1272

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

Computer Aided Design of Fault-Tolerant

Application Specific Programmable Processors

Ramesh Karri, Kyosun Kim, and Miodrag Potkonjak

Abstract—Application Specific Programmable Processors (ASPP) provide efficient implementation for any of m specified
functionalities. Due to their flexibility and convenient performance-cost trade-offs, ASPPs are being developed by DSP, video,
multimedia, and embedded IC manufacturers. In this paper, we present two low-cost approaches to graceful degradation-based
permanent fault tolerance of ASPPs. ASPP fault tolerance constraints are incorporated during scheduling, allocation, and assignment
phases of behavioral synthesis. Graceful degradation is supported by implementing multiple schedules of the ASPP applications, each
with a different throughput constraint. In this paper, we do not consider concurrent error detection. The first ASPP fault tolerance
technique minimizes the hardware resources while guaranteeing that the ASPP remains operational in the presence of all k-unit faults.
On the other hand, the second fault tolerance technique maximizes the ASPP fault tolerance subject to constraints on the hardware

NOVEMBER 2000

resources. These ASPP fault tolerance techniques impose several unique tasks, such as fault-tolerant scheduling, hardware
allocation, and application-to-faulty-unit assignment. We address each of them and demonstrate the effectiveness of the overall
approach, the synthesis algorithms, and software implementations on a number of industrial-strength designs.

Index Terms—Application specific programmable processors, fault tolerance, graceful degradation, behavioral synthesis.

1 INTRODUCTION

MODERN applications require high performance, low
power, and inexpensive multiple functionalities.
Furthermore, multiple standards (e.g., CDMA and TDMA
in wireless communications and NTSC, PAL, and SECAM
for television) may exist for the same application. Whereas
multiplicity of standards, diverse quality-of-service offer-
ings, and the rapidly changing deployment scenarios
mandate a need for flexibility, portability, and mobility
necessitate low power operation. However, neither general-
purpose processors nor dedicated special-purpose proces-
sors by themselves can offer these diverse implementation
properties. Consequently, several major processor manu-
facturers, including Fujitsu [10] (with their 86k line of
programmable processors) and Motorola [30] (with their
application-specific programmable DSP processors), are
offering a comprehensive line of application-specific pro-
grammable processors (ASPPs) that preserve all the
advantages of special-purpose processors while retaining
the cost and flexibility provided by general-purpose
processors. These market trends confirm the rapidly
growing need for efficient synthesis techniques for ASPP
designs. We focus on the reconfigurability of datapath-
intensive application-specific computation since we are
targeting DSP, video, control, and communication applica-
tions. Further, wireless communication (TDMA, CDMA),

e R. Karri is with the Department of Electrical Engineering, Polytechnic
University, Brooklyn, NY 11201. E-mail: ramesh@india.poly.edu.

e K. Kim is with Samsung Electronics, Yonin-City Kyungki-Do, 449-900
Korea. E-mail: kkim99@samsung.co.kr.

o M. Potkonjak is with the Computer Science Department, 3532 Boelter Hall,
University of California at Los Angeles, Los Angeles, CA 90095-1596.
E-mail: miodrag@cs.ucla.edu.

Manuscript received 19 Apr. 1999; accepted 25 July 2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 112582.

television (NTSC, PAL, SECAM, HDTV), video compres-
sion (JPEG, MPEG), audio compression (AC-3, AC-97), etc.
are standardized. Therefore, the functionality of commercial
electronic products is limited to a minor variation of these
standards.

An application specific programmable datapath, shown
in Fig. 1, implements a seventh order IIR filter (IIR7) and
two schedules of the volterra filter (VOLTERRA).! The
flexibility and redundancy inherent in such ASPP designs
are an excellent source for providing permanent fault
tolerance with low overhead. For example, in Fig. 1, if all
units are operational, either IIR7 or VOLTERRA can be
executed. In the presence of a single faulty unit, one of the
schedules of VOLTERRA is still operational, as shown in
Table 1.

An ASPP can be configured to execute only those
applications that do not use the faulty units. Alternatively,
when only limited repair is economically feasible, one can
invoke an application on the ASPP requiring the smallest
number of repair steps [31]. Statistically, we still have an IC
which realizes all of the required functionalities, but with
reduced costs for yield enhancement repair [25].

From a design tools perspective, the focus has been on
synthesizing a specific implementation for a given compu-
tation which meets a combination of design constraints,
such as throughput, latency, and power, while optimizing a
primary design goal, area. We developed a behavioral
synthesis tool that synthesizes ASPP designs starting with
the specifications of any m functionalities. We use the
architectural flexibility of an ASPP to develop two
approaches for graceful degradation-based permanent fault
tolerance. We show how these ASPP fault tolerance
constraints can be incorporated during the scheduling,

1. This has been synthesized automatically using the reported synthesis
system.

0018-9340/00/$10.00 © 2000 IEEE

KARRI ET AL.: COMPUTER AIDED DESIGN OF FAULT-TOLERANT APPLICATION SPECIFIC PROGRAMMABLE PROCESSORS

n1g;,

P i || A
=l | L
I

%ﬂ;?*i;ﬁw s

) g;\‘ | (FEHI

,::::H H N\
e 1 . a
,///

e

Fig. 1. ASPP implementing seventh order IIR and VOLTERRA filters.

allocation, and assignment phases of behavioral synthesis.
We assume that a concurrent fault detection mechanism has
already been implemented and, hence, focus only on
incorporating graceful degradation. Graceful degradation
is supported by implementing multiple schedules of the
ASPP applications, each with a different throughput
constraint. In the first technique, the hardware resources
are minimized while guaranteeing that the ASPP remains
operational in the presence of all k-unit faults. On the other
hand, in the second technique, the fault tolerance of an
ASPP is maximized subject to constraints on the hardware
resources. Fault-tolerant ASPP synthesis imposes several
unique tasks such as fault-tolerant scheduling, hardware
allocation, and application-to-faulty-unit assignment. We
address each of them and demonstrate the effectiveness of
the overall approach, the synthesis algorithms, and soft-
ware implementations on a number of industrial-strength
designs.

The rest of the paper is organized in the following way:
We first briefly survey the related work along several
dimensions. Next, we will discuss the hardware and fault
models. In Sections 5 and 6, we formulate the two fault-
tolerant ASPP synthesis problems, describe the synthesis
algorithms, and present experimental results. In Section 7,
we conclude by summarizing the results, outlining the
future directions in the design of fault-tolerant ASPPs.

2 RELATED RESEARCH

The most relevant related work can be traced along three
lines of research and development: reconfigurable hard-
ware, behavioral synthesis, and fault tolerance techniques.

Field programmable gate arrays (FPGA) are being
extensively used for dynamic reconfiguration [7], [8], [16],
[43]. FPGA-based reconfigurable architectures, algorithms
suitable for run-time reconfiguration and implementation of

TABLE 1
Functional Units Used by IIR7 and VOLTERRA Applications
IIR7 | VOLTERRA
type | instance 1 2
+ | add240 v Vv
add241 Vv v
- sub240 v
sub241 Vv
* mult240 | / Vv
mult241 | +/ Vv

1273

proof-of-concept designs, have been investigated [7], [16].
This has resulted in a dynamic instruction set computer and
FPGA-based implementation for the traveling salesman
problem, mean filtering, and edge detection. FPGA techni-
ques for on-the-fly adaptation of a video signal processor
have been investigated by the dynamic computing project
[43]. Since it takes a few milliseconds to download a
hardware netlist onto an FPGA, it entails significant
performance overhead and, hence, is limited to applications
with infrequent context switching. Although dynamically
programmable gate arrays (DPGAs) store multiple person-
ality vectors to reduce the reconfiguration time, their
memory requirement increases to 33 percent (compared to
10 percent in FPGAs) [8].

