

this work is a method that gives the best results and lowest matching error but is also the

most computationally consuming implementation. Other searches such as the cross- and

Massanes et al. Page 3

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

three-step search [19] can reduce computational time considerably, but potentially provide

less accurate motion estimation and are slightly more complicated to implement. In addition,

the FS method is not image content sensitive but only image size sensitive, whereas the

cross- and three-step search are sensitive to both.

The computational complexity (CC) of the BMA with FS is:

(5)

for an image with K · L square blocks of wB,hB pixels in width and height and with

 possible candidate displacement vectors where ws,hs defines the search

window size, Δv is the grid step size, and M×N is the total number of possible displacement

vectors per block. Note that K · wB × L ·hB = I × J so that computational complexity can also

be expressed as ~ O (I · J · M · N). Furthermore, the computational complexity of the

methods increases considerably when the displacement candidates are considered to be non-

integers due to the needed interpolation of the image values.

C. CUDA capable Graphical Processing Unit

The Compute Unified Device Architecture (CUDA) computing engine from manufacturer

NVIDIA exposes powerful GPU hardware to C, C++, Fortran and other programming

interfaces [10][11]. GPUs are capable of executing a high number of threads simultaneously.

Furthermore, GPUs have specific hardware for floating point arithmetic, 2D and 3D matrix

cached access [11]. To a programmer, a CUDA capable card is a collection of

multiprocessors (30 for Tesla C1060) where each multiprocessor has a number of processors

(8 for Tesla C1060), see Figure 3. Each multiprocessor has its own fast shared memory

(16KB for the C1060) that is common to all the processors within it. In addition, every

processor has its own fast memory registers (16384 for the C1060). Every multiprocessor

shares the GPU card's global memory (4GB for the C1060) that includes texture and

constant memory. In addition, each processor within multiprocessor performs cached access

to texture and constant memory. The use of cache reduces the average memory access time

since the cache is a smaller and faster memory which stores copies of the data from the most

frequently used memory locations. In addition, by using the attached texture hardware to

cached memory, one can perform linear interpolation (1D, 2D and 3D) – when this memory

is accessed on non-integer location - at no added computation time.

From the program developer point of view, the CUDA model allows for a collection of

functions (or “kernels” in CUDA-speak) running in parallel threads. The program developer

decides the number of threads to be executed in a thread-block, and then the device will

schedule the execution of the thread-blocks. This execution will start with joining thread-

blocks into a grid followed by scheduling execution of a grid on the collection of

multiprocessors. See Figure 4 for a visual explanation. The developer can define a thread,

level 0, and a number of threads in a thread-block, level 1. Further decisions on the

execution are left to the GPU hardware which attempts to group contiguous thread-blocks

together, but this is not guaranteed.

In addition, in the CUDA model the threads in thread-blocks are sub-grouped in warps (a

group of 32 threads). Each processor in the multiprocessor can perform, sequentially, the

same operation on each thread of a warp, which makes each of them a Single Instruction,

Multiple Data (SIMD) processor. Therefore, for optimal performance, the programmer

should minimize thread branching so that all the threads in a warp execute exactly the same

instruction to fully utilize the SIMD technology.

Massanes et al. Page 4

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Ideally, for the Tesla C1060 card, if a warp uses the fastest operation, like integer addition, 8

threads from the warp are processed in one GPU cycle. In reality, an average GPU processor

processes 3 threads per cycle (this is if a warp uses a floating point operation), making the

top performance of 3 × 8 processors × 30 multi-processors × 1.296 GHz - 933 GFLOPS.

Each processor warp scheduler can switch content quickly and put a warp on hold during

time consuming operations like global memory fetching (400-600 cycles) or cached texture

memory fetching (200-300 cycles). During this hold time, while the memory is being

accessed, it will attempt to execute other warps (up to 3 additional). For this reason, to fully

utilize CUDA capabilities, it is important to submit a larger number of threads then the

number of processors. C1060 can execute 240 (30×8) warps simultaneously and have 30720

(30×1024) active threads.

III. ALGORITHM DESIGN AND IMPLEMENTATION

A. Kernel Function

In this work we implemented a BMA [19] with an FS over all possible candidate vectors on

a regular grid. The classical, serial, algorithm is very straightforward: for each block within

the reference image, calculate the SAD for every candidate displacement vector and choose

the best displacement as the one that minimizes the SAD.

