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Abstract: Early detection of abnormalities in chest X-rays is essential for COVID-19 diagnosis and
analysis. It can be effective for controlling pandemic spread by contact tracing, as well as for effective
treatment of COVID-19 infection. In the proposed work, we presented a deep hybrid learning-
based framework for the detection of COVID-19 using chest X-ray images. We developed a novel
computationally light and optimized deep Convolutional Neural Networks (CNNs) based framework
for chest X-ray analysis. We proposed a new COV-Net to learn COVID-specific patterns from chest
X-rays and employed several machine learning classifiers to enhance the discrimination power of the
presented framework. Systematic exploitation of max-pooling operations facilitates the proposed
COV-Net in learning the boundaries of infected patterns in chest X-rays and helps for multi-class
classification of two diverse infection types along with normal images. The proposed framework has
been evaluated on a publicly available benchmark dataset containing X-ray images of coronavirus-
infected, pneumonia-infected, and normal patients. The empirical performance of the proposed
method with developed COV-Net and support vector machine is compared with the state-of-the-art
deep models which show that the proposed deep hybrid learning-based method achieves 96.69%
recall, 96.72% precision, 96.73% accuracy, and 96.71% F-score. For multi-class classification and binary
classification of COVID-19 and pneumonia, the proposed model achieved 99.21% recall, 99.22%
precision, 99.21% F-score, and 99.23% accuracy.

Keywords: COVID-19 pandemic; contact tracing; CNN; chest X-ray images; hybrid learning; machine
learning; computer-aided diagnosis

1. Introduction

The first case of viral disease COVID-19 [1] was registered in December 2019 in China’s
city Wuhan, which was subsequently proclaimed in March 2020 as a pandemic by WHO
(World Health Organization). Coronavirus is also recognized as SARS-CoV- [2]. It is from
the same group as MERS-CoV and SARS-CoV, which were discovered in 2003 & 2015,
respectively [3]. As stated by the European Centre for Disease Prevention and Control [4],
on 29 July 2021 about 34,435,890 cases were reported as positive for COVID-19, out of
which 743,712 deaths were reported. It affects almost every aspect of life including health,
education, the economy, etc. A wide part of employees lost their livelihoods due to this
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outbreak. There are no proper medicines or vaccines discovered yet. However, it can be
controlled to some extent through early detection. One of the most common and widely
used techniques is RT-PCR [5], which is a real-time detection method. RT-PCR samples are
collected through a swab that is inserted into the nose and mouth of the patient to collect the
samples. These samples are then sent to labs for testing, but it is a complex, time-consuming
manual practice. Automatic detection is an alternative method recommended for the early
detection of coronavirus.

Early studies show that chest radiograph images of patients who are infected with
coronavirus illustrate some irregularities. The easy availability and accessibility of these
radiograph images in areas with limited resources make them better options than PCR [6,7].
However, to examine these radiograph images to detect the infected areas of the lungs,
experienced and skilled radiologists are required, but the computer-aided diagnosis system
CADx also solves this problem for radiologists. It detects the presence of the virus that
causes COVID-19 quickly and with high precision. CADx, using chest X-rays, should have
been designed to fight against this virus [8]. Machine learning (ML) and deep learning
(DL) play a vital role in the medical field for the detection and treatment of many of the
deadliest diseases like brain tumors, chest cancer, etc. During the last couple of decades,
deep learning showed vast progress in terms of efficient and accurate predictions. Due to
this great ability of generalization, it is able to solve many complex problems of computer
vision like image classification, organ detection, disease identification, etc. [9,10].

Deep learning is an advanced field and is a further subclass of machine learning. Its
CNN algorithm gives far better results than any other traditional algorithm. One of the best
features of CNN is that it automatically extracts features from the images without using
handy craft filters. Sometimes, parameter learning through a limited dataset can cause
overfitting problems. This problem can be tackled by using pre-trained architectures of
CNN like GoogleNet, DenseNet, and VGG-16, which are trained on the ImageNet datasets.
By using the transfer learning technique, we can apply the pre-trained architectures to our
limited dataset. For this purpose, we have to remove the last few layers of the pre-trained
model and then test it on our specific dataset. Proper hyper-parameters and efficient
fine-tuning make it a more effective approach [11,12].

