
Bioengineered Bugs 1:4, 274-281; July/August 2010 © 2010 Landes Bioscience

 REP0RT

274 Bioengineered Bugs Volume 1 Issue 4

*Correspondence to: Deepak Chandran; Email: deepakc@u.washington.edu

Submitted: 05/02/10; Revised: 05/25/10; Accepted: 05/28/10

Previously published online: www.landesbioscience.com/journals/biobugs/article/12506

Introduction

Synthetic biology can be described as an amalgam of wet-lab
techniques from genetic engineering, modeling techniques from
systems biology and design concepts from electrical and control
engineering.1,2 The goal of synthetic biology is the ability to build
biological “circuits” or networks made using individual compo-
nents such as genes and promoter regions, that produce a desired
behavior. The process by which this goal should be attained is
unclear, and therefore the precise definition of synthetic biol-
ogy is also unclear.3 However, the success of synthetic biology
depends on a few key ingredients: efficient design process, stan-
dardized engineering protocols,4 and some form of modularity5
allowing one engineer to build on another’s work. The poten-
tial of such a technology is immense for understanding funda-
mental science or solving real-world problems. By constructing
oscillators,6-8 bistable switches,9,10 noise controlling networks11
and synchronizing circuits,12 synthetic biologists are able to bring
theory of biological systems into practice. For the purpose of real-
world application, synthetic biology may become a key player in
bioremediation,13 drug production14,15 and bio-fuel production.16

While synthetic biology has great potential, it is important to
understand the present limitations. There are unresolved issues
at several levels: wet-lab protocols, exchange of information and
computational modeling. Synthetic biology relies on the hypoth-
esis that biological parts or functional elements encoded as DNA,
can be assembled in order to build circuits with predictable
behavior.17 Wet-lab protocols for assembling biological parts are
time-consuming and labor intensive, especially when building
large circuits. For the purpose of sharing, there are no standard

Computer-aided design of biological circuits
using TinkerCell

Deepak Chandran,1,* Frank T. Bergmann1,2 and Herbert M. Sauro1

1Department of Bioengineering; University of Washington; Seattle, WA USA; 2Keck Graduate Institute; Claremont, CA USA

Key words: synthetic biology, modeling, software, CAD, simulation, systems biology, design, standards, computational

Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab

techniques from genetic engineering. As synthetic biology advances, e�cient procedures will be developed that will

allow a synthetic biologist to design, analyze and build biological networks. In this idealized pipeline, computer-aided

design (CAD) is a necessary component. The role of a CAD application would be to allow e�cient transition from a general

design to a �nal product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build

biological networks using biological parts and modules. The network can be analyzed using one of several functions

provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing

synthetic biology networks have not yet been established, TinkerCell is designed as a �exible and extensible application

that can adjust itself to changes in the �eld.

protocols for exchanging complete parts between research labs,
including the DNA sequence and information about the part’s
function. For computational analysis, there is no clear consensus
on what types of models are best suited for reliably predicting
biological circuit behavior, especially in the presence of so many
unknown parameters in an average synthetic circuit. Nonetheless,
it is equally important to realize that significant progress has been
made to address each of the above issues. Standardized assembly
has made exchange of parts between labs easier.18,19 Design strate-
gies have been explored for controlling uncertainty due to noise20
and parameters.21 Modeling methods have been demonstrated
to be predictive for steady state behaviors of cells,22,23 and the
importance of intermediate stages, such as mRNA and protein
folding, have been shown to capture the dynamics of a circuit.7

Although progress has been made, the future of synthetic biol-
ogy is unclear. From one perspective, it can be argued that the
idea of engineering biology is simply an impossible task due to
overwhelming complexity. On that other hand, it is also argu-
able that scientists will be able to discover ways of controlling
some subset of all possible biological systems, turning biology
into a reliable technology. In this later optimistic future, research
labs would make frequent use of biological parts databases, as
it is already being done to a certain extent using the Registry of
Biological Parts (http://partsregistry.org).24 The databases would
contain structured information with supporting experimental
and kinetic data. It is important to adopt this optimistic point of
view in order to justify why computer-aided design (CAD) will
be helpful in synthetic biology.