The multicore GPU implementation has two relevant stages:

1. Code 1: Start a thread to work with quadruplet (k,l,m,n) where k and l are image

block identifiers and m and n are identifiers of one candidate displacement vectors.

Each thread will compute the Jk,l(vm,n), defined as SAD, for the Bk,l block and the

displacement candidate, vm n, and store it to a global memory. So for each block

Bk,l, we will have a total of M × N threads computing all possible values of Jk,l,

(vm,n) (See: Code 1).

2. Code 2: Next, a trivial thread is launched to find the minimum value over m =

1,2,..., M, n = 1,2,..., N, (M × N), stored values of Jk,l(vm,n)

Global memory access is one of the main GPU bottlenecks. To minimize this, in Code 1 we

use two mechanisms: 1) the reference, It(i,j), and target, It+1(i,j), images are stored in 2D

cached texture memory, 2) all other variables are stored in fast register memory associated

with the processor, and only one write to global memory is done at the thread end in order to

store the calculated value of Jk,l(vm,n).

A flowchart, which schematically describes the proposed implementation, is shown in

Figure 5.

The number of threads per thread-block was optimized using the CUDA occupancy

calculator that is provided with the Software developer kit (SDK) from NVIDIA [10]. From

the device code below it is easy to estimate that each thread will use 10-11 registers and zero

shared memory. By entering these numbers into the occupancy calculator, we can obtain

thread-block sizes of 128, 256, and 512 threads that will provide full (100%) GPU

utilization.

B. Multi-GPU image sequence processing

In addition to evaluation of a single GPU implementation we examine two approaches for

image sequence processing using multiple GPU cards. Ideally one would hope for a linear

reduction in execution time with the increased number of GPU cards in use. However due to

Massanes et al. Page 5

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

the overhead in image data transfer and GPU cards scheduling efficiency, this will not be the

case. Therefore we test two possible scenarios:

Parallel splitting—In this scenario, schematically shown in Figure 6 (top), the motion

estimation threads between two consecutive frames, are grouped into super-blocks and then

each super-block is submitted to be processed by a different GPU, all at the same time. Here,

since each GPU processes only part of the original image pair, the total processing time is

reduced.

Serial splitting—In this scenario, each GPU processes one image pair, Figure 6 (bottom),

and since more than one image pair is processed at a time, the total processing time is

reduced.

It is worth noting that in serial splitting the memory requirement to store the reference and

target images as well as values of Jk,l(vm,n) for all possible displacement vectors vm,n should

not exceed GPU memory limits, where in parallel splitting this is not the case. In the

experiments to follow, even when using images at a resolution of High Definition

Television, we did not exceed GPU memory limitations.

IV. ALGORITHM PERFORMANCE

A. Motion estimation accuracy evaluation

First we compared correctness, visually and quantitatively, of the implemented parallel

design for the Tesla C1060 GPU in respect to a serial, single CPU core design using

optimization flags for Xeon E5520 @ 2.27GHz CPU (-O3 and -fno-strict-aliasing). We

compared the two methods using several images at a resolution of High Definition

Television (HDTV) (1920×1080 pixels) of which a pair is shown in Figure 7. In this testing,

images were split into 400 blocks (20×20), each of 96×54 pixels in size, and the search

window was set to double the image-block size (192×108 pixels) with a 0.5 pixel (non-

integer) displacement step so that for each block we evaluated 82944 candidate vectors. The

parameter C described in Eq (3) was empirically chosen to be 4.

An example of estimated motion using the serial algorithm (CPU implementation) is shown

in Figure 8(left) and the output of the parallel algorithm (GPU implementation) can be found

in Figure 8(right).

In the entire test set no visually significant difference in estimated motion was observed. A

quantitatively small difference, on the order of the numerical precision, was found. This can

be explained by the difference in numerical precision between the CPU and the GPU

hardware [10]. At present the arithmetic operations in the NVIDIA GPU cards do not follow

the floating-point IEEE-74 standard commonly supported by CPUs. New releases of

NVIDIA GPUs (like Fermi) will use the IEEE-74 standard.