In this study, we proposed a COV-Net architecture-based computer-aided diagnosis
system for COVID-19 analysis. In the presented work, we used the benchmark dataset
which contains images of chest X-rays of viral pneumonia-infected patients, COVID-19
patients, and normal images to train our proposed COV-Net model. In D-HL, boundary
homogeneity-related deep features are extracted from the fully connected layer FC-1 of
the proposed COV-Net architecture. For structural risk minimization and to enhance the
generalization ability of the proposed framework, we used SVM as a classifier for the final
prediction. The proposed COV-Net contains four convolutional blocks, and optimized
arrangements of layers facilitate better and more efficient learning with fewer parameters as
compared to state-of-the-art deep CNNs. The following are the contributions of this study:

1. A new, well fine-tuned CNN architecture named COV-Net with fewer parameters is
proposed to diagnose COVID-19 efficiently.

2. Using edges exploitation operation in an optimized structure with the convolutional
operator facilitates learning edges-related features of infection patterns in chest X-ray
images. It leads to improved detection of COVID-19 in a timely manner.

3. A D-HL-based framework for COVID-19 and pneumonia identification in chest X-ray
images was proposed by using new deep CNN and SVM.

4. We exploit the structural and empirical risk error minimization using the proposed
COV-Net and ML classifier in hybrid learning (HL) for COVID-19 analysis. In the
proposed deep hybrid learning scheme, the learning capability of the proposed CNN
is explored and ML classifiers are used to enhance the discrimination proficiency of
the proposed framework for chest X-ray analysis.
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2. Related Work

Many experiments have been conducted in the last two years to recognize the viral
disease COVID-19 by using deep learning methods and traditional machine learning
techniques. L. Lin et al. [13] applied a framework that proposed CNN with ResNet50 as its
backbone, which extracts 2D as well as 3D features from CT images and then combines
them through max-pooling followed by the softmax function, which gives an AUC equal to
0.96. X. Xu et al. [14] devoted classic ResNet architecture to differentiate coronavirus from
I-AVP. The model along with the location-attention mechanism provided 86.7% accuracy.

G. Biraja et al. [15] conducted a study to determine uncertainty using drop-weights
based on BCNNs. He used a pre-trained model Resnet50-V2 with fully connected layers
then applied drop-weights followed by a softmax layer. It gained an accuracy of 89.92%. W.
Shuai et al. [16] exploited both static and dynamic data for the detection of patients with
the potential to move from a malignant to a critical stage. Static data included a personal
and clinical record of the person while a series of CT images served as dynamic data. They
combined static data with dynamic and fed them to MLP, which then served as input for
the long short-term memory (LSTM). J. Cheng et al. [17] designed a model which classifies
four categories including COVID-19, influenza A/B, CAP, and non-pneumonia patients
by using the U-Net-34 2D segmentation network. Resent-152 is the backbone of the 2D
classification deep learning network and achieved 94.98% accuracy with an area under an
AUC of 97.71. J. Shuo et al. [18] created and installed an AI system within four weeks for
the detection of COVID-19 to reduce the burden on radiologists and clinicians.

