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1 Introduction

The American Cancer Society estimates that 215,990 women

will be diagnosed with breast cancer in the United States in
2004 [1]. Another 40,110 women will die of the disease. In the

United States, breast cancer is the most common form of

cancer among women and is the second leading cause of

cancer deaths after lung cancer [1]. Women in the United

States have about a 1 in 8 lifetime risk of developing invasive

breast cancer [2, 3]. Early detection of breast cancer increases

the survival rate and increases the treatment options.

Screening mammography, radiographic imaging of the
breast, is currently the most effective tool for early detection

of breast cancer. Screening mammographic examinations are

performed on asymptomatic woman to detect early, clinically

unsuspected breast cancer. Two views of each breast are

recorded; the craniocaudal (CC) view, which is a top-to-

bottom view, and a mediolateral oblique (MLO) view, which

is a side view taken at an angle. Examples of the MLO and CC

views are shown in Fig. 1.

Radiologists visually search mammograms for specific

abnormalities. Some of the important signs of breast cancer

that radiologists look for are clusters of microcalcifications,

masses, and architectural distortions. A mass is defined as a
space-occupying lesion seen in at least two different projec-

tions [4]. Masses are described by their shape and margin

characteristics. Calcifications are tiny deposits of calcium,

which appear as small bright spots on the mammogram. They

are characterized by their type and distribution properties. An

architectural distortion is defined as follows: ‘‘The nor-

mal architecture is distorted with no definite mass visible.

This includes spiculations radiating from a point, and focal
retraction or distortion of the edge of the parenchyma’’ [4].

A typical example of each of these abnormalities is shown

in Fig. 2.

Breast lesions are described and reported according to the

Breast Imaging Reporting and Data System (BI-RADSTM) [4].

BI-RADSTM is a mammography lexicon developed by the

American College of Radiology (ACR) for the description of

mammographic lesions. The BI-RADSTM lexicon includes

Copyright � 2005 by Elsevier Academic Press.
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descriptors such as the margin of a mass and the distribution

of calcifications and it defines final assessment categories

to describe the radiologist’s level of suspicion about the

mammographic abnormality. It has been demonstrated that
the BI-RADSTM final assessment rating is an indicator of the

likelihood of malignancy [5]. If a suspicious abnormality is

detected, a diagnostic mammographic examination is carried

out to decide the future course of action required. Based

on the level of suspicion of the abnormality following the

diagnostic examination, a recommendation is made for

routine follow-up, short-term follow-up, or biopsy.

Early detection via mammography increases breast cancer

treatment options and the survival rate [6]. However,

mammography is not perfect. Detection of suspicious

abnormalities is a repetitive and fatiguing task. For every
thousand cases analyzed by a radiologist, only three to four are

cancerous and thus an abnormality may be overlooked. As a

result, radiologists fail to detect 10% to 30% of cancers [7–9].

Approximately two thirds of these false-negative results are

due to missed lesions that are evident retrospectively [10]. Due

to the considerable amount of overlap in the appearance of

malignant and benign abnormalities, mammography has a

FIGURE 1 In screening mammography two views of each breast are recorded; the craniocaudal (CC) view (left), which is a top-to-bottom view, and a

mediolateral oblique (MLO) view (right), which is a side view taken at an angle. The images were obtained from the Digital Database for Screening

Mammography (DDSM) [126].

FIGURE 2 Examples of a spiculated mass (left), cluster of microcalcifications (center), and architectural distortion (right). The images were obtained from

Digital Database for Screening Mammography (DDSM) [126].
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positive predictive value (PPV) of less than 35% [11], where

the PPV is defined as the percentage of lesions subjected to

biopsy that were found to be cancer. Thus, a high proportion

of biopsies are performed on benign lesions. Avoiding benign

biopsies would spare women anxiety, discomfort, and expense.

Computer-aided detection (CAD) systems have been

developed to aid radiologists in detecting mammographic

lesions that may indicate the presence of breast cancer. These
systems act only as a second reader and the final decision is

made by the radiologist. Recent studies have also shown that

CAD detection systems, when used as an aid, have improved

radiologists’ accuracy of detection of breast cancer [12–15].

Computer-aided diagnosis (CADx) systems for aiding in the

decision between follow-up and biopsy are still in develop-

ment. It is important to realize that mammographic image

analysis is an extremely challenging task for a number of
reasons. First, since the efficacy of CAD/CADx systems can

have very serious implications, there is a need for near

perfection. Second, the large variability in the appearance of

abnormalities makes this a very difficult image analysis task.

Finally, abnormalities are often occluded or hidden in dense

breast tissue, which makes detection difficult.