Different approaches have been taken for constructing CAD
programs for synthetic biology. Existing CAD applications for

www.landesbioscience.com Bioengineered Bugs 275

 REP0RT REP0RT

and a protein coding sequence. The researcher wishes to study
the effect of changing the promoter on the system. Changing
the promoter implies changing one or more parameters in the
model, depending on how the model is constructed. To satisfy
this requirement, the CAD application needs to identify the
parameter(s) that belong with each part in the model. In the
anticipated future, there will be some sort of database of biologi-
cal parts that the researcher would access. If the researcher selects
a specific part from the database, the CAD application should
be able to incorporate the parameters from the database into the
model. Other information available from the database, such as
equations that describe the dynamics of the part and the DNA
sequence, should also be incorporated into the model as well.

Enforcing one type of modeling methodology is not a good
idea for a developing field. Repeated experience with modeling
and experiments might lead researchers to recognize that a spe-
cific modeling method is best suited for certain types of synthetic
circuits. The CAD application should be able to incorporate new
modeling methods without having to remove its existing model-
ing framework. For this purpose, the CAD application should
allow different ways of defining the dynamics of the model.

synthetic biology include BioJade,25 GenoCAD,26 SynBioSS,27
ProMoT,28 Clotho29 and TinkerCell.30 Each of these CAD appli-
cations are unique in their own ways and have their own respec-
tive focus areas. The focus of this article is TinkerCell, which is
an application for visually constructing biological networks and
analyzing its dynamics. A screenshot of TinkerCell is shown in
Figure 1.

Motivation for TinkerCell

TinkerCell is a CAD software application for visually construct-
ing and analyzing biological models or circuits. Unlike classical
engineering disciplines, there are no established best practices in
synthetic biology for taking a circuit from the design stage to the
construction stage. In this situation, the goal of TinkerCell is
to serve as an application that can adapt with the continuously
evolving field of synthetic biology. The following hypothetical
use cases were used to guide the design TinkerCell:

A model needs to define its mathematics in context of the
underlying biology. A researcher constructs a model using some
biological parts, such as a promoter, a ribosomal binding site

Figure 1. A screenshot of TinkerCell, showing a simple model of lactose import. The bacterial cell in the model contains a plasmid with a promoter,

RBS and a coding region. The protein produced from the coding region is the membrane protein that is responsible for importing lactose, which in

turn inhibits the transcription factor, LacI. LacI negatively regulates the promoter on the plasmid.

276 Bioengineered Bugs Volume 1 Issue 4

The CAD program should allow parameters to be defined as a
range of values or a distribution of values rather than a single
exact number and provide methods for analyzing the model by
taking the uncertainties into consideration.

TinkerCell’s underlying software structure is designed with
these use cases in mind. The current version of TinkerCell does
not fully satisfy all of these use cases because some of the fea-
tures are still under development. For example, TinkerCell cur-
rently allows a user to add custom programs that interact with
TinkerCell’s visual interface, but the option for sharing custom
programs between users does not exist. Similarly, models can be
constructed my composing existing models, but no feature is
available for sharing models between users. The visual diagrams
are converted to mathematical models by TinkerCell extensions
(discussed in the TinkerCell design section), so TinkerCell does
not enforce one type of modeling approach. Finally, while param-
eter uncertainties can be stored in TinkerCell models, there are
no functions available for using this information at present.
However, TinkerCell’s underlying design will be able to support
all the missing features.

TinkerCell’s Design

Component based modeling. The first design feature in
TinkerCell is a well structured model. Users build TinkerCell
models by selecting and connecting components from the parts
catalog that is displayed at the top of the TinkerCell window (see
Fig. 2). Components in this catalog include proteins, small mole-
cules, cells, promoters and coding regions. The list of components
is flexible because the list is loaded from an Extensible Markup
Language (XML) file. The XML file represents a structured
definition of each component. For example, the file describes
“transcriptional repression” as a connection from a “transcrip-
tion factor” to a “repressible promoter”. Similarly, a “transcrip-
tion factor” is described as a special case of a “protein”. This file
captures what is called ontology or a structured description of

The ability to integrate new programs is beneficial for a
 developing field. A researcher has constructed a model with exist-
ing parts from a database. The researcher is interested in checking
to see which parts in the circuit contain a particular restriction
site. This is a specific function that the CAD application may not
provide by default. However, if a program exists for performing
this analysis, the CAD application should allow the researcher to
add the new program. The CAD application should allow full
integration of this new program. For example, as an output, the
new program should be able to request the CAD application to
visually highlighting the parts that contain the restriction sites
of interest. This will allow the researcher to construct models in
the CAD program, analyze general aspects of the model, and use
custom programs to analyze specific aspects of the model.

