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Abstract Purpose:
Nowadays, with the increased diffusion of Cone Beam Computerized Tomography (CBCT) scanners in
dental and maxilla-facial practice, 3D cephalometric analysis is emerging. Maxillofacial surgeons and
dentists make wide use of cephalometric analysis in diagnosis, surgery and treatment planning. Accuracy
and repeatability of the manual approach, the most common approach in clinical practice, are limited by
intra- and inter-subject variability in landmark identification. So, we propose a computer-aided landmark
annotation approach that estimates the three-dimensional (3D) positions of 21 selected landmarks.
Methods:
The procedure involves an adaptive cluster-based segmentation of bone tissues followed by an intensity-
based registration of an annotated reference volume onto a patient Cone Beam CT (CBCT) head volume.
The outcomes of the annotation process are presented to the clinician as a 3D surface of the patient skull
with the estimate landmark displayed on it. Moreover, each landmark is centered into a spherical
confidence region that can help the clinician in a subsequent manual refinement of the annotation. The
algorithm was validated onto 18 CBCT images.
Results:
Automatic segmentation shows a high accuracy level with no significant difference between automatically
and manually determined threshold values. The overall median value of the localization error was equal to
1.99 mm with an interquartile range (IQR) of 1.22–2.89 mm.
Conclusion:
The obtained results are promising, segmentation was proved to be very robust and the achieved accuracy
level in landmark annotation was acceptable for most of landmarks and comparable with other available
methods.
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Abstract1

Purpose Nowadays, with the increased diffusion of Cone2

Beam Computerized Tomography (CBCT) scanners in den-3

tal and maxilla-facial practice, 3D cephalometric analysis4

is emerging. Maxillofacial surgeons and dentists make wide5

use of cephalometric analysis in diagnosis, surgery and treat-6

ment planning. Accuracy and repeatability of the manual7

approach, the most common approach in clinical practice,8

are limited by intra- and inter-subject variability in landmark9

identification. So, we propose a computer-aided landmark10

annotation approach that estimates the three-dimensional11

(3D) positions of 21 selected landmarks.12

Methods The procedure involves an adaptive cluster-based13

segmentation of bone tissues followed by an intensity-based14

registration of an annotated reference volume onto a patient15

Cone Beam CT (CBCT) head volume. The outcomes of the16

annotation process are presented to the clinician as a 3D sur-17

face of the patient skull with the estimate landmark displayed18

on it. Moreover, each landmark is centered into a spherical19

confidence region that can help the clinician in a subsequent20

manual refinement of the annotation. The algorithm was val-21

idated onto 18 CBCT images.22

Results Automatic segmentation shows a high accuracy23

level with no significant difference between automatically24

and manually determined threshold values. The overall25
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median value of the localization error was equal to 1.99 mm 26

with an interquartile range (IQR) of 1.22–2.89 mm. 27

Conclusion The obtained results are promising, segmenta- 28

tion was proved to be very robust and the achieved accuracy 29

level in landmark annotation was acceptable for most of land- 30

marks and comparable with other available methods. 131

Keywords Cone beam CT · Cephalometry · 32

Image segmentation · Image registration 33

Introduction 34

The measurement of the head, known as cephalometry, con- 35

siders both soft and hard tissues and has many applications 36

in today’s world. The application of cephalometry to the 37

clinical needs, commonly known as cephalometric analysis, 38

is widely used in dental applications, such as orthodontics 39

and implantology, and in surgical planning and treatment 40

evaluation for maxillofacial surgery [1–3]. Traditionally, 41

cephalometric analyses have been manually performed on 42

a 2D cephalogram, which is a standardized tracing of cran- 43

iofacial structures as depicted by a latero-lateral radiography 44

of the head. Currently, with the diffusion of Cone Beam 45

Computerized Tomography (CBCT) scanners, 3D cephalo- 46

metric analysis is emerging [4]. CBCT is used for small 47

segments of the body, such as the head or part of it, and 48

generally delivers lower dose to the patient, compared to CT 49

[5]. In particular, CBCT is a useful tool for identification 50

and evaluation of treatment outcomes, becoming one of the 51

most common image modality used to visualize the facial 52

skeleton [6–8]. Both maxillofacial surgeons and dentists can 53

foresee remarkable developments by the aid of computerized 54

methods permitting to easily extract individual features and 55

perform measurements. 56
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Nowadays, manual point-picking represents the method of57