The organization of the chapter is as follows. Section 2

discusses CAD algorithms while Section 3 discusses CADx
algorithms. A number of commercial CAD systems have been

approved by the Food and Drug Administration (FDA) for

the detection task. Section 4 discusses the commercial

CAD systems currently available. Finally, Section 5 discusses

future areas of research for the breast cancer CAD/CADx

community.

2 Computer-Aided Detection of

Mammographic Abnormalities

The goal of the detection stage is to assist radiologists in

locating abnormalities on the mammogram. A flowchart

showing the different steps involved in detection algorithms is

shown in Fig. 3. The metrics used to report the performance

of detection algorithms are sensitivity (Equation 1) and the
number of false positives per image (FPI; Equation 2). A true-

positive mark is a mark made by the CAD system that

corresponds to the location of a lesion. A false-positive mark is

a mark made by the CAD system that does not correspond to

the location of a lesion. A plot of sensitivity versus FPI is called

a free-response receiver operating characteristic (FROC) plot

and this is generally used to report the performance

of the detection algorithm. An example of an FROC plot is
shown in Fig. 4.

There is some disagreement regarding the manner in which

detection results should be reported. While most authors

report the performance in terms of the detection of any

‘‘actionable’’ objects, some report it terms of how many

malignant masses were detected, since they believe that

Input: Mammogram

CAD

CADx

Stage One

Stage Two

Output: Lesions Detected

(Marks or ROIs)

Output: Likelihood of

Malignancy or

Management

Recommendation

(a) (b)

Preprocessing

Feature Extraction

Feature Selection

Classification

FIGURE 3 A flowchart showing the main steps involved in the computer-

aided detection (CAD) and computer-aided diagnosis (CADx) of mammo-

graphic abnormalities. Most detection algorithms consist of two stages. In

stage 1, the aim is to detect suspicious lesions at a high sensitivity. In stage 2,

the aim is to reduce the number of false positives without decreasing the

sensitivity drastically. The steps that are involved in designing algorithms for

both stages are shown in (B). We note that in some approaches some of the

steps may involve very simple methods or be skipped entirely. For example, in

stage 1, the classification step often is a simple size criteria (i.e., if the size of

potential lesion is suspicious only if its size is greater than N pixels). Most

diagnosis algorithms (CADx) begin with a region of interest (ROI) containing

the abnormality. Again, the steps typically involved in design such a system are

shown in (B). The output of a CADx system may be the likelihood of

malignancy or a management recommendation. Different research groups

have worked on different components of the problem and human interaction

may occur at various stages. For example, many CADx algorithms start with

manually segmented ROIs.
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FIGURE 4 Two plots illustrating receiver operating characteristic (ROC) and

free-response receiver operating characteristic (FROC) curves. In an ROC

curve, sensitivity is plotted on the y-axis and 1-Specificity or FPF is plotted

along the x-axis. The dotted line in the ROC curve represents chance

performance. In an FROC curve, sensitivity is plotted on the y-axis and the

number of FPI is plotted along the x-axis. ROC curves are used for diagnosis

studies and FROG curves are used for detection studies.
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detection of malignant mass is most important. Whatever the

methodology used, it is necessary for researchers to clearly

state the reporting method that has been adopted.

Until recently, FROC analysis has been limited by the fact

that the statistical analysis of FROC curves was less developed

than that of traditional receiver operating characteristic

(ROC). Major advances have recently been made in FROC

analysis, particularly by Chakraborty and Berbaum [16].
However, despite the consistent use of evaluation methods

in the literature, direct comparison of systems for detecting

mammographic abnormalities is difficult because few studies

have been reported on a common database. In Sections 2.1

and 2.2 we describe the different mass and calcification

detection algorithms, respectively.

Sens ¼ Number of True-Positive Marks

Number of Lesions
ð1Þ

FPI ¼ Number of False-Positive Marks

Number of Images
ð2Þ

2.1 Detection of Masses

A mass is defined as a space-occupying lesion seen in at least

two different projections [4]. Radiologists characterize masses

by their shape and margin properties.

A number of researchers have worked on methods for
detecting masses in mammograms. Masses with spiculated

margins have a very high likelihood of malignancy and thus

some methods have been developed specifically for the

detection of spiculated masses. A spiculated mass is char-

acterized by lines radiating from the margins of a mass [17].

However, since not all malignant masses are spiculated, the

detection of nonspiculated masses is also important. Most

mass detection algorithms consist of two stages: (a) detection
of suspicious regions on the mammogram and (b) classifica-

tion of suspicious regions as mass or normal tissue. These are

described in Sections 2.1.1 and 2.1.2, respectively.

2.1.1 Stage 1: Detection of Suspicious Regions

The first stage is designed to have a very high sensitivity and a

large number of false positives are acceptable since they are

expected to be removed in stage 2. Algorithms for stage 1

detection can generally be considered to be of two types, pixel

based or region based [18].