The ability to share new programs is beneficial for building
a community. Continuing from the previous example, it might
be the case that a custom program used by one researcher is a
valuable tool for other researchers in the field. Allowing a user
to share custom programs will not only enhance the CAD appli-
cations functionality but also foster community development.
Therefore, a CAD application should provide a simple procedure
for each user to share and retrieve custom programs.

The ability to reuse models is beneficial for engineering. A
research lab has built several small synthetic circuits and has rela-
tively good models for each. A researcher at the lab wishes to con-
nect some of these small circuits to construct larger circuits. The
CAD application should support such reuse of circuits by allowing
users to construct modules and connect modules to build larger
circuits. The user interface should allow an option for hiding the
internal details of the modules, providing the user with a compact
view of the larger circuit in terms of the smaller modules.

Models should account for uncertainties that exist in real
systems. For biological parts, exact quantitative values are rarely
available. For some parameters, even rough estimates may not
be available. For a model to reflect the reality, the uncertainty
related to parameters in a model should be taken into account.

Figure 2. TinkerCell uses a catalog of biological components for constructing models. Each component in the catalog belongs to an ontology, which

is transparent to the user. Models that are built using components in the catalog will contain the mathematical descriptions as well as the biological

descriptions.

www.landesbioscience.com Bioengineered Bugs 277

the extension that fits their interests. Several user interface fea-
tures are also provided by extensions. For example, the model
summary window shown in Figure 3 and also in Figure 1 is a
user interface extension. Although the current set of extensions
are all written by the original designer of TinkerCell, they could
have easily been written by other programmers who wanted to
contribute to TinkerCell.

Expandable set of functions. The third design feature is sup-
port for third-party functions. When the user is finished con-
structing the model, the model can be analyzed using one of many
functions listed in the programs menu (see Fig. 4). These functions
are not built-in functions. Rather, they are loaded from a folder
containing programs written in C and Python programming lan-
guages. TinkerCell provides a extensive application programming
interface (API) with over two hundred functions that are callable
from C and Python. These functions allow third-party programs
to get information about the model from TinkerCell, analyze the
model, and report the results back to TinkerCell. Because of the
rich API, the results can be presented visually. Figure 5 shows an
example output produced from a Python program in TinkerCell
that uses PySCeS31 to perform sensitivity analysis. The results are
presented by coloring the reactions in the network according to
the control coefficients. TinkerCell automatically loads Python
scripts and C programs from designated C and Python folders,
allowing easy integration of third-party code.

TinkerCell’s flexibility is due to its layered architecture (see
Fig. 6). TinkerCell consists of a Core library, which provides
all the basic drawing capabilities. The TinkerCell extensions
are C++ programs that build on the Core library. C and Python
extensions build on the Core library as well as the C++ exten-
sions. Major changes to TinkerCell can be made through C++
extensions. New functions can be added to TinkerCell via C or
Python extensions.

Future plans. There are two features in TinkerCell that can
potentially make it valuable as a medium through which the

 relationships between concepts. The particular XML file in use
currently is meant to be temporary, and it will be replaced with a
standard ontology in the future.

Default models derived from structure. The purpose of
the ontology becomes clear as the user starts to build a model
using components from the catalog. By using definitions of the
components, TinkerCell is able to derive much of the dynamics
automatically. For example, when a user connects a promoter,
a ribosomal binding site and a protein coding region together,
TinkerCell is able to identify the fact that all of these are DNA
components, and therefore, the relative locations of the compo-
nents are relevant to their functions. By using the ordering of the
components, TinkerCell is automatically able to assign rate equa-
tions describing the dynamics of the transcription and transla-
tion reactions. This example shows knowledge of the biology can
automate model construction. Of course, the user can modify
any of the default equations if needed.

Flexibility provided through extensions. The second design
feature in TinkerCell is extensibility. Much of the work in
TinkerCell is done by extensions. Extensions are programs that
can be added to TinkerCell without altering the existing program.
In the earlier, when the user places DNA components together,
the transcription rate equations are automatically derived by a
TinkerCell extension. Because extensions are optional features,
they can be removed or replaced. For instance, if the default reac-
tion rate equations derived by the current extension are not pre-
ferred, it is possible to write a different extension that provides
a different way of defining the dynamics, e.g., Boolean logic.
The role of extensions in TinkerCell fits nicely with the fact that
TinkerCell is an open-source project. In an ideal scenario, dif-
ferent extensions would be available, each providing a different
type of default modeling method. Users will be able to choose

Figure 3. The model summary window is an interface that allows the

user to view and edit any of the parameters in the model. The window

shows the parameters according to the component that they belong

with, e.g., a promoter’s strength parameter.

