
UC Irvine
ICS Technical Reports

Title
Computer-aided analysis of concurrent systems

Permalink
https://escholarship.org/uc/item/26c8g854

Authors
Morgan, E. Timothy
Razouk, Rami R.

Publication Date
1985-02-08

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/26c8g854
https://escholarship.org
http://www.cdlib.org/

Computer-Aided Analysis of Concurrent Systems

by

E. Timothy Morgan and Ram! R. Razouk

SS-ciQf

Abstract

The introduction of concurrency into programs has added to the complexity of the software design

process. This is most evident in the design of communications protocols where concurrency is inherent to

the behavior of the system. The complexity exhibited by such software systems makes more evident the

needs for computer-aided tools for automatically anedyzing behavior.

The Distributed Systems project at UCI has been developing a suite of tools, based on Petri nets, which

support the design and evaluation of concurrent software systems. This paper focuses attention on one of

the tools: the reachability graph analyzer (RGA). This tool provides mechanisms for proving general system
properties (e.g., deadlock-freeness) as well as system-specific properties. The tool is sufficiently general to
allow a user to apply complex user-defined analysis algorithms to reachability graphs. The alternating-

bit protocol with a bounded channel is used to demonstrate the power of the tool and to point to future
extensions.

Technical Report ^^85-06

Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92717

February 8, 1985

© Copyright - 1985

Contents

Page

Introduction 1

Petri Nets and Reachability Graphs 3

Basic Capabilities • • • 6

Arithmetic Expressions 7

Boolean Expressions 7

State, Place, and Transition Expressions 8

Set Expressions and Operations 9

A Simple Example 12

Advanced capabilities 15

An Extensive Example 18

The Alternating-Bit Protocol 18

Petri Net Model of the Alternating-Bit Protocol 19

Verification of the Model 22

Conclusion 26

References 27

Computer-Aided Analysis of Concurrent Systems

Abstract

The introduction of concurrency into programs has added to the

complexity of the software design process. This is most evident in the

design of communications protocols where concurrency is inherent to

the behavior of the system. The complexity exhibited by such software

systems makes more evident the needs for computer-aided tools for

automatically analyzing behavior.

The Distributed Systems project at UCI has been developing a suite

of tools, based on Petri nets, which support the design and evaluation of

concurrent software systems. This paper focuses attention on one of the

tools: the reachability graph analyzer (RGA). This tool provides mecha
nisms for proving general system properties (e.g., deadlock-freeness) as
well as system-specific properties. The tool is sufficiently general to jallow

a user to apply complex user-defined analysis algorithms to reachability

graphs. The alternating-bit protocol with a bounded channel is used to

demonstrate the power of the tool and to point to future extensions.

Introduction

With the increased use of distributed processing in a wide range of applica

tions, a need exists for techniques which can be used to assist in evaluating the

correctness of concurrent software/hardware. A variety of novel specification and

verification approaches are being investigated ranging from highly abstract and

mathematical approaclxes (e.g., temporal logic [4, 12]) to approaches which closely

mirror and restrict implementations (e.g., algorithmic specifications [15]). All the

techniques in question are based on some formal model of computation and, in

order to be used effectively, must be supported by automated tools.

In recent years, the Petri Net model [8] has been used extensively to verify

properties of concurrent systems. This model is particularly interesting since it

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

supports verification of correctness [16, 2] and evaluation of performance [13, 17,

11]. It is this versatility which motivates this paper's focus on Petri Nets. A variety

of techniques have been developed to allow Petri Net models to be used to prove

the partial correctness of concurrent systems. The techniques can be divided into

three general classes:

1. Techniques based on exhaustive exploration of the state space. In these

techniques all control states reachable from the initial state are calculated.

Since a reachability graph contains all the states of the system and all the

transition between the states, it can be used to prove invariant properties of

the model (properties which hold over all of the states) and to prove properties
related to state transitions (e.g., deadlock freeness). Past work in this field has
focused on proving general properties such as deadlock-freeness [9] by relying
on Petri Net properties such as liveness and boundedness. System-specific

properties are usually verified by manual examination of the state space [10].
The two major weaknesses of these techniques are: (a) reachability graphs
can be infinite and, (b) even if reachability graphs are finite they can be very
large and therefore difficult to build and even more difficult to process (by a
human).

2. Techniques based on automated analysis of the control structure of the net

to deduce important properties. These techniques attempt to solve the com

plexity problem of exhaustive state exploration by analyzing the net itself.

Examples of such approaches are automated invariant analysis [6] and re
duction [3]. In automated invariant analysis some of the invariant properties
of the net are derived by analyzing a matrix representation of the net. In

reduction, the net is manipulated and transformed into a smaller net whose

state space preserves some key properties of the original state space (e.g., pre
serves deadlock-freeness). In this class of techniques, the advantage gained by
computational efficiency is offset by a limitation on the properties which can

be proven. For example, Keller [5] explains why invariants alone cannot be

used to prove deadlock freeness. Also, reduction, while preserving deadlock

freeness, compresses the state space in a way which makes proving invariant

properties impossible.

3. Techniques based on inductive proofs involving control and data. Keller first

presented the notion of inductive invariants as a way of proving more general

system properties. His approach requires one proof per transition in a net,

and is capable of dealing with data transformations as well as control flow.

The burden of formulating an inductive invariant falls on the designer, but
automated tools can be used to guide and check the proofs (no such tools exist
to date). Proofs relating to sequences of states must be based on the notion of

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

a "homing state" and are more difficult. This approach can be characterized

as requiring a great deal of human expertise to complete a proof while the two

discussed above rely more on automated processing of the nets.