2.1.1.1 Pixel-based Detection Methods. In pixel-based

methods, features are extracted for each pixel and they are

then classified as suspicious or normal. The terminology

‘‘pixel-based’’ is misleading since for every pixel, features are

extracted from the local neighborhood of the pixel. This is

followed by a classification step in which pixels are classified

as suspicious or not. This may be done by simply applying

a threshold to the feature image or by using sophisticated

classification techniques. Finally, suspicious pixels are grouped

together into regions, generally by collecting connected pixels.

It is important to emphasize that regions labeled as suspicious

by the detection algorithms are not necessarily malignant. The

classification of detected regions into malignant or benign

categories is a different problem. A brief summary of pixel
based mass detection methods follows.

A number of detection methods have targeted particular

subsets of masses. For example, some researchers have focused

on the detection of spiculated masses because of their high

likelihood of malignancy. The main idea behind the detection

of spiculated masses is as that since spiculated masses are

characterized by spicules radiating in all directions, one should

compute the edge orientations at each pixel. Thus, each pixel
is represented by a feature vector that represents the strongest

edge orientation at the pixel. The edge orientation can be

computed in a variety of different ways.

Kegelmeyer et al. [19] developed a method to detect

spiculated masses using a set of five features for each pixel.

They used the standard deviation of a local edge orientation

histogram (ALOE) and the output of four spatial filters that

are a subset of Laws texture features. The idea of using the
ALOE feature is that a normal mammogram exhibits a tissue

structure that radiates in a particular orientation (from the

nipple to the chest). A spiculated mass would change this

trend and thus normal tissue would have edge orientations in

a particular direction, whereas in suspicious regions contain-

ing spiculated lesions, edges would exist in many different

orientations. To detect this difference Kegelmeyer et al. com-

puted edge orientations in a window around each pixel and
then generated a histogram of edge orientations. This idea is

depicted in Fig. 5. The ALOE feature was then defined as

the standard deviation of the bin heights of the histogram and

is described by Equation 3. Where histij is the histogram of

edge orientations in a window around the pixel located at

(i, j), and hist(i, j) is the average bin height of the histogram

histij. A binary decision tree was used to classify each pixel.

The neighborhood size for computing the ALOE was chosen
to be 4 cm so that it would encompass all of the spiculated

masses in the dataset.

ALOE feature ð@ijÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

255

n¼0

ðhistijðnÞ � histði, jÞÞ2

255

v

u

u

u

t

ð3Þ

Karssemeijer and te Brake [20] detected stellate distortions by

a statistical analysis of a map of pixel orientations. The

orientation at each pixel was computed from the response of

three filter kernels, which are second-order, directional deri-

vatives of a Gaussian kernel in the directions (0, �/3, 2�/3).

These filters form a nonorthogonal basis and are shown in
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Fig. 6. They used the relation that at a particular scale (@),

the output at any orientation W@ð�Þ can be expressed as a

weighted sum of the responses of the filters. This is described

in Equation 4, where W@ð0Þ, W@ð�=3Þ, and W@ð2�=3Þ are the

responses of the three filters. This relation was used to
determine the orientation at each pixel and two features for

each pixel were derived by a statistical analysis of these pixel

orientation maps. The pixels were then classified as suspicious

or normal. To account for the range of sizes of spiculations in

their dataset, edge orientations were computed at three spatial

scales (@¼ 1, 2, 3) and the one with the maximum magnitude

was used. We note that this is equivalent to choosing local

neighborhoods of varying sizes.

W@ð�Þ ¼
1

3
½1þ 2 cosð2�Þ�W@ð0Þ þ

1

3
½1� cosð2�Þ

þ
ffiffiffi

3
p

sinð2�Þ�W@ð�=3Þ þ
1

3
½1� cosð2�Þ

�
ffiffiffi

3
p

sinð2�Þ�W@ð2�=3Þ ð4Þ

Liu et al. [21] point out that in general, it is difficult to

estimate the size of the neighborhood that should be used to

compute the local features of spiculated masses. Small masses

may be missed if the neighborhood is too large and parts of

large masses may be missed if the neighborhood is too small.
To address this problem Liu et al. [21] developed a multi-

resolution algorithm for the detection of spiculated masses.

They generated a multiresolution representation of a mam-

mogram using the discrete wavelet transform. A detail

description of the wavelet transform can be obtained in

Chapter 4.2. They extracted four features at each resolution for

each pixel. One of the features they used was the ALOE feature

described in Equation 3. Pixels were then classified using a
binary classification tree.

