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Abstract—The soft robotics approach is widely considered to
enable human-friendly robots which are able to work in our
future homes and factories. Furthermore, achieving the smooth
and natural movements of humans has become a hot topic in
robotics, especially when robots are supposed to work in close
proximity to humans. The anthropomimetic principle aims at
mimicking not only the outside but also the inner mechanisms
of the human body in humanoid robots. However, for this class
of robots there exist as yet no scalable controllers that might
make it possible to control a full body, or even several joints. A
very similar problem is ongoing research in biomechanics which
is the computation of muscle excitation patterns for coordinated
movements. For this purpose, biomechanicists have developed
computed muscle control which has proven a very scalable
technique.

In this paper, we demonstrate the adaptation of computed
muscle control for a tendon-driven robot, comparing different
methods for obtaining the muscle kinematics, as well as different
low-level controllers. Results are shown for the implementation
on a distributed control architecture and a single revolute elbow
joint.

I. INTRODUCTION

Standard industrial manipulators offer extremely precise

performance for repetitive tasks for which trajectories can be

planned ahead, as would be the case in the well-structured

environments of a factory. However, when unstructured en-

vironments are considered, humans still outperform robots

in almost every aspect. This is due to the uncertainty that

comes with these environments which cannot be sufficiently

perceived and modeled, leading to possible collisions. In case

of a rigid impact, however, a stiff robot is very likely to

damage itself or its surroundings. The soft robotics approach is

therefore widely considered to enable human-friendly robots

which will be able to work in our modern homes and fac-

tories [1]. Humans display extremely smooth and effortless

motor control over a certainly very complex body, which is

still far from being matched by any robot. Achieving these

smooth and natural movements has become a hot topic in

robotics, especially when robots are supposed to work in

close proximity to humans [2]. We can try to achieve this

by actively computing human-like trajectories, but as long as

the internal mechanisms of the robot are so different from the

ones in the human body, this may never be truly achieved.

One way towards this goal is to incorporate more and more

of the mechanisms that can be found in humans for robots.
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Fig. 1. ANTHROB. A 3D printed anthropomimetic robot with a spherical
shoulder, and a revolute elbow joint. Eleven tendon-driven compliant muscles
are realized with DC motors, kite line and elastic elements.

The anthropomimetic principle [3] aims at mimicking not only

the outside but also the inner mechanisms of the human body

in humanoid robots. However, for this class of robots there

exist as yet no scalable controllers that might make it possible

to control a full body, or even several joints. With the design

come several challenges which are not present in other robotic

systems, like complex joint types (e.g. ball-and-socket joints),

multi-articular muscles, and most importantly muscles that

collide with the rigid structure of the robot as well as with

other muscles.

Tendon-driven robots can be differentiated by the tendon

configuration which is the number of tendons per degrees

of freedom (DoF) in the joints. Three main configurations

exist, N, N+1, and 2N [4], while models of human bodies

as well as anthropomimetic robots have to be classified as

2N+, denoting many more muscles per DoF in the joints

than 2N. Control approaches from the robotics community

like [4–7] deal only with the 2N configuration. For robots of

the 2N+ configuration with complex joint types and colliding

muscles, on the other hand, a control problem has to be
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solved that is also ongoing research in biomechanics. Here, the

goal is to compute muscle excitation patterns for coordinated

movements [8]. In biomechanics the motivation is to find out

how different muscles are involved when the human body

performs certain tasks, where only a few states, like joint

angles or excitation patterns of some muscles, can be measured

non-invasively. A robot controller on the other hand should

drive the system to perform tasks as desired [9]. For this

purpose biomechanicists have developed computed muscle

control [8] which is extended by de Sapio et. al. [10, 11]

into a highly generic approach to control a human shoulder

complex in simulation. While these techniques address exactly

the challenges of controlling anthropomimetic robots, they

lack the measurable performance criteria like robustness and

stability for actual robotic systems. Robotic controllers on the

other hand lack the scalability for more complex robots. The

controller proposed in [12] has proven useful to control the

simulation of an anthropomimetic robot arm and will in this

work be evaluated for controlling a physical robot based on

the control architecture described in [13].

