
Citation: Uzun Ozsahin, D.;

Mustapha, M.T.; Uzun, B.; Duwa, B.;

Ozsahin, I. Computer-Aided

Detection and Classification of

Monkeypox and Chickenpox Lesion

in Human Subjects Using Deep

Learning Framework. Diagnostics

2023, 13, 292. https://doi.org/

10.3390/diagnostics13020292

Academic Editor: Shaker El-Sappagh

Received: 1 December 2022

Revised: 7 January 2023

Accepted: 10 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Computer-Aided Detection and Classification of Monkeypox
and Chickenpox Lesion in Human Subjects Using Deep
Learning Framework
Dilber Uzun Ozsahin 1,2, Mubarak Taiwo Mustapha 2 , Berna Uzun 2,3 , Basil Duwa 2 and Ilker Ozsahin 2,4,*

1 Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah,
Sharjah 27272, United Arab Emirates

2 Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
3 Department of Statistics, Carlos III University of Madrid, 28903 Getafe, Spain
4 Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
* Correspondence: ilker.ozsahin@neu.edu.tr

Abstract: Monkeypox is a zoonotic viral disease caused by the monkeypox virus. After its recent
outbreak, it has become clear that a rapid, accurate, and reliable diagnosis may help reduce the risk of
a future outbreak. The presence of skin lesions is one of the most prominent symptoms of the disease.
However, this symptom is also peculiar to chickenpox. The resemblance in skin lesions in the human
subject may disrupt effective diagnosis and, as a result, lead to misdiagnosis. Such misdiagnosis can
lead to the further spread of the disease as it is a communicable disease and can eventually result in
an outbreak. As deep learning (DL) algorithms have recently been regarded as a promising technique
in medical fields, we have been attempting to integrate a well-trained DL algorithm to assist in
the early detection and classification of skin lesions in human subjects. This study used two open-
sourced digital skin images for monkeypox and chickenpox. A two-dimensional convolutional neural
network (CNN) consisting of four convolutional layers was applied. Afterward, three MaxPooling
layers were used after the second, third, and fourth convolutional layers. Finally, we evaluated
the performance of our proposed model with state-of-the-art deep-learning models for skin lesions
detection. Our proposed CNN model outperformed all DL models with a test accuracy of 99.60%. In
addition, a weighted average precision, recall, F1 score of 99.00% was recorded. Subsequently, Alex
Net outperformed other pre-trained models with an accuracy of 98.00%. The VGGNet consisting
of VGG16 and VGG19 performed least well with an accuracy of 80.00%. Due to the uniqueness
of the proposed model and image augmentation techniques applied, the proposed CNN model is
generalized and avoids over-fitting. This model would be helpful for the rapid and accurate detection
of monkeypox using digital skin images of patients with suspected monkeypox.

Keywords: deep learning algorithm; diagnosis; chickenpox; lesion; outbreak; monkeypox

1. Introduction

The recent multi-continent outbreak of the monkeypox virus presents a severe global
health concern due to its rapid spread in 96 countries at the time of writing this manuscript.
The world cannot afford another pandemic as the impact of the last one is yet to wind down.
One lesson researchers and healthcare practitioners learned throughout the COVID-19 pan-
demic was the need for accurate and rapid disease detection to prevent future pandemics
from leading to unimaginable mortality. As noted during the last pandemic, Artificial
Intelligence (AI), with its extraordinary advancement and use in healthcare, has become
a powerful tool for disease diagnosis and detection, especially in regions where more
sophisticated testing kits are absent. The immense growth and availability of data of
healthcare relevance, coupled with improved computational power, have made AI the
go-to tool to aid in disease diagnosis, early detection, automation, and treatment [1–3].
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This significantly impacts general healthcare delivery and assists physicians and other
healthcare professionals in their daily activities.