The detection was carried out in a top-down manner from

the coarsest resolution to the finer resolutions. If a positive

detection was made and a pixel was classified as abnormal, no

feature extraction and detection were needed at the corre-

sponding pixels at all finer resolutions. This approach reduced

the number of pixels to be classified.

N

W

S

E #
 o

f 
p
ix

el
s

E

E

N W S E

normal duct

region

Spiculated region

gradient direction

(b)(a)

FIGURE 5 (A) Directions of spicules of a spiculated lesion differ from the directions of normal linear markings in a mammogram and the

(B) standard deviation of the gradient orientation histogram differentiates the area near a spiculated lesion from normal. The figure was obtained from [21]

(�2004 IEEE).

FIGURE 6 Three-directional second-order Gaussian derivatives used for estimation of line orientation. The figure was obtained from Prof. Nico Karssemeijer

[20] (�2004 IEEE).
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In all of the three methods described above, the focus was

on developing sophisticated stage 1 detection techniques.

These methods used very simple techniques for the stage 2

task. For example, Karssemeijer and te Brake [20] grouped

suspicious regions and discarded regions that were smaller 500

pixels.

Other researchers have not restricted their efforts to the

detection of spiculated masses since many malignant masses
are not spiculated. Li et al. [22] developed a two-step process

for detection of masses. In the first step, adaptive gray-level

thresholding was used to obtain an initial segmentation of

suspicious regions. The segmentation was iteratively improved

using a multiresolution Markov random field (MRF)–based

segmentation method. The algorithm was first applied at the

coarsest resolution and the output was refined at the next-

finer resolution. This strategy helps to reduce the computa-
tional complexity as mentioned above. A detailed description

of MRF can be obtained in Chapter 4.3. In the second stage,

a fuzzy binary decision tree was used to classify the segmented

regions as masses or normal tissue using features based on

shape, region size, and contrast.

Matsubara et al. [23] developed an adaptive thresholding

technique for the detection of masses. They used histogram

analysis techniques to divide mammograms into three
categories ranging from fatty to dense tissue. Potential

masses were detected using multiple threshold values based

on the category of the mammogram. A number of features

such as circularity, area, and standard deviation were used to

reduce the number of false positives.

Li et al. [24] developed a method for lesion site selection

using morphologic enhancement and stochastic model–based

segmentation technique. A finite generalized Gaussian mixture
distribution was used to model histograms of mammograms.

The expectation maximization algorithm [25] was used to

determine the parameters of the model. The segmentation was

achieved by classifying pixels using a new Bayesian relaxa-

tion labeling technique. An underlying motivation for this

technique was that it could incorporate neighborhood infor-

mation into the classification process and that this would

help improve the process. They argued that for the purpose
of lesion site selection, sensitivity should be the sole criterion

for evaluation and thus did not incorporate a false-positive

detection step.

The primary advantage of using pixel-based methods is that

one has a large number of samples to train a classifier.

However, this class of methods also has inherent disadvan-

tages. It does not take into account the spatial arrangement of

the pixels, which is a very important factor to discriminate
masses from normal tissue. A different set of features would be

required to describe different mass types. It is computationally

intensive and hence, most pixel-based methods must subsam-

ple images before detection.

The advantage of having many pixels per image available for

use in training supervised learning methods should not be

overstated. There are two problems regarding the use of

multiple pixels. First, pixels at the periphery of a mass and

at the center of the mass belong to the same class, but are

not always homogenous and maybe represented by different

feature values. This is a major limitation as ideally one would

want samples of a particular class to possess similar feature

values. Second, multiple pixels from a single mass represent

only one particular lesion example. This does not eliminate
the need for a comprehensive database containing masses that

encompasses the range of natural variability of masses.

2.1.1.2 Region-based Detection Methods. In region-

based detection methods, regions of interest are first extracted

by a segmentation or filtering technique. Features are then

extracted for each region and the region is classified as sus-
picious or otherwise. These features are designed to describe

important diagnostic information like shape and texture of

the extracted regions.

A number of these methods are based on the idea of

matched filtering. In these approaches, the image is filtered

with a filter that is used as a model for a mass. The idea is that

the output of the filtered image will be high near the center of

the tumor masses. Often the N largest outputs are selected as
possible suspicious regions. This is followed by the extraction

of ROIs around the N largest peaks. Features are extracted

from the ROI, and the ROIs are classified as containing a mass

or normal tissue. Here lies the main difference between pixel-

and region-based detection methods. In the pixel-based

methods, features were extracted for each pixel, whereas in

the region-based methods, features are extracted for each

region. A brief description of the region-based methods that
used a matched filtering approach is given below.