The work presented here falls in the first category. It is entirely based on

building and analyzing reachability graphs and is therefore limited to systems

whose reachability graph is finite (the largest graph built using our tools contains

6500 states). The novelty in this work centers on a language and a corresponding

interpreter which allow a designer to give formal specifications of general correctness

properties (e.g., deadlock freeness) as well as system-specific properties in a way

which can be easily understood and which can be automatically verified. In addition

to formal correctness proofs the tool can be used to "debug" the system and its

model by providing the designer with convenient ways of focusing attention on

portions of the complete state space. The tool in question (the Reachability Graph

Analyzer, or RGA [7]) is part of a larger suite of tools (P-NUT, Petri Net UTilities)

being developed at UCI by the Distributed Systems Project.

In Section 1 of the paper, Petri nets are briefly reviewed. The usefulness

of reachability graphs and their limitations are also discussed there. Section 2

describes some of the most primitive capabilities of RGA. The dining philosophers

problem is used as a reference example. Section 3 delves into the more advanced

features of RGA which make it extensible and flexible. Section 4 presents a model

of the alternating-bit protocol with bounded channels and demonstrates some of

the flexibility of RGA in analyzing such complex reachability graphs.

1. Petri Nets and Reachability Graphs

Petri nets [8] are bipartate, directed graphs whose nodes axe transitions and

places. The arcs of the graph denote those places which are inputs to the transitions

and those which axe outputs. Associated with each place is a number of tokens]

a marking is an assignment of zero or more tokens to each place in the net. A

I
4

I transition is considered to be enabled when there is at least one token on each of
j its input places.

The execution of a net involves.choosing an enabled transition nondeterminis-

I tically and firing the transition. Firing involves removing atoken from eaeh input
place and placing one on each of the transition's output places. The firing oper-

im ation is considered to be an instantaneous and indivisible operation, and no two
transitions may fire simultaneously. If the number of output places is greater than

the number of input places, then the total number of tokens in the net increases.

^ When there is more than onetoken on the graph, there is a possibility ofconcurrent

• execution. However, not every token represents a separate process; some may be

m used only for synchronization and resource control.
A majking defines a state of a net. Thus a firing of a transition, which can

H result in achange in the distribution of tokens, represents achange in the state of
the net. A marking fj/ is said to be immediately reachable from a marking ^ if firing

I some enabled transition results in changing the marking from fj, to fj/. The refiexive
m transitive closure of the immediately reachable relationship defines the reachability

* set, the set of all markings which can be reached from fi. The reachability set of

the initial marking is the set of all possible states of the net.

Since each state is reached from another state by a transition-firing, one can

view the set of all states as a directed graph, with the states being nodes of the

graph and the transition-firings being the arcs connecting the states. This graph is

known as th.e-reachability graph of the net, sometimes called the computation fiop)

I graph.
It is possible for the reachability graph to be infinite. This is a consequence

of some place in the net acquiring an infinite number of tokens. Various techniques

exist for handling this case in formal analysis of.Petri nets [8], but these techniques

I will not be discussed here, as the analyzer being described handles only finite

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

5

graphs. Typically, problenis which would be analyzed with this tool, such as

communications protocols, have only a finite number of states by design.

The reachability graph can be used in a number of ways to verify properties

of the Petri net. These properties include boundedness, safeness, and liveness. The

maximum number of tokens on any place can be determined by examining each

place in each state of the graph. K this bound is 1, then the net is safe. E the

number of tokens in each state is a constant, then the net is conservative. If every

state has at least one successor state, then the net is deadlock free. A transition is

dead in some marking if no sequence of transition firings exists which can enable

it. If there exists such a sequence, however, the transition is said to be potentially

firable. A transition is live if it is potentially firable in all reachable markings. By

examining the arcs of the graph, it is possible to determine if a transition is live

and the set of all states which can reach or can be reached from a particular state.

These properties of this net (boundedness, liveness, etc.) are important because

properties of the system being modeled can be inferred from them. For example,

liveness implies that the system is deadlock free.

The next two sections of the paper present the capabilities of the analyzer.

The approach taken in the implementation of this tool is based on an understanding

of the need for flexible and expandable tools. Other implementations of reachability

H graph builders [SARA] have tended to have aset of built-in algorithms which can be
used to verify some known general properties (e.g., deadlock freeness). In this tool,

more general mechanisms are made available to the user instead of specific functions

which solve only certain predefined problems. Arbitrarily complex algorithms can

be synthesized from the simple basic capabilities of the analyzer. Should some

algorithms prove particularly useful, the analyzer can then be enhanced to provide

them as built-ins.

tokens (.state)

maLrked(state)

nsucc (state)

TipTed(state)

cardCs)

The total number of tokens on all plaoes in a specified state. The

state is given as an argument to the function, as tokens(#0). An

alternate way of writing this function is to put the state within

vertical bars, as an absolute value. For example, |#l|.

Returns the number of places in the argument state which have
at least one token on them. If marked (s)=tokens(5) then the

state s is safe.

Returns the number arcs going out of the argument state.

Returns the number of axes going into the indicated state.

Returns the number of elements of a set s.

Table 1

Integer-valued Primitive Functions

2. Basic Capabilities

The RGA system functions on two levels. First, it allows the user to specify

propositions and predicates [14] over a universe of discourse consisting of places

and transitions in a Petri net, and states and transition-firings in its reachability

graph. Variables in the propositions may be bound by assignment or by universal

or existential quantification. RGA is further augmented with primitives which give

it the capabilities of a simple programming language.

The intended use of RGA is to prove interesting properties about the system

being modeled. Since all system behavior is encoded in the state of the system, it is

critical for such a tool to allow the user to express system properties as predicates

on places and states. To this end, RGA provides the user with the ability to refer

to three built-in sets: the set of places in the net P, the set of transitions T, and

the set of reachable states S. Places are referred to by their names, while states are

referred to by their number (#0 is the initial state).

iniitem, s) The in function taJces two arguments, an item of any type, and

a set of items s. It returns true if the item is an element of the

indicated set, and false otherwise.