They used UNet++ for lung segmentation of CT images along with ResNet50 and got a
specificity of 0.922 and sensitivity of 0.974. N. Ali et al. [19] performed three different types
of two-class classifications with four different classes (viral pneumonia, COVID-19, bacterial
pneumonia, and normal). Due to the limited availability of the dataset, the transfer learning
technique was used, which uses five pre-trained DL architectures: ResNet101, ResNet52,
ResNet50, Inception- ResNet-V2, and Inception. Resnet50 showed the best results for all
three binary classifications (classification 1: 96.1%, classification 2: 99.3%, classification
3: 99.7%). They also applied approaches with and without pre-training of COVID-CAP,
and achieved 95.7% and 98.3% accuracy, respectively. L. Wang et al. [20] created a dataset
called COVIDx containing 13,975 chest X-beam images and used the model COVID-Net for
recognition of COVID-19, obtaining an accuracy of 92.4%. M. Abed Mohammed et al. [21]
associated deep learning models (like DarkNet, GoogleNet, ResNet50, MobileNets V2,
and Xception) and traditional ML models (like KNN, decision tree, ANN, SVM with
linear kernel, and RBF), and results demonstrated that DL frameworks outperformed ML
frameworks and achieved 98.8% accuracy with ResNet50 architecture, while ML model
SVM achieved its best accuracy of 95% and 94% with RBF kernel. D.Hemdan et al. [22]
used the COVIDX-Net framework which includes seven different CNN models (Visual
Geometry Group Network (VGG19), Inception-ResNet-V2, DenseNet121, InceptionV3,
ResNetV2, Xception, and MobileNetV2) to categorize COVID-19 negative or positive cases.
Architectures VGG19 and DenseNet121 gave almost similar results for the detection of
normal and COVID-19 and gave F1-scores of 0.89 and 0.91, respectively.

A. Khandakar et al. [23] developed a vigorous method for the automatic recognition
of coronavirus and pneumonia from chest X-ray scans and used pre-trained DL models
to maximize the accuracy of detection. H.S. Maghdid et al. [24] purposed a simple CNN
model to detect COVID-19 for early diagnosis. V. Chauhan et al. [25] applied transfer
learning methodology and used pre-trained models to extract features. The results of
pre-trained models were combined with a prediction vector and majority voting was used
for the final prediction. T. Rahman et al. [26] have proposed three different schemes of
classifications: normal/pneumonia classification, bacterial/viral pneumonia classification,
and normal/bacterial/viral pneumonia classification. M. Loey et al. [27] exploited the
transfer learning technique with GAN to detect coronavirus using chest X-rays. GAN
helped in decreasing the overfitting issue produced by the small dataset and increased
the dataset to 30 times more than the original dataset. A. Degerli et al. [28] proposed a
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novel strategy that not only detects coronavirus but also quantifies the severity by creating
infection maps. They tried two configurations: first, they froze the encoder layers, then they
permitted them to fluctuate. A. O. Ibrahim et al. [29] proposed an automatic DL structure
for coronavirus-infected areas. They trained and tested the proposed model to check the
effectiveness and generalization by using slices of 2D CT.

Generally reported work in literature lakes advocated the following points:

1. Most of the work presented in the past has been assessed using only accuracy, but
recall, precision, and F-score are better performance measures to evaluate the general-
ization of the model for the complex dataset.

2. In most of the previous works, only COVID-19 detection is performed. However,
simply detecting COVID-19 is insufficient to diagnose other severe abnormalities,
e.g., pneumonia.

3. In COVID-19 analysis, the detection rate of infected X-ray images from normal indi-
viduals is still challenging because of fewer inter-class variations.

To overcome these limitations, we proposed a multi-class chest X-ray classification
method using standardized performance evaluation matrices like recall, precision, F-score,
and accuracy for improved diagnosis.

3. Methods and Materials

In the proposed work, COVID-19 detection was performed by using the proposed
COV-Net CNN and the ML classifier and included some phases. First, X-ray images
went through the preprocessing pipeline, which included data augmentation. At that
point, a preprocessed dataset was split into training and testing datasets. We trained our
proposed COV-Net-based model by using a training dataset. Training accuracy and loss
were computed after every epoch. Testing data were used to evaluate the performance of
the proposed method by following the appraisal metrics of accuracy, precision, recall, and
F-score. A detailed overview of the proposed methodology is demonstrated in Figure 1.