Kobatake et al. [26] modeled masses as rounded convex

regions and based on this idea, developed an ‘‘iris filter’’ to

enhance and detect masses. The iris filter was applied to a

gradient image that was generated by Perwitt-type operators

(see Chapter 4.13). The output of the filter was computed by

measuring the average convergence of the gradient over the

region of support of the filter. The peaks of the output of
the filter were selected as centers of tumor candidates. The

filter was then reapplied locally to detect the boundaries

of candidate masses. Finally, texture features were computed

from the candidates and were used to reduce false-positives.

The authors showed that one of the advantages of using this

filter was that the output of the filter would be constant

regardless of the contrast between a rounded convex region

and the background.
Petrick et al. [27] developed a two-stage algorithm for the

enhancement of suspicious objects. In the first stage, they

proposed an adaptive density-weighted contrast-enhancement

(DWCE) filter to enhance objects and suppress background

structures. The central idea of this filtering technique was that

it used the density value of each pixel to weight its local
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contrast. In the first stage, the DWCE filter and a simple edge

detector (Laplacian of Gaussian) were used to extract ROIs

containing potential masses. In the second stage, the DWCE

was reapplied to the ROI. Finally, to reduce the number of

false positives, they used a set of texture features for classifying

detected objects as masses or normal. They further improved

the detection algorithm by adding an object-based region-

growing algorithm [28].
Polakowski et al. [29] used a single difference of Gaussian

(DoG) filter to detect masses. The DoG filter was designed to

match masses that were approximately 1 cm in diameter. ROIs

were selected from the filtered image. They used nine features

based on size, contrast, circularity and Laws texture features to

reduce the number of false positives and to then classify ROIs

as malignant or normal.

The DoG filter, which is a band-pass filter, has been used by
several researchers for the preliminary task of detection of

potential masses in an image. The DoG filter must be matched

to the size of the mass. Since the size of masses varies from a

few millimeters to several centimeters [17], a number of DoG

filters would be required, which would increase the compu-

tational complexity. Since the size of a potential mass is

not known a priori, several researchers have used multiscale

region-based methods for the detection of masses.
Brzakovic et al. [30] use a two-stage multiresolution

approach for detection of masses. First they identified

suspicious ROIs using Gaussian pyramids (Chapter 4.2) and

a pyramid linking technique based on the intensity of edge

links. Edges were linked across various levels of resolution.

This was followed by a classification stage, where the ROIs

were classified as malignant, benign, or normal on the basis

of features like shape descriptors, edge descriptors, and area.
Qian et al. [31] developed a multiresolution and multi-

orientation wavelet transform for the detection of masses and

spiculation analysis. They observed that traditional wavelet

transforms cannot extract directional information, which

is crucial for a spiculation detection task and thus, they

introduced a directional wavelet transform. Figure 7 shows the

partitioning of the frequency domain with the directional

wavelet transform. We note that in comparison, a conven-
tional wavelet transform would produce a rectangular

partitioning of the frequency domain. An input image was

decomposed into two output images using the directional

wavelet transform. One was a smoothed version of the origi-

nal image and was used to segment the boundary of the mass.

The second contained the high-frequency information and

was used for directional feature extraction. The key ideas of

the method were that at coarser resolutions, features such as
the central mass region can be easily detected, whereas at finer

resolutions, detailed directional features such as spicules can

be localized.

As was the case for pixel-based methods, some researchers

have developed region-based methods that are focused on the

detection of masses with particular margin characteristics,

such as circumscribed or spiculated masses. Lai et al. [32]

developed a simple template matching algorithm to detect

circumscribed masses only. They enhanced images using a

modified median filtering technique to remove background

noise. To cope with variations in the size of masses various

templates with radii ranging from three to 14 pixels were used.

To measure the similarity between a potential mass and the
template, the authors chose the normalized cross-correlation

as a similarity metric. This particular metric was chosen since

it is invariant to the size of the template and the average

brightness of the image. They also developed two features to

reduce the number of false positives detected.

Groshong and Kegelmeyer [33] used the circular Hough

transform for the detection of circumscribed lesions. The

Hough domain, for circular objects consists of three para-
meters (x, y, and r) corresponding to the x and y centers

and radius (r) of the object. Thus, a point in the three-

dimensional Hough domain maps to a circle in the image

domain. More details about the circular Hough transform can

be found in [34]. They computed an edge image using a canny

operator (Chapter 4.13) and selected a subset of the edges

based on length and intensity. This subset of edges was the

input to a circular Hough transform. The radius parameter
search space ranged from 3 to 30 mm to account for masses of

different sizes. Two features were extracted from the Hough

domain for each pixel and ultimately these were classified as

either belonging to a mass or normal tissue.

Zhang et al. [35] noted that the presence of spiculated

lesions led to changes in the local mammographic texture.