Figure 4. This �gure shows the control coe�cients of di�erent �uxes

in an incoherent feed-forward network on the steady state value of the

second protein (p2 in the Figure). The control coe�cients are computed

using PySCeS. The output from PySCeS is displayed visually: the reac-

tion arcs are colored green for positive control coe�cients and red for

negative and the line widths are also adjusted according to the control

coe�cients. This example illustrates how Python scripts in TinkerCell

can produce visual outputs.

278 Bioengineered Bugs Volume 1 Issue 4

SBOL aims to establish standards for visual representation, text-
based representations and a comprehensive semantic representa-
tion of biological parts and circuits. TinkerCell already supports
much of the SBOL visual standard (see Fig. 2). Integrating SBOL
semantic with TinkerCell is a long-term goal. When this goal
is achieved, users will be able to use TinkerCell as a front-end
for querying biological parts repositories, biological models and
analysis functions. Due to the detailed descriptions provided by
SBOL semantic, it would be possible for TinkerCell to automati-
cally link concepts in mathematical models with biological parts.

synthetic biology community can share models and analysis pro-
grams. The first feature is the ability to construct and connect
modules. Individual modules can be described using a TinkerCell
model. In future, modules will also be able to encapsulate mod-
els represented using Antimony scripts32 or the Systems Biology
Markup Language.33 A feature that is under development is the
ability to encapsulate the internal details of a module, similar
to the way electrical circuit diagrams hide the internal details
of common components such as amplifiers. One can imagine a
similar interface for biological circuits where individual mod-
ules might represent feed-forward networks or bistable switches.
These modules might represent circuits that have been built by
different research labs. TinkerCell will allow users to upload
and download modules, which would permit different labs to
use each other’s works to create new circuits. Figure 7 shows a
screenshot of the interface that is presently being developed to
enable this functionality.

The second feature is TinkerCell’s ability to incorporate new
functions written in Python and C programming languages.
Other programming languages such as Octave, R, Ruby and Perl
will be added in future. If users are able to upload and down-
load programs from a central repository, the sharing of use-
ful programs for analysis of synthetic biology circuits may be
greatly enhanced by TinkerCell. It is important to note that all
of the programs that can be incorporated into TinkerCell are
not dependent on TinkerCell; for instance, a Python program
that is incorporated in TinkerCell can still be used as a separate
program outside TinkerCell. The intent of TinkerCell is simply
to provide an interface to existing code. One side project that
might be required for this sort of sharing of programs will be a
repository of code that perform small functions, ranging from
numerical analysis to sequence analysis. This repository of code
will be independent of TinkerCell, but TinkerCell can serve as
a channel through which the repository can be accessed. Often,
a third-party program will be difficult to use because the inputs
and outputs might have not be clearly documented. When code
is added to TinkerCell, the programmer has the option of add-
ing several user interface features without extensive code writing.
This can add to the ease of code sharing.

One of the greatest challenges of modeling biological sys-
tems is the large number of unknown parameters and missing
information describing possibly important details of biological
processes. Depending on the model, many of the details may or
may not be needed. Nonetheless, future modeling techniques
in synthetic biology would probably give much consideration to
the uncertainty related to each parameter. TinkerCell’s design
allows uncertainties to be specified along with the parameters
of the model. Managing uncertainty in synthetic biology is an
active area of research,34-37 and there are plans to add some form
of uncertainty analysis to TinkerCell.

Standards and exchange formats. TinkerCell is part of a
greater plan for facilitating exchange of synthetic biology parts.
The Synthetic Biology Open Language (http://openwetware.
org/wiki/The_BioBricks_Foundation:Standards/Technical/
Exchange), abbreviated as SBOL, is a collaborative endeavor for
establishing standards for exchanging synthetic biology circuits.

Figure 6. TinkerCell is extensible at di�erent layers. The bottom-most

layer is a Core library that provides all the basic drawing functions. The

C++ extensions form a second-layer. These extensions provide the mod-

eling framework and various use interface features. A C programmer

interface is built on the C++ extensions and the Core library, providing

over two hundred functions that can be used to add new C extensions.

Each C function is extended to higher level languages such as Python,

allowing Python extensions. The right-hand side of the �gure lists some

example features that are provided by each layer.