Monkeypox is a communicable Orthopoxvirus that causes a disease with symptoms
similar to, but less severe than smallpox [4]. Unlike smallpox, which was eradicated in
1980, monkeypox continues to cause serious global health concerns as it continues to occur
in several parts of the world [5]. Monkeypox disease can be transmitted through animal-
human and human-human contact [6]. As a result, stopping the spread of monkeypox in a
community requires prompt diagnosis, contact tracing, and isolation of those infected. The
monkeypox incubation period can be up to 21 days [7]. The febrile stage of illness usually
lasts 1 to 3 days with symptoms including fever, intense headache, lymphadenopathy
(swelling of the lymph nodes), back pain, myalgia (muscle ache), and severe asthenia
(lack of energy) [8]. In recent outbreaks, a case fatality ratio of 1–11% has been reported
for monkeypox [9]. Cases are often found near tropical rainforests with disease vectors,
including squirrels, Gambian poached rats, dormice, and various monkey species [10]. It
can be transmitted through contact with bodily fluids, skin lesions, or internal mucosal
surfaces, such as mouth or throat, respiratory droplets, and contaminated objects [4]. Viral
Deoxyribonucleic acid (DNA) is the preferred laboratory test for monkeypox to detect
viral DNA by polymerase chain reaction (PCR) [11]. However, it is not widely available.
Where feasible, the best diagnostic specimens are from the rash–skin, fluid, crusts, or
biopsy [4,12,13]. Antigen and antibody detection methods may not be helpful as they do
not distinguish between Orthopoxvirus [4] and monkeypox disease.

Chickenpox, otherwise referred to as varicella, is a severe and highly transmissible
disease caused by the herpes virus varicella-zoster virus (VZV). Research has identified
only one serotype of VZV, and humans are its only known reservoir. Chickenpox occurs
most frequently in people over 50 or those with impaired immune systems [14]. Hence, it
is predominant in babies but can also be found in adolescents, adults, pregnant women,
and immunocompromised people [15]. Chickenpox manifest as itchy rashes with fluid-like
blisters similar to monkeypox, measles, and skin cancer [16]. Over the course of several
days, the blisters may pop up and start to leak. Then, they crust and scab over before
healing [16]. Chickenpox can be transmitted by breathing in particles from chickenpox
blisters or by being in contact with someone who has it [14]. Children in temperate regions
are more likely to contract chickenpox than adults, with those in elementary school and
younger being most at risk. The normal seasons for the disease are the end of winter and
the beginning of spring. Compared to temperate regions, where infections peak in early
childhood, adults in tropical regions, notably less populated areas, are more susceptible to
these diseases. In tropical settings, the wettest and coolest months are when the highest
rates of infection occur [17].

In 1970, a nine-month-old infant in the Democratic Republic of the Congo became the
first known victim of human monkeypox in a territory where smallpox had been eradicated
in 1968 [18,19]. Since then, most reports have come from the rainforests of the Congo
Basin’s rural areas, mainly in the Democratic Republic of the Congo. Reports of human
infections have been rising steadily throughout central and west Africa. Monkeypox
has been documented in humans in 11 different African nations since 1970, including
Benin, Cameroon, the Central African Republic, the Democratic Republic of the Congo,
Gabon, Cote d’Ivoire, Liberia, Nigeria, the Republic of the Congo, Sierra Leone, and
South Sudan [18]. The fact that the varicella virus, which causes chickenpox, was also
detected during an outbreak of monkeypox suggests that there may have been alterations
in the transmission dynamics of these two diseases. There have been over 500 suspected
cases, and over 200 confirmed cases, with a case-fatality ratio of about 3% in Nigeria since
2017 [18]. Reports of new cases are coming in even now. Monkeypox is an international
concern as a disease that spreads beyond west and central Africa. The United States had
the first outbreak of monkeypox outside of Africa in 2003, which was traced back to people
coming in touch with sick prairie dogs kept as pets.
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Gambian pouched rats and dormice, introduced to the nation from Ghana, have been
living alongside these pets. More than 70 people in the United States contracted monkeypox
because of this epidemic. Nigerian tourists have been diagnosed with monkeypox in
the following countries: Israel (September 2018), the United Kingdom (September 2018,
December 2019, May 2021, and May 2022), Singapore (May 2019), and the United States of
America (July 2021, and November 2022). Multiple cases of monkeypox were discovered in
various non-endemic nations in May of 2022 [18]. Figure 1 shows the lessons associated
with monkeypox and chickenpox.
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Figure 1. From left: lesion properties of monkeypox and Chickenpox [20,21].