FIGURE 7 Partitioning of the frequency domain achieved with the

directional wavelet transform. The figure was obtained from [127] (�2004

IEEE).
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They proposed that such a change could be detected in the

Hough domain, which is computed using the Hough trans-

form. They partitioned an image into overlapping ROIs and

computed the Hough transform for each ROI. The Hough

domain of each ROI was thresholded to detect local changes

in mammographic texture and to determine the presence or

absence of a spiculated mass.

Region-based methods have a number of advantages. In
contrast to pixel-based methods, region-based detection

takes into account the spatial information. Also, the features

are directly correlated to important diagnostic information

like the shape and margin of extracted regions. They are

computationally less intensive than pixel-based methods. The

main disadvantage is that if a classifier is used, there are fewer

samples for training the classifier as compared to the pixel-

based methods.
To conclude this section, we note that masses can have a

range of sizes. Thus, a major limitation of both pixel-based

and region-based methods is that the analysis is not done over

a continuous range of scales. Cancerous lesions are stochastic

biologic phenomena that manifest in images as having various

structures occurring at different sizes and over ranges of

spatial scales. For example, masses occupy definite regions;

this region occupancy can be approached at a coarse scale of
description or processing. However, the boundaries of masses

require a more localized approach, although the sharpness,

and hence the scales of interpretation of the lesion boundaries,

can vary considerably. Moreover, the spiculations that are

associated with many cancerous lesions occur with different

widths, lengths, and densities, which suggests that their

characterization will require analysis over scales.

2.1.2 Stage 2: Classification of Suspicious
Regions as Mass or Normal Tissue

A number of researchers have focused solely on the second

stage of detection in which suspicious regions are classified as

mass or normal tissue. The purpose of the second stage is to

reduce the number of false positives that were produced at the

end of the first stage. A brief summary of stage two methods
follows.

Researchers have used texture features to discriminate

between mass and normal tissue. Sahiner et al. [36] proposed a

convolution neural network for this task. They extracted

texture features from the ROIs. Wei et al. [37] developed

a classifier using texture features and linear discriminant

analysis for this task. They computed multiresolution texture

features from spatial gray-level dependence matrices. Wei et al.
[38] also investigated the use of global and local multi-

resolution texture features for this task and for reducing

the number of false-positive detections on a set of manually

extracted ROI.

Radiologists use a number of image characteristics to dis-

criminate between masses and normal tissue and researchers

have attempted to emulate that process. Te Brake et al. [39]

defined a number of features to discriminate between lesions

and normal tissue that were designed to capture image

characteristics like intensity, iso-density, location, and

contrast. Kupinski and Giger [40] studied a regularized

neural network for this task. Masses were detected using the

bilateral subtraction scheme, which is described in Section

2.1.3. Features based on geometry intensity and the gradients
of potential lesions were extracted. They also evaluated the

effectiveness to minimize overtraining. Mutual information

and a subregion hotelling observer have also been tested for

this classification problem. Tourassi et al. [41] developed a

template-matching technique for this problem. Each ROI in

the database served as a template and mutual information

was used a similarity metric to decide if a query ROI contained

a mass. Baydush et al. [42] proposed a subregion hotelling
observer for detecting whether a given ROI contained a mass

or not.

2.1.3 Mass Detection Using Multiple Images

In the methods described in the previous section, the analysis

was performed on the MLO, CC view images, or the images of
the left or right breast only. That is, these methods use only a

single image. Some researchers have also developed methods

that use more than one image.

In one approach, the same view (CC or MLO) is used from

both the left and right breasts. The intuition behind this

method is that radiologists use the architectural symmetry

between left- and right-breast images in the visual analysis of

mammograms. Asymmetry between the left and right breast
may correspond to potential abnormalities. One such mass

detection method is based on the analysis of the symmetry

between the corresponding mammograms of each breast. Yin

et al. [43] computed the difference of the left- and right-breast

images and binarized the difference image at various thresh-

olds to detect deviations from architectural symmetry and

thus possible masses. They described their method as a

‘‘nonlinear bilateral subtraction’’ scheme.
Radiologists also look at the current and prior mammo-

grams (from previous exams) of a patient while performing a

visual analysis of the mammograms. Thus, researchers have

tried to use both the current and prior mammograms for the

detection of potential abnormalities. One such method was

developed by Zouras et al. [44], who investigated the potential

of incorporating a temporal subtraction scheme to the bilat-

eral subtraction technique.
A number of difficult preprocessing steps are required in

both of the schemes mentioned above. For the bilateral

subtraction scheme, a registration or alignment of the left

and right breast must be performed before computing

the difference. This is difficult because the left and right

breasts are not exactly symmetric in shape and size on the
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mammograms. In the temporal subtraction scheme, a similar

alignment of the prior and current images must be performed.

