
Bioengineered Bugs 1:4, 274-281; July/August 2010 © 2010 Landes Bioscience

 REP0RT

274 Bioengineered Bugs Volume 1 Issue 4

*Correspondence to: Deepak Chandran; Email: deepakc@u.washington.edu

Submitted: 05/02/10; Revised: 05/25/10; Accepted: 05/28/10

Previously published online: www.landesbioscience.com/journals/biobugs/article/12506

Introduction

Synthetic biology can be described as an amalgam of wet-lab 
techniques from genetic engineering, modeling techniques from 
systems biology and design concepts from electrical and control 
engineering.1,2 The goal of synthetic biology is the ability to build 
biological “circuits” or networks made using individual compo-
nents such as genes and promoter regions, that produce a desired 
behavior. The process by which this goal should be attained is 
unclear, and therefore the precise definition of synthetic biol-
ogy is also unclear.3 However, the success of synthetic biology 
depends on a few key ingredients: efficient design process, stan-
dardized engineering protocols,4 and some form of modularity5 
allowing one engineer to build on another’s work. The poten-
tial of such a technology is immense for understanding funda-
mental science or solving real-world problems. By constructing 
oscillators,6-8 bistable switches,9,10 noise controlling networks11 
and synchronizing circuits,12 synthetic biologists are able to bring 
theory of biological systems into practice. For the purpose of real-
world application, synthetic biology may become a key player in 
bioremediation,13 drug production14,15 and bio-fuel production.16

While synthetic biology has great potential, it is important to 
understand the present limitations. There are unresolved issues 
at several levels: wet-lab protocols, exchange of information and 
computational modeling. Synthetic biology relies on the hypoth-
esis that biological parts or functional elements encoded as DNA, 
can be assembled in order to build circuits with predictable 
behavior.17 Wet-lab protocols for assembling biological parts are 
time-consuming and labor intensive, especially when building 
large circuits. For the purpose of sharing, there are no standard 
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protocols for exchanging complete parts between research labs, 
including the DNA sequence and information about the part’s 
function. For computational analysis, there is no clear consensus 
on what types of models are best suited for reliably predicting 
biological circuit behavior, especially in the presence of so many 
unknown parameters in an average synthetic circuit. Nonetheless, 
it is equally important to realize that significant progress has been 
made to address each of the above issues. Standardized assembly 
has made exchange of parts between labs easier.18,19 Design strate-
gies have been explored for controlling uncertainty due to noise20 
and parameters.21 Modeling methods have been demonstrated 
to be predictive for steady state behaviors of cells,22,23 and the 
importance of intermediate stages, such as mRNA and protein 
folding, have been shown to capture the dynamics of a circuit.7

Although progress has been made, the future of synthetic biol-
ogy is unclear. From one perspective, it can be argued that the 
idea of engineering biology is simply an impossible task due to 
overwhelming complexity. On that other hand, it is also argu-
able that scientists will be able to discover ways of controlling 
some subset of all possible biological systems, turning biology 
into a reliable technology. In this later optimistic future, research 
labs would make frequent use of biological parts databases, as 
it is already being done to a certain extent using the Registry of 
Biological Parts (http://partsregistry.org).24 The databases would 
contain structured information with supporting experimental 
and kinetic data. It is important to adopt this optimistic point of 
view in order to justify why computer-aided design (CAD) will 
be helpful in synthetic biology.

Different approaches have been taken for constructing CAD 
programs for synthetic biology. Existing CAD applications for 
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and a protein coding sequence. The researcher wishes to study 
the effect of changing the promoter on the system. Changing 
the promoter implies changing one or more parameters in the 
model, depending on how the model is constructed. To satisfy 
this requirement, the CAD application needs to identify the 
parameter(s) that belong with each part in the model. In the 
anticipated future, there will be some sort of database of biologi-
cal parts that the researcher would access. If the researcher selects 
a specific part from the database, the CAD application should 
be able to incorporate the parameters from the database into the 
model. Other information available from the database, such as 
equations that describe the dynamics of the part and the DNA 
sequence, should also be incorporated into the model as well.