Table 2

Boolean-valued Primitive Function

2.1. Arithmetic Expressions

Arithmetic expressions follow the conventions of most modern programming

languages, with operators such as + , - , 'i', and /. The operands of these operators

are expressions whose values are integers. Places in the net are evaluated as the

number of tokens on that place in the context of some state written in parentheses

after the place name. Places may be evaluated as booleans in situations where

boolean values are expected. This feature is intended for safe graphs, so the place

must contain at most one token. Places which are evaluated without specifying a

state context are evaluated relative to a "current state" which is set by the f orall

and exists operators, and by the subset construct, described below. Table 1 shows

the set of predefined integer-valued primitive functions.

2.2. Boolean Expressions

As with other expressions, boolean expressions are built up from constants,

infix operators, predefined functions and user-defined functions. The boolean con

stants are the reserved words true and false.

The infix boolean operators are the conventional arithmetic comparison tests,

<. <=. >, >=, =, and !=. The equal and not equal tests may be applied to any

data types (places, states, sets, and booleans, as well as integer-valued expressions),

while the other operators are restricted to integer expressions. Some other infix

boolean operators apply to boolean expressions: implies, iff, and, and or.

Both the and and or operators are "short-circuit" operators which evaluate the

lefthand operand first, and then evaluate the righthand operand only if necessary.

src itf) Returns the source state of f/.

destCf/) Returns the destination state of t/.

treuisCf/) Returns the transition involved in the firing t/.

Table 3

State and Transition-valued Primitive Functions

The prefix unary operator not may be used to negate a logical expression. There

is only one primitive function which returns a boolean value, and it is shown in

Table 2.

2.3. State, Place, and Transition Expressions

States of the reachability graph and transitions in the net are numbered.

Particular states can be referenced using a # symbol followed by the number of the

state. Transitions are similarly referenced using a dollar sign and the transition

number. Places are referred to through the identifiers defined in the original Petri

net.

Arcs between nodes in a reachability graph model state transitions which

result from transitions firing. These arcs, or transition-firings {TFs), may be

referred to as a triple of the source and destination states and the transition which

is fired. For example, [#0, #10, $9] would be the arc from state #0 to state #10

firing transition $9.

Table 3 shows the primitive functions exist which return state or transition

values. All three take a transition-firing as their single argument, and return the

separate components of the TF.

Below are some examples of the types of expressions which can be constructed

with the capabilities described up to this point:

1. nsucc(s) >0

This expression will be true if state s has one or more successors. Such an

9

expression can be used to detect if s is deadlocked or is a proper terminal

state.

2. pl_eating(s) + p2_eating(s) + p3_eating(s) + p4_eating(s) <= 4/2

This tests if the number of philosophers eating (modeled using appropriately
named places) is less than or equal to the number of philosophers divided by
the number of forks needed to eat (in state s).

3. in(s, S') Sc marked(s) != 0

This expression is true if state s is a member of set of states S * and that

there is at least one marked place in s.

4. tokens(s) = tokens(#0)

This tests whether a state s contains the same number of tokens as the initial

state. If all states satisfy this predicate, the net is said to be conservative.

2.4. Set Expressions and Operations

The set operations are the single most powerful feature of the language. Sets

are composed of any legal data types, including other sets; all the elements of

a single set must be of the same type. Although sets should be considered to be

unordered, they are always maintained in ascending numerical order for convenience

in reading and comparing them. A single set is either a set variable, a set constant,

or a set-valued function.

A set constant is written as a list of expressions (which need not be constants)

within curly braces {}. For example, the set consisting of states 1, 5 through 10,

and 12 can be written

{#1, #5..#10, #12}

Another powerful way of specifying a set is the subset construct. It allows

elements to be selected from a set using any boolean expression as the selection

criterion. The subset construct is written

{id in set-expression | boolean-expression}

tf inCsfaie)

tfout (state)

suec (state)

pred (state)

allsucc (state)

allpred (state)

union (si, s2)

10

Returns the set of transition-firings whose destination state

is the indicated state.

Returns the set of TFs whose source state is the indicated

state.

The succ function takes a state expression as its argument.

It returns the (possibly empty) set of immediate successor
states in the reachability graph of the specified state.

The pred function is similar to the succ function, but it

returns the set of immediate predecessor states instead of

the successor set.

Returns the reflexive transitive closure of the immediate

successor set of a state.

Returns the reflexive transitive closure of the immediate

predecessor set of a state.

This function returns the set union of the two sets si and

s2, which must have elements of the same type, or at least

one must have zero cardinality.

intersection (si, s2) This function is similar to the imion function, but it re

turns the set intersection of its two arguments, which must

obey the same restrictions as in the union function.

setdiff(si, s2)

setop(/wnc, set)

The setdiff command takes two arguments with the same

restrictions as the union function. It returns the first set

minus any elements it has in common with the second set.

Elements of the second set which do no appear in the first

set are ignored.

The setop operator applies the monadic function func to
each element of the set. The set returned by the setop

function is the union of the results of the function exe

cutions. The function func may return values which are

either individual elements or sets of elements; it may be

either a user-defined function or a built-in one.

Table 4

Set-valued Primitive Functions

11

This construct creates a set of all elements in a given set set-expressionvihich. satisfy

the property specified in the boolean-expression. The predefined functions which

return sets are shown in Table 4.

Two of the language's most important operators are f orall and exists, the

universal and existential quantifiers. They allow traversal through sets, evaluating

a boolean expression for each element of the set. Their syntax is the same, so only

that of f orall will be given:

forall id in set [boolean-expression]

This expression is evaluated as follows. First, the current value of id is pushed

on the execution stack, to be popped off when the forall expression is finished

being evaluating. Next, the set is evaluated once and only once. The id is then

looped through the elements of the set one at a time. For each value of the id, the

boolean-expression is evaluated. If for all values, the expression evaluates to true,

then the whole expression returns that value. But if the expression ever evaluates to

false, then execution of the loop is halted immediately and the forall expression

returns false.