II. THE PLATFORM

In this work, a robot is utilized that implements the anthro-

pomimetic idea for a humanoid robot arm with a spherical

shoulder joint, a revolute elbow joint and a total of eleven

muscles (see Fig. 1). Therefore, the human skeleton, as well

as the muscular system is mimicked as close as possible. The

artificial muscles (AMs) consist of a DC motor, kite line, and

an elastic element, allowing the electric actuator to wind the

kite line on the attached spindle and hence either innervate

or relax the AM. Therefore, force can only be exerted on

the attachment points in one direction, i.e. a muscle can only

pull, not push. The elastic element adds the flexibility that is

also present in a biological muscle. Even though the technical

implementation of the AMs cannot fully capture the muscular

contraction dynamics of biological muscles, key features like

the elasticity and most importantly the muscle insertion points

have been emcompassed.

Both manufacturing techniques, as well as the sensory sys-

tem were largely improved from the previous anthropomimetic

robots, like CRONOS [3] or the ECCE [14]. Especially utiliz-

ing 3D printing techniques to fabricate the anthropomorphic

structures, makes it now possible to extend previously devel-

oped controllers [12] onto real physical robots, as CAD data is

available for obtaining reliable kinematic and dynamic system

models. Furthermore, this robot features a potentiometer in

the elbow for sensing the elbow angle. In this work we cover

the control of the revolute elbow joint with two AMs, the

Brachialis, and the Triceps as an exemplary configuration to

prove the feasibility of the control scheme for robot control.

Note that both muscles are implemented as mono-articular

muscles here. While this is physiologically correct for the

Brachialis, the human Triceps has three heads, of which

only the lateral and medial heads are mono-articular. The

attachment point chosen for the artificial Triceps is equivalent

to the medial head.

III. MODELING MUSCULOSKELETAL ROBOTS

In [4, 7] a model of a tendon-driven robot is obtained for

the full state-space. This leads to a very complex and also non-

linear model for which a controller can be found, provided the

system is small enough. However, the process of developing

these models and corresponding controllers shows that these

controllers lack the scalability for larger systems.

To cope with more complex systems, it is possible to decom-

pose them into a hierarchy of simpler subsystems for which

separate control methods can be derived. An anthropomimetic

robot can be divided in three subsystems. First a model of

the comparably stiff robot components—the skeleton—can

be obtained like for any conventional robot (Section III-A),

second the AMs are modeled (Section III-B), and last a

mapping between the two needs to be found (Section III-C).

A. Skeleton Model

For conventional robots the equation of motion can be

expressed in one of two canonical forms [15]. In joint space

this is written as follows,

τ = H(q)q̈ + C(q, q̇)q̇ + τG(q) (1)

giving a relationship between the joint torques τ and the

generalized joint coordinates q, q̇, and q̈. Note that in the

following, dependencies of q and q̇ of the mass matrix H , the

matrix of coriolis and centrifugal terms C and the vector of

gravity terms τG are omitted. A system model in the canonical

form can also be found for an anthropomimetic robot, by the

well known methods of the Newton-Euler Algorithm or more

efficiently using the Composite Rigid Body Algorithm [16].

For a more detailed analysis on how spherical joints can be

integrated into the canonical form, refer to [12]. To encompass

the effect of Coulomb friction in the canonical form, an

additional term τF [17] has to be added to (1), denoting a

constant coulomb friction term τc.

τ = Hq̈ + Cq̇ + τG + τF with τF = τc · sgn(q̇) (2)

B. Muscle Model

The AMs of the anthropomimetic robot consist of a DC

motor, kite line and shock cord. A model of an AM could be

obtained by combining the standard DC motor model with a

model of the gearbox and a linear spring (F = k ·∆x). This

led to a continuous time state-space model of the following

form,

ẋ = Ax + buA + gẋ

f = cT x (3)

while x is the vector of states, the DC motor voltage uA is

the input and muscle force f is the output of the system.

The system disturbance for the low-level muscle control,

which is essentially the joint movement, was modeled as a

linear coordinate x at the attachment point beyond the elastic

element, while {A, b, cT , g} denote the linear system (see also

Fig. 4). For a more detailed description of the muscle model,

used in this work, please refer to [12].
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Fig. 2. Muscle lengths for the Brachialis and Triceps are shown, comparing
the polynomial fit from samples against the analytic function obtained by
assuming straight line muscles.