The GPU execution time for HDTV images was 7.23 seconds whereas for CPU

implementation it was 8025.00 seconds or 2 hours 13 min 45 seconds, so the speedup for

processing images in HDTV resolution was almost 1110 fold.

B. Multi-GPU vs. CPU execution time comparison

Non-integer search grid—Next we tested the proposed implementation using image

sequences of various sizes with a fixed aspect ratio of 3:2 and 300 images in a sequence. In

all experiments, the blocks are set to be 5%, the search window 10% of the image size and

the search step size of 0.5 pixels.

Massanes et al. Page 6

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

In Figure 9 we reported the average frames-per-second (FPS) achievable for GPU and CPU

implementations. First, one can see that the maximum number of FPS for CPU

implementation is about 4.7fps at 130×74 pixels image, where at the same resolution one

GPU can achieve around 600fps (out of the range in the presented figure). At a more

common frame rate of 30fps, one GPU can process images of up to 420×280 pixels in size.

Next, it is interesting to see the change in image size that GPU implementation in parallel

splitting achieves at a 30fps rate: two GPUs can process 510×340 pixel images; three GPUs

549×366 and four GPUs 600×400 pixel images. In serial splitting these numbers are even

better at a rate of 30 fps: two GPUs can process 516×344 pixels; three GPUs 570×380 and

four GPUs 621×414 pixel images.

Next, in Figure 10, the GPU vs. CPU speedup curves are shown. It is interesting to note that

for each GPU configuration in use, these curves flatten at some point. We postulate that this

is the point at which the number of scheduled threads allowed by the thread scheduler

reaches the maximum capacity of ~30k active threads with the use of content switching and

therefore offsets memory fetching and other delays. Two other observations can be made.

The sequential splitting (graph on the right) has a faster increase in performance (for images

smaller than 800 pixels in horizontal size), but its performance declines after image size

reaches 2500 pixels.

In addition, we also tested if the CPU execution time follows the predicted model

complexity of O(I · J · M · N), and we find an excellent agreement with a small difference

for small images where the data transfer time overhead is more significant than the actual

computation time.

Integer search grid—For completeness of the presented analysis, and since the CPU does

not have dedicated interpolation hardware, we also performed a test using an integer search

grid. The GPU execution time did not change at all, due to cache memory interpolation

hardware, whereas the CPU computation time was reduced approximately by a factor of

five. For this comparison we resized the search window so that the number of vectors in

each test case would be the same as for a non-integer grid. This will make blocks to be 10%

and the search window 20% of the image size.

In all of the test examples, no visually or quantitatively measurable difference was found for

the integer search grid. Two speedup curves, one for integer and one for non-integer search

grid, are shown Figure 11. One can observe that the omission of the interpolation reduces

speedup by a factor of 5 to about 200.

C. Comparison with other implementations of BMA for motion estimation

• OpenCV implementation—In these tests we used a video sequence (10 second in

duration with 30 frames-per-second) of a moving car while the camera is panning in the

opposite direction [20]. This allowed for direct comparison with OpenCv [21]-[23], a library

developed for Intel CPUs. We consider this to be an interesting comparison since OpenCv

was used recently for real-time video processing [24]. The OpenCV implements the

Pyramidal Lucas Kanade Optical flow algorithm [25] over a selected number of feature

points.

In our implementation we used 400 blocks to match OpenCv which uses 400 feature points.

For a given sequence with 720×480 pixels per image, this yields a block size of 36×24

pixels (5% of image size). Next we modified the search window size until satisfying results

were obtained in all frames, resulting in a 72×48 pixel search window (10% of image size).

Massanes et al. Page 7

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

For OpenCv it takes 17.7 seconds to process a 10 second video sequence producing effective

16.9 frames-per-second (fps). For the same sequence, serial splitting GPU implementation

using two Tesla C1060 cards, it takes less than 10.1 seconds giving a possibility to achieve

30 fps (15 fps for one GPU card), i.e. real-time data processing. Therefore, the proposed

multi-GPU implementation delivers a 1.75× speedup over OpenCV. Moreover, if one

inspects Figure 12 it is evident that the proposed multi-GPU implementation provides

estimated motion on a denser grid and of a higher quality.