Figure 1. Block-based figure of proposed COVID-19 analysis model.

3.1. Dataset

In this work, we used the chest X-rays dataset. From the dataset, 300 normal chest
X-ray pictures, 300 images of viral pneumonia, and only 300 images of coronavirus-infected
patients were selected. All images were collected from the publicly available Kaggle
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repository [30]. The exhibition of the framework greatly depended upon the accuracy of
the dataset. For this reason, we first sampled the data before using them. In data sampling,
we only used those images that were useful and eliminated falsified images. The dataset
contained chest X-rays of three classes (COVID-19/pneumonia/normal). All images are in
JPEJ format as shown in Figure 2; the first one shows a normal chest X-ray, the second one
shows a COVID-19 X-ray, & the third one shows a pneumonia X-ray.

Figure 2. Sample images from dataset of three classes (normal, COVID-19, pneumonia).

3.2. Data Augmentation

Data augmentation is a method to increase the data samples during the training of the
model. After employing data balancing and sampling, we contained 300 images of each
class for better and generalized model training. We applied the data augmentation method
to enhance and increase the dataset instances for better training of the model and to avoid
overfitting [31]. Different data augmentation methods were applied in random rotation
and random horizontal translation, as described in Table 1, which yielded an augmented
dataset batch during training of the proposed model.

Table 1. Augmentation parameter details.

Parameters Values

Random Rotation [−5, 5]

Random Horizontal Translation [−0.5, 1]

Random Vertical Translation [−0.5, 1]

3.3. Proposed CNN Architecture

The proposed CNN architecture COV-Net used in this study included four convolu-
tional blocks. Each block was constituted of a convolutional layer, batch normalization,
and activation function, namely ReLU, followed by max-pooling as shown in Figure 3. In
convolutional layers, filters convolved over the input image. The convolutional function
performed the dot product of filter and valued and extracted features from the input im-
ages. CNN used a backpropagation algorithm for dynamic feature extraction. One of the
advantages of CNN over ANN is that it automatically extracts domain-specific features
from the images. By further using an edge operator (max-pooling), it learned profoundly
discriminative features to train the model. In the pooling, layer down-sampling was also
performed, which enhanced the performance of the model by making a small variation in
the input image and by decreasing the non-linear dimensions of the resulting feature maps.

To highlight the features for classification, resulting feature maps were extracted
from a fully connected layer. A dropout layer was added at the end to avoid overfitting.
Detailedd layer wise description of propsed imodel is illusterated in Figure 4. The cross-
entropy function was used as a cost function along with the softmax function. To categorize
COVID-19, healthy people, and viral pneumonia, we used traditional ML classifiers, namely,
random forest, Naïve Bayes, support vector machine (SVM), k-Nearest Neighbor (k-NN),
and ensemble model.
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Figure 3. Detailed overview of proposed COV-Net.

Figure 4. Architectural detail of proposed COV-Net.

In this study, we used MATLAB to run the code. In the training phase of our proposed
COV-Net model, we used the “rmsprop” function as an optimizer. It is a gradient-based
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method. It normalized the gradient by balancing the momentum, diminishing the pro-
gression for a large gradient to obtain from exploding, and expanding the progression
for a small gradient to obtain from vanishing [32]. After an experimental analysis, an
optimal learning rate of “0.0001” was selected. To reduce computational complexity, the
batch size was set to 16 per epoch, which is a small size. To improve generalization, L1
regularization was used. As a cost function, the cross-entropy function was used along
with the softmax function.

3.4. Implementation Details

The “RMSPROP” function was used as an optimizer. In the beginning, “0.0001”
learning rate was selected randomly and 50 epochs were used, meaning each photo of
training data was examined 50 times. As only 50 epochs were selected due to the limited
dataset, we chose a large number of epoch models to move towards overfitting, which
means instead of training, the model started removing the available small dataset. For this
reason, we chose to lose many epochs to avoid overfitting.