Although the idea of searching for architectural asymme-

tries is appealing, current methods that try to use this concept

are based on very simple subtraction-based techniques and

compute a number of thresholds in an ad hoc manner.
Choosing an appropriate threshold that would work across a

large set of images is very difficult.

Table 1 gives a summary of various mass detection

algorithms. Most authors do not report the performance for

stage 1 of the detection algorithm. This is unfortunate, since

comparisons between the stage-by-stage performance of

different algorithms cannot be made. It also makes it more

difficult to combine stages of different algorithms to achieve
better performance. For example, given algorithms A and B, it

may be that a third algorithm C, which is composed of the

first stage of algorithm A and the second stage of algorithm B,

could yield significantly better performance than either

algorithm A or B. However, if the ‘‘stagewise’’ performance

of the algorithms is not reported, then the combined

algorithm C may not be conceived of or attempted.

2.2 Detection of Calcifications

Calcifications are small calcium deposits that form in the

breast as a result of benign or malignant processes. Mam-

mographically, they appear as bright white spots of vari-

ous sizes and shapes. The important characteristics of

calcifications are their size, shape or morphology, number,

and distribution.

One of the main characteristics to consider in the detection

of calcifications is that they are generally very small. Their size

varies from 0.1 mm to 1 mm and the average diameter is

0.3 mm [17]. Small calcifications may be missed due to
the overlapping breast parenchyma. Another issue is that in

regions where the background tissue is dense, it is very

difficult to localize the calcifications. Finally, calcifications

sometimes have a low contrast to the background and can be

mistaken as noise in the inhomogeneous background.

On the other hand, the high degree of localization of

calcifications makes them somewhat easier to model (they are

‘‘impulselike’’), and indeed, a number of robust methods have
been developed for the detection of calcifications, and a great

deal of success has been achieved with these methods. The

detection performance of current commercial systems is

reported at 95% sensitivity at less than 1 FPI [86].

A number of different approaches have been applied for

the detection of calcifications. Calcifications represent high

spatial frequencies in the image. Thus, one approach to the

calcification detection task is to localize the high spatial
frequencies of the image. The wavelet transform is an optimal

tool for such a task as compared with other transforms such as

the Fourier transform, which only gives information on the

frequency content and cannot spatially localize the frequen-

cies. Thus, a number of authors have used wavelet transforms

for the detection of microcalcifications [45–49]. In these

TABLE 1 Summary of representative selection of mass detection algorithms

Mass Type Author Method No. Images Stage One Stage Two

TP FPI TP, % FPI

All Yin et al., 1991 Pixel 46 — — 95 3.2

All Li et al., 1995 Pixel 95 — — 90 2

All Zouras et al., 1996 Pixel 79 — — 85 4

All Matsubara et al., 1996 Pixel 85 — — 82 0.65

All Li et al., 2001 Pixel 200 97.3% 14.81 — —

All Petrick et al., 1996 Region 168 95.5% 20 90 4.4

All Kobatake et al., 1999 Region 1214 — — 90.4 1.3

All Brzakovic et al., 1990 Region 25 — — 85 —

All Qian et al., 1999 Region 100 — — 96 1.71

Circumscribed Lai et al., 1989 Region 17 — — 100 1.7

Circumscribed Groshong et al., 1996 Region 44 — — 80 1.34

Spiculated Kegelmeyer et al., 1994 Pixel 86 — — 100 82%

specificity

Spiculated Karssemeijer et al., 1996 Pixel 50 — — 90 1

Spiculated Liu et al., 2001 Pixel 38 — — 84.2 1

Spiculated Zwiggelaar et al., 1998 Pixel 54 — — 70 0.01

All Polakowski et al., 1997 Region 254 92% 8.39 92 1.8

The input to these algorithms is the mammogram. Most detection algorithms consist of two stages. In the first stage the goal is to achieve high sensitivity. The

second stage aims to reduce the number of false positives per image (FPI) without drastically reducing the sensitivity. It is not possible to make a comparison

between these different algorithms since they have not been trained and tested on the same datasets. TP, true positive.
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methods, the image is first processed by a subband decom-

position filterbank. The coefficients in the subband images

that correspond to high spatial frequencies are selectively

weighted to enhance the calcifications. A new image with

enhanced calcifications is created with the inverse wavelet

transform. The calcifications are then detected using global

and local thresholds. Finally, the individual calcifications are

then grouped together to detect clusters. A summary of some
methods that have used the wavelet transform is given below.

Strickland and Hahn [45] proposed a method using

undecimated bi-orthogonal wavelet transforms and subband

weighting to detect and segment clustered microcalcifications.

Yoshida et al. [46] used undecimated wavelet transforms and

supervised learning for calcification detection. Zhang et al.