• H.264/AVC-SmpUHex implementation—Another relevant comparison to assess the

performance of the proposed GPU implementation is to use the CPU based Simplified

Unsymmetrical multi-Hexagon search (SmpUHex, [26]) implementation used in H.264/

AVC standard which we will denote CPU-H.264/AVC-SmpUHex. We used a highly

optimized implementation of H.264/AVC-SmpUHex for Intel CPUs which can be

downloaded at [16]. For fairness of the comparison, we use 16×16 pixels blocks and a

search area of 32×32 pixels in both codes to process the sequence of the car [20] of 720×480

pixels.

Using CPU-H.264/AVC-SmpUHex it takes 33.69 seconds to compute the motion field for a

10 second video sequence producing effectively 8.9 fps, while proposed single-GPU

implementation takes 23.88 seconds producing effectively 12.6 fps. Therefore, if considered

as it is, the proposed singe-GPU implementation achieves a 1.41× speedup over CPU-H.264/

AVCSmpUHex. However SmpUHex, as the name suggests, does not utilizes a full grid

search, though in most cases it produces the similar results as FS. It was also measured that

the proposed GPU implementation achieves speedup of 28× over the full search CPU

implementation denoted as CPU-H.264/AVC-FS. Note that CPU-H.264/AVC-FS

implementation is fully optimized and as such it is about 10× faster than our CPU FS

implementation. The H.264/AVC-FS speedup is mainly achieved by pre-calculated block

locations (see Code 1) where in our CPU and GPU implementation this is not done; it may

be considered in future along with implementing SmpUHex on GPUs.

• Tesla C2070—Lastly, we have performed initial testing on a new Tesla C2070 (aka

Fermi) (CUDA compute capability: 2.0, released Q2 2010). Interestingly, even thou C2070

has a peak performance of 1.03 Tflops (C1060 has 0.933Tflops), we observed decreased

speedup of only 665× and 50% GPU occupancy in contrast to C1060s 1000× and 100%

occupancy. This indicates that in transferring code from C1060 to C2070, one needs to

carefully re-optimze implementation so as to fully utilize C2070 hardware.

D. Demo program

For the purpose of testing the proposed GPU implementation by a wider audience, we

created an executable demo for Windows OS using OpenCv library. This demo program

will perform video capturing and streaming, at 360×240 pixels resolution and 30 FPS,

through then Internet from the users camera to our GPU server. Our server will perform

real-time motion estimation and return estimated motion field which will be displayed at the

user's screen. A demo can be downloaded from: http://image.mirc.iit.edu/GPUdemo/.

V. CONCLUSION

In this paper, we presented and evaluated an implementation of the block-matching

algorithm for motion estimation with full search using multiple GPU cards. At this time, our

implementation is suitable for processing a surveillance video at 720×480 pixel resolution at

30 fps (real-time) using two C1060 Tesla GPU cards, outperforming the same CPU

implementations by several orders of magnitude.

Massanes et al. Page 8

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://image.mirc.iit.edu/GPUdemo/

Further, we performed a comparison of proposed full search GPU implementation with two

existing, CPU optimized, implementations which do not utilize full search, namely OpenCV

implementation of the Pyramidal Lucas Kanade Optical flow algorithm [25] and Simplified

Unsymmetrical multi-Hexagon search (SmpUHex, [26]), implementation available in H.

264/AVC standard. The presented results show a moderate speedup of the proposed GPU

implementation, indicating that both CPU methods could be reimplemented on GPUs, and

one should expect a significant reduction in computation time. This remains to be explored

in future work.

In addition, the work presented here provides a good case example of how to use CUDA

technology to increase the performance of video and image processing methods. It is not

always easy to implement methods in a highly parallel architecture; for this reason,

examples like this can provide some guidance while developing other applications.

Acknowledgments

This work was supported by NIH/NHLBI grant HL091017 and HL065425. The authors would like to acknowledge

David M. Stavens for his help and generously providing data used in comparison with OpenCV.