3.5. Initial Training

We split the data into two parts: training and testing; 80% of them were used for
training while 20% were set aside for testing according to Pareto’s Principle [33]. We saved
10% of the 80% of the training dataset for validation, and the remaining 70% was utilized to
train the model. Initial training helped us to check what our model can yield as a baseline
model. Before starting training of the model, many different preprocessing techniques were
used to boost the performance of the model. As we proposed, a CNN model was used so
the training starts from scratch. In our proposed COV-Net model, we used the softmax
function along with the cross-entropy cost function for classification.

3.6. Feature Extraction Using Proposed CNN Architecture

In the proposed work, we proposed new CNN architecture to obtain deep features
from chest X-rays. The proposed CNN architecture extracts the most discriminative and
deep features. The first fully connected layer (FC-1) extracted 4096 features from the images,
which we used as a feature vector. Figure 5 shows the resulting feature maps from various
layers of the CNN model of sample images of chest X-rays.

Figure 5. Features maps representation from three different layers of proposed COVID-Net architec-
ture, (a) layer1, (b) layer3, and (c) layer5.
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At the primary level, almost complete data that are present in the input image are
saved by activations.

(a) As we go to the higher layer, activation started to keep fewer data.
(b) At a deep level, the information became more detailed.

The uprising of the data into a more detailed and higher level was associated with
each layer of the proposed CNN COV-Net (the deeper the network, the more composite
the data and information). The proposed architecture COV-Net extracted features from
input images. We extracted 4096 highlights from the FC-1 layer, and these highlight vectors
were fed into different conventional machine learning classifiers as input to discover if the
inspected patient was positive for COVID-19, viral pneumonia-infected, or just a normal
patient. The dynamic features we used in our proposed model were driven by the FC-1
layer as shown in Table 2.

Table 2. Extracted features detail of proposed architecture.

Features Layer Feature Dimension

FC-1 1 × 1 × 4096

3.7. Classification Using Conventional ML Classifiers

The proposed CNN COV-Net architecture was used to extract features from the
augmented dataset. We extracted features from the FC-1 layer, and details are shown in
Table 2. After extracting the features, these features were passed as input to conventional
ML classifiers to train them. Different ML classifiers like Naïve Bayes, decision trees, KNN,
and SVM determine the robustness of the classification. The performance of these models
was measured by classifying COVID-19, pneumonia-infected, and healthy patients. The
accuracy of classification attained by using conventional ML classifiers performed better
than the softmax function. This is because it extracted the most highlighted features from
chest X-rays of different patients by using the most abstract feature extraction techniques.

3.7.1. SVM

SVM is a linear model. It can tackle linear and non-linear issues. Its basic idea is that
it makes a line to separate two classes. New data components are assigned to one class
based on predictive analysis. As a rule, a parallel classifier expects that the data being
referred to contain two potential objective variables. It utilizes a procedure called kernel
trick to change the data and then find boundaries between them. It groups data and trains
models inside really limited levels of extremity, making a three-dimensional order model
that simply follows the X/Y prescient axis [34].

L(γ,α,β) =
1
2
‖ γ ‖2 −∑ ∑ m

i=1βi[yi(γ · x + α)1] (1)

3.7.2. k_NN

This is used for regression as well as classification. Its calculation utilizes highlight
closeness to anticipate the upsides of any new information focuses, implying that the
new point is allocated a worth dependent on how intently it resembles training dataset
points [32]. √

n

∑
i=1

(qi− pi)2 (2)
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3.7.3. Naïve Bayes

It is a group of algorithms that are based on the “Bayes Theorem”. They work on the
principle that every pair of classifying features is independent [35].

P(U|V) =
P(V|U)P(U)

P(V)
(3)

3.7.4. Random Forest

It is fundamentally a supervised method. It is an ensemble model which contains
multiple decision trees. It collects results from all decision trees and then, based on the
highest voting, makes a decision [36].