There are a number of papers which describe fault
tolerance schemes for FPGAs. For example, Doumar et al.
[11] proposed a scheme where fault tolerance is achieved by
shifting the configuration data inside the FPGA. Dutt et al.
[12] achieve fault tolerance by using incremental rerouting
in the FPGA. Meyer et al. [24] developed a greedy algorithm
for enhancing fault tolerance of one-time programmable
FPGAs. Finally, Lach et al. [19] presented both methodology
for design of tiling-based fault-tolerant FPGA systems as
well as a survey of earlier efforts on designing fault-tolerant
FPGA-based systems.

Recently, application specific instruction sets processors
(ASIP) received a great deal of attention. An ASIP has a
programmable architecture tuned to an application class.
Identifying an optimal instruction set to improve the
applications in the selected class, subject to area and power
dissipation constraints, has been addressed by several
researchers [41], [21], [6], [22], [29]. Analysis tools to profile
the applications in a class to select an optimal instruction set
[41], [21] and synthesis tools to design an architecture to
efficiently execute the instructions in this instruction set [6],
[22], [29] have been developed. Although ASIPs provide
greater flexibility than ASICs, this comes at the expense of
low performance, high cost and power, and a need for
compilation support. Although synthesis of application-
specific programmable processors [5], [15] and application-
specific instruction sets processors (ASIP) [14], [22], [29]
have been receiving a great deal of attention, none of these
ASIP and ASPP design methodologies address fault-
tolerant design.

Behavioral synthesis has been an active area of research
for more than two decades [9], [13], [23] and numerous
outstanding systems have been built targeting both data
path-oriented and control-oriented applications [23], [33].
Behavioral synthesis traditionally has addressed synthesis
and optimization of a single CDFG for sampling rate, area,
and, more recently, power and test hardware overhead
minimization [9], [23].

Recently, a few efforts have been reported on behavioral
synthesis techniques for fault-tolerant designs. Orailoglu
and Karri [27] presented scheduling, assignment, and
transformation-based methods for fault tolerance against
transient faults. Guerra et al. [15] presented the first work
which concentrates on permanent faults. They showed how
fault tolerance achieved using a set of spare units can be
used for yield and productivity enhancement. Recently, Iyer

1274

con-
\

<0

T

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

L + out :.

NOVEMBER 2000

Fig. 2. (a) A hierarchical control data flow graph and (b) microarchitecture of a second-order FIR filter.

et al. [17] introduced a method which explores trade-offs
between performance and yield. Antola et al. [2], [3]
developed high level synthesis techniques for concurrent
and semiconcurrent error detection in data paths. Auto-
matic synthesis of self-recovering microarchitectures has
been previously addressed. An algorithm that intertwines
checkpoint insertion and scheduling (of operations in the
input algorithm to clock cycles) to synthesize self-recover-
ing microarchitectures for supporting fault-recovery in
hardware was first presented in [18], [26]. More recently,
[4], [36] presented algorithms for recovery point insertion in
recoverable microarchitectures that minimizes the number
of rollback points given constraints on the number of
registers and maximum number of time steps between any
two rollback points (the stride). For efficient concurrent
detection, [37] showed how fault-security constraints can be
incorporated during high level synthesis.

3 PRELIMINARIES
3.1 Computational Model

Our computational model for a single application is
homogeneous synchronous data flow [20], a special case
of the data flow process network family of computational
semantics. The model assumes a periodic computation done
on an incoming semifinite stream of data along the time
axis. Within this model, a task is represented as a
hierarchical Control Data Flow Graph G(N,E,T) (or
CDFG), with nodes N representing the flow graph opera-
tions and the edges E and T, respectively, the data and
timing dependences between the operations. Note that the
control dependences are subsumed by the timing control
dependences. A CDFG of a 2nd-order FIR filter is shown in
Fig. 2a. The homogeneous synchronous data flow model
provides semantics for numerous behavioral synthesis
systems targeting numerically intensive applications [42].
Many of most popular DSP, video, continuous media,
communication, control, and graphics applications follow
the selected computational model.

3.2 Hardware Model

In modern designs, a variety of register file models have
been used [9]. From among them, we have selected the
dedicated register file hardware model for modeling at the
structural register-transfer (RT) level. This model clusters
all registers in register files and each file is then connected

only to the inputs of the corresponding execution units.
Fig. 2b shows a microarchitecture which is synthesized
from the the second-order FIR filter CDFG shown in Fig. 2a.
An important benefit of the chosen hardware model is that
it reduces the interconnect at the expense of additional
registers. This trade-off is particularly important for
modern and future submicron technologies. A more
practical reason for using the dedicated register file model
is that we are using the behavioral synthesis utility tools
from the Hyper behavioral synthesis system [42]. Hyper
provides tools for translations from a high-level applicative
language to the internal CDFG format, estimation sub-
routines, simulations, and hardware mapping facilities, as
well as access to a large number of real-life design
specifications. Other hardware models can be directly
addressed using the proposed methodology and synthesis
algorithms, although appropriate minor modifications to
the software are required to address different interconnect
schemes.

There are three types of controllers that are suitable for
ASPP designs. Programmable Controllers [28] often bring a
somewhat large implementation area overhead and a
limited degradation in performance. However, it provides
flexibility not only for ASPP, but also for the additional
introduction of new functional specifications for a given
datapath. Off-chip controllers are flexible in that they can be
replaced as necessary since they are located on a separate
integrated circuit. A number of high performance datapath
intensive chips have been designed using this option [34].
The same drawbacks and advantage as in the case of
programmable controller option hold. Composed controller is
a third alternative wherein the controller is located on-chip
and is the composition of all possible control configurations
that are required. Its effectiveness depends on how well
several different (but often very similar) controllers can be
merged using logic synthesis tools. Of these, we use the
composed controller for our ASPP implementations.

3.3 Fault Model

We assume a widely used single stuck-at fault model [1].
Before the graceful degradation step in an ASPP can be
invoked, the fault in the ASPP should be detected. Any off-
line testing and diagnosis scheme, such as full-scan,
combinational ATPG, and BIST, can be used to detect
faults. The ASPP fault tolerance techniques can tolerate
faults that occur either in an execution unit or in a register

KARRI ET AL.:

COMPUTER AIDED DESIGN OF FAULT-TOLERANT APPLICATION SPECIFIC PROGRAMMABLE PROCESSORS

1275

mult220.”

(©)

Fig. 3. Microarchitectures of dedicated ASIC implementations. (a) ADAPT. (b) CASCADE. (c) IIR8.

file or in the interconnect. A fault in a register file prevents
its corresponding execution unit from receiving data and,
thus, has the same effect as a fault in the execution unit. A
faulty interconnect is tolerated by treating it as a failure in
the execution unit at its data-sending connection. To make
this possible, any two functional units that have a data
transfer between them are connected by a dedicated bus. To
reduce the interconnection overhead, all point-to-point
buses emanating from a functional unit are merged without
violating the fault tolerance constraints. We assume that the
controller is fault-free. However, since the area of the

[t

= (1

L ‘

(b)

Fig. 4. Microarchitectures of basic ASPP and fault-tolerant ASPP
implementations. (a) Basic ASPP. (b) Fault-tolerant ASPP.

controller is usually only a few percent (1-3) of the designs,
it can be easily duplicated with a negligible impact on the
ASPP area.