choice to perform 3D cephalometric analysis; however, this58

approach is limited in accuracy and repeatability due to the59

differences in intra- and inter-operator landmark identifica-60

tion [9–11]. The need to overcome these limitations recently61

led to the development of aided, automated or nearly auto-62

mated methods [12–18]. Here, we propose a semiautomatic63

computerized method that can help the clinician to annotate64

three-dimensional CBCT volumes of the human head, using65

intensity-based image registration.66

Materials and methods67

The proposed algorithm, entirely developed in MATLAB68

(MathWorks, Natick, MA, USA), automatically segments69

the skull from CBCT volumes of the human head and subse-70

quently estimates a number of cephalometric landmarks. The71

flowchart of the proposed algorithm is presented in Fig. 1.72

Anatomical landmarks73

In this study, a set of fiducial points, which location will74

be estimated, must be decided and defined. To validate the75

proposed method, a set of 21 landmarks, commonly used in76

clinical practice and distributed all over the skull surface,77

was chosen [19]. All chosen landmarks and their definition78

are listed in Table 1 [20].79

Dataset 80

Datasets of 18 subjects who underwent CBCT imaging 81

examination at the SST Dentofacial Clinic, Italy, were retro- 82

spectively selected. These images were acquired for reasons 83

independent of this study, and in all acquisitions, the device 84

was operated at 6–10 mA (pulse mode) and 105 kV using a 85

X-ray generator with fixed anode and 0.5 mm nominal focal 86

spot size. All images were acquired with cephalometric field 87

of view (200 mm×170 mm). All subjects were adult healthy 88

Caucasian women, aged from 37 to 74 years, who had teeth 89

in both dental arches. No limitations was set to the presence 90

of dental implants, dental fillings or even on particular dental 91

treatments carried out before the radiological examination. 92

Image preprocessing 93

In order to standardize the structures in the CBCT data, the 94

proposed method requires a single initialization step that con- 95

sists in pointing the most inferior point of the mandibular 96

bone. Currently, this is the only manual operation required; 97

however, this is easy to automatize, provided a standard 98

patient’s positioning on the scanner chin set. Next, the volume 99

is cut off below the selected slice and the algorithm proceeds 100

automatically in landmarks’ identification. This simple step 101

defines a common criterion for volume limitation capable of 102

providing a coarse standardization of the structures. 103

Fig. 1 Flowchart of the presented algorithm, which receives a DICOM file as input, articulates in 3 phases: image preprocessing, segmentation

and registration and returns the landmark coordinates as output
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Table 1 List of the 21 estimated landmarks as defined by Swennen et al. [16]

Landmark name Abbreviation Definition

Sella turcica S The center of the hypophyseal fossa

Nasion N The midpoint of the frontonasal suture

Left and right gonion lGo and rGo The point at each mandibular angle that is defined by dropping a

perpendicular from the intersection point of the tangent lines to the

posterior margin of the mandibular vertical ramus and inferior margin of the

mandibular body or horizontal ramus

Anterior nasal spine ANS The most anterior midpoint of the anterior nasal spine of the maxilla

Pogonion Pg The most anterior midpoint of the chin on the outline of the mandibular

symphysis

Menton Me The most inferior midpoint of the chin on the

Left and right orbitale lOr Outline of the mandibular symphysis

Posterior nasal spine PNS The most inferior point of each infraorbital rim

Left and right posterior maxillary points lPM and rPM The most posterior midpoint of the posterior nasal spine of the palatine bone

Left and right upper incisor lUI and rUI Is the most mesial point of the tip of the crown of each upper central incisor

Left and right lower incisor lLI and rLI Is the most mesial point of the tip of the crown of each lower central incisor