RF f ii =
∑ j ∈ all trees norm f iij

T
(4)

3.8. Performance Metrics

Classification performance of the model is calculated through different performance
metrics, for example, accuracy [37], recall [38], precision [38], and F-score [39], etc. When
classifying medical images, we use different terms like false negative, false positive, etc.

3.8.1. Precision

It is the proportion of correct positive predictions to the total positive prediction. It
indicates the rate of correct positive predictions. It is calculated as:

Precision =
TP

(TP + FP)
× 100 (5)

3.8.2. Recall

In this, we calculate true positive predictions from total positive predictions that might
have been made. It shows a number of missing positive predictions. It is calculated as:

Recall =
TP

(TP + FN)
× 100 (6)

3.8.3. Accuracy

It is the most regular performance measure. It gives correct predictions to the total
predictions.

Accuracy =
(TN + TP)

(FP + FN + TP + TN)
(7)

3.8.4. F-Score

It shows steadiness between recall and precision.

F− score =
2× (Precision + Recall)

Precision + Recall
(8)

4. Results

In our research, we presented a CNN model which extracted features from the aug-
mented dataset. We had a small dataset, so we applied the data augmentation method to
enhance the dataset. The augmented dataset also played an important part in accuracy
improvement because of its high generalization ability. The proposed model was trained
with 50 epochs under a batch size of 8. Deep and discriminative features were extracted
from the proposed CNN architectures. The extracted features were passed as input to some
conventional ML classifiers, e.g., Naïve Bayes, KNN, random forest, and support vector
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machine. In the event of binary classification of COVID-19 and pneumonia, KNN and SVM
achieved 100% accuracy, recall, precision, and F1-score, shown in Tables 3 and 4.

Table 3. Performance comparison using ML classifiers for two classes (Pne = pneumonia, Cov =
COVID-19). The Bold shows results of proposed method.

Classifiers Parameters Type TP FP FN Recall
(%)

Precision
(%)

F1-Score
(%)

Accuracy
(%)

KNN

K = 2
Cov 60 0 0

100 100 100 100
Pne 60 0 0

K = 3
Cov 60 0 0

100 100 100 100
Pne 60 0 0

K = 4
Cov 60 0 0

100 100 100 100
Pne 60 0 0

K = 5
Cov 59 1 0

99.2 99.2 99.2 99.2
Pne 60 0 1

SVM

Linear
Cov 60 0 1

99.21 99.22 99.21 99.23
Pne 59 1 0

RBF
Cov 60 0 1

99.2 96.2 97.7 99.2
Pne 59 1 0

Gaussian
Cov 60 0 1

99.2 99.2 99.2 99.2
Pne 50 1 0

PolyOrder-2 Cov 60 0 0
100 100 100 100

Pne 60 0 0

PolyOrder-3 Cov 60 0 1
99.2 99.2 99.2 99.2

Pne 59 1 0

PolyOrder-4 Cov 60 0 0
100 100 100 100

Pne 60 0 0

PolyOrder-5 Cov 60 0 0
100 100 100 100

Pne 60 0 0

Decision tree
Cov 55 5 1

95 95.2 95.1 95.0
Pne 59 1 5

Naïve Bayes
Cov 59 1 1

98.3 98.3 98.3 98.3
Pne 59 1 1

RF
max no. of

splits 5
Cov 59 1 0

99.15 99.2 99.2 99.2
Pne 60 0 1
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Table 4. Performance comparison of proposed framework using ML classifiers for three classes (Nor
= normal, Cov = COVID-19, Pne = pneumonia). The Bold shows results of proposed method.