Due to the similarity of the lesions displayed in the early stages of monkeypox and
chickenpox, a clinical diagnosis of monkeypox is difficult. A single misdiagnosis could
impact the larger communities as they are both contagious diseases and could spread faster
through skin contact and several other routes. They could also result in wrong vaccination
and treatment, which can be costly to the government, aid organizations, and infected
patients. Even though the mortality rate of the two diseases is relatively low, the spread
of the virus could get to immunocompromised patients, which can lead to their deaths.
Besides immunocompromised patients, children and older people with low immunity
could also get infected with the virus, resulting in death.

Furthermore, healthcare professionals have a knowledge gap due to the rarity of
monkeypox before the current pandemic. As a result, there is an urgent need to develop
a rapid and accurate way to automate skin lesion detection and classification in human
subjects. Among all the advanced deep learning algorithms, CNN is regarded as the most
powerful algorithm capable of addressing the problem that our study aims to solve (image
classification) [1]. CNN is a subtype of neural network mainly used for image classifica-
tion [1]. It contains multiple interconnected layers among which is the convolutional layer
which helps reduce the high dimensionality of images without losing their information.
This makes CNN the best suited deep learning algorithm for this case. This study aims
to achieve two things. The first is to train and validate a DL-based model capable of
accurately detecting and classifying monkeypox and chickenpox using digital images of
human skin lesions. Secondly, we aim to evaluate the performance of the DL-based model
with several state-of-the-art pre-trained models. The study’s outcome will be helpful in the
early detection and identification of either virus, especially for physicians and aid workers
in regions where it is endemic. Ultimately, this will prevent future outbreaks of the disease.
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The following points summarize the contributions of this article:

• Proposing a CNN model borrowing knowledge from existing CNN frameworks;
• Training the model with augmented digital skin lesion images of monkeypox and

chickenpox;
• Evaluating the performance of the model using unseen and un-augmented digital skin

lesion images of monkeypox and chickenpox;
• Finally, evaluating the proposed model performance with the existing state-of-the-art

pre-trained model.
• The model will be beneficial for detecting monkeypox and chickenpox lesions, follow-

up, and treatment efficacy.

The sections below are organized as follows: Section 2 highlights previous related
studies. Section 3 detailed the data and methodology adopted. Section 4 highlights the
result obtained and the corresponding discussion. Finally, Sections 5 and 6 highlight the
conclusions and future work, as well as limitations of the study.

2. Related Works

No previous study has implemented a DL-based approach to distinctly classify mon-
keypox and chickenpox, even though there are striking similarities in the lesions of the two
diseases. Nonetheless, several studies use a DL-based technique to identify monkeypox
and chickenpox.

In a feasibility study by Nafisa Ali et al. [22], several pre-trained deep-learning models
were used to detect monkeypox and other similar chickenpox and measles lesions. The
dataset was obtained from publicly accessible websites and news portals, and a data
augmentation technique was used to increase the total number of datasets. Three commonly
used pre-trained DL models were used, including Inception V3, ResNet50, and VGG-16.
The result was satisfactory in differentiating monkeypox lesions from other forms of
lesions associated with measles and chickenpox. The ResNet50 model recorded the highest
performance, with an accuracy of 82.96%. VGG16 and an ensemble of the three models
produced an accuracy of 81.48 and 79.26, respectively. In another study by Islam et al. [23],
the notion of whether AI can detect monkeypox lesions from digital skin images was
investigated. The study introduced the monkeypox skin image dataset in 2022, which
is the largest so far [23]. The study implements seven DL models, including ResNet50,
DenseNet21, Inception-V3, Squeeze Net, MnasNet-AI, MobileNet-V2, and ShuffleNet-V2-
1X. The study concludes that AI has great potential in detecting monkeypox from digital
skin images, with a precision rate of 85%. Adler et al. [24] elaborate on the clinical features
and management of human monkeypox in a retrospective observational study in the United
Kingdom (UK). The study concludes that human monkeypox poses unique challenges in
the UK, and even to well-resourced healthcare systems with high-consequence infectious
diseases (HCID) networks.