The exists expression is similar to forall, but with the logical tests reversed.

It continues to evaluate the boolean expression until it exhausts all the elements

of the set or until the expression evaluates to true. If the set is exhausted, then

exists returns false, and otherwise, true. Some examples of the set traversal

operators follow:

1. forall s in S [nsucc(s) > 0]

This predicate tests whether a net is deadlock-free.

2. forall s in S [forall p in P [p(s) <= 1]]

This expression is true if all the places in the net are safe (1-bounded) in all
states.

Thinkmg

1-fork

Fork
(i + 1) mod n

Figure 1

Petri Net for Dining Philosopher i

12

exists s in S [pl_eating(s) >0]

In the context of the dining philosopher example (discussed below), this
predicate determines if it is possible for philosopher 1 to eat. It should be

noted that this predicate does not in any way guarantee that philosopher 1

will ever eat.

2.5. A Simple Example

Now a short example is used to demonstrate some of the capabilities of

the analyzer. The dining philosophers problem will be used because it is widely

understood. Figure 1 shows the Petri net representation of one philosopher in the

13

/* Philosopher 1 model */
forkl_free,pr_thiiiking -> forkl_busy,pl_l_fork

fork2_free,pl_thiiiking -> fork2_busy,pl_l_fork

forkl_free,pl_i_fork -> forki_busy,pl_eating

fork2_free,pl_l_fork -> fork2_busy,pl_eating

pl_eating,forki_busy,fork2_busy -> forkl_free,fork2_free,pl_thiiiking

/* Philosopher 2 model */
fork2_free,p2_thiiiking -> fork2_busy,p2_l_fork

fork3_free,p2_thiiiking -> fork3_busy,p2_i_fork

fork2_free,p2_l_fork -> fork2_busy,p2_eating

fork3_free,p2_l_fork -> fork3_busy,p2_eating

p2_eating,fork2_busy,fork3_busy -> fork2_free,fork3_free,p2_thinking

/* Philosopher 3 model */
fork3_free,p3_thinking -> fork3_busy,p3_l_fork

forki_free,p3.thinking -> forkl.busy,p3_i_fork

fork3_free,p3_l_fork -> fork3_busy,p3_eating

forkl_free,p3_l_fork -> forkl.busy,p3_eating

p3_eating,fork3_busy,forkl.busy -> fork3_free,forkl.free,p3.thinking

/* Initial state */

<forkl.free(l), fork2_free(l), fork3.free(l), pl_thinking(l),
p2.thinking(i), p3_thinking(l)>

Figure 2

Dining Philosophers Problem for Three Philosophers

Symbolic Form of Petri Net

dining philosophers problem. The textual representation of the Petri net for the

problem with three philosophers is shown in Figure 2. Using the P-NUT tools, this

representation is converted into a canonical representation of the same net, from

which the reachability graph is built. The reachability graph is then read by RGA

so that the analysis can be done.

Figure 3 shows a sample run of the analyzer on the philosophers problem.

The line numbers at the left have been added for reference purposes. In line 3, the

user asks how many states there are in the reachability graph by determining the

cardinality of the set of all states S. There axe 26 states.

1 Loading graph diningS.rg

2 graph loaded

3 >card(S)

4 26

5 >forall a in S [nsucc(s) >0] /* test for deadlock-freeness */

6 false

7 >{s in S I nsucc(s) =0} /* find deadlocked state */

8 1#22}

9 >showstate(#22) /* print state symbolically */
10 forkl_busy pl_l_fork fork2_busy p2_i_fork fork3_busy p3_l_fork

11 >forall s in S [forall p in P [p(s) <= 1]] /* test for safeness */
12 true

13 >forall s in S [marked(s) = tokens(s)]

14 true

15 >exists s in S [pl_eating(s) >0] /* can phil. 1 eat? */
16 true

17 >{s in S I pl_eating(s) > 0}
18 {#7, #19, #20>

19 > /* test that at most One philosopher can eat at once */

20 >forall s in S [pl_eating(s) + p2_eating(s) + p3_eating(s) <= 3/2]
21 true

14

Figure 3

Analysis of Dining Philosophers Problem

On line 5, the user asks if the net is deadlock free (that each state has at least

one successor). RGA responds with false, that there is at least one deadlocked

state. The user then asks on line 7 for the set of all states s which have no

successors. The response is a set containing one state, #22. On line 9, the user

asks for a symbolic display of state #22, with the result shown on line 10. The

names are the names of the places as defined in the original Petri net, which have

one token. Multiple tokens would have been indicated by an integer in parentheses

following the place name.

In lines 11 and 13, the user determines if the net is safe, using two different

methods. Line 11 uses the strict definition of net safety, while the expression on

line 13 takes advantage of two built-in functions. Both expressions evaluate to true,

indicating that the net is safe. The expression in line 13 is computed many times

15

faster than the one in line 11 because it avoids the doubly nested loops by using

built-in functions.

All of the above tests apply equally to any net which might be analyzed

with RGA. Next, sorrie specific properties of the dining philosophers problem are

analyzed. In line 15, the user asks if it is possible for philosopher 1 to eat, and

the system responds true. The user then asks for the set of all states in which

the philosopher is eating, and RGA responds with a set of three states. Finally,

on line 20, the user verifies a property of the net which should be true, that the

maximum number of philosophers eating in any state must be less than or equal to

the number of philosophers divided by the number of forks needed by a philosopher

to eat. If this expression did not evaluate to true, then an error in the specification

of the net would be indicated. In this case, since integer division is used, 3/2 is

trunca,ted to 1, and therefore no two philosophers can ever be eating simultaneously.

In general, [^•/2j philosophers can eat simultaneously when there axe n dining

philosophers.