Figure 5. TinkerCell integrates third-party functions written in Python

and C with its user interface. Python programs and C programs are

loaded from designated folders and made available as buttons in

TinkerCell, as shown in this �gure. In future, TinkerCell will also support

programs written in other languages such as Ruby, R and Perl.

www.landesbioscience.com Bioengineered Bugs 279

an exaggerated view of synthetic biology, which can have nega-
tive consequences on the field. It is important for the people
outside the field to be better informed, so that they are aware
of the limitations and the risks involved in synthetic biology.
Synthetic biology research requires understanding the biology
as well as the dynamics of a circuit, which often prevents those

Figure 8. Integrating the Synthetic Biology Open Language semantic standards with TinkerCell will allow users to design circuits in TinkerCell and

query local and remote databases for biological parts that are suitable for the design. The user would only interact via TinkerCell; standard exchange

formats will make the database queries transparent to the user. The di�erent components required to complete this process are under development

at present.

Figure 7. This �gure shows three modules connected to form a larger circuit. The internal details of each module are hidden from view to provide the

user with a concise view diagram, which can often provide a clearer conceptual understanding of the circuit. The internal details of each module still

can be viewed and changed in a separate window, as shown at the right-hand side of the �gure. One of the future plans of TinkerCell is to allow users

to upload and download modules from a central repository. When that feature is complete, this interface can be used to construct circuits using other

researchers’ modules.

Figure 8 illustrates how this integration can foster community
development.

Education. Education is perhaps a less emphasized area
that TinkerCell will cover. Comments about TinkerCell at
the NewScientist (http://www.newscientist.com) is indicative
of the fact that a good percentage of the general public have

280 Bioengineered Bugs Volume 1 Issue 4

and algorithms that were developed as part of individual projects.
Therefore, iGEM participants may represent a valuable group of
contributors for TinkerCell.

Acknowledgements

This work was partly supported (Chandran) by a grant from
the National Science Foundation (Id 0527023-FIBR) and
Microsoft’s Computational Challenges in Synthetic Biology
2006 Award. Bergmann was supported by a grant from NIH/
NIGMS(GM081070).

outside the field from understanding its limitations and poten-
tial. Tools such as TinkerCell that are visually appealing may
serve as teaching tools for illustrating concepts when designing
biological systems. Some interactive features in TinkerCell may
also assist students in understanding the dynamics of biological
circuits (see Fig. 9).

The community of young scientists at the International
Genetically Engineered Machines Competition (iGEM)38 is an
ideal target audience for TinkerCell. This group would be able
to use TinkerCell as a means of sharing computational models

Figure 9. Some of the tools in TinkerCell, such as sliders, allows users to interactively study the e�ects of parameters on the dynamic behavior of a

circuit. Such interactive features can be useful as educational tools. The �gure shows a genetic network that behaves like an OR gate. The sliders can

be used to show how the di�erent parameters a�ect the threshold, steepness and height of the curve.

References

1. Daskalaki A. Handbook of Research on Systems
Biology Applications in Medicine. IGI Global 2009.

2. Chandran D, Copeland W, Sleight S, Sauro H.
Mathematical modeling and synthetic biology. DDT
Disease Models 2009; 5:18-9.

3. Adam D. What’s in a name? Nature 2001; 411:408-9.

4. Arkin A. Setting the standard in synthetic biology. Nat
Biotech 2008; 26:771-3.

5. Sauro HM. Modularity defined. MSB 2008; 4:166-8.

6. Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet
M, Arnold FH, et al. A synthetic Escherichia coli
predator-prey ecosystem. MSB 2008; 4.

7. Stricker J, Cookson S, Bennett MR, Mather WH,
Tsimring LS, Hasty J. A fast, robust and tunable syn-
thetic gene oscillator. Nature 2008; 456:516-9.

8. Tigges M, Marquez-Lago TT, Stelling J, Fussenegger
M. A tunable synthetic mammalian oscillator. Nature
2009; 457:309-12.

9. Gardner TS, Cantor CR, Collins JJ. Construction of a
genetic toggle switch in Escherichia coli. Nature 2000;
403:339-42.

10. Lou C, Liu X, Ni M, Huang Y, Huang Q, Huang L, et
al. Synthesizing a novel genetic sequential logic circuit:
a push-on push-off switch. MSB 2010; 6.

11. Becskei A, Serrano L. Engineering stability in gene
networks by autoregulation. Nature 2000; 405:590-3.

12. Danino T, Mondragón-Palomino O, Tsimring L, Hasty
J. A synchronized quorum of genetic clocks. Nature
2010; 463:326-30.