Frontozygomatic point lFZ and rFZ The most medial and anterior point of each frontozygomatic suture at the

level of the lateral orbital rim

A point A The point of maximum concavity in the midline of the alveolar process of the

maxilla

B point B Point of maximum concavity in the midline of the alveolar process of the

mandible

Basion Ba The most anterior point of the great foramen

Subsequently, to improve the accuracy of the segmenta-104

tion procedures and to make it robust to the presence of noise,105

the image was filtered using a three-dimensional low-pass106

Gaussian filter. The size of this cubic filter was set to 3 voxels107

in order to limit the blurring effect, increase signal-to-noise108

ratio and preserve the morphology of craniofacial bones [21].109

Image segmentation110

The segmentation algorithm aims at a standard hard tissue111

thresholding, though after a subject-specific adaptation with112

no manual interaction and no training dataset or previously113

developed models. A major consideration driving the algo-114

rithm design was that CBCT scanners provide less calibrated115

contrasts than CTs, thus reducing the confidence in preset116

thresholds [22].117

This aim was approached by k-means clustering sepa-118

rately performed on a representative subset of the volume119

slices. In particular, the k-means clustering was chosen due120

to its low sensitivity to initialization parameters, relatively121

low computational complexity and its suitability for biomed-122

ical image segmentation since the number of clusters can be123

easily defined based on prior anatomical knowledge [23,24].124

The present validation considered a 1:2 reduction, by ana-125

lyzing each second slice; however, further preliminary trials126

revealed that higher reduction factors improved efficiency127

with no accuracy loss. As detailed below, the statistics of128

clusters was used to set the optimal soft/hard tissue separa- 129

tion threshold; also, a good robustness against dental metal 130

artifacts was achieved by proper elimination of low-density 131

outliers. 132

Within each subset, slice tissues were classified into 4 133

main categories, one representing air, two representing soft 134

tissues and one representing hard tissues. The classification 135

was performed using a k-means clustering approach [25]. The 136

following statistics through the subset of slices considered 137

the minimum of the highest intensity cluster; i.e., the one 138

intended to classify bone and tooth tissue. 139

These values allowed to determine the global threshold 140

which was defined at the 10th percentile of the population of 141

minima. This threshold value was shown to make the algo- 142

rithm robust to misclassification of tissues in a limited (i.e., 143

less than 10 %) number of slices that are easily classified as 144

outliers. The 10 % rule was selected to avoid a specific search 145

of outliers. 146

After the optimized threshold value was obtained, it was 147

possible to proceed with the thresholding of the entire volume 148

that needs to be segmented, since preliminary analyses con- 149

firmed that possible intensity calibration trends through slices 150

were negligible. The outcome of single-voxel thresholding 151

was next improved by removing all the residual volumes of 152

the segmentation process, caused by the presence of noise or 153

artifacts. A 3D labeling process identified all structures, and 154

those presenting a volume lower than 0.1 % of the total seg- 155
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Fig. 2 The figure shows, in a median sagittal slice, which structures

are maintained during the segmentation process

mented volume were eliminated. An example of the outcome156

of the segmentation process is shown in Fig. 2.157

Image registration158

Landmark placement was based on the propagation of land-159

marks through the registration on an annotated reference160

skull. The reference skull was automatically segmented with161

the above-presented method and annotated in a double-blind162

process by three expert operators for three times, in order to163

take intra- and inter-operator variability into account. Each164

operator had at least 4 years of experience in morphologi-165

cal evaluation of the skull. To allow the user to annotate the166

reference skull, a dedicated guided user interface (GUI) was167

created using MATLAB. This GUI allowed the user to anno-168

tate the skull visualizing multiplanar reconstruction (MPR)169

views. Once all the operators performed the annotation, the170

center of mass of all annotations was used as final landmark171

positions.172

In previous investigations, deformable registration173

approaches have been used to align corresponding struc-174

tures in different images in order to estimate anatomical175

landmarks, as such methods take into account the global176

appearance information of the anatomical structures [26–28].177

During this step, segmentation for both subject and reference178

was used for masking only, thus keeping the information179

of gray levels inside the segmented bone. Registration was180

started by affine transformation that, being global and linear,181

permits rescaling according to the individual proportions and182

also allows a robust compensation of the different volumetric183

FOVs occurring in CBCT. Its transform is expressed by:184

F : xF ∈ �F → F(xF )185

M : xM ∈ �M → M(xM )186

where F(xF ) is an intensity value of the image F at the 187

location xF , �F is the domain of the image F, M(xM ) is an 188

intensity value of the image M at the location xM and �M is 189

the domain of image M [15]. The mean squared intensity dif- 190

ference (MSD) was applied as registration objective function 191

to be minimized. This cost figure is defined as follows: 192

M SD =
1

N

∑

xF∈�T
F,M

∣

∣

∣

F (xF) − MTa (xM)