3. Advanced capabilities

The features of RGA described above allow a designer to traverse the graph

interactively and to prove some properties about the net. It may be possible, in

some cases, for a designer to develop an algorithm to perform more complex analysis

of the graph. It is therefore desirable to have the tool be able to execute user-defined

algorithms built from the primitive capabilities outlined earlier.

RGA allows any value to be assigned to an identifier using the assignment

operator (: =). It assigns the value of the expression on its right to the identifier on

its left. In addition, it returns that value as a result. The sequence of expressions

a := 1 and a := a + 1 would assign the identifier a the integer value 2. Then the

I

I

I

16

expression

a := {s in S I nsucc(s) = 0}

would assign to a the set of all deadlocked states. Each identifier represents a

<value, type> pair, so its type as well as its value can vary dynamically.

It is possible to assign to an identifier an expression, rather than the value of

the expression, using the ":: =" operator. The syntax used to define a function is

id (.formal-parameters) [locals-variables'] : := expression

The formal-parameters and locals-variables are lists of identifiers separated with

commas. If either of these lists is empty, then the corresponding parentheses or

brackets are omitted. The function invocation mechanism in RGA provides for

dynamic scoping of identifiers, as in LISP. Also as in pure LISP, recursion is often

the primary mechanism for specifying interation.

In order that user-defined functions can be sufficiently powerful, two special

expressions are included in the RGA language: expression lists and conditional

expressions. The semicolon (;) infix operator evaluates the expression on its

left and discards it, then evaluates and returns the expression on its right. It

is an associative operator, so the expression "1:2:3" evaluates to the integer 3.

Intuitively, it provides for sequential execution of expressions much like conventional

programming languages. The if expression is used for conditional expression

evaluation. It can take two different forms:

Lf ,boolean--expression tYiQTi expression fi

if boolean-expression then expression else expression fi

The type and value returned by the if expression depends on what expression, if

any, is executed.

Figure 4 shows a user-defined function, can_reach. It constructs the set

of states which can reach a particular state; thus it is the same as the primitive

EMPTYSET := O:

can_reach (s) ::= cr ({si, EMPTYSET, {s})

cr(frontier, tried, canreachset)[nfrentier] ::= \

if frontier = EMPTYSET \

then canreachset \

else nfrentier := EMPTYSET; \

tried := union (tried, frontier); \

forall s in frontier \

[nfrontier := union(nfrentier,pred(s)); \
canreachset := union (canreachset, pred(s)) ; \

true] I \

cr(setdiff(nfrontier, tried), tried, canreachset) \

fi .

Figure 4

A Small User-Defined Function

17

operation allpred except that the constructed set will contain the initial state.

With the dining philosophers problem, varying the number of philosophers from 2

to 8, it has been found that the primitive function is about 2.5 times faster than

the user-defined version.

The \ symbols in the figure are used to indicate that the end of a line is

not the end of the function definition. The can_reach function invokes a recursive

function cr which does the actual work. Cr takes three arguments, a frontier of

states which should be tried next, the set of states already tested, and the states

which have already been found to be able to reach the starting state. If there are

no more states in the frontier, then cr returns the set canreachset since nothing

more can be added to that set. Otherwise, it adds the frontier set to the set of

states which have been tried, and constructs the new frontier nfrontier as the set

of predecessors of the states in the current frontier. Then cr is called recursively,

removing any states from the new frontier which have already been tried.

I

I 4. An Extensive Example

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

18

4.1. The Alternating-Bit Protocol

A larger example is now presented which makes use of some of the more

sophisticated features of RGA. The example used is the alternating-bit protocol [1],

with message and acknowledgement queues of length two. In this protocol, there

are two communicating entities, a sender and a receiver. The sender sends message

packets to the receiver over an unreliable medium, with a flag bit attached to each

message. This flag is either a zero or one, alternating from one message to the

next. The receiver sends acknowledgement packets back to the sender which have

the same flag bit as the message packet being acknowledged. If the receiver receives

a packet with what it considers a bad flag, it still sends an acknowledgement packet

containing the flag received, which then serves as a negative acknowledgement to

the sender. The receiver then drops the bad packet.

Upon receiving a good packet, however, the receiver alternates its flag to be

ready to receive the next packet from the sender. The sender alternates its flag and

transmits its next message upon receiving a valid acknowledgment packet. It uses

timeouts and negative acknowledgments to determine when it should stop waiting

for an acknowledgement and retransmit its current message.

Figure 5 shows a Petri net representing a high-level description of of the al

ternating-bit protocol. For brevity, the global state of the system is represented as

two digits, the flrst being the sender's flag, and the second being the receiver's flag.

The system stays in state 00 until a message is successfully received by the receiver,

and it then enters state 01. When the acknowledgement is correctly received by

the sender, the system enters state 11; the sender has now alternated its flag, and

is attempting to send the next message. When that message is correctly received,

the system enters state 10, and after its acknowledgement is received by the sender,

the system returns to state 00. The transitions labelled "Bad Message" and "Bad

Bad
Message ^̂

Bad

Ack

Ackl

Received

sendO

recvO

sendl

recvO

MessageO

Received

sendO

recvl

sendl

recvl

AckO

Received

Message1

Received

Figure 5

Meta Level Petri Net for Alternating-Bit Protocol

Bad

Ack

Bad

Message

19

Ack" model timeouts and actions taken upon receipt of packets with bad flags. No

other transitions should be possible in a correct irnplementation of the protocol.

4.2. Petri Net Model of the Alternating-Bit Protocol

Figures 6 through 8 show the textual representation of a detailed Petri net

model of the alternating-bit protocol. The queues for messages being sent, and for

the acknowledgements returning, are modeled as circular queues. Both queues are

of length two in this model. The reachability graph for this Petri net has 1752

states.

The sender, shown in Figure 6, can be in one of four states: Sready, waitack,

ackO, or ackl. The send_f lagO and send_f lagl places indicate the state of the

sender's flag, ff there is no room in the message queue when the sender is ready to

send, then the sender will block until a slot becomes free. Once it has sent a message,

it enters the waitack state to await the acknowledgement message from the receiver.