Classifiers Parameters Type TP FP FN Recall
(%)

Precision
(%)

F1-Score
(%)

Accuracy
(%)

K-Nearest
Neighbors

K = 2

Cov 56 4 5
92.2 92.2 92.2 92.2Pne 56 4 4

Nor 54 6 5

K = 3

Cov 56 3 3
93.3 93.3 93.3 93.3Pne 58 2 5

Nor 54 6 3

K = 4

Cov 57 3 5
93.3 93.3 93.3 93.3Pne 58 2 4

Nor 53 7 3

K = 5

Cov 53 7 3
92.2 92.4 92.3 92.2Pne 58 2 8

Nor 55 5 3

Decision Tree

Cov 50 10 11
81.1 81.1 81.1 81.1Pne 48 12 11

Nor 48 12 12

Naïve Bayes

Cov 57 3 6
92.2 92.3 92.2 92.2Pne 56 4 3

Nor 53 7 5

Random
Forest

max no. of
splits 5

Cov 56 4 2
95 95.1 95.1 95.0Pne 60 0 5

Nor 55 5 2

SVM

Linear

Cov 56 4 2
96.6 96.7 96.7 96.7Pne 60 0 2

Nor 58 2 2

Gaussian

Cov 57 3 5
94.5 94.5 94.5 94.4Pne 58 2 3

Nor 55 5 2

RBF

Cov 56 4 5
93.9 93.9 93.9 93.9Pne 58 2 3

Nor 55 5 3

Poly- Order3
Cov 57 3 3

95.6 95.6 95.6 95.6Pne 60 0 3

Nor 55 5 2

Poly- Order4
Cov 57 3 3

95 95.1 95.03 95.0Pne 60 0 4

Nor 54 6 2

Poly- Order5
Cov 56 4 3

94.43 94.5 94.5 94.4Pne 60 0 5

Nor 54 6 2
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We also evaluated our proposed D-HL method with the baseline proposed COV-Net
to emphasize the performance improvement of our proposed method. Table 5 proved that
our proposed technique enhanced the discrimination strength of our proposed model in
accuracy (1.73%) and F-score (1.68%).

Table 5. Proposed hybrid learning method comparison with proposed COV-Net.

Model Recall Precision Accuracy F-Score

Proposed COV-Net 95.0% 95.07% 95.0% 95.03%

Proposed D-HL-based Framework 96.69% 96.72% 96.73% 96.71%

5. Discussion

In the presented D-HL architecture, the softmax layer was replaced with a machine
learning classifier. The CNN learning algorithm utilized empirical risk minimization as
a method to reduce false positives and false negatives during training. When the back-
propagation algorithm reaches the first hyperplane that separates, the training phase ends,
and progress generally stops as a result. Another limitation of CNN is that it frequently
assigns one output neuron a high value (around +1) while assigning low values to the other
neurons (close to 1).

This makes it very difficult to reject implementation errors. Softmax classifiers provide
us with likelihoods for each class label. On the other hand, conventional ML techniques
help us develop a robust rejection strategy. The generalization ability of CNN is weaker
compared to that of SVM DL approaches, in contrast to conventional ML methods, are the
least understandable from an AI aspect and are assumed to as a black box.