C. Muscle Jacobian

A relationship between the muscle and the joint space can be

formulated based on the geometric mapping of muscle lengths

l, subject to the joint angles q.

l = f(q) (4)

By partially differentiating this function with respect to the

joint angles the so called muscle Jacobian L(q) is ob-

tained [18]. It gives a relation between the change of the

muscle lengths with respect to the change of joint angles at a

certain configuration.

L(q) =
δl

δq
⇒ L(q) · q̇ = l̇ (5)

Using the principle of virtual work, this can be transformed

to a relation between the muscle forces f (the negative sign

arises from the definition of a positive force when pulling) and

the joint torques τ [10].

τ = −LT (q) · f (6)

The muscle Jacobian can be obtained in different ways. Either

by directly modeling the moment arms of the muscles [4] or

by finding a geometric representation of the muscle lengths

and subsequently differentiating it with respect to the joint

angles [19].

Finding geometric representations of the muscle lengths is a

complex and error prone task, and becomes almost impossible

for spherical joints where muscles might also wrap around

skeletal structures. Therefore, we propose a third possibility

which is to numerically approximate (4) by drawing samples

from the system. In the following, a comparison between a

numerical approximation and the geometric solution will be

drawn for the example of the elbow joint with two muscles.

Samples were obtained by utilizing the force control algorithm

(see Section IV-A) to maintain a minimum tension of 1N and

manually moving the joint, covering the work space several

times. Throughout the experiment motor positions, joint angles

and muscle forces were recorded and subsequently used for the

numerical approximation. Samples were generated by moving
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Fig. 3. Muscle Jacobians from differentiating both the polynomial fit and
the analytic muscle length functions.

the elbow joint 4 times and sampling with 50Hz. By removing

samples, where forces were outside of a bound of ±0.2N of

the reference force, the number of samples was reduced to

1,708. This was necessary, as back-computing the expansion

of the elastic elements from the measured forces was too

error prone, as a detailed non-linear model was not available.

Therefore, the expansion could be neglected. In this case

the muscle lengths l can be back-computed from the motor

positions ϕ, utilizing the spindle radius r.

l = l0 + r · ϕ (7)

Here, the function could be approximated using a polynomial

fit (see Fig. 2). Good fits were achieved with a 2nd order

polynomial for the Triceps (R2 = 0.99999) and a 3rd order

polynomial for the Brachialis (R2 = 0.99991).

For the geometric solution, the CAD design of the robot,

was utilized to determine the two anchor points PA, PB of

the muscles in the coordinate frame of the upper arm. While

PA is fixed within this frame, PB is a function of the elbow

angle θ

PB = RZ(θ) · PB0 (8)

with RZ being the rotation matrix around the rotation axis (z)

of the elbow and PB0 being the anchor point PB(0) of the

unrotated elbow. Assuming straight line muscles, a function

of the muscle length could be easily extracted.

l(q) = ||PA −RZ(q) · PB0|| (9)

In Fig. 2, a comparison between an analytically obtained

muscle lengths to joint angle relationship and the fitted func-

tions is depicted. This led to a good representation for the

Brachialis, even though the anchor points cannot be uniquely

determined due to the movement of the kite line inside the

guiding eyelets. For this robot the anchor point is able to move

inside the plane of the eyelet which has a radius of 3.5mm.

For the Triceps, however, the deviations became significant,

as the Triceps cannot be modeled as a straight line muscle.

It collides both with the lower as well as the upper arm,

depending on the posture. Please note, that it is of course

not theoretically impossible to model the behavior of colliding
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Fig. 4. Muscle Force Controller. A comparison of a A: PD force controller
with a feed-forward term (FFW) and a B: state-space force controller k with a
pre-filter V is shown for the linear system {A, b, cT , g} of the muscle model.

muscles analytically, and it has also been done for the simula-

tion model of a human body [20]. However, identifying these

parameters for a physical system is error prone, especially

when the model will be scaled to larger systems, like the full

arm. In this case, an approach like approximating the function

through artificial neural networks (ANN) or locally weighted

projection regression (LWPR) [21] is needed which has been

shown to work well in simulation [12]. In the simple case of a

revolute joint, the polynomial fit is fully sufficient. The great

advantage of this approach is that the complicated relationships

of colliding muscles are captured automatically by the samples

from the real robot.