Lee et al. [25] conducted a study on applying a deep-learning model to predict chick-
enpox. The data used were extracted through web scraping using keywords related to
chickenpox. Linear regression and long short-term memory (LSTM) were used to predict
chickenpox over time, and the model generated a satisfactory correlation coefficient of
0.97114. However, the linear regression model generates a higher root mean square error of
341.01547. In another study by Alakus & Baykara [26], a DL algorithm was implemented to
classify human papilloma virus (HPV) causing monkeypox virus (MPV) and monkeypox
DNA sequences. Several DNA mapping methods were evaluated using accuracy, precision,
recall, and F1 scores. The result obtained indicates an average accuracy of 96.08% and
an F1 score of 99.83%. This further shows that the application of DNA sequences for the
classification of warts and monkeypox is feasible, practical, and accurate. Ramadhan and
Baykara, [27] implemented an image cropping method and VGG16 model to conduct a
binary and multiple classification of coronavirus (COVID-19), normal, and pneumonia. The
model produced an accuracy of 97.5% and 99.76% for multiple and binary classifications.
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In a study, Yu et al. [28] presented the application of deep learning technology in
the torsional capacity of Evolution of Reinforced Concrete (RC) beams. In the study, a
data-driven model based on 2D CNN was designed and fed with imputes. Furthermore,
an improved bed swarm algorithm (IBSA) was leveraged to enhance model accuracy
and optimize the hyperparameters. The outcome indicates a satisfactory performance in
predicting the torsional strength of RC beams. This outcome shows better performance
when compared with other ML models.

In another study, Yu et al. [29] proposed a vision-based concrete crack detection
technique to diagnose the surface cracks of concrete structures. The goal was to ensure an
efficient and time-saving technique that promoted high detection accuracy. The authors
used a total of 41,780 image patches of various concrete surfaces for the development and
validation of the proposed method. The result indicates the capability of the model to
accurately identify crack profiles with wrong predictions of limited areas, demonstrating
its potential in practical applications.

3. Data and Methodology

Inspired by the effectiveness of AI in detecting Coronavirus disease 2019 (COVID-19),
researchers are increasingly considering applying it to the detection of monkeypox and
chickenpox lesions using digital skin images of human subjects. However, the lack of
monkeypox and chickenpox databases presents obstacles to using AI for monkeypox and
chickenpox skin lesion detection.

3.1. Data Collection and Description

We collected two datasets for this study: monkeypox and chickenpox. The first dataset
is a web-scrapping image collection obtained and used in previous studies [20]. The dataset
comprises web-scraping images of monkeypox in one class and images of chickenpox,
smallpox, measles, and healthy skin in another class. Only the images in the monkeypox
class were used for our study. We double-checked all skin lesion pictures using Google’s
reverse image search and other references [23]. Images that were blurry, lacked detail, or
were otherwise subpar were eliminated in the first round of screening, leaving only those
that were unique to be saved in the second round. From the 228 images obtained [20],
102 are in the monkeypox class, while the other 126 are in the other class (chickenpox and
measles). Hence, 102 original images of monkeypox were implemented for this study.

Secondly, the chickenpox dataset was obtained from publicly available case reports
through extensive manual searching of the Internet. Automatic web scraping was never
used as the sources may be subject to query. The web-scraping images collected fall under
commercial and other licenses. For this reason, we provided additional materials for all
gathered photographs, such as their universal resource locators (URLs), dates of access,
and photo credits (where applicable) [21]. All low-resolution and low-quality images were
removed. Also, images with no distinctive label of chickenpox were discarded. The images
were resized while preserving their aspect ratio and cropped to the region of interest.
Patients in the cropped images of monkeypox and chickenpox have had their eyes covered
and any identifying features removed to prevent them from being recognized.

3.2. Image Pre-Processing

An image pre-processing step is necessary to enhance an image’s fine details. It
removes any unwanted variations to the image and improves the key features [30]. Since
all algorithms are vulnerable to noise, properly preprocessed images allow for better
segmentation and, subsequently, to better classification. One method of classifying pre-
processing methods is the size of the pixel region they target. These techniques function on
the neighboring pixels of the sub-image. Images may be improved through enhancement
by eliminating distortion and noise. Poor camera quality, a minimal user interface in
photography, and environmental conditions can all lead to distorted digital skin images.
However, important visual information is sometimes lost in the cases above, making



Diagnostics 2023, 13, 292 6 of 14

processing too difficult [31]. All of these factors can reduce the contrast in a picture. In this
research, we employed image contrast enhancement to better show the details of the region
of interest across the two datasets.