Enforcing one type of modeling methodology is not a good 
idea for a developing field. Repeated experience with modeling 
and experiments might lead researchers to recognize that a spe-
cific modeling method is best suited for certain types of synthetic 
circuits. The CAD application should be able to incorporate new 
modeling methods without having to remove its existing model-
ing framework. For this purpose, the CAD application should 
allow different ways of defining the dynamics of the model.

synthetic biology include BioJade,25 GenoCAD,26 SynBioSS,27 
ProMoT,28 Clotho29 and TinkerCell.30 Each of these CAD appli-
cations are unique in their own ways and have their own respec-
tive focus areas. The focus of this article is TinkerCell, which is 
an application for visually constructing biological networks and 
analyzing its dynamics. A screenshot of TinkerCell is shown in 
Figure 1.

Motivation for TinkerCell

TinkerCell is a CAD software application for visually construct-
ing and analyzing biological models or circuits. Unlike classical 
engineering disciplines, there are no established best practices in 
synthetic biology for taking a circuit from the design stage to the 
construction stage. In this situation, the goal of TinkerCell is 
to serve as an application that can adapt with the continuously 
evolving field of synthetic biology. The following hypothetical 
use cases were used to guide the design TinkerCell:

A model needs to define its mathematics in context of the 
underlying biology. A researcher constructs a model using some 
biological parts, such as a promoter, a ribosomal binding site 

Figure 1. A screenshot of TinkerCell, showing a simple model of lactose import. The bacterial cell in the model contains a plasmid with a promoter, 

RBS and a coding region. The protein produced from the coding region is the membrane protein that is responsible for importing lactose, which in 

turn inhibits the transcription factor, LacI. LacI negatively regulates the promoter on the plasmid.
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The CAD program should allow parameters to be defined as a 
range of values or a distribution of values rather than a single 
exact number and provide methods for analyzing the model by 
taking the uncertainties into consideration.

TinkerCell’s underlying software structure is designed with 
these use cases in mind. The current version of TinkerCell does 
not fully satisfy all of these use cases because some of the fea-
tures are still under development. For example, TinkerCell cur-
rently allows a user to add custom programs that interact with 
TinkerCell’s visual interface, but the option for sharing custom 
programs between users does not exist. Similarly, models can be 
constructed my composing existing models, but no feature is 
available for sharing models between users. The visual diagrams 
are converted to mathematical models by TinkerCell extensions 
(discussed in the TinkerCell design section), so TinkerCell does 
not enforce one type of modeling approach. Finally, while param-
eter uncertainties can be stored in TinkerCell models, there are 
no functions available for using this information at present. 
However, TinkerCell’s underlying design will be able to support 
all the missing features.

TinkerCell’s Design

Component based modeling. The first design feature in 
TinkerCell is a well structured model. Users build TinkerCell 
models by selecting and connecting components from the parts 
catalog that is displayed at the top of the TinkerCell window (see 
Fig. 2). Components in this catalog include proteins, small mole-
cules, cells, promoters and coding regions. The list of components 
is flexible because the list is loaded from an Extensible Markup 
Language (XML) file. The XML file represents a structured 
definition of each component. For example, the file describes 
“transcriptional repression” as a connection from a “transcrip-
tion factor” to a “repressible promoter”. Similarly, a “transcrip-
tion factor” is described as a special case of a “protein”. This file 
captures what is called ontology or a structured  description of 

The ability to integrate new programs is beneficial for a 
 developing field. A researcher has constructed a model with exist-
ing parts from a database. The researcher is interested in checking 
to see which parts in the circuit contain a particular restriction 
site. This is a specific function that the CAD application may not 
provide by default. However, if a program exists for performing 
this analysis, the CAD application should allow the researcher to 
add the new program. The CAD application should allow full 
integration of this new program. For example, as an output, the 
new program should be able to request the CAD application to 
visually highlighting the parts that contain the restriction sites 
of interest. This will allow the researcher to construct models in 
the CAD program, analyze general aspects of the model, and use 
custom programs to analyze specific aspects of the model.