4 FAULT-TOLERANT ASPP

We will motivate a behavioral synthesis approach for
incorporating k-unit fault tolerance into ASPPs and discuss
the relationship between ASPP designs, the degree of fault
tolerance, and area and performance overheads. Consider
an integrated digital signal processing system consisting of
dedicated coprocessors for three signal processing applica-
tions—an adaptive filter (ADAPT) with latency of eight, a
four-stage cascaded quadratic filter (CASCADE) with
latency of 16, and an eighth order infinite impulse response
filter (IIR8) with latency of 19, as shown in Fig. 3a, Fig. 3b,
Fig. 3c.

ADAPT requires three adders and three multipliers,
CASCADE requires two adders and one multiplier.
Similarly, IIR8 requires two multipliers and one adder,
although the word length is different from others. These
dedicated ASICs cannot tolerate any functional unit fail-
ures. Consider an ASPP that can be configured to run any one
of these applications at any given time. The resulting ASPP
requires only three adders and three multipliers, as shown
in Fig. 4a. The layouts of the dedicated coprocessors and the
ASPP with their areas annotated are shown in Fig. 5a,
Fig. 5b, Fig. 5¢, Fig. 5d. All layouts are scaled to reflect their
relative sizes. The area occupied by the dedicated copro-
cessors is 97.55 mm?,? 35 percent larger than the ASPP area.

What are the potential benefits of such a multifunctional
processor? Since six functional units are used, there are 6cy
possible ways that a single functional unit can fail. Toward
illustrating the key concepts and importance of fault
tolerance in ASPP designs, consider the application-to-
faulty-unit assignment summarized in Table 2. Prefixes A
and M stand for adder and multiplier, respectively. The
numbers after them are the instances.

2. 0.6 micron SCMOS technology library was used.

1276

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

=

i - 9

i}

-
L |

i

wo | o B

:.I._II.'.'

F

ial

o
L -

-
—iF

)]

K
3
'@ i
¥ e]
.
- I

iG]

e}

e

Fig. 5. Layout implementations of dedicated ASICs and ASPPs. (a) ADAPT (57.43 mm?). (b) CASCADE (19.33 mm?). (c) IIR8 (20.79 mm?).

(d) Basic ASPP (72.08 mm?). (e) Fault-tolerant ASPP (72.43 mm?).

CASCADE and IIRS tolerate three single-unit faults each.
The basic ASPP of Fig. 4a can tolerate only four out of the
six one-unit faults. This is because faults in A2 and M2 are
tolerated by both applications, while faults in A0 and MO
are not tolerated by either application. Consider the
application-to-faulty-unit assignment shown in Table 3.
All one-unit faults are tolerated either by CASCADE or by
IIR8. They can also tolerate three two-unit faults and one
three-unit fault. The corresponding fault-tolerant ASPP
microarchitecture and layout are shown in Figs. 4b and
Se, respectively. Although there is an increase in inter-
connect, the area overhead for one-unit fault tolerance with
respect to the basic ASPP implementation is less than 1
percent. For this fault-tolerant ASPP, the following reconfi-
guration strategy can be adopted: If all modules are
operational, configure the ASPP to implement ADAPT. If
adder AO, multiplier MO, or multiplier M1 is faulty,
configure the ASPP to implement CASCADE. Similarly, if
adder Al, adder A2, or multiplier M2 are faulty, configure
the ASPP to implement IIRS.

The case of two-unit fault tolerance is more complex.
There are 15 different ways in which two-units can fail. A

TABLE 2
One-Unit Fault Tolerance of the Basic ASPP
H/W Allocation Tolerate
Appl’'n Add | Mult Faults in
ADAPT A0, AT, A2 | MO, M1, M2 -
CASCADE | A0, Al MO A2, M1, M2
1IR8 A0 MO, M1 | A1, A2, M2

CASCADE schedule can tolerate only one of three possible
two-multiplier-unit faults. Similarly, an IIR8 schedule can
tolerate one of the three possible two-adder-unit faults. To
tolerate all possible two-unit faults, at least three schedules
of CASCADE and three schedules of IIR8 (each with
different application-to-faulty-unit assignments) are re-
quired. A two-unit tolerant hardware allocation is shown
in Table 4. The two-unit faults (A1, M2), (A0, M1), and (A2,
MO) are tolerated by more than one schedule.

The ASPP interconnect and controller overhead increases
with the number of schedules implemented on it. The
number of implemented schedules can be reduced without
compromising the k-unit fault tolerance of the ASPP by
increasing the latency of the application schedules. If the
latencies of CASCADE and IIR8 are increased to 18 and 21,
respectively, their hardware requirements decrease to one
adder and one multiplier. The new fault-tolerant hardware
allocation is summarized in Table 5. The fault-tolerant
ASPP microarchitectures with and without graceful degra-
dation are shown in Fig. 6a and Fig. 6b, respectively.
Observe the reduction in the interconnect due to graceful
degradation.

TABLE 3
One-Unit Fault Tolerance of the fault-Tolerant ASPP
H/W Allocation Tolerate
Appl'n Add | Mult Faults in
ADAPT A0, A1, A2 | MO, M1, M2 -
CASCADE | A1, A2 M2 A0, M0, M1
IIR8 A0 Mo, M1 Al, A2, M2

KARRI ET AL.: COMPUTER AIDED DESIGN OF FAULT-TOLERANT APPLICATION SPECIFIC PROGRAMMABLE PROCESSORS

1277

TABLE 4
Two-Unit Fault-Tolerant Hardware Allocation

Tolerate
Faults in

H/W Allocation
Appl'n Add | Mult
ADAPT A0-2 MO-2
CASCADE | Al, A2 M2
CASCADE | A0, Al M1
CASCADE | A0, A2 MO
IIR8 A2 Mo, M1
1IR8 Al MO, M2
1IR8 A0 | M1, M2

M1), (A0, M0), (A0, M1)
, M2), (A2, MO), (A2, M2)
M2), (A1, M1), (A1, M2)
1), (A0, M2), (A1, M2)
2), (A0, M1), (A2, M1)
2), (AL, M0), (A2, M0)

5 GUARANTEEING K-UNIT FAULT TOLERANCE OF
ASPPs

K-unit fault tolerance can be guaranteed by combining
the inherent redundancy of ASPPs with judicious appli-
cation-to-faulty-unit assignment and application latency
determination.

Problem Statement. Given an underlying hardware model and
N applications, each with its execution time bound, synthesize
a high-performance and minimum area design so that any one
of these N applications can be executed at any given time, and,
for any k-unit failure, the ASPP design is still operational (i.e.,
at least one of these N applications is still working).