Additionally, the original chickenpox and monkeypox dataset underwent an augmen-
tation process utilizing the Python Imaging Library (PIL) version 9.2.0 and the Scikit-image
library version 0.19.3. Most state-of-the-art models contain many parameters in the order
of millions. To train a model for accurate results, more parameters are needed to learn
almost all the features from the data. We need a good amount of data to accommodate all
these parameters, and it is standard that DL models often require more data which is only
sometimes available. Hence, increasing the number of images and adding some variability
to the data is necessary. This technique increased the post-augmentation number of chick-
enpox and monkeypox images by approximately 44- and 42-fold, resulting in 10,000 images
each, as shown in Table 1. However, 50 images each from the monkeypox and chickenpox
classes were set aside without augmentation for test data. This will be appropriate for
evaluating the performance of the model on unseen skin lesion images of monkeypox and
chickenpox. Also, setting aside unseen and un-augmented images for model evaluation
prevents knowledge leakage to the model, thereby preventing overfitting.

Table 1. The distribution of the dataset.

Reference Data Class The Original
Number of Images

The Number of
Data Augmented

The Number of
Images after

Augmentation

The Number of Unaugmented
Images Reserved as Test Dataset

(for Evaluation)

[20] Monkeypox 102 52 10,000 50
[21] Chickenpox 240 190 10,000 50

Image denoising is a process of removing the noise from an image [32]. If not properly
addressed, noise from an image will cause a loss of information [32]. This noise often
comes from pre-image processing procedures which may include images captured in a
low-light situation, sensor illumination levels of a digital camera, faulty memory locations
in hardware, and errors in the transmission of data over long distances, etc. Hence, image
noise removal is vital and essential to recover the original image from degraded ones. We
adopted a deep CNN autoencoder of Denise images present in the dataset, which is trained
to reconstruct its input image by learning useful features and representation of the data
through an unsupervised learning process. It consists of an encoder and a decoder, both
of which are deep neural networks. The encoder networks take in an input image and
convert it into a compact representation, known as the latent code, which is then passed to
the decoder networks. The decoder network processes the latent code and produces the
reconstruction of the input image.

Table 2 shows the augmentation techniques implemented throughout the data aug-
mentation process of the study. Positional and color augmentation techniques were used
to achieve several variations of the dataset while maintaining the originality of the data.
The range choice is based on our previous experience augmenting data for use. The shear
range ensures that the image is distorted along an axis at 20◦ angles. This help creates or
rectifies the perception angles and creates a form of a stretch of the image. With a zoom
range at an angle of 20◦, the image zooms the image and adds new pixels. Rotation is
similar to shear only that it does not stretch the image. Rotation changes the angles of
the data that appear in the dataset during training. The zero-phase component analysis
(ZCA) whitening is a transformation technique that decorrelates the image pixel. The
ZCA preserves the spatial arrangement of the pixels, which is very important when using
CNN. Image shift is a geometric transformation that maps the position of every object
in the image to the new location of the final output image. By shifting the images, the
position of the objects in the image can be changed, giving more variety to the model. This
often results in a more generalized model. Flipping allows for the flipping of images in
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the left-right and up-down directions. All these augmentation techniques improve model
prediction accuracy, prevent overfitting, and create variability and flexibility in data used
for training [33]. However, there are a few limitations. Augmentation of data requires
evaluation systems for quality checks. Also, new research to create new or synthetic data
with an advanced application and augmentation techniques like (generative adversarial
network) GANs are quite challenging [34].

Table 2. Image Augmentation settings.

S/N Augmentation Settings Range

1 Shear range 0.2
2 Zoom range 0.2
3 Rotation range 0.2
4 ZCA whitening False
5 Width shift range 0.3
6 Height shift range 0.3
7 Channel shift range 0.2
8 Vertical flip True
9 Horizontal flip True