∣

∣

∣

2
(1) 193

where xF represents the voxel locations in image F and �T
F,M 194

represents the overlap domain consisting of N voxel subset. 195

Trilinear interpolation was applied in computing the trans- 196

formed image gray levels and an iterative gradient descent 197

algorithm was applied to find the optimal transform: 198

Ra = MTa = Ta (M) (2) 199

The affine registration (linear) step was used as ini- 200

tialization of a subsequent elastic registration (nonlinear). 201

Importantly, the algorithm was designed to avoid deforma- 202

tions due to the presence of different anatomical structures in 203

the image volumes, which were caused by the limited field of 204

view of CBCT images and inter-subject morphological vari- 205

ability. This problem was solved by shrinking the subjects 206

mask to the overlap subset TF,M found after the first affine reg- 207

istration step, thus cutting out the individual volume in excess 208

to the reference volume. Then, the skulls were processed 209

with a subsequent step of intensity-based global elastic reg- 210

istration, by MATLAB Medical Image Registration Toolbox, 211

MIRT, Free Form Deformation (FFD) with three hierarchi- 212

cal levels of B-spline control points [30,31]. A wide mesh 213

window size between the B-spline control points of 15 vox- 214

els was set, in order to register the main skull features while 215

avoiding deformation relevant to the largely varying bone 216

structure details and to artifacts. As a result, the number of 217

control points varied for each image, depending on its size. 218

Moreover, in order to prevent the mesh to get too much 219

deformed, a regularization term was used. In particular, the 220

Euclidean distance between all the neighboring displace- 221

ments of B-spline control points was penalized [30]. In our 222

algorithm, the regularization weight was set to 0.1. Both mesh 223

window size and regularization weight were empirically 224

determined to give the best performance in term of accuracy. 225

Like the affine one, the elastic registration was an iterative 226

process, which optimizes the MSD voxel similarity measure 227

using a gradient descent optimization method with 3 hierar- 228

chical levels of optimization. This additional transformation 229

Te is defined as: 230

Re = Te (Ra) (3) 231

An example of the outcome of these registration steps is 232

depicted in Fig. 3, which shows how the elastic registration 233
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Fig. 3 Example of affine registration (above) and affine + elastic reg-