The design flow is outlined in Fig. 7. Initially, the
applications are bundled together based on their hardware
and structural similarity. In the process, the area overhead
is minimized. Following application bundling, the latency
determination phase is entered, wherein the latencies of the
individual applications are determined while ensuring the
desired k-unit fault tolerance. Next, the hardware alloca-
tions of applications are matched to the k-faulty-unit
combinations using a branch and bound technique. This
step determines the hardware not usable by a given
schedule of an application. Based on this information,
ASPP allocation, assignment, and scheduling algorithms are
invoked on the applications in a bundle. The fault-tolerant
ASPP synthesis trajectory is completed by invoking the
Hyper hardware mapper and layout generator. Fault
tolerance constraints are incorporated during the high-
lighted phases in the design trajectory.

The input to the Hyper behavioral synthesis system is a
design specified using the SILAGE language [42]. The input

TABLE 5
Trade-Off between the Number of Schedules and Performance
Degradation
H/W Allocation Tolerate
Appl’n Add | Mult Faults in
ADAPT AQ0-2 MO-2 -
CASCADE | A0 MO (A1, A2), (A1, M1), (A1, M2)
(M1, M2), (A2, M1), (A1, M2)
CASCADE | Al M1 (A0, A2), (A0, MO), (A0, M2)
(M0, M2), (A2, M0), (A2, M2)
1IR8 A2 M2 (A0, A1), (A0, MO0), (A0, Ml)
(MO, M1), (A1, MO), (A1, M1)

is translated into the hierarchical control data flow graph
(CDFG) format, where each node corresponds either to
arithmetic, logic, memory access, or input/output transfer
operation and each edge denotes either data or control flow
dependency. When the Hyper’s estimation subroutines are
applied to the CDEFG, the resulting requirements on
datapath components are used as initial resource alloca-
tion. After that, there is a provision for applying a
number of transformations, such as pipelining, retiming,
associativity, and common subexpression elimination.
Next, clock cycle length and module selections are
performed. The two final mandatory steps, before hard-
ware mapping and layout generation using the Lager
silicon compiler, are constraint-driven scheduling and
assignment. For almost all synthesis steps, the user can
specify desired run time/quality of results trade-off. The
default option uses O(n?) heuristics and usually requires
less than one minute for all the tasks [42].

5.1 Latency Determination

The latency of each application in the bundle is determined
so as to ensure that the resulting ASPP processor can

,4.7)-“_}—.-.7 -
" e o
il T i
e any P e m
= - a[\ =5 :—:D'Wﬂﬁ?* P
==
a) Y T i *‘U\‘
=g]}\k o [
1 ==Y w(
‘AV r==ln g

(b)

Fig. 6. Microarchitectures of two-unit fault-tolerant ASPPs. (a) Without
graceful degradation. (b) With graceful degradation.

1278

L
l AFPLICATION EL "-iIH.l'ﬁilZJ

i
[LATENRCY [II-'I'I-ZH'III"Jt'Il""'-]

|

[AFPLAC AT TEFALLTY ALUSNTT MEATURRIM]

|

[Amm VR P AP S L Ii"hl:-']

[H.'.Hl:l'tl'-'n.l-ll MAPPMING & LAYFLT GENER 'I.llil‘J

Fig. 7. Fault-tolerant ASPP synthesis flow.

tolerate all k-unit faults. K-unit fault tolerance is ensured by
tuning the hardware utilization of individual applications.
Decreasing the system throughput (by increasing the
latency) reduces hardware utilization and increases the
fault tolerance capability of an application.

As a first step, all possible k-unit faults are collapsed into
smaller sets of faults based on the type of hardware units
that fail. For example, in a design that uses adders and
multipliers, the two-unit faults are collapsed into the
following sets:

o Two-multiply faults,

e Two-adder faults,

e One-adder-One-multiply faults.

Collapsing faults into smaller sets can be represented by
the set of tuples:

R={(r1,72,...71)| Zri =k},
=1
where, 71,73,...,r, are the number of faulty units of type
1,2,...,n, respectively. For an application bundle with
n hardware types and k-unit fault tolerance, the number of
tuples in the set R can be computed by the recursion:

min(H, k

|R|=fnk)= .

=0
fL)=11<ji<k
Fi,1) =4, f(1,0)=1,1<i < n.

)
f(n_lvk_j)

The set R, together with the unused hardware distribu-
tions of the individual applications (obtained using a
similar recursion), is used to quickly verify if the selected
latencies for the applications can ensure k-unit fault
tolerance. Toward this end, it is checked if, for each tuple
in the set R, there is at least one application in the bundle
whose unutilized hardware units for each type of hardware
is larger than the number of faulty units of that type in the
tuple. If not, the latencies of selected applications are
increased. Although increasing latency succeeds for low k,
additional hardware units are added to guarantee k-unit
fault tolerance.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

Schedules | k-unit fault combinations
A151 X X
A152 X X
A]_Snl X X
AQSl X X
A2SZ X X
Azsng X X
AmS]_ X
ApSo X X
Ay Snm X

Fig. 8. Application-to-faulty-unit matching to guarantee k-unit tolerance.

5.2 Matching Applications with Faulty Units

A single schedule for each application may not be sufficient
to implement k-unit fault tolerance. This is because,
although this single schedule may cover a tuple in the set
R, it may not tolerate all the k-unit fault combinations that
the tuple represents. If, out of the H; hardware units of type
t available for the bundle, sf; are not utilized by the
application 4, then], C; schedules of the application
may be necessary. The problem is to match the schedules of
the applications with the k-faulty-unit combinations so that:

e There is at least one schedule that can operate in the

presence of a k-unit fault,

e At least one schedule of each application is

implemented, and

e The total number of implemented schedules is

minimized.

The problem is illustrated in Fig. 8. Each column in the
two-dimensional table corresponds to a k-faulty unit
combination (denoted as Ci,Cs,...,C,) and each row
corresponds to a schedule of an application (denoted as
A8, A1Ss, ..., A Spm). If a schedule of an application
covers a k-faulty-unit combination, the corresponding cell is
marked with an x. The objective is then to ensure that there
is at least one x in each column while minimizing the
number of rows. This problem can be transformed to the
vertex covering problem [35] by identifying each of the
k-faulty-unit combinations as a vertex and each of the
possible application schedules as an edge.

A branch and bound technique outlined in Fig. 9 is used
to solve this problem. The MinimumSetOfSchedules is
the current best solution that tolerates all the combinations
of k faulty units and includes all the schedules, initially.
The CurrentSetOfSchedules tolerates only some of
the combinations of k-faulty units and is initially null and
grows when the schedule inclusion branch in Step 9 is
taken. The branching step is invoked when a candidate
schedule is either included into or excluded from the
CurrentSetOfSchedules by the recursive calls in
lines 10 and 13. schedules are selected one after the

KARRI ET AL.: COMPUTER AIDED DESIGN OF FAULT-TOLERANT APPLICATION SPECIFIC PROGRAMMABLE PROCESSORS

MinimumMatch(CurrentSet OfSchedules, ListOfSchedules,
CurrentCover)

{
1: if ((schedule «+ car(ListOfSchedules)) = ¢) return;
2: appl + GetApplication(schedule);

/* Bound the Schedule Inclusion Branch */

3: if (|CurrentSetOfSchedules| + Eiﬁiﬁ’lﬁ”mLowerBound[i]
+ 1 < | MinimumSetOfSchedules |) {
4: NewCover « CurrentCover \/ Cover(schedule);
5: if (NewCover covers all k faulty unit combinations) {
6: MinimumSetOfSchedules+CurrentSetOfSchedules
U {schedule};
T return;
}
8: if (| NewCover | > |CurrentCover |) {
9: CurrentSetOfSchedules <— CurrentSetOfSchedules

U {schedule};
10: MinimumMatch(CurrentSetOfSchedules,
cdr(ListOfSchedules), NewCover);
11: CurrentSetOfSchedules < CurrentSetOfSchedules
- {schedule};
}

}
/* Bound the Schedule Exclusion Branch */
12: if (| CurrentSetOfSchedules M {schedules of appl-1 } |
> LowerBound[appl-1])
13: MinimumMatch(CurrentSetOfSchedules,
cdr(ListOfSchedules), CurrentCover);

Fig. 9. Finding the minimum set of schedules tolerating all k-unit faults.

other (Step 1) from the ListOfSchedules. Associated
with each schedule is a vector identifying the k-faulty-
unit combinations that are tolerated (covered) by it.
Cover () returns this vector. The set union of the
coverage vectors of all schedules in the CurrentSe-
tOfSchedules is the CurrentCover.