3.3. Hyperparameter Optimization

Because the ultimate goal of an ML researcher, engineer, and data scientist is to achieve
optimal performance we building an ML model, it is imperative to optimize hyperparame-
ters. Hyperparameters are variables peculiar to a model whose selection dictate the learning
process, determines network structure and can deliver optimal performance of the model.
In this study, the hyperparameters of the pre-trained models were left as they are to ensure
that knowledge transferred through transfer learning is intact. Any attempt to alter these
hyperparameter tuning will lead to a change in the architecture of the model. This may
lead to a significant alteration in the model performance. However, the hyperparameters
for the pre-trained model were continuously changed until the utmost performance was
achieved. The grid search hyperparameter tuning method was implemented to ensure that
the hyperparameter with the best result was obtained. Batch sizes of range 10–100 and
epochs of range 50–100 were explored. Also, SDG, RMSprop, Adagrad, Adadelta, Adam,
Adamax, and Nadam optimizers were explored. Furthermore, a learning rate of 0.001, 0.01,
0.1, 0.2, and 0.3 and momentum of 0.00, 0.2, 0.4, 0.6, 0.8, and 0.9 were explored. Finally,
a batch size of 32, 50 epoch, SDG optimizer, the learning rate of 0.01, and momentum of
0.00 were selected as they achieved optimal performance.

3.4. Proposed Model

The deep learning framework adopted for our proposed model was designed to
illustrate the capability of a CNN model developed from scratch with unique modification
and peculiarity to the data in use to attain optimal performance. The proposed model
conforms with the data used and the frame of the problem we intend to solve. We designed
the DL network as a simple CNN model and improve it through the addition of layers
(convolution, pooling, and dense) and hyperparameter tuning until the utmost performance
was achieved. While tuning the hyperparameter, we kept in mind avoiding overfitting
and underfitting to ensure adequate generalization of the unseen data. This is visible in
the performance of the model when compared with the performance of the state-of-the-art
pre-trained model evaluated in this study.

We adopted a convolutional neural network (CNN) architecture using the detection
method of classification, which determines the output information from a single image.
The maximal diameter of the region of interest in the image is of great clinical importance.
Our CNN architecture consists of a 2-dimensional (2-D) CNN architecture. The network
comprises four convolutional and three max-pooling layers applied after the second and
fourth convolutional layers, as shown in Figure 2. The two layers used kernel sizes of 3 × 3
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and 2 × 2, respectively. A series of 2 fully connected layers with 64 and 2 units provided
high-level reasoning before the final sigmoid classifier layer. Details regarding training are
as follows: Adam, a gradient-based stochastic optimizer, was utilized with a batch size
of 32 and a dropout of 25% on the convolutional and fully connected layers, respectively.
We used the binary cross entropy loss to compare the predicted probabilities to the actual
class output, which can either be 0 or 1. Finally, we compile the model using accuracy
metrics. The rectified linear activation function (ReLu) was the activation function of choice
across the entire network before the final sigmoid activation function. In training the CNN
using our dataset, we used a part of the training set as a validation dataset and tested the
model accuracy on the unseen test dataset. Training with too many or too few epochs
may lead to overfitting or underfitting a DL model. As a result, we implemented the early
stopping method. This method allows for a specific arbitrary number of training epochs to
be assigned and stopped once there is no improvement in model performance. Also, we
adopted the dropout regularization technique after the third max pooling layer and in the
dense layer. Dropout regularization is an easy-to-use regularization technique. It produces
a simple and efficient neural network by turning off some neurons during training. Simple
neural network results in less complexity and, in return, reduce overfitting.
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4. Results and Discussion

All techniques and procedures were implemented using the Keras package and the
Python programming language, including data cleaning, image pre-processing and aug-
mentation, model building, model training, and evaluation.

After model training, hyperparameter tuning, and evaluation, the result shows the
model’s capability to significantly perform satisfactorily and classify monkeypox and
chickenpox skin lesions without overfitting or underfitting problems. When evaluated
on unseen test datasets, the proposed model generates an accuracy and loss of 99.00%
and 0.15163. This demonstrates that when provided with unseen images of monkeypox
and chickenpox, the model can classify them. The test accuracy is an important metric
that depicts the fraction of predictions the proposed model got right. Also, of the 100 test
images evaluated, the model correctly identifies 50 as monkeypox (True Negative) and
49 as chickenpox (True Positive), as shown in Figure 3. True Negative (TN) tells how often
a model correctly classifies monkeypox as monkeypox. Likewise, True positive (TP) tells
how many times a model correctly classifies chickenpox images as chickenpox. This means
that 99 images of chickenpox and monkeypox were accurately categorized.
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Nonetheless, 1 image of chickenpox was incorrectly classified as monkeypox (False
Positive (FP)), while no image of monkeypox was incorrectly classified as chickenpox
(False Negative (FN)). False positive tells how many times a model incorrectly classifies
chickenpox as monkeypox. In contrast, false negative tells how many times a model
incorrectly classifies monkeypox and chickenpox. This further clarifies that the model
performs incredibly well and may be combined with other known symptoms for the final
diagnosis of the disease.