Since simple Petri nets are incapable of representing time, the sender can retransmit

20

/* Sender sends msg */

Sready, send_flagO, slotO_empty, lastO -> msg0_0, lastl, slotO_filled,

send.flagO, waitack

Sready, send_flagl, slotO_empty, lastO -> magl_0, lastl, slotO_filled,

send_flagl, waitack

Sready, send_flagO, slotl_empty, lastl -> msgO_l, lastO, slotl_filled,

send_flagO, waitack

Sready, send_flagl, slotl_empty, lastl -> msgl_l, lastO, slotl_filled,

send_flagl, waitack

/* Sender dequeues an acknowledgement packet. */
waitack, first_ackO, filled_ackO, ack_m3g0_0 -> first_ackl, ack_slotO_empty,

ackO

waitack, first_ackO, filled_ackO, ack_msgl_0 -> first_ackl, ack_slotO_empty,

ackl

waitack, first_ackl, filled_ackl, ack_msgO_l -> first_ackO, ack_slotl_empty,

ackO

waitack, first_ackl, filled_ackl, ack_msgl_l -> first_ackO, ack_slotl_empty,
ackl

/* Good ack - alternate bit and send next message */
ackO, send_flagO -> send_flagl, Sready

ackl, send_flagl -> send_flagO, Sready

/* Bad ack - ignore it and let timeout take care of retransmitting msg */
ackO, send_flagl -> aend_flagl, waitack

ackl, send_flagO -> send_flagO, waitack

/* Timeout (if no acknowledgements available) and retransmit last msg */
waitack, first_ackO, ack_3lotO_empty -> Sready, first_ackO, ack_slotO_empty

waitack, first_ackl, ack_slotl_empty -> Sready, first_ackl, ack_slotl_empty

Figure 6

Alternating Bit Protocol — Sender Model

its last message at any time when it is waiting for an acknowledgement and there

are no acknowledgements in the queue.

The receiver, Figure 7, is in one of four states, Rready, acking, readO, and

readl. When Rready, the receiver waits until a message appears in the message

queue from the sender. When a message comes in, it verifies that the fiag bit on the

message corresponds to the type of message expected (rcv_flagO or rcv_flagl).

If the fiags match, an acknowledgement is sent with the same fiag bit, and the

receiver's flag is reversed in preparation for the next message. Otherwise, if the fiag

/* Receiver dequeues msg */
Rready, BlotO_filled, firstO, msg0_0 -> readO, firstl, alotO_empty

Rready, slotO.filled, firatO, msgl.O -> readl, firstl, siotO_empty
Rready, slotl_filled, firstl, msgO_l -> readO, firstO, slotl_empty

Rready, slotl_filled, firstl, msgl.l -> readl, firstO, slotl_einpty

/* Receiver verifies received msg matches rcv_flag */
readO, rcv_flagO -> rcv_flagl, acking, msgO /* Flip rcv_flag if good msg */
readl, rcv_flagl -> rcv_flagO, acking, msgl

readO, rcv_flagl -> rcv_flagl, acking, msgO /* Don't flip flag on bad msg */
readl, rcv_flagO -> rcv_flagO, acking, msgl

/* Receiver sends an acknowledgement with flag = flag received
acking, irisgO, ack_slotO_empty, last_ackO -> Rready, ack_msg0_0, last_ackl,

filled_ackO

acking, msgl, ack_slotO_empty, last_ackO -> Rready, ack_msgl_0, last_ackl,

filled_ackO

acking, msgO, ack_slotl_empty, last_ackl -> Rready, ack_msgO_l, last_ackO,

filled_ackl

acking, msgl, ack_8lotl_empty, last_ackl -> Rready, ack_m8gl_l, last_ackO,

filled_ackl

Figure 7

Alternating Bit Protocol — Receiver Model

21

/* Discard messages at random from both queues */
slotO_filled, firstO, msg0_0 -> slotO_empty, firstl

slotO_filled, firstO, msgl_0 -> slotO_empty, firstl

slotl_filled, firstl, msgO_l -> slotl_empty, firstO

slotl_filled, firstl, msgl_l -> slotl_empty, firstO

filled_ackO, first_ackO, ack_msg0_0 -> ack_slotO_empty, first_ackl

filled_ackO, first_ackO, ack_msgl_0 -> ack_slotO_empty, first_ackl

filled_ackl, first_ackl, ack_msgO_l -> ack_slotl_empty, first_ackO

filled_ackl, fir3t_ackl, ack_msgl_l -> ack_slotl_empty, first_ackO

/* INITIAL CONDITIONS */

<Sready, send_flagO, Rready, rcv_flagO, slotO_empty, slotl_empty,

ack_slotO_empty, ack_slotl_empty, lastO, last_ackO, firstO, first_ackO>

Figure 8

Alternating Bit Protocol — Line Noise and Initial State

bits did not match, the receiver sends an acknowledgement with a flag bit indicating

the type of message it received, giving the sender a negative acknowledgement.

22

Figure 8 shows the model of transmission line noise and the initial state of

the Petri net. This model of the alternating-bit protocol assumes that there is

some probability that line noise will destroy messages or acknowledgements. The

model never distorts messages (changes the message sequence number). There are

therefore some transitions which can absorb messages or acknowledgements before

they are received, simply dropping the packets. In the initial state, the sender is

ready to send a message with flag bit 0, the receiver is ready to receive a message

with flag bit 0, and both the message and acknowledgement queues are empty.

4.3. Verification of the Model

We have found that RGA can be useful in verifying that a Petri net model

of a system is correct, as well as in analyzing the system being modeled. Our

understanding of the alternating-bit protocol allows us to state several properties

this model of the protocol should exhibit if it is correct:

1. The model should be safe since each place is used as a boolean flag.

2. The sum of the tokens on Sready, waitack, ackO, and ackl will be 1 for
all states since these are mutually exclusive conditions. Send_flagO and
send_f lagl are also mutually exclusive.