From the polynomial fit, the muscle Jacobian could be

easily identified by differentiating. Fig. 3 shows again a

comparison between the analytically obtained Jacobian and

the polynomial fit. While deviations are comparably small for

the Brachialis—with respect to measurement accuracy and the

fact that anchor point locations change with the posture—

the Triceps deviations are again quite large. It can be seen

from the figure that the Triceps could alternatively be modeled

by assuming a fixed muscle Jacobian of ∼ 0.02m, which is

essentially the same as the assumption of a fixed moment arm.

IV. CONTROL

A hierarchical control structure (cascade) was developed to

control the robot. In a cascade, controllers for the subsystems

can be developed independently, provided that dynamics of

the inner control loop are at least an order of magnitude

faster than the dynamics of the outer control loop [22]. In

the following, a controller for the faster inner system—the

muscle force control—is synthesized first, and subsequently a

controller for the full robot body is developed.

The control approach developed in the following section

is distributable in a manner, where fast force control loops

can run with a frequency of 500Hz on distributed nodes, and

the whole body control algorithm runs with a much slower

frequency on the central computer. The implementation of this

control architecture has been described in detail in [13].
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Fig. 5. Force Control Step. Step up and step down from 2N to 40N for
the state-space controller as well as the PD controller.

A. Force Control

Force control for tendon driven systems is generally realized

by a P or PD controller, often in conjunction with a feed-

forward term (see Fig. 4) [4, 5]. Control parameters can be

found by methods from control theory like direct design by

root locus, utilizing the Nyquist stability criterion [22] or even

by simple trial and error. The linear feed-forward term FFW
is determined by calculating the steady state control input

FFW = RA ·
1

cτ
·

r

grηg
(10)

where RA is the anchor resistance and cτ is the torque constant

of the motor, gr and ηg are the gearbox ratio and energy

efficiency, respectively, and r is the radius of the spindle.

We compared the existing approach against a state-space

controller (see Fig. 4) that was synthesized using Ackermann’s

formula [22] for a discrete state-space model. A discrete state-

space model could be obtained from the continuous state-space

model of a muscle described in Section III-B. As a counter

piece to the feed-forward term, a pre-filter V was introduced

for compensating the steady state error, by utilizing the state-

space system {A, b, cT , g} [22].

[

Mx

Mu

]

=

[

A b

cT 0

]

−1 [

0
I

]

(11)

V = Mu + k ·Mx (12)

The two controllers were compared on a typical muscle of the

robotic arm by performing a step up and step down from 2N to

40N and back (see Fig. 5). The state-space controller followed

the force with a RMSD of 0.236N and the PD controller with

0.579N for the steady state phase at 40N. It can be seen from

the graph in Fig. 5 that this larger error was mainly due to the

steady state offset which is −0.55N for the PD and 0.06N
for state-space controller A similar offset, but in the other

direction (0.44N and 0.05N, respectively) can be observed

also at 2N leading to the conclusion that this effect cannot be

compensated by a linear feed-forward term. Furthermore, the

state-space controller also shows a slightly faster rise time. For

these reasons, the state-space controller was utilized to control

the elbow joint.

2195



Analytical Model Polynomial Fit Low-level control

Fig. 6. Joint Space Control. The control scheme uses an analytical model
of the skeleton, along with the muscle Jacobian to calculate reference forces
for the individual muscle force controllers (see Fig. 4).

B. Joint control

For standard robotic systems there are various control meth-

ods based on the canonical form of the skeleton model. Here,

the method of computed torque control was adapted [15]. It

utilizes (2) to calculate the joint torques τ necessary to produce

desired joint accelerations q̈ref , given the system states q and

q̇. The reference joint acceleration can be obtained by any

control law. In this case a PD controller was chosen.

q̈ref = P ·∆q +D ·∆q̇ (13)

Even for the simple case of only a single DoF and two

antagonistic muscles, solving (6) for the muscle forces f is

underdetermined. This problem can be treated by formulating a

quadratic optimization problem [23]. In this work, an objective

function for the optimization was chosen that is the square of

the euclidean distance between the forces. Different objective

functions like minimum energy or minimum muscle activation

are possible here with different results, especially for multi

joint systems. However, in this work only the minimum force

criterion was evaluated. The optimization is subject to two

constraints. First, the forces are to apply the joint torque

acquired by computed torque control, and second, muscles can

apply force only in one direction, namely muscle forces have a

lower bound. This non-linearity in the system is problematic,

especially since slack muscles have to be avoided, as they

might get tangled. Therefore the lower bound for the forces

fmin should be chosen to maintain a certain safety zone from

zero, while at the same time reducing the internal forces.