The ability to share new programs is beneficial for building 
a community. Continuing from the previous example, it might 
be the case that a custom program used by one researcher is a 
valuable tool for other researchers in the field. Allowing a user 
to share custom programs will not only enhance the CAD appli-
cations functionality but also foster community development. 
Therefore, a CAD application should provide a simple procedure 
for each user to share and retrieve custom programs.

The ability to reuse models is beneficial for engineering. A 
research lab has built several small synthetic circuits and has rela-
tively good models for each. A researcher at the lab wishes to con-
nect some of these small circuits to construct larger circuits. The 
CAD application should support such reuse of circuits by allowing 
users to construct modules and connect modules to build larger 
circuits. The user interface should allow an option for hiding the 
internal details of the modules, providing the user with a compact 
view of the larger circuit in terms of the smaller modules.

Models should account for uncertainties that exist in real 
systems. For biological parts, exact quantitative values are rarely 
available. For some parameters, even rough estimates may not 
be available. For a model to reflect the reality, the uncertainty 
related to parameters in a model should be taken into account. 

Figure 2. TinkerCell uses a catalog of biological components for constructing models. Each component in the catalog belongs to an ontology, which 

is transparent to the user. Models that are built using components in the catalog will contain the mathematical descriptions as well as the biological 

descriptions.
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the extension that fits their interests. Several user interface fea-
tures are also provided by extensions. For example, the model 
summary window shown in Figure 3 and also in Figure 1 is a 
user interface extension. Although the current set of extensions 
are all written by the original designer of TinkerCell, they could 
have easily been written by other programmers who wanted to 
contribute to TinkerCell.

Expandable set of functions. The third design feature is sup-
port for third-party functions. When the user is finished con-
structing the model, the model can be analyzed using one of many 
functions listed in the programs menu (see Fig. 4). These functions 
are not built-in functions. Rather, they are loaded from a folder 
containing programs written in C and Python programming lan-
guages. TinkerCell provides a extensive application programming 
interface (API) with over two hundred functions that are callable 
from C and Python. These functions allow third-party programs 
to get information about the model from TinkerCell, analyze the 
model, and report the results back to TinkerCell. Because of the 
rich API, the results can be presented visually. Figure 5 shows an 
example output produced from a Python program in TinkerCell 
that uses PySCeS31 to perform sensitivity analysis. The results are 
presented by coloring the reactions in the network according to 
the control coefficients. TinkerCell automatically loads Python 
scripts and C programs from designated C and Python folders, 
allowing easy integration of third-party code.

TinkerCell’s flexibility is due to its layered architecture (see 
Fig. 6). TinkerCell consists of a Core library, which provides 
all the basic drawing capabilities. The TinkerCell extensions 
are C++ programs that build on the Core library. C and Python 
extensions build on the Core library as well as the C++ exten-
sions. Major changes to TinkerCell can be made through C++ 
extensions. New functions can be added to TinkerCell via C or 
Python extensions.

Future plans. There are two features in TinkerCell that can 
potentially make it valuable as a medium through which the 

 relationships between concepts. The particular XML file in use 
currently is meant to be temporary, and it will be replaced with a 
standard ontology in the future.

Default models derived from structure. The purpose of 
the ontology becomes clear as the user starts to build a model 
using components from the catalog. By using definitions of the 
components, TinkerCell is able to derive much of the dynamics 
automatically. For example, when a user connects a promoter, 
a ribosomal binding site and a protein coding region together, 
TinkerCell is able to identify the fact that all of these are DNA 
components, and therefore, the relative locations of the compo-
nents are relevant to their functions. By using the ordering of the 
components, TinkerCell is automatically able to assign rate equa-
tions describing the dynamics of the transcription and transla-
tion reactions. This example shows knowledge of the biology can 
automate model construction. Of course, the user can modify 
any of the default equations if needed.