Biography

Francesc Massanes

Mr. Massanes was born in Barcelona, Spain in 1986. In 2005 he was accepted at the Center

for Interdisciplinary Studies (CFIS) at UPC-Barcelona Tech, Spain, to pursue simultaneous

degrees in Computer Science and Mathematics. In 2008 he was awarded with a scholarship

from the Agency for Administration of University and Research to work in the department

of Languages and Computer Systems (LSI). In January 2009, he joined the department of

Computer Architecture as a student collaborator. In June 2009, he finished a degree in

Mathematics at UPC-Barcelona Tech. In June 2010, he finished his degree in Computer

Science at UPC-Barcelona Tech with the Final Thesis titled: Emulation of Human Motion

Perception. Nowadays he is a Master of Science student in the Electrical Engineering at the

Illinois Institute of Technology with a fellowship grant for post-graduate studies from “La

Caixa”, Barcelona, Spain.

Marie Cadennes

Ms. Cadennes was born in Belgium in 1987. Since 2007, she has been pursuing a degree in

electrical engineering at ENSEA, Cergy-Pontosie Cedex, France. She is currently a research

scholar at the Medical Imaging Research Center at the Illinois Institute of Technology,

Chicago, USA.

Massanes et al. Page 9

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Jovan G. Brankov

Dr. Brankov received his diploma of electrical engineering from the University of Belgrade,

Serbia in 1996. He received M.S.E.E. and Ph.D. degrees from the Electrical and Computer

Engineering Department of the Illinois Institute of Technology in 1999 and 2002,

respectively.

Dr. Brankov joined the Electrical and Computer Engineering Department at the Illinois

Institute of Technology in 2002 as a researcher, was promoted to Research Assistant

Professor in 2004, and currently he is Assistant Professor in the same department. His

current research topics include 4D and 5D tomographic image reconstruction methods for

medical image sequences, multiple-image radiography (a new phase-sensitive imaging

method), and image quality assessment based on a human-observer model. He is author/co-

author of more then 90 publications.

REFERENCES

1. Cohen I, Medioni GG. Detecting and Tracking Moving Objects for Video Surveillance. Conference

on Computer Vision and Pattern Recognition CVPR (IEEE Computer Society. 19991999:2319–

2325. ISBN 0-7695-0149-4.

2. Chan MH, Yu YB, Constantinides AG. Variable size block matching motion compensation with

applications to video coding. Communications, Speech and Vision, IEE Proceedings. 2009; 137(4)

3. Cheung N, Fan X, Au OC, Kung M. Video Coding on Multicore Graphics Processors. IEEE Signal

Processing Magazine. March; 2010 27(2):79–89.

4. Lin D, Xiaohuang H, Quang N, Blackburn J, Rodrigues C, Huang T, Do MN, Patel SJ, Hwu WM-

W. The parallelization of video processing. Signal Processing Magazine, IEEE. November; 2009

26(6):103–112.

5. Marin T, Brankov JG. Deformable left-ventricle mesh model for motion-compensated filtering in

cardiac gated SPECT. Medical Physics. October; 2010 37(10):5471–5481. [PubMed: 21089783]

6. Deuerling-Zheng Y, Lell M, Galant A, Hornegger J. Motion compensation in digital subtraction

angiography using graphics hardware. Computerized Medical Imaging and Graphics. 2006; 30(5):

279–289. [PubMed: 16904868]

7. Baglietto P, Maresca M, Migliardi M. Parallel Implementation of the Full Search Block Matching

Algorithm for Motion Estimation. Proc. IEEE Int. Conf. Application Specific Array Processors.

1995:182–192.

8. Dutta S, Wolf W. A flexible parallel architecture adapted to block-matching motion-estimation

algorithms. Circuits and Systems for Video Technology, IEEE Transactions on. February.1996

6(74)

9. Vanne J, Aho E, Kuusilinna K, Hamalainen TD. A Configurable Motion Estimation Architecture for

Block-Matching Algorithms. Circuits and Systems for Video Technology, IEEE Transactions on.

April; 2009 19(4):466–477.

10. NVIDIA. February 2010. wepage http://www.nvidia.com/cuda.

11. NVIDIA CUDA. Cuda programming guide, version 2.3. February.2010

12. Wei-Nien, C.; Hsueh-Ming, H. H.264/AVC motion estimation implementation on Compute

Unified Device Architecture (CUDA). Multimedia and Expo, 2008 IEEE International Conference

on; June 23 2008-April 26 2008; p. 697-700.