3. The sum of the tokens on Rready, acking, readO, and readl should be 1 for

all states. This also verifles that readO and readl are mutually exclusive.

4. The sum of rcv_flagO and rcv_flagl should be 1 for all states, verifying

that the receiver expects only one type of message at any one time.

5. For each slot in the each queue, at most one flag bit should be set. For

instance, msg0_0 and msgl_0 should be mutually exclusive. In states where

neither are set, then that slot should be available (e.g., slotO_empty). A slot
should not be both available and fllled (e.g., slotO_empty and slotO_f illed
are mutually exclusive).

6. The system should behave as described by Figure 5. Transition-firings should

not exist between the states other than those shown. The transitions which

loop from each of the system states should be fired only when a message or

acknowledgement has not been received successfully. To get from state 00

to state 11, or state 11 to state 00, exactly one good message should have

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

23

/* Test for safeness */

is_safe ::= forall a in S [tokensCs) = marked(s)]

/* Test for consistency of the sender */
sender_consistent ::= forall s in S [(Sready + waitack + ackO + ackl = 1) & \

(send_flagO + aend_flagl = 1)]

/* Test receiver properties */
rcvr_consistent :;= forall s in S [(Rready + acking + readO + readl = 1) & \

(rcv_flagO + rcv_flagl = 1)]

/* Test consistency of the message and acknowledgement queues */
qs_consistent ::= \

forall s in S [slotO_filled + slotO_empty = 1 4 \
slotl_filled + slotl_empty = 1 & \

filled.ackO + ack_slotO_empty = 1 4 \
filled.ackl + ack_slotl_empty = 1] 4 \

forall s in S [(msgO.O + msgl_0=0 iff slotO.empty) 4 \
(msgO.l + msgl_l=0 iff slotl.empty) 4 \
(ack_msg0_0 + ack_msgl_0=0 iff ack_slotO_empty) 4\
(ack_msgO_l + ack_msgl_l=0 iff ack_slotl_empty)]4\

forall s in S [magO.O + msgl.O <=14 msgO.l + msgl.i <= 1 4 \
ack_msg0_0 + ack_msgl_0 <= 1 4 ack_msgO_i + ack_msgl_l <= 1]

Figure 9

Verification of Alternating-Bit Protocol Model

been received by the receiver, and one good acknowledgement received by the
sender.

Properties 1 through 5 can be seen as properties which are used to verify that

the model behaves in a way which is consistent with our intent. Property 6 verifies

that it behaves as a correct alternating-bit protocol.

Figure 9 shows the RGA functions used to verify that these properties hold for

this model. The test for net safeness is discussed above. The sender_consistent

function tests that waitack and Sready are mutually exclusive, and that the sender

is always in one of those two states or in the intermediate state of deciding whether

it has received a valid acknowledgement (ackO or ackl). It then tests that for states

which have a token on send_flagO or send_f lagl, there are never tokens on both

places at once.

24

The receiver is consistent if it is waiting to read, has read a packet with a

zero or one flag, or it is sending an acknowledgement with a zero or one flag. These

states are all mutually exclusive. The receiver must in any state be prepared for the

next packet read to have a speciflc flag value, so rcv_flagO(s) + rcv_flagl(s)

must also be one for all states s. The rcvr_consistent function tests for all of

these conditions simultaneously.

The sender and acknowledgement queues are in consistent states if the slots

are always fllled or empty, there is not a message in a slot if and only if the slot is

empty, and there is never more than one message type in any slot. These conditions

are tested by function qs_consistent.

Finally, we wish to show that the system exhibits the overall flow described in

Figure 5. The variables sOrO, sOrl, slrO, and slrl, initialized in the make_subsets

routine, are the mutually-exclusive subsets of all states of the system based on the

marking of the send_flagO, send_flagl, recv_flagO, and recv_flagl places.

They represent the four places in Figure 5. The sets of transitions trOrl and

trlrO are the transitions which are flred upon the receipt of a valid message packet,

while tsOsl and tslsO are those which are fired upon receipt of acknowledgment

packets. In Figure 6, tsOsl is the ninth transition, and tslsO is the tenth. In

Figure 7, trOrl is the fifth transition shown, and trlrO is the sixth.

The subset_ok function tests that from one set of states, all transitions lead

to either that same or to the subsequent place (set of states) in the net of Figure 5.

The sets si and s2 are the sets of states which represent consecutive places in the

net of Figure 5. For example, sOrO and sOrl. The set t is the set of transitions flred

upon a successful receipt of a message or acknowledgement (e.g., trOrl). There

will be at least one of each of these types of transitions. Then all the transitions out

of the place are tested to verify that they lead to either the same or the subsequent

set of states. In addition, a transition from a set of states to itself (e.g., sOrO to

I

I

25

/* Test that the system exhibits expected overall flow */

/* Create subsets of states used in functions below */

sOrO := {s in S 1 send_flagO k rcv_flagO>
sOrl := {s in S | send_flagO k rcv_flagl>
slrO := -Cs in S | send_flagi k rcv_flagO>
slrl := {s in S | send.flagi k rcv_flagl)-
sO := {s in S | send_flagO}-; si := -Cs in S | send_flagl};
rO := "Cs in S | rcv_flagO}-: rl := {s in S | rcv_flagl)-;
trOrl := setop(trans, intersection(aetop(tfout, rO), setop(tfin, rl)))
trlrO := setop(trans, intersection(setop(tfout, rl), setop(tfin, rO)))
tsOsl := setop(trans, interaection(setop(tfout, sO), aetop(tfin, si)))
tslsO := setop(trans, intersection(setop(tfout, si), setop(tfin, sO)))

cardCsOrO) >04 card(sOrl) >04 card(alrO) >04 card(slrl) > 0 4 \
card(trOrl) =14 card(trlrO) =14 card(tsOsl) =14 card(tslsO) = 1