min
f

||f ||
2

(14)

subject to

{

−LT (q) · f = τ

f > fmin

Therefore, the control input f satisfies the following equation

H(P ·∆q +D ·∆q̇) + Cq̇ + τG + τF = −LT (q) · f (15)

which, assuming perfect system models, leads to a closed-

loop behavior for the ith joint angle θi, due to diagonal P =
diag{pi}, and D = diag{di}.

pi ·∆θi + di ·∆θ̇i = θ̈i. (16)

(1) (2) (3)
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Fig. 7. Elbow Step Response. The elbow angle (top) and the muscle forces
(bottom), while (1) performing a step up (2) exerting an external disturbance
and (3) performing a step down.

The transfer function of the closed loop Tf (s) can be ex-

pressed in the frequency domain for the complex frequency

s.

Tf (s) =
pi + di · s

pi + di · s+ s2
(17)

Stability for this type of system can be proven using methods

from linear system theory [22]. Therefore the controller shows

global asymptotic stability, when assuming (1) perfect system

models, and (2) quasicontinuous control. In the following sec-

tion it is shown that the controller behaved in a stable manner,

for the derived system models and the discrete distributed

implementation.

V. RESULTS

The scalable control scheme shown in Section IV, was

implemented for a single revolute joint with two antagonistic

muscles. It has to be noted that even though this work only

treats a single DoF, it has already been shown to scale to larger

systems in simulation [12].

The implementation utilizes the Robotics Library (RL)1 for

modeling the dynamics and kinematics of the system and the

polynomial fit of the muscle Jacobian (see Section III-C).

The optimization problem of calculating muscle forces for

given reference accelerations q̈ref is solved online, using

QuadProg++2 for a minimum force of fmin = 2N.

1available on sourceforge.net, by Markus Rickert
2available on sourceforge.net, by Luca Di Gaspero
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In Fig. 7, a step from 0.2 rad up to 1.6 rad and a corre-

sponding step down of the elbow angle are shown. We saw

accurate tracking of the angle and a rise time of tr = 1.00 s
for the step up and tr = 0.86 s for the step down. Between the

steps an external disturbance was applied. Here, the muscles

flexed to keep the pose steady, however the system was

compliant enough to give in to approximately 1 rad, due to

the disturbance. As soon as the disturbance was removed, the

controller brought the elbow angle back to 1.6 rad.

During the step down it could be seen that the dynamic

system model was able to compensate for the non-linear effect

of gravity, leading to a rise time that was similar to the rise

time of the step up. While stepping down, the role of the

muscles was inverted by the optimization, causing the Triceps

to pull the forearm down. It is obvious that the force controller

was not always able to track the reference forces fast enough to

follow. This was due to the constant disturbance of the moving

forearm. However, steady state behavior was highly accurate

and the overall movements are carried out with sufficient

speed. Most importantly, neither of the muscles went slack

at any time during the experiment.

VI. CONCLUSIONS AND FUTURE WORKS

The scalable joint-space controller for musculoskeletal

robots developed in [12] was evaluated on a physical robotic

joint, proving feasibility of the overall control strategy. It has

been shown that numerical methods can be used to model

the muscle kinematics in contrast to an analytical solution

assuming straight line muscles. The great advantage of the

numerical approximation approach for the muscle kinematics

is that it is capable of automatically capturing the main

challenges of controlling anthropomimetic robots, i.e. complex

joint types, colliding muscles, and multiarticular muscles.

Furthermore, the advantages of a state-space force control, in

comparison to the previously used PD controller with a feed-

forward term were demonstrated.

In the future we would like to extend the controller to

multi-joint structures including spherical joints and bi-articular

muscles. It has to be noted that intrinsic joint angle sensors

for spherical joints are extremely hard to realize and therefore

need to be replaced, either by back-computing joint angles

from muscle lengths [24] or by an extrinsic sensory system,

e.g. stereo-vision based motion tracking. Furthermore, the

control scheme will be extended to operational space control.

Especially solving the joint, as well as the muscle redundancy

in a single local optimization step has been shown to lead to

physiologically consistent trajectories [2, 11].
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