We performed classification with three classes as well as with two classes. In three
classes, pneumonia, normal, and COVID-19 were included and in binary classifications, we
used COVID-19 and pneumonia. SVM gave the highest accuracy with three classes. We
achieved outstanding accuracy in binary classification with SVM and KNN. In the case
of three classes, SVM gave an accuracy of 96.7%, recall of 96.6%, precision equal to 96.7%,
and F1-score equal to 96.7%. Table 3 shows the detailed overview of the proposed CNN
architecture with all four conventional ML classifiers. Confusion matrixes based on the
performance analysis of classifiers are demonstrated in Figure 5. We compared results
obtained by the proposed method with other existing works based on different performance
metrics. Apostolopoulos et al. [40] used five different CNN pre-trained architectures to
classify between three classes(COVID-19, normal, and pneumonia) and gave a sensitivity
of 98.66%, accuracy of 94.72%, and specificity of 96.46%. H.S. Maghdid et al. [24] used
the transfer learning technique with the AlexNet model and got 94.1% accuracy, 72%
sensitivity, and 100% specificity. S.S Khan et al. [41] applied a convolutional auto-encoder
to achieve 0.7652 area under a curve. A. Narin et al. [19] also used five CNN models
(ResNet50, ResNet101, ResNet152, inception-ResNetV2, and InceptionV3) to perform binary
classification of four classes and achieve an accuracy of 96.1%, recall of 91.8%, specificity
of 96.6%, F1-score of 83.5%, and precision of 76.5% with COVID-19 & normal binary
classification. R. Kumar et al. [42] performed an experiment with DenseNet & GoogleNet
and attained an F-score equal to 0.91, AUC: 0.97. Similarly, Makris A. et al. [43,44] used five
different pre-trained CNN models and achieved 95% accuracy. Arora, R. et al [45] proposed
stochastic deep learning model using ensemble of slandered convolutional models and
evaluate developed model on standard dataset contain three classes: COVID-19, normal
and pneumonia and attain an accuracy and AUC of 0.91 and 0.97, respectively. A detailed
comparison is illustrated in Figure 6 and Table 6.
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Figure 6. Confusion matrix-based performance analysis of competitive ML classifiers.

Experimental results show that our proposed models outperform all these experiments
and achieved 96.69% recall, 96.72% precision, 96.73% accuracy, and 96.71% F-score, as
shown in Table 5 and Figure 7.

Certain limitations still apply to our research investigation. The training period for
feature extraction was lengthy due to the tiny batch sizes employed to extract the runtime
features, which would have typically required a large amount of GPU RAM. Second,
the proposed framework must go through a thorough clinical trial before radiologists’
professional judgment may be utilized to resolve the patient data.
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Table 6. Proposed hybrid learning method comparison with existing techniques on publicly available
dataset. The Bold shows results of proposed method.

Author Methodology Recall Precision Accuracy F-score

Apostolopoulos
et al. (2020) [40]

VGG19, MobileNet, Inception, Xception,
Inception ResNet v2. 98.6% - 94.72% -

H.S Maghdid et al.
(2021) [24] Transfer learning with AlexNet model 72% - 94.1% -

A. Narin et al.
(2020) [19]

Pre-trained CNN architectures: ResNet50,
ResNet101, ResNet152,

inception-ResNetV2 and InceptionV3
91.8% 76.5% 96% 83.5%

Arora, R. et al.
(2021) [45]

CNN architecture DenseNet &
GoogleNet 91% - - 91%

Makris A. et al.
(2020) [43] 5 pre-trained CNNs - - 95% -

Proposed DH-L
Framework

Proposed COV-Net with conventional
ML classifier 96.69% 96.72% 96.73% 96.71%

Figure 7. Comparative analysis of proposed COV-Net and D-HL with existing literature using
accuracy and F-score [19,24,40,43,45].

6. Conclusions

Well-timed identification of COVID-19 infection is vital to preserve the patient’s
life and control the further spread of this life-threatening disease. In this study, a new
CNN-based scheme for the detection of COVID-19 is proposed. COVID-19 analysis is
performed using chest X-ray images containing three categories (pneumonia, COVID-19,
and normal). Experimental results proved that the hybrid learning-based framework
has shown improved performance compared to other methods. When the proposed
framework’s performance is compared with the state-of-the-art deep models’, it shows that
the proposed deep hybrid learning-based method achieved 96.69% recall, 96.72% precision,
96.73% accuracy, and 96.71% F-score for multi-class classification, and for COVID-19
and pneumonia we achieved 99.21% recall, 99.22% precision, 99.21% F-score, and 99.23%
accuracy. The proposed COV-Net is less complex than pre-trained and custom-designed
networks, and it is feasible to run it on ordinary current PCs. This is conceivable because the
algorithm requires fewer resources for both training and execution. Performance analysis
is carried out to attain the generalized model and it is likely to assist radiologists in making
decisions in their clinical practice.
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