istration (below). Median sagittal view of the segmented subject skull

(light) with the register

allowed to better adapt the morphology of the reference skull234

to the patient’s one, compared to the affine step.235

Landmark estimation236

Through the registration phase, the algorithm superimposes237

and deforms the reference skull to comply with the mor-238

phology of the patient based on the intensity values of the239

segmented CBCT images. The combined transformations240

Ta and Te can be readily applied to the coordinates of241

cephalometric landmarks annotated on the reference skull242

thus labeling the skull under examination.243

Namely, the affine transformation Ta is described by a244

4×4 matrix Ta (12 degrees of freedom) applied to the i-th245

landmark pi (i = 1, . . .21) to obtain the landmark estimate246

in the patient’s reference system, p̂
a
i [29]:247

p̂
a
i = Tapi (4)248

The elastic transformation Te was implemented numerically249

on a zeros volume, the size of the original volume, marked250

with a single 1 at the landmark position. The transformed 251

image was no more binary, and the center of mass coordi- 252

nates was taken as transformed landmark coordinates. The 253

21 landmark coordinates were collected in a vector p̂e rep- 254

resenting the final estimation of the chosen cephalometric 255

landmark coordinates. 256

At the end of the annotation process, each annotated land- 257

mark is displayed on the 3D surface of the patient skull. 258

Moreover, each landmark is centered into a spherical con- 259

fidence region that helps the clinician during a subsequent 260

eventual manual refinement of the annotation, as can be seen 261

in Fig. 4. The radius of the confidence spheres was set to the 262

95th percentile of the annotation error population calculated 263

during the validation step. 264

Validation 265

Optimized thresholding, though preliminary to registration 266

and automated annotation, was considered a crucial step 267

deserving a specific validation. Therefore, the algorithm out- 268

comes were compared to the manual thresholding performed 269

by an experienced user on the whole data set. Both thresh- 270

old values and segmented volumes were compared testing 271

correlation and significance of differences of automatic vs. 272

manual identification. Depending on the normality of data, 273

either Student’s t test or Wilcoxon signed-rank test was used; 274

p value significance level was set to 0.05. The normality of 275

data distribution was checked with Jarque-Bera test; also in 276

this case significance level was set to 0.05. 277

To evaluate the quality of the annotations performed in 278

this study, all CBCT volumes were manually annotated. In 279

particular, in order to take the inter-operator variability of the 280

annotation process into account, a team of expert users man- 281

ually annotated the image dataset. This way, for each subject, 282

the expected location of the 21 cephalometric landmarks can 283

be defined as the barycenter of the operators’ annotation. 284

Fig. 4 shows an example of manually and automatically anno- 285

tated landmarks. 286

Subsequently, the Euclidean distance, expressed in mm, 287

between the position of each manually annotated landmark 288

and the position of its corresponding landmark estimated by 289

the proposed algorithm, was calculated. These distances will 290

be subsequently used to display confidence regions around 291

the estimate landmarks in order to allow the user to easily 292

place the landmark in the most suitable place. 293

Results 294

Segmentation 295

To evaluate the accuracy of the segmentation process, both 296

threshold values and segmented volumes were compared. 297
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Fig. 4 Example of the proposed, computer-aided, annotation process outcome; each landmark is cantered into a spherical confidence region (95th

percentile of the annotation error population) that can help the clinician in a subsequent manual refinement of the annotation

Both manual and automatic threshold values resulted nor-298

mally distributed (p > 0.05). They were highly correlated (R299

= 0.96, p < 0.001), and no significant difference was found300

between them (p > 0.05), thus indicating that the automatic301

optimization well reproduced the threshold setting of experts.302

Segmented volume values resulted not normally distrib-303

uted (p < 0.05), and nonparametric tests were used for their304

statistical comparisons. Even for these values, a high level305

of accuracy was found between automatically and manually306

segmented volume values (ρ = 0.98, p < 0.001) and no sig-307

nificant differences were found between the two groups (p >308

0.05).309

Landmark estimation310

The mean (standard deviation) inter-operator interclass cor-311

relation coefficient (ICC) for all the analyzed landmarks was312

0.98 (0.04).313

The overall median value of the computer-aided local-314

ization error was equal to 1.99 mm with an interquartile315

range (IQR) of 1.22–2.89 mm. This median error expressed in316

the horizontal, vertical and transverse direction was equal to317

0.60, 0.86 and 0.89 mm, respectively. These distances widely318

varied among different landmarks. In particular, among the319

calculated estimation errors the lowest value was reported for320

the PNS landmark with a median value of 1.47 mm and an321

IQR of 0.79–1.76 mm. On the other hand, the highest values322

were observed for Gonia, respectively, right Gonion with a323

median value of 2.81 mm and an IQR of 1.46–4.83 mm and 324

left Gonion with a median value of 4.00 mm and an IQR of 325

2.00–4.86 mm. 326

Considering all landmarks, annotation error was less than 327

5.00 mm for 90 % of landmarks and less than 2.50 mm for 328

63 % of them. The descriptive statistics for the obtained dis- 329

tances for each landmark are shown in Table 2. 330

Conclusion 331

The proposed method allows to find a good estimate of land- 332

mark positions, which may subsequently be refined by the 333

clinician, saving operator time and reducing annotation vari- 334

ability. 335

Nowadays, the annotation of cephalometric points is 336

mainly performed manually. Recent studies reported that the 337

error caused by identification of landmark varies between 338

0.02 and 2.47 mm [9–11,32]. Therefore, one important aim 339

for the evaluation of skeletal morphology in maxillofacial 340

patients is to reduce the landmark identification error below 341

2.00 mm [32]. 342

In the present study, landmarks lying in different loca- 343

tions present largely different average localization errors. 344

Using our method, Gonia arise as the most difficult mark- 345

ers to localize. As a matter of fact, this reflects the variability 346

of human anatomy and manual annotation. The mandibular 347

bone, statistically, is among the most variable bones of the 348
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Table 2 Descriptive statistics of

the obtained Euclidean distances

for each landmark

Landmark Median [mm] IQR [mm] Max [mm] Min [mm]