Upper and lower bounds on the number of schedules are
used to prune the solution branches. For example, the
cardinality of the MinimumSetOfSchedules is an upper
bound on the number of schedules. If the cardinality of the
CurrentSetOfSchedules is greater than that of the
MinimumSetOfSchedules, this schedule inclusion
branch and its branches are pruned. For each tuple in the
set R, there are [[}, C,, combinations of k faulty units.
The sets of k-unit combinations represented by tuples are
disjoint. Based on this observation, the LowerBounds on
the number of schedules for each application are deter-
mined as follows: Let the faults represented by a tuple
(r1,79,. ..
A lower bound on the required number of schedules of
application i is [[}_,[#C,,/ %C,,], where H,, 5!, and r, have
been previously defined. If the tuple is covered by more than
one application, the aggregate number of schedules of the
applications which cover the tuple must be considered. Some
of the schedules in the ListOfSchedules that have not
been visited are absolutely necessary to satisfy this lower
bound requirement. Hence, these schedules must also be
added to the cardinality of the CurrentSetOfSchedules
in line 3 when comparing with the upper bound. In line 12, if
the number of schedules corresponding to an application is

,Tts-..,Ty) in the set R be covered by application i.

1279

less than the LowerBound, all successive branches are
pruned. car () and cdr () are two lisp-like functions used
to return the first and remaining elements in a list,
respectively.

5.3 Assignment and Scheduling

At the end of the matching phase, for each schedule of an
application, hardware units that are excluded from its
allocation are finalized. This determines the hardware units
that are available for use by a given schedule of an
application. An assignment and scheduling algorithm is
invoked on each of the schedules of the applications using
its usable hardware allocation. Applications can be synthe-
sized in any order as the hardware requirements are
determined prior to this step. The resulting ASPP is then
mapped and synthesized using the Hyper back-end system.

5.4 Evaluation of Fault Tolerance Constrained
Synthesis

The fault-tolerant ASPP synthesis techniques proposed in
this section were validated on the set of DSP, video, control,
and communication applications summarized in Table 6.
For each application, columns 2-5 show the number of
nodes, the number of edges, the word length, and the
critical path, respectively. The input latency for each
application is shown in column 6. The next four columns
give the hardware allocation, assuming that additions and
subtractions are carried out on distinct adders and
subtractors, respectively. Assuming that additions and
subtractions are carried out by add-subtract units will yield
a different set of results. The column titled “reg” shows the
number of registers used in the implementation. The
numbers in parentheses are the register counts for
constants. The hardware utilization of each type is shown
in the next three columns. The last column reports the area
in mm? when the application is implemented as a dedicated
ASIC. This is used to evaluate the area overhead of ASPPs.

The set of applications shown in Table 6 is bundled into
ASPPs with the objective of minimizing the ASPP overhead
for each IC. The resulting bundles were synthesized to
guarantee k-unit fault-tolerant ASPPs for k =1, 2.

The results of one-unit fault-tolerant ASPP synthesis for
the eight application bundles are summarized in Table 7.
The number of schedules used in the ASPP processor is
shown in column 2. As the number of schedules increases,
so does the number of registers for constant coefficients and
the interconnection requirement. These are the major
sources of area overhead. The next four columns are the
hardware allocations used in synthesizing the ASPP
processor. The area overhead vis-a-vis a dedicated imple-
mentation of the largest application is summarized in the
last column. The areas reported are all in mm?. The area
overhead is 14.5 percent on average and varies from
5 percent to 26 percent. The sources of the overhead are
1) the increased interconnect requirements and 2) the
coefficient registers in the current dedicated register file
hardware model. The low overhead is due to the inherent
redundancy and the application-to-faulty-unit matching.

When supporting multiple unit fault tolerance, straight-
forward replication entails significant area or performance
overhead. In contrast, the proposed approach can support

1280 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000
TABLE 6
Example Applications to Validate Fault-Tolerant ASPP Synthesis Techniques
allocation utilization area
application IN|JJE[| wl|cp | ¢ [+]-T*] reg + 1 - 1%] (mm?
ARAI 51 | 63 [22| 8 |10 | 7 |5 |2|43(13) | 32| 35|65 | 34.77
CASCADE 34 | 47 |12 11010 | 4 [0 |2|39(13) |40 | - |65 | 11.34
DIR 124 | 138 | 22| 9 [22| 4 |0 |4]83(38)|63| - | 68| 53.05
FFTS8 30 | 31 |16 5 | 6 |3 |31 22(1) |55|55|33| 11.21
FIR20 32 |42 |16 3 [12| 5 |0 |2|46(10) | 33| - |41 | 18.03
GM1M 20 | 27 |20 |14 |14 | 2 | 1| 2| 24(7) | 32| 21| 25| 21.81
IIR7 209 | 39 |24 |10 10| 2 |2|2]|35(10)|35]|35]|50]| 32.26
IIR8 39 | 57 |11 9 [123 |0 |2|47(18) |66 | - |75 9.97
LEE 57 | 66 |22 |10 |12 |5 | 3|2 32(11) | 35|33 |83 | 31.51
MCM 102 | 111 |22 | 9 |20 | 4 | 4| 2| 68(17) |38 |34 | 75| 3526
PR1 5 | 65 [22| 8 |10 | 3 |3 |4]|42(17) | 43| 43| 55| 52.16
PR2 66 | 73 |22 9 [15| 2 2|3 |34(12) | 43|43 | 71| 3850
VOLTERRA | 30 | 39 |24 |12 |12 |1 [0 | 2| 28(9) |83 | - |66 | 2847
WANG 56 | 65 |22 | 8 |14 | 4 | 3|2 |44(17) | 33| 33| 78| 31.64
WAVELET 53 | 65 |16 | 14 |15 | 3 | 1| 2| 57(14) | 42 | 46 | 47 | 18.68
WDF5 23 | 29 |16 |12 |12 | 2 | 2| 1| 25(6) | 25| 41 | 50 9.80
WDF7 31 | 37 | 221212 2 (4|2 33(7) | 33|29 33| 2868
TABLE 7
Guaranteeing One-Unit Fault Tolerance
| Application # allocation area over
Bundles sch’ | +[-[*] reg (mm?) | head
1 | {CASCADE, DIR} 5 4 10| 4|118(68) | 58.86 | 10.95%
2 | {IIR7, VOLTERRA} 3 2 | 2|2 50(21) 33.97 5.30%
3 | {WANG, WDF5} 4 3 13|22 65(30) | 35.35 | 11.73%
4 | {FFT8, LEE} 4 |4 (3|2 44(15) | 36.10 | 14.57%
5 | {MCM, WDF7} 3 | 4|52 95(27) | 40.26 | 14.18%
6 | {ARAI FIR20, GM1M} 4 51412 8(37) | 40.35 | 16.05%
7 | {CASCADE, PR2} 6 3 12| 3| 81(38) | 45.37 | 17.84%
8 | {IIR8, PR1, WAVELET} | 4 314 |4|153(89) | 65.60 | 25.77%