13. Viebahn M, Smit E, Glandorf DCM, Wernars K,
Bakker PAHM. Effect of Genetically Modified
Bacteria on Ecosystems and Their Potential Benefits
for Bioremediation and Biocontrol of Plant Diseases-A
Review. Sustainable Agriculture Reviews: Climate
Change, Intercropping, Pest Control and Beneficial
Microorganisms 2009; 45-69.

14. Anthony JR, Anthony LC, Nowroozi F, Kwon G,
Newman JD, Keasling JD. Optimization of the
mevalonate-based isoprenoid biosynthetic pathway in
Escherichia coli for production of the anti-malarial drug
precursor amorpha-4, 11-diene. Metab Eng 2009;
11:13-9.

15. Weber W, Fussenegger M. The impact of synthetic
biology on drug discovery. DDT 2009; 956-63.

www.landesbioscience.com Bioengineered Bugs 281

34. Feng X, Hooshangi S, Chen D, Li G, Weiss R, Rabitz
H. Optimizing genetic circuits by global sensitivity
analysis. Biophys J 2004; 87:2195-202.

35. Marino S, Hogue IB, Ray CJ, Kirschner DE. A meth-
odology for performing global uncertainty and sensitiv-
ity analysis in systems biology. JTB 2008; 254:178-96.

36. Kaltenbach HM, Dimopoulos S, Stelling J. Systems
analysis of cellular networks under uncertainty. FEBS
Lett 2009; 583:3923-30.

37. Chen BS, Chang CH, Lee HC. Robust synthet-
ic biology design: stochastic game theory approach.
Bioinformatics 2009; 25:1822-30.

38. Smolke CD. Building outside of the box: iGEM and
the BioBricks Foundation. Nature Biotechnol 2009;
1099-102.

26. Czar MJ, Cai Y, Peccoud J. Writing DNA with geno-
cadtm. Nuc Acids Res 2009; 37.

27. Hill AD, Tomshine JR, Weeding E, Sotiropoulos V,
Kaznessis YN. SynBioSS: the synthetic biology model-
ing suite. Bioinformatics 2008; 24:2551.

28. Marchisio MA, Stelling J. Computational design
of synthetic gene circuits with composable parts.
Bioinformatics 2008; 24:1903-10.

29. Densmore DaVD A, Johnson M, Sritanyaratana N.
A platform-based design environment for synthetic
biological systems. The Fifth Richard Tapia Celebration
of Diversity in Computing Conference: Intellect,
Initiatives, Insight and Innovations 2009; 24-9.

30. Chandran D, Bergmann FT, Sauro H. TinkerCell:
modular CAD tool for synthetic biology. J Biol Eng
2009; 3.

31. Olivier BG, Rohwer JM, Hofmeyr JHS. Modelling
cellular systems with PySCeS. Bioinformatics 2005;
21:560-1.

32. Smith LP, Bergmann FT, Chandran D, Sauro HM.
Antimony: A modular model definition language.
Bioinformatics 2009; 25:2452-4.

33. Hucka M, Finney A, Sauro H, Bolouri H, Doyle J,
Kitano H, et al. The systems biology markup language
(SBML): a medium for representation and exchange
of biochemical network models. Bioinformatics 2003;
19:524-31.

16. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A,
McClure A, et al. Microbial production of fatty-acid-
derived fuels and chemicals from plant biomass. Nature
2010; 463:559-62.

17. Endy D. Foundations for engineering biology. Nature
2005; 438:449-53.

18. Shetty RP, Endy D, Knight T Jr. Engineering BioBrick
vectors from BioBrick parts. J Biol Eng 2008; 2.

19. Anderson CJ, Dueber J, Leguia M, Wu G, Goler J,
Arkin A, et al. BglBricks: A flexible standard for bio-
logical part assembly. J Biol Eng 2010; 4.

20. Murphy KF, Adams RM, Wang X, Balazsi G, Collins
JJ. Tuning and controlling gene expression noise in syn-
thetic gene networks. Nuc Acids Res 2010; 1:2712-26.

21. Bennett MR, Hasty J. Overpowering the component
problem. Nat Biotech 2009; 27:450-1.

22. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss
R. A synthetic multicellular system for programmed
pattern formation. Nature 2005; 434:1130-4.

23. Entus R, Aufderheide B, Sauro HM. Design and
implementation of three incoherent feed-forward motif
based biological concentration sensors. Sys Syn Biol
2007; 1:119-28.

24. Goodman C. Engineering ingenuity at iGEM. Nature
Chemical Biology 2008; 4.

25. Goler JA. BioJADE: A Design and Simulation Tool for
Synthetic Biological Systems. Technical report 2004.