S 1.42 0.82–1.73 3.53 0.60

N 2.27 1.20–2.92 4.71 0.28

lGo 4.00 2.00–4.86 8.33 0.45

rGo 2.81 1.46–4.83 6.62 0.28

ANS 2.35 1.74–2.97 5.70 0.60

Pg 2.87 2.11–4.05 5.24 0.00

Me 1.61 1.36–2.09 3.60 0.30

lOr 1.47 0.89–2.23 4.46 0.28

rOr 1.34 0.83–2.27 5.20 0.30

PNS 1.47 0.79–1.76 4.62 0.30

lPM 1.61 1.09–2.41 3.63 0.50

rPM 1.97 1.25–2.93 7.26 0.69

lUI 1.40 0.95–2.05 3.60 0.37

rUI 2.01 1.39–2.40 7.27 0.82

lLI 2.19 1.68–2.58 3.89 1.04

rLI 3.07 2.22–3.92 5.84 0.92

lFZ 1.81 1.13–4.30 6.60 0.50

rFZ 2.01 1.31–2.94 6.98 0.82

A 1.73 1.04–2.35 3.68 0.69

B 2.83 1.64–3.68 5.31 0.73

Ba 2.22 1.68–2.67 2.98 1.08

All 1.99 1.22–2.89 8.33 0.0

skull [33], and this is reflected in the estimation of right and349

left Gonion [34].350

In this study, since annotation errors were not normally351

distributed among different patients (p < 0.001), the median352

annotation error was used to access the process accuracy of353

the annotation process. In particular, the median annotation354

error was found as 1.99 mm with an IQR of 1.22–2.89 mm.355

In a recent study, Shahidi et al. validated an algorithm for356

landmark annotation based on 3D image registration for 14357

landmarks on a dataset of 20 CBCT images. They obtained358

an overall mean error of 3.40 mm, which is significantly359

higher compared to the one obtained with the current method360

[16]. In another study, Gupta et al. proposed a knowledge-361

based algorithm for automatic detection of cephalometric362

landmarks on CBCT images that was validated on 30 CBCT363

images. Gupta et al. obtained a mean error of 2.01 mm with364

a standard deviation of 1.23 mm, which is comparable with365

the one obtained with the proposed methodology [18]. With366

our method, a comparable accuracy level was obtained with367

reduced a priori information about landmark positions.368

The method described in the present study attempts a gen-369

eral and robust approach for the propagation of landmarks370

from an annotated reference skull to subject-specific ones.371

Due to the variability in skull morphology depending on gen-372

der, age and ethnicity, in this study we applied the proposed373

method to a specific category of patients: adult Caucasian374

women. To apply the same methodology on other patient 375

categories, different atlases matched for sex, age and ethnic- 376

ity must be used. The selection of only one specific sample 377

represents a limitation of the current study but, at the same 378

time, the low amount of a priori information needed from 379

the proposed algorithm allows to test it on different patient 380

categories simply changing the used atlas. 381

Segmentation of hard tissues is a fully automatic process 382

that reduces the amount of error dependent on operator 383

experience. In the validation step, no significant difference 384

was found between manually and automatically determined 385

threshold values. Moreover, the correlation coefficient close 386

to 1 proved the high accuracy of the segmentation step com- 387

pared to manual thresholding, which is now considered the 388

standard method of segmentation in maxillofacial applica- 389

tions. 390

Since the segmentation step was proved to be very robust, 391

the registration step represents the main source of variability 392

in automatic annotation. In order to improve the annotation 393

accuracy, local adaptation in a region of interest around each 394

estimated landmark should be added to overcome the limits 395

of the global registration step. 396

Moreover, we believe that a computer-aided cephalomet- 397

ric annotation of CBCT volumes, relying on intensity-based 398

image registration, can be a good initialization that can help 399

the clinician in performing cephalometric analysis. Indeed, 400

123

Journal: 11548 Article No.: 1453 MS Code: CARS-D-16-00015.2 TYPESET DISK LE CP Disp.:2016/6/23 Pages: 9 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Int J CARS

for most landmarks the current results are well comparable401

with those provided by other methods present in the literature402

[13,14]. One advantage of our method is that cephalomet-403

ric landmark coordinates were obtained without any local404

a priori information about geometry and location of each405

landmark, allowing physicians to use this approach for per-406

sonalized cephalometric analysis. Indeed, the method can be407

customized only changing the number of landmark anno-408

tated on the reference skull, without any modification of the409

annotation algorithm.410

Results are promising; nevertheless, the study should be411

expanded in order to validate it on a larger dataset and reduce412

the estimation error to provide a fully automatic annotation413

algorithm. Moreover, in order to improve the segmentation414

and, consequently, the annotation in the dental region, a dedi-415

cated high intensity object artifact reducing algorithm should416

be implemented.417
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