/* A subset si is "ok" if all transition-firings lead to other states in the
same group or to states in the next metastate */

subset_ok(sl, s2, t)[tfs, tf, s] ::= \

tfs := setopCtfout, si); \

(exists tf in tfs [in(dest(tf), si)] 4 \

exists tf in tfs [in(deat(tf), s2)] 4 \

forall tf in tfs [s := dest(tf): \

((in(s, si) 4 not in(trans(tf),t)) | (in(s, 82) 4 in(trans(tf),t)))])

/* The model is correct if each metastate is "ok" by the above definition */
subset_ok(sOrO, sOrl, trOrl) 4 subset_ok(sOrl, slrl, tsOsl) 4 \

subset_ok(slrl, slrO, trlrO) 4 subset_ok(slrO, sOrO, tslsO)

Figure 10

Verification of Overall Model Behavior

sOrO) must not involve firing the successful-receipt transition, while those leading

to the second state (sOrl) must always do so.

The subsets_ok function merely invokes subset_ok for each of the four pairs

of places in Figure 5 and the appropriate set of transitions. Since this function

returns true, RGA verifies that the model does exhibit the behavior expected of

the alternating-bit protocol. It also verifies that in going from state 00 to state 11,

or from state 11 to state 10, exactly one message and one acknowledgement are

successfully received.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

26

5. Conclusion

The reachability graph analyzer program allows many system-independent

and system-specific properties of concurrent systems modeled using Petri nets

to be verified. The tool provides primitives from which complex user-defined

propositions can be constructed about the states of the reachability graph. RGA

then mechanically verifies the propositions for a particular graph. It has been used

to analyze graphs with over 6500 states. Often, clever function definitions can

be used to avoid brute-force approaches to verifying system properties, leading to

significant time savings with large graphs.

Other tools are needed to aid in the automatic generation and analysis of

Petri nets. RGA is only one of a suite of tools currently being developed for

this purpose at UCI. Other tools include Petri net editors, optimizers, animators,

and simulators, and reachability and decision graph builders. The tools are being

designed to interconnect easily, allowing the greatest possible fiexibility in the design

and analysis of concurrent systems expressed as Petri nets.

I

I

References

[1] K. A. Baxtlett, R. A. Scantlebury, and P. T. A. Wilkinson, "Note on Reliable

Full-Duplex Transmission Over Half-Duplex Links," CACM, vol. 12, no. 5,
pp. 260-261, May, 1969.

[2] G. Berthelot and R. Terrat, "Petri Net Theory for the Correctness of Proto
cols," Proceedings, Second International Workshop on Protocol Specification,
Testing, and Verification, C. A. Sunshine, Ed., pp. 325-342, Amsterdam:
North-Holland, May, 1982.

[3] K. Gostelow, V. G. Cerf, G. Estrin, and S. Volansky, "Proper Termination
of Flow of Control in Programs Involving Concurrent Processes," SIGPLAN
Notices, vol. 7, no. 11, 1972.

[4] B. Hailpern and S. Owicki, "Verifying Network Protocols Using Temporal
Logic," Proc. of Trends and Applications Symposium, 1980, Computer Net
work Protocols, Maryland: National Bureau of Standards, May, 1980.

[5] R. M. Keller, "Formal Verification of Parallel Programs," Commun. ACM,
vol. 19, no. 7, pp. 371-384, July, 1976.

[6] J. Martinez and M. Silva, "A Simple and Fast Algorithm to Obtain All Invari
ants of a Generalized Petri Net," Second European Workshop on Application
and Theory of Petri Nets, C. Girault and W. Reisig, Eds., pp. 301-310, New
York: Springer-Verlag, 1982.

[7] E. T. Morgan, "RGA Users Manual," Technical Report Number 243, Univer
sity of California, Irvine: Department of Information and Computer Science,
Dec., 1984.

[8] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Englewood
Cliffs: Prentice-Hall, 1981.

[9] J. Postel, "Graph Modeling of Computer Communications Protocols," Pro

ceedings of the 5th Texas Conference on Computing Systems, pp. 66-77,

Austin, Texas, Oct., 1976.

[10] R. R. Razouk and G. Estrin, "Modeling and Verification of Communication

Protocols: The X.21 Interface," IEEE Transactions on Computers, vol. C-29,
no. 12, pp. 1038-1052, Dec., 1980.

27

I
28

• [11] R. R. Razouk and C. V. Phelps, "Performance Analysis Using Timed Petri
® Nets," Technical Report Number 206, University of California, Irvine: De

partment of Information and Computer Science, Aug., 1983.

[12] K. Sabnani and M. Schwartz, "Verification of a Multidestination Protocol
Using Temporal Logic," Protocol Specification, Testing, and Verfication, C. A.
Sunshine, Ed., Amsterdam: North-Holland, 1982.

[13] J. Sifakis, "Petri Nets for Performance Evaluation," Measuring, Mod
elling, and Evaluating Computer Systems, H. Beilner and E. Gelenbe, Eds.,
pp. 75-93, Amsterdam: North-Holland, 1977.

[14] D. M. Stanat and D. F. McAllister, Discrete Mathematics in Computer
Science, Englewood Cliffs: Prentice-Hall, 1977.

[15] C. A. Sunshine, "Formal Techniques for Protocol Specification and Verifica

tion," /EEE'Computer, pp. 20-27, Sept., 1979.

[16] F. J. W. Symons, "Verification of Communication Protocols Using Numerical
Petri Nets," Austra/mn Telecommunication Research, vol. 14, no. 1, pp. 34-38,
1980.

[17] W. M. Zuberek, "Timed Petri Nets and Preliminary Performance Evaluation,"
7th Annual Symposium on Computer Architecture, pp. 88-96, 1980.