13. Bovik, A. The Essential Guide to Video Processing. Academic Press, Inc; 2009.

Massanes et al. Page 10

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://www.nvidia.com/cuda

14. Horn BKP, Schunck BG. Determining optical flow. Artificial Intelligence. 1981; 17:185–203.

15. Bourbakis NG. Visual target tracking, extraction and recognition from a sequence of image using

the LG graph approach. Int. Jour. on Artificial Intel. Tools. 2004; 11(4):513–529.

16. H.264/AVC Implementation by the International Telecommunications Union available at

http://iphome.hhi.de/suehring/tml/

17. Harish P, Narayanan PJ. Accelerating Large Graph Algorithms on the GPU Using CUDA. HiPC,

Lecture Notes in Computer Science. 2007; 4873

18. Shiraki A, Takada N, Niwa M, Ichihashi Y, Shimobaba T, Masuda N, Ito T. Simplified

electroholographic color reconstruction system using graphics processing unit and liquid crystal

display projector. Opt. Express. 2009; 17:16038. [PubMed: 19724604]

19. Murat Tekalp, A. Digital video processing. Prentice Hall; New Jersey: 1995.

20. D. Stavens webpage http://ai.stanford.edu/~dstavens/

21. Lucas BD, Kanade T. An iterative image registration technique with an application to stereo

vision. Proc. of the 1981 DARPA Imaging Understanding Workshop. 1981:121–130.

22. February. 2010 OpenCV, webpage http://opencv.willowgarage.com

23. Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly

Media, Inc.; 2008.

24. Zhang Lei LY-P, Zhang X-F. Research of the Real-Time Detection of Traffic Flow Based on

OpenCV. Proceedings of the 2008 IEEE International Conference on Computer Science and

Software Engineering. 2008:870–873.

25. Bouguet JY. Pyramidal implementation of the lucas kanade feature tracker: Description of the

algorithm. Intel Corporation Microprocessor Research Labs. 2000

26. Yi X, Zhang J, Ling N, Shang W. Improved and simplified fast motion estimation for JM. Proc.

JVT Meeting, Tech. Rep. JVT-P021. July.2005

Massanes et al. Page 11

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://iphome.hhi.de/suehring/tml/
http://ai.stanford.edu/~dstavens/
http://opencv.willowgarage.com

Figure 1.

Block-matching motion estimation; reference, target frame and block displacement vector v.

Massanes et al. Page 12

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Figure 2.

Block matching methods search window and grid.

Massanes et al. Page 13

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Figure 3.

Schematic of NVIDIA C1060 Tesla GPU card; Memory and processors organization.

Massanes et al. Page 14

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Figure 4.

CUDA hierarchy of threads, thread-blocks, grids and memory space.

Massanes et al. Page 15

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Figure 5.

Flowchart of the proposed BMA algorithm.

Massanes et al. Page 16

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Figure 6.

Parallel splitting (Top) and serial splitting (Bottom) of an image sequence.

Massanes et al. Page 17

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Figure 7.

HDTV image of 1920×1080 pixels; Reference and Target Image, respectively.

Massanes et al. Page 18

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Figure 8.

Motion field estimated using CPU and GPU implementation, respectively

Massanes et al. Page 19

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Figure 9

. Maximum achievable GPU implementation frame-rate-per-second (FPS) as a function of

the frame size for: (Top) Parallel splitting and (Bottom) Sequential splitting.

Massanes et al. Page 20

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Figure 10.

Achieved GPU implementation speedup, in comparison to CPU, as a function of the frame

size for: (Top) Parallel splitting and (Bottom) Sequential splitting.

Massanes et al. Page 21

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Figure 11.

Achieved GPU implementation speedup, in comparison to CPU, as a function of the frame

size for integer and non-integer grid search.

Massanes et al. Page 22

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Figure 12.

Comparison with OpenCV implementation of the Pyramidal Lucas Kanade Optical flow

algorithm.

Massanes et al. Page 23

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Code 1: The parallel Kernel

Massanes et al. Page 24

J Electron Imaging. Author manuscript; available in PMC 2012 February 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