Flexibility provided through extensions. The second design 
feature in TinkerCell is extensibility. Much of the work in 
TinkerCell is done by extensions. Extensions are programs that 
can be added to TinkerCell without altering the existing program. 
In the earlier, when the user places DNA components together, 
the transcription rate equations are automatically derived by a 
TinkerCell extension. Because extensions are optional features, 
they can be removed or replaced. For instance, if the default reac-
tion rate equations derived by the current extension are not pre-
ferred, it is possible to write a different extension that provides 
a different way of defining the dynamics, e.g., Boolean logic. 
The role of extensions in TinkerCell fits nicely with the fact that 
TinkerCell is an open-source project. In an ideal scenario, dif-
ferent extensions would be available, each providing a different 
type of default modeling method. Users will be able to choose 

Figure 3. The model summary window is an interface that allows the 

user to view and edit any of the parameters in the model. The window 

shows the parameters according to the component that they belong 

with, e.g., a promoter’s strength parameter.

Figure 4. This �gure shows the control coe�cients of di�erent �uxes 

in an incoherent feed-forward network on the steady state value of the 

second protein (p2 in the Figure). The control coe�cients are computed 

using PySCeS. The output from PySCeS is displayed visually: the reac-

tion arcs are colored green for positive control coe�cients and red for 

negative and the line widths are also adjusted according to the control 

coe�cients. This example illustrates how Python scripts in TinkerCell 

can produce visual outputs.
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SBOL aims to establish standards for visual representation, text-
based representations and a comprehensive semantic representa-
tion of biological parts and circuits. TinkerCell already supports 
much of the SBOL visual standard (see Fig. 2). Integrating SBOL 
semantic with TinkerCell is a long-term goal. When this goal 
is achieved, users will be able to use TinkerCell as a front-end 
for querying biological parts repositories, biological models and 
analysis functions. Due to the detailed descriptions provided by 
SBOL semantic, it would be possible for TinkerCell to automati-
cally link concepts in mathematical models with biological parts. 

synthetic biology community can share models and analysis pro-
grams. The first feature is the ability to construct and connect 
modules. Individual modules can be described using a TinkerCell 
model. In future, modules will also be able to encapsulate mod-
els represented using Antimony scripts32 or the Systems Biology 
Markup Language.33 A feature that is under development is the 
ability to encapsulate the internal details of a module, similar 
to the way electrical circuit diagrams hide the internal details 
of common components such as amplifiers. One can imagine a 
similar interface for biological circuits where individual mod-
ules might represent feed-forward networks or bistable switches. 
These modules might represent circuits that have been built by 
different research labs. TinkerCell will allow users to upload 
and download modules, which would permit different labs to 
use each other’s works to create new circuits. Figure 7 shows a 
screenshot of the interface that is presently being developed to 
enable this functionality.

The second feature is TinkerCell’s ability to incorporate new 
functions written in Python and C programming languages. 
Other programming languages such as Octave, R, Ruby and Perl 
will be added in future. If users are able to upload and down-
load programs from a central repository, the sharing of use-
ful programs for analysis of synthetic biology circuits may be 
greatly enhanced by TinkerCell. It is important to note that all 
of the programs that can be incorporated into TinkerCell are 
not dependent on TinkerCell; for instance, a Python program 
that is incorporated in TinkerCell can still be used as a separate 
program outside TinkerCell. The intent of TinkerCell is simply 
to provide an interface to existing code. One side project that 
might be required for this sort of sharing of programs will be a 
repository of code that perform small functions, ranging from 
numerical analysis to sequence analysis. This repository of code 
will be independent of TinkerCell, but TinkerCell can serve as 
a channel through which the repository can be accessed. Often, 
a third-party program will be difficult to use because the inputs 
and outputs might have not be clearly documented. When code 
is added to TinkerCell, the programmer has the option of add-
ing several user interface features without extensive code writing. 
This can add to the ease of code sharing.