Accuracy alone does not give the full picture of model performance. To fully evaluate
the performance of a model, the precision, recall, and F1-Score must be examined. Unfor-
tunately, precision and recall are often in tension. As shown in Table 3, a mean precision
of 99.00% produced by our proposed model indicates the quality of positive prediction
made by the proposed model. A corresponding mean recall of 99.00% shows the ratio of
monkeypox images correctly classified as monkeypox to the total number of monkeypox
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images. The higher the recall, the more monkeypox images detected and vice-versa. The
F1 score defines the harmonic mean of precision and recall. It does this by combining
the precision and recall of a classifier into a single metric by taking the harmonic mean.
With a mean F1 score of 99.00%, the prosed model generates a satisfactory harmonic mean,
precision, and recall.

Table 3. Performance evaluation metrics of the proposed model.

Precision Recall F1-Score Accuracy

Chickenpox 100.00% 98.00% 99.00%
99.00%Monkeypox 98.00% 100.00% 99.00%

Weighted average 99.00% 99.00% 99.00%

Learning curves are important metrics in DL to optimize internal parameters [35].
It is a plot of the model learning performance over time or experience. Reviewing the
learning curves of a model during training can be used to diagnose problems with learning,
such as an overfit or underfit model, and the training and validation datasets are suitably
representative. Figures 4 and 5 show the proposed model’s accuracy and loss learning
curve. The proposed model generated a good fit from about the 30th epoch and sustained
the excellent fit to about the 48th epoch for both the training and validation accuracy.
Consequently, a good fit was generated from the 28th to the 48th epoch for both training
and validation loss. The two learning curves indicate that our proposed model neither
overfits nor underfit the data. Hence, the proposed model is capable of generalization on
unseen test datasets.

Furthermore, we compared the performance of the proposed model with the state-of-
art pre-trained model, including VGG16, VGG19, ResNet50, AlexNet, and InceptionV3.
This comparison was made to examine the feasibility of the pre-trained model to suc-
cessfully classify digital images of monkeypox and chickenpox lesions in human sub-
jects. These models have, in previous literature, demonstrated excellent classification
performance [36–40]. The VGG16 consists of 3 × 3 convolutional filters using Factorized
Convolution to enable feature extraction while ensuring that overfitting of training data
is avoided. The VGG19 is a modified version of the VGG16 with 19 convolutional layers.
The ResNet50 model employs residual nodules where convolution operations are followed
by Batch Normalization and ReLu non-linearity and is based on residual learning [41].
These building blocks expedite input propagation and improve feature extraction. The
InceptionV3 is a CNN for assisting in image analysis and object detection. It focuses on
burning less computational power by modifying the previous Inception architectures. With
the ‘stacked’ Inception nodules, the InceptionV3 performs better despite having fewer
parameters than VGG16. The AlexNet CNN, which contains eight layers, 5 of which
are convolutional layers and three fully connected layers, shows that the task of image
classification can be tackled using deep CNN.

We could determine how many more layers were necessary for optimal performance
by utilizing transfer learning on the training data. In the best-case scenario, the last classifi-
cation layer must be adjusted, while the rest must remain unchanged. Weight initialization
is vital in designing a neural network model. It typically involves adopting types of acti-
vation functions, the number of inputs to the nodes, etc. The weight initialization for all
pre-trained models implemented for this study adopt transfer learning. That way, knowl-
edge gained from a previously solved problem is used for a second related problem. For
the 5 pre-trained models used, we froze the layer trained on the large image dataset and
modified only the last layer to align with the study’s classification goal. By freezing the
layers, the weight of the layer will not be updated. This further indicates that the feature
extraction later frozen will not be trainable. This, higher accuracy can be achieved for
smaller datasets.
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Our proposed model results significantly better than state-of-the-art pre-trained mod-
els, as seen in Table 4. With an accuracy, TP, and TN of 99.00%, 49, and 50 respectively, the
proposed model outperformed the closest-performing model AlexNet. Our model wrongly
classified only 1 (1%) image. That is significantly better than the 2 (2%) images misclassified
by the AlexNet model. Furthermore, VGG16 and VGG19 perform the worse with an accu-
racy of 80.00%, respectively, and misclassify 20 (20%) of the total test images. Training a
model on millions of non-relatable types of datasets and transferring the knowledge to a dif-
ferent dataset may not always be the best approach, as the knowledge transferred may not
be of utmost usefulness for the new dataset. Also, applying a one-model-solve-all-problem
approach cannot be a reliable means of solving new and unique problems, as classification
problems are specific and unique. Furthermore, medical datasets are growing, and so
are their features. Hence, adequately designed proposed CNN models can outperform
state-of-art pre-trained models.
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Table 4. Proposed Model versus state-of-art pre-trained models.