two-unit fault tolerance with negligible performance pen-
alty and modest area overhead. The results are summarized
in Table 8 for the previously used application bundles. On
an average, the area overhead is 42.2 percent and varied
from a minimum of 14 percent to a maximum of 69 percent.
The increase in area overhead is mainly due to additional
units that were added during the latency determination
phase. This is one of the first synthesis systems that has
demonstrated the feasibility of automatically synthesizing
multiple-fault-tolerant designs with modest area overheads.
The one-unit and two-unit fault-tolerant ASPPs have
significantly superior hardware utilization characteristics
when compared to the less than 5 percent utilization of
general purpose processors [28].

6 MaAximizING FAULT-TOLERANCE OF AN ASPP

Consider the scenario wherein k-unit fault tolerance need
not necessarily be guaranteed. Fault tolerance can still be
maximized using the available hardware resources.

Problem Statement. Given an underlying hardware model, N
applications, each with its execution time bound, and an
overall hardware constraint, synthesize an ASPP design so

that any of these N applications can be executed at any given
time and the fault tolerance of the ASPP design is maximized.

Initially, an ASPP allocation, assignment, and scheduling
step is carried out [40] to determine the exact hardware
allocation for the entire design and for each application in
the design. Starting with this definitive hardware allocation,
the fault tolerance of the ASPP can be maximized by
reallocating and reassigning the available units in this
hardware allocation to the applications. This is illustrated in
Fig. 10. Ay, As, ... A,, are the m applications implemented in
the ASPP. H|,H),...,H} are the possible hardware
allocations for application A; and H[",H}',...,H)" are
the possible hardware allocations for application A,,.

If the hardware allocation H] is used to implement
application A;, then three one-unit faults (C},C;,C}) and
one k-unit fault (C%) can be tolerated. The fault tolerance
maximization problem is to choose one hardware allocation for
each application so that the number of distinct faulty unit
combinations that are tolerated is maximized.

6.1 Incremental Fault-Tolerant Hardware Allocation

We propose an incremental fault-tolerant (IFT) hardware
allocation algorithm. The fault tolerance of the ASPP is

KARRI ET AL.: COMPUTER AIDED DESIGN OF FAULT-TOLERANT APPLICATION SPECIFIC PROGRAMMABLE PROCESSORS 1281
TABLE 8
Guaranteeing Two-Unit Fault Tolerance
Application # allocation area over
Bundles sch’ [+]-]*] reg (mm?2) | head
{CASCADE, DIR} 7 4104]139(81) | 61.29 | 13.72%
{IIR7, VOLTERRA} 4 31213 84(37) 50.59 | 56.82%
{WANG, WDF5} 4 3131]3]| 91(36) 42.58 | 34.58%
{FFTS8, LEE} 7 4 1413 52(16) 45.27 | 43.67%
{MCM, WDFT7} 7 4 |5 |3]108(33) | 54.01 | 53.01%
{ARAI, FIR20, GM1M} 6 5 4 |3]100(44) | 51.21 | 35.58%
{CASCADE, PR2} 11 | 5 [2|4 122(59) | 64.94 | 68.68%
{IIR8, PR1, WAVELET} | 8 313 |4]173(83) | 68.45 | 31.23%

maximized, starting from one-unit fault tolerance (k=1)
and going up to the maximum achievable k-unit fault
tolerance (k= MaxzK). Such an incremental strategy is
justified because k-unit failures are more probable than k + 1-
unit failures. MazK is obtained from the hardware units
used in the ASPP and the hardware units required for each
of the applications. For each value of k, we select an
allocation for each application and evaluate the allocation
by counting the number of distinct k-faulty unit combina-
tions covered by it. If the number of distinct k-faulty unit
combinations covered by the candidate allocation is better
than that of the best allocation(s), it becomes the best
allocation. However, if the candidate allocation covers the
same number of distinct k-faulty unit combinations as the
best allocation(s), it is added to this list of best allocation(s).
This list of best allocations is then used as the starting point
for improving the k + 1-unit fault tolerance.

6.2 Evaluation of Resource Constrained Fault
Tolerance

Table 9 summarizes the results of seven resource con-
strained fault-tolerant ASPPs. While column 2 shows the
applications in the bundles, column 3 shows the throughput
constraints of applications. Since fault tolerance is max-
imized (and not guaranteed), it is important to identify the
faults that are tolerated. Consequently, the modules that are
not used by an application are listed in column 7. Prefixes A,
S, and M stand for adder, subtracter, and multiplier,
respectively. The area of the synthesized ASPP and the

H/w Faulty unit combinations tolerated
alloc 1-unit k-unit
calel..[G crles .. [cx

H% x X X x

Aq H, X X X X X
Hrltl b'd x
Hf x b'd X b d

As HS X X X X
H2, x x X x x
H? X X X

Am Hy X X X X X
H X

Fig. 10. Hardware allocation to maximize ASPP fault tolerance.

area overhead vis-a-vis the area of the largest dedicated
ASIC design are summarized in the last column. The area of
the synthesized ASPPs includes the area of the composed
controller. In these ASPP implementations, we assume that
the composed ASPP controller is fault-free. The first term
within parentheses in the last column shows the percent
overhead of a non-fault-tolerant ASPP. The second term
shows the percent overhead of rendering these ASPPs fault-
tolerant. The additional area overhead of rendering a basic
ASPP fault-tolerant is less than 7 percent. The average area
overhead for these designs is consistent with those of
guaranteed one-unit fault tolerance summarized in
Section 5.4. This is because all of the designs (except for
design #5) turned out to be one-unit fault-tolerant.

The first two designs in Table 9 are truly multifunctional
in that all applications are distinct. The next three ASPPs are
partially multifunctional in that some of the applications
have two schedules. For example, design #5 has one
schedule each of ADAPT and WAVELET and two WDF9
schedules. Since, the two WDF9 schedules have different
hardware allocations, they can tolerate faults in different
functional units. Finally, designs #6 and #7 implement
multiple schedules of a single application (with different
latencies). Consequently, these fault-tolerant designs yield
gracefully degradable implementations of a single application.
The performance of design #7 degrades by six clock cycles
in the presence of any single module failure.

6.3 K-unit Fault Tolerance of ASPP Designs

The k-unit fault tolerance capabilities of the designs
synthesized using the IFT allocation are summarized in
Table 10. Except for #5, all designs can tolerate all single
functional unit faults. In addition, these designs can tolerate
some k-unit failures as well. For example, design #1 can
tolerate 84.8 percent of all two-unit faults and 58.6 percent
of all triple functional unit failures and so on.