One of the greatest challenges of modeling biological sys-
tems is the large number of unknown parameters and missing 
information describing possibly important details of biological 
processes. Depending on the model, many of the details may or 
may not be needed. Nonetheless, future modeling techniques 
in synthetic biology would probably give much consideration to 
the uncertainty related to each parameter. TinkerCell’s design 
allows uncertainties to be specified along with the parameters 
of the model. Managing uncertainty in synthetic biology is an 
active area of research,34-37 and there are plans to add some form 
of uncertainty analysis to TinkerCell.

Standards and exchange formats. TinkerCell is part of a 
greater plan for facilitating exchange of synthetic biology parts. 
The Synthetic Biology Open Language (http://openwetware.
org/wiki/The_BioBricks_Foundation:Standards/Technical/
Exchange), abbreviated as SBOL, is a collaborative endeavor for 
establishing standards for exchanging synthetic biology circuits. 

Figure 6. TinkerCell is extensible at di�erent layers. The bottom-most 

layer is a Core library that provides all the basic drawing functions. The 

C++ extensions form a second-layer. These extensions provide the mod-

eling framework and various use interface features. A C programmer 

interface is built on the C++ extensions and the Core library, providing 

over two hundred functions that can be used to add new C extensions. 

Each C function is extended to higher level languages such as Python, 

allowing Python extensions. The right-hand side of the �gure lists some 

example features that are provided by each layer.

Figure 5. TinkerCell integrates third-party functions written in Python 

and C with its user interface. Python programs and C programs are 

loaded from designated folders and made available as buttons in 

TinkerCell, as shown in this �gure. In future, TinkerCell will also support 

programs written in other languages such as Ruby, R and Perl.
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an exaggerated view of synthetic biology, which can have nega-
tive consequences on the field. It is important for the people 
outside the field to be better informed, so that they are aware 
of the limitations and the risks involved in synthetic biology. 
Synthetic biology research requires understanding the biology 
as well as the dynamics of a circuit, which often prevents those 

Figure 8. Integrating the Synthetic Biology Open Language semantic standards with TinkerCell will allow users to design circuits in TinkerCell and 

query local and remote databases for biological parts that are suitable for the design. The user would only interact via TinkerCell; standard exchange 

formats will make the database queries transparent to the user. The di�erent components required to complete this process are under development 

at present.

Figure 7. This �gure shows three modules connected to form a larger circuit. The internal details of each module are hidden from view to provide the 

user with a concise view diagram, which can often provide a clearer conceptual understanding of the circuit. The internal details of each module still 

can be viewed and changed in a separate window, as shown at the right-hand side of the �gure. One of the future plans of TinkerCell is to allow users 

to upload and download modules from a central repository. When that feature is complete, this interface can be used to construct circuits using other 

researchers’ modules.

Figure 8 illustrates how this integration can foster community 
development.

Education. Education is perhaps a less emphasized area 
that TinkerCell will cover. Comments about TinkerCell at 
the NewScientist (http://www.newscientist.com) is indicative 
of the fact that a good percentage of the general public have 
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and algorithms that were developed as part of individual projects. 
Therefore, iGEM participants may represent a valuable group of 
contributors for TinkerCell.
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outside the field from understanding its limitations and poten-
tial. Tools such as TinkerCell that are visually appealing may 
serve as teaching tools for illustrating concepts when designing 
biological systems. Some interactive features in TinkerCell may 
also assist students in understanding the dynamics of biological 
circuits (see Fig. 9).

The community of young scientists at the International 
Genetically Engineered Machines Competition (iGEM)38 is an 
ideal target audience for TinkerCell. This group would be able 
to use TinkerCell as a means of sharing computational models 

Figure 9. Some of the tools in TinkerCell, such as sliders, allows users to interactively study the e�ects of parameters on the dynamic behavior of a 

circuit. Such interactive features can be useful as educational tools. The �gure shows a genetic network that behaves like an OR gate. The sliders can 

be used to show how the di�erent parameters a�ect the threshold, steepness and height of the curve.
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