Network Class Precision % Recall % F1 Score % TP FP FN TN Accuracy %

Proposed Model Chickenpox 100.00 98.00 99.00
49 1 0 50 99.00Monkeypox 98.00 100.00 99.00

VGG16
Chickenpox 81.00 78.00 80.00

39 11 9 41 80.00Monkeypox 79.00 82.00 80.00

VGG19
Chickenpox 86.00 72.00 78.00

36 14 6 44 80.00Monkeypox 76.00 88.00 81.00

ResNet50
Chickenpox 76.00 94.00 84.00

47 3 15 35 82.00Monkeypox 92.00 70.00 80.00

AlexNet
Chickenpox 98.00 98.00 98.00

49 1 1 49 98.00Monkeypox 98.00 98.00 98.00

InceptionV3 Chickenpox 88.00 90.00 89.00
45 5 6 44 89.00Monkeypox 90.00 88.00 89.00

Finally, all models’ performance was evaluated using exactly the same training, val-
idation, and test sets. This means all models were trained and tested using the same
training and test dataset. The proposed model generates an accuracy and loss of 95.00%
and 0.21792. This is higher than the state-of-the-art models (AlexNet and inceptionV3), with
the most superior performance of 91.00% accuracy. Furthermore, the VGG16, ResNet50,
and VGG19 models obtained test accuracies of 90.00%, 84.00%, and 77.00%, as shown in
Table 5. This further indicates the use of DL frameworks for the classification of monkeypox
and chickenpox.

Table 5. Model evaluation using the same training and test dataset.

Test Accuracy % Loss %

Proposed Model 95.00 0.21792
AlexNet 91.00 0.49988

InceptionV3 91.00 0.17745
VGG16 90.00 0.22484

ResNet50 84.00 0.55174
VGG19 77.00 0.44056

5. Conclusions and Future Work

The early detection of monkeypox and chickenpox is vital for the rapid and adequate
treatment of the disease. This ultimately prevents outbreaks and mortality associated
with the disease. The similarity in the lessons of monkeypox and chickenpox can create
a problem of misdiagnosis, especially in endemic regions where communicable disease
experts are insufficient.

The outcome of this study highlights the possibility of accurately classifying com-
monly characterized skin lesions associated with monkeypox and chickenpox using a DL
framework. With the current monkeypox outbreak, a DL approach can be implemented in-
dependently or with communicable disease experts in regions where the disease is endemic.
This would be useful in the rapid detection of the disease. Hence, preventing preventable
monkeypox and chickenpox outbreak in the future.

Future work can be carried out on developing a CNN model capable of accurately
classifying monkeypox, chickenpox, and skin cancer lesion, as there are similarities in
the skin lesion peculiar to the three diseases. Also, another approach could be to use
deep learning to analyze text data such as medical reports or clinical notes and classify
them as either related to monkeypox or not related to monkeypox. This could involve
training a long short-term memory (LSTM) network or some other type of natural language
processing (NLP) model on a dataset of labeled text data.
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6. Limitations

However, the study has some limitations. Data availability is a great challenge as
no large dataset is available. This makes using data authentication techniques such as
annotation and usage nearly impossible. Also, the rare occurrence of monkeypox and
chickenpox makes the disease less studied. Thereby limiting knowledge of the disease
among physicians. Ultimately, this could lead to the disease not being appropriately
diagnosed, leading to the spread of the disease and eventual outbreak.
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