7 CONCLUSION

We presented a computer aided design approach to
synthesize ASPP designs that can tolerate single and
multiple functional unit failures. We showed how fault
tolerance can be incorporated at the behavioral level by
combining the flexibility of multiple applications in an
ASPP with judicious application-to-faulty-unit assignment.
We described a fault-tolerant synthesis system to design
ASPPs that are guaranteed to be k-unit fault-tolerant. Then,

1282 |IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000
TABLE 9
Resource Constrained Fault-Tolerant ASPP Synthesis
| Application #units tolerates area
Bundles t [+]-]%] faultsin (mm?)
DIF 11|13 (33 31.05
1 | IIR7 10222/ A0,82Mo0 (17.64%
LDILP 6 | 2(2]1] A1,S0,MOM2 | + 4.83%)
WAVELET 152 (11| A251,S2,
M1,M2
DIT 11| 523
2 | 8IIR 231 1|0|2]| ALLA2,A3,A4, | 33.45
$0,81,M2 (24.35%
CASCADE | 11| 3 | 0|2 | A0,A4,S0, + 1.54%)
S1,M1
FIR20 174 |01/ A0,80,81,
MO,M2
IIR7 102 (22 35.28
3 | VOLTERRA |17 | 1 | 1|1 | A0,S0,M0 (4.56%
VOLTERRA |17 |1 | 1| 1| A1,S1,M1 + 4.60%)
PR1 8 | 3|44
4 | TIR8 112 (0|3 | A0,MO0,S0,
S1,52,S3 64.55
WAVELET |14 | 2 | 1|2 | A2,M1,M3, (19.44%
S0,51,S3 + 3.60%)
WAVELET 14|12 |1]2] A1,M1,M2,
S0,51,52
ADAPT 10/2]|0]2] S0 20.27
5 | WAVELET 141212 (15.50%
WDF9 9 2|11 M1 + 2.62%)
WDF9 9 2 |1]|1] MO0
22141014
2713|103 A3,M3 16.86
6 | DIR 2713 |03 A2,M2 (4.90%
271303 AlM1 + 4.58%)
2713 10| 3| AO,MO
193 (413
2512|312 A0,S0,M0 15.76
7 | MCM 2512|312 A0,S1,M1 (7.34%
2512|312 A1,S52,M0 + 6.04%)
25| 2 3|2 A2,S3,M2

we described a hardware reallocation algorithm to max-
imize the fault tolerance of ASPP designs subject to resource

constraints.
Inherent redundancy of multiapplication ASPPs has

been used to yield low cost one-unit and two-unit fault
tolerance. These fault-tolerant ASPPs in addition yield

TABLE 10
Multiple Unit Fault Tolerance

k-unit fault tolerance
ex k:1|k:2|k:3|k:4
1 | 100.0% | 84.8% | 58.6% | 33.9%
2 | 100.0% | 52.8% | 17.9% | 4.8%
3 | 100.0% | 73.3% | 43.3% | 21.4%
4 | 100.0% | 67.9% | 36.4% | 19.0%
5 60.0% | 0.0% | 0.0% | 0.0%
6 | 100.0% | 14.3% | 0.0% | 0.0%
7 | 100.0% | 26.6% | 0.0% | 0.0%

multiunit fault tolerance for free. However, extending this
approach to single application fault tolerance will result in
significant area overheads. The area overhead of multi and
single-application ASPPs can be reduced via graceful
performance degradation. The fault-tolerant ASPPs had
very low area overheads for tolerating single unit failures
and modest overheads for tolerating multiple unit failures.

ACKNOWLEDGMENTS

R. Karri’s research was supported by US National Science
Foundation CAREER award MIP-9702676.

REFERENCES

[1] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems
Testing and Testable Designs. New York: Computer Science Press,
1990.

[2] A. Antola, V. Piuri, and M. Sami, “Semi-Concurrent Error
Detection Data Paths,” Proc. IEEE Symp. DFT in VLSI Systems,
pp- 298-306, Oct. 1997.

KARRI ET AL.: COMPUTER AIDED DESIGN OF FAULT-TOLERANT APPLICATION SPECIFIC PROGRAMMABLE PROCESSORS 1283

(3]

(4

(5]

o]

(]

(8]

]
(10]

(1]

[12]

(13]

(14]

[15]

[10]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(23]

[26]

(27]

(28]

A. Antola, V. Piuri, and M. Sami, “High Level Synthesis of Data
Pats with Concurrent Error Detection,” Proc. IEEE Symp. DFT in
VLSI Systems, pp. 292-299, 1998.

D.M. Blough, F.J. Kurdahi, and S.Y. Ohm, “Optimal Recovery
Point Insertion for High Level Synthesis of Recoverable Micro-
architectures,” Proc. 25th Fault-Tolerant Computing Symp., 1995.
M. Breternitz and].P. Shen, “Architecture Synthesis of High
Performance Application-Specific Processors,” Proc. 27th Design
Automation Conf., pp. 542-447, 1990.

H. Choi, J. Kim, C. Yoon, L. Park, S.H. Hwang, and C.M. Kyung,
“Synthesis of Application Specific Instructions for Embedded DSP
Software,” IEEE Trans. Computers, vol 48. no. 6, pp. 603-614, June
1999.

D. Clark and B. Hutchings, “Supporting FPGA Microprocessors
through Retargetable Software Tools,” Proc. IEEE Symp. FPGAs for
Custom Computing Machines, Apr. 1996.

A. DeHon, “DPGA-Coupled Microprocessors: Commodity ICs for
the Early 21st Century,” Proc. IEEE Symp. FPGAs for Custom
Computing Machines, Apr. 1994.

G. DeMicheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

Fujitsu Microelectronics Inc., “AFP MB86975 Data Sheet,” Aug.
1987.

A. Doumar, S. Kaneko, and H. Ito, “Defect and Fault Tolerance
FPGAs by Shifting the Configuration Data,” Proc. IEEE Int’l Symp.
Defect and Fault Tolerance in VLSI Systems, pp. 377-385, 1999.

S. Dutt, V. Shanmugavel, and S. Trimberger, “Efficient Incre-
mental Rerouting for Fault Reconfiguration in Field Program-
mable Gate Arrays,” Proc. Int'l Conf. Computer-Aided Design,
pp- 173-176, 1999.

D.D. Gajski, N.D. Dutt, A. Wu, and S. Lin, High-Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic, 1992.
G. Goossens et al.,, “Integration of Medium-Throughput Signal
Processing Algorithms on Flexible Instruction-Stes Architectures,”
J. VLSI Signal Processing, vol. 9, nos. 1-2, pp. 49-65, 1995.

L.M. Guerra et al., “High Level Synthesis Techniques for Efficient
Built-In Self Repair,” Proc. IEEE Workshop DFT in VLSI Systems,
pp. 41-48, 1993.

G. Hadley and B. Hutchings, “Design Methodologies for Partially
Reconfigured Systems,” Proc. IEEE Symp. FPGAs for Custom
Computing Machines, Apr. 1995.

B. Iyer, R. Karri, and I. Koren, “Phantom Redundancy: A High-
Level Synthesis Approach for Manufacturability,” Proc. Int’l Conf.
Computer-Aided Design 95, pp. 658-661, 1995.

R. Karri and A. Orailoglu, “Synthesis of Optimal Self-Recovering
Microarchitectures,” Proc. 23rd Int’l Symp. Fault-Tolerant Comput-
ing, June 1993.

J. Lach, W.H. Mangione-Smith, and M. Potkonjak, “Low Overhead
Fault-Tolerant FPGA Systems,” IEEE Trans. VLSI Systems, vol. 6,
no. 2, pp. 212-221, June 1998.

E.A. Lee and D.G. Messerschmitt, “Static Scheduling of Synchro-
nous Data Flow Programs for Digital Signal Processing,” IEEE
Trans. Computers, vol. 36, no. 1, pp. 24-36, Jan. 1987.

M. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power Analysis and
Minimization Techniques for Embedded DSP Software,” IEEE
Trans. VLSI Systems, vol. 5. no. 1, pp. 123-135, May 1997.

R. Leupers, W. Schednk, and P. Marwedel, “Retargetable
Assembly Code Generation by Bootstrapping,” Proc. Int’l Symp.
High-Level Synthesis, pp. 88-93, 1994.

M.C. McFarland, A.C. Parker, and R. Camposano, “The High-
Level Synthesis of Digital Systems,” Proc IEEE, vol. 78, no. 2,
pp- 301-317, 1990.

F.J. Meyer, X. Chen,]J. Zhao, and F. Lombardi, “Fault Tolerance of
One-Time Programmable FPGAs with Faulty Routing Resources,”
Proc. Int’l Conf. Innovative Systems in Silicon, pp. 155-164, 1997.

R. Negrini, M.G. Sami, and R. Stefanelli, Fault Tolerance through
Reconfiguration in VLSI and WSI Arrays. MIT Press, 1989.

A. Orailoglu and R. Karri, “Coactive Scheduling and Checkpoint
Determination during the High Level Synthesis of Self Recovering
Microarchitectures,” IEEE Trans. VLSI Systems, vol. 2, no. 3,
pp. 304-311, 1994.

A. Orailoglu and R. Karri, “Automatic Synthesis of Self-Recover-
ing VLSI Systems,” IEEE Trans. Computers, Feb. 1996.

D.A. Patterson and J.L. Hennessy, Computer Architecture: A
Quantitative Approach. San Mateo, Calif.: Morgan Kaufmann, 1990.

[29] P.G. Paulin, C. Liem, T.C. May, and S. Sutarwala, “CodeSyn: A
Retargetable Code Synthesis System,” Proc. Int’l Symp. High-Level
Synthesis, p. 94, 1994.

[30] G.D. Hillman, “DSP56200: An Algorithm-Specific Digital Signal
Processor Peripheral,” Proc. IEEE, vol. 75, no. 9, pp. 1,185-1,191,

ear?

[31] JJ. Raffel, A.H. Anderson, G.H. Chapman, K.H. Konkle, B.
Mathur, AM. Soares, and P.W. Wyatt, “A Wafer-Scale Digital
Integrator Using Restructurable VLSI,” IEEE Trans. Electronic
Devices, no. 32, pp. 479-486, 1985.

[32] C.C. Stearns, D.A. Luthi, P.A. Ruetz, and P.H. Ang, “A
Reconfigurable 64-Tap Transversal Filter,” IEEE Custome Integrated
Ccircuits Conf., pp. 8.8.1-8.8.4, 1988.

[33] R.A. Walker and D.E. Thomas, “Behavioral Transformation for
Algorithmic Level IC Design,” IEEE Trans. Computer-Aided Design,
vol. 8, no. 10, pp. 1,115-1,128, 1989.

[34] AXK. Yeung and].M. Rabaey, “A 2.4 GOPS Data-Driven
Reconfigurable Multiprocessor IC for DSP,” Proc. 1995 IEEE Int’l
Solid-State Circuits Conf. ISSCC, pp. 108-109, 1995.

[35] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W.H. Freeman, 1979.

[36] R. Narasimhan, D. Rosenkrantz, and S.S. Ravi, “Efficient Algo-
rithms for Analyzing and Synthesizing Fault-Tolerant Data
Paths,” Proc. IEEE Symp. DFT in VLSI Systems, pp. 81-89, Nov.
1995.

[37] G.Lakshminarayana, A. Raghunathan, and N. K. Jha, “Behavioral
Synthesis of Fault Secure Controller/Datapaths Using Aliasing
Probability Analysis,” IEEE Int’l Symp. Fault-Tolerant Computing,
June 1996.

[38] K. Kim, R. Karri, and M. Potkonjak, “Maximizing the Fault-
Tolerance of Application Specific Programmable Signal Proces-
sors,” Proc. IEEE Workshop VLSI Signal Processing, pp. 283-292,
Nov. 1996.

[39] K. Kim, R. Karri, and M. Potkonjak, “Heterogeneous Built-In
Resiliency of Application Specific Programmable Processors,”
Proc. Int’l Conf. Computer-Aided Design, pp. 406-411, Nov. 1996.

[40] K. Kim, R. Karri, and M. Potkonjak, “Synthesis of Application
Specific Programmable Processors,” Proc. 34th Design Automation
Conf., pp. 353-358, June 1997.

[41] S. Malik, M. Martonosi, and Y Li, “Static Timing Analysis of
Embedded Software,” Proc. Design Automation Conf., pp. 147-152,
June 1997.

[42] J. Rabaey et al, “Fast Prototyping of Data Path Intensive
Architectures,” IEEE Design and Test, vol. 8, no. 1, pp. 40-51, 1991.

[43] J.E. Vuillemin, P. Bertin, and D. Ronchin, “Programmable Active
Memories: Reconfigurable Systems Come of Age,” IEEE Trans.
VLSI Systems, Mar. 1996.

Ramesh Karri received the PhD degree in
computer science from the University of Califor-
nia at San Diego in 1993. From 1988-1989, he
worked as a research engineer at CMC Ltd. in
India. From 1993-1998, he was an assistant
professor in the Department of Electrical and
Computer Engineering at the University of
Massachussetts at Amherst. From 1997-1998,
.I-'L| he was a member of the technical staff at Bell
iz B Labs, Lucent Technologies. Since August 1998,
he has been an associate professor of electrical engineering at
Polytechnic University, Brooklyn, New York. His research interests
include CAD for fault tolerance, reliability, and manufacturability,
reconfigurable computing, and hardware-software co-design. He was
the recipient of a US National Science Foundation CAREER award.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11, NOVEMBER 2000

Kyosun Kim received the BS and MS degrees
in electronic engineering from Yonsei University,
Seoul, Korea, in 1986 and 1988, respectively,
and the PhD degree in electrical and computer
engineering from the University of Massachu-
setts, Amherst, in 1998. From 1988-1994 and
since 1998, he has been with the Semiconductor
R&D Center, Samsung Electronics, Yong-In,
Korea. His research interests are in high-level
synthesis, fault-tolerant systems, logic synthesis

links to layout, RTL analysis, automatic layout, and CAD frameworks.

Miodrag Potkonjak received his PhD degree in
electrical engineering and computer science
from the University of California, Berkeley, in
1991. He is a professor in the Computer Science
Department, School of Engineering and Applied
Science at the University of California, Los
Angeles, where he has been since 1995. In
1991, he joined C&C Research Laboratories,
NEC USA, Princeton, New Jersey.

He has published more than 150 papers in
Ieadmg CAD, real-time, and signal processing journals and conferences.
He holds five patents. He received the Okawa Foundation Grant, the US
National Science Foundation CAREER award and a number of best
paper awards. He also received the TRW/School of Engineering and
Applied Science at UCLA Excellence in Teaching Award in 1998. His
research interests include system design, embedded systems, compu-
tational security, and intellectual property protection.