[47] developed a method to optimize the weights at individual

scales of the wavelet decomposition. Qian et al. [48] used a
tree-structured wavelet transform for multiresolution decom-

position and selective reconstruction of subimages to segment

microcalcifications. They used a nonlinear filter for suppres-

sing image noise.

In most of the methods, the detection is carried out in the

spatial domain. However, Gurcan et al. [49] performed the

detection in the subband image domain. The key aspect of

their method was that calcifications would produce outliers in
the high-pass and band-pass subimages. Thus, the symmetry

of the distribution of the band-pass and high-pass image

coefficients is altered in regions containing the microcalci-

fications. The changes in the distribution were captured by

computing the skewness and kurtosis of the distribution.

Another reason that wavelets have been so effective is that

calcifications appear as small bright dots on the mammo-

gram and can be viewed as point discontinuities. Recently,
mathematicians have argued that wavelets have finite square

supports and are ideal for capturing point discontinuities but

not edges [50]. We believe that this fact intuitively explains the

tremendous success of wavelet transform–based methods in

the detection of calcifications and why they have been less

successful for the detection of masses.

In addition to wavelets, other multiscale methods have been

investigated. Netsch and Peitgen [51] proposed a multiscale
detection method based on the Laplacian of Gaussian filter

and a mathematic model. They used scale-space signatures

obtained from Laplacian filtering for the detection of clustered

microcalcifications.

Other non–wavelet-based methods have also been devel-

oped for the detection of calcifications. These methods

generally try to make maximum use of the fact that

calcifications have much higher intensity values than the
surrounding tissue in a mammogram. These methods are

more likely to fail when the calcifications are present in dense

background tissue.

Chan et al. [52] used a difference–image processing

technique to detect calcifications. In this methodology, they

computed ‘‘signal-enhanced’’ and ‘‘signal-suppressed’’ images

and subtracted these to obtain a difference image. Global and

local level thresholding was then used to extract potential

calcifications. In a later study [53], they incorporated an

artificial neural network to reduce the number of FP clusters

per image.

Davis and Dance [54] used local area thresholding to detect

calcifications. Although they showed that this method was

successful on a small test set, in general picking a threshold
that will work successfully on a large set of images is extremely

difficult.

Nishikawa et al. [55] combined the difference image tech-

nique with morphologic erosion filters and gray-level thresh-

olding techniques to extract microcalcifications. To reduce the

number of false positives, Zhang et al. [35] applied a shift-

invariant artificial neural network. Zheng et al. [56] developed

a multistage algorithm including Gaussian filtering, nonlinear
global thresholding for calcification detection. They used a

mixed feature-based neural network for detection.

Many of the methods described above had a false-positive

reduction stage built in. A number of authors have focused on

developing techniques to reduce the FPs. This is similar to the

stage two of the mass detection methods. The main aim here

is to classify ROIs as either containing calcifications (positive

ROI) or normal tissue (negative ROI). Various schemes have
been developed for this purpose.

Kim et al. [57] examined the performance of different

statistical textures for this task. They compared the perfor-

mance of a new texture analysis method called surround-

ing region-dependence method (SRDM) with gray-level

co-occurrence matrix method (GLCM), gray-level run-

length method (GLRLM), and gray level difference method

(GLDM). They reported that the SRDM achieved the highest
classification accuracy for this task. These texture analysis

methods are co-occurrence-based methods, which attempt to

characterize second-order properties of an image. In these

methods, the general idea is to measure the joint probability

of two image properties occurring under certain conditions.

The image properties could be spatial gray-level intensities,

intensity differences, and so forth. These properties are

measured under specific conditions such as pixel spacing
(magnitude and orientation), magnitude of intensity differ-

ences, and so forth. For example, the GLCM measures the

probability of co-occurrence of image pixel intensities ‘‘i’’ and

‘‘j’’ under the condition of ‘‘d’’ pixels separation between the

pixels. By comparison, the GLRLM estimates the probability

of image pixels with intensity ‘‘i’’ occurring in a colinear

sequence of length ‘‘j.’’

Nagel et al. [58] compared the performance of three
methods for reducing false-positives. For the false-positive

reduction task they examined a rule-based method, neural

network, and a combined method that used both of these

techniques. They reported that the combined method was

more successful in eliminating false-positives because each of

the two stages eliminated different types of false-positives.
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An enhancement stage often precedes the detection step.

This can be global or local fixed-neighborhood enhancement

scheme. Some of the simple global enhancement techniques

used are contrasting stretching and histogram equalization. In

comparison, the local enhancement techniques use properties

like the mean and standard deviation in a fixed neighborhood

of the pixel to estimate the background. This method increases

the local contrast by suppressing the background. One of the
main limitations of these methods is that they enhance not

only the calcifications but also the background structure and

noise. Another major difficulty is the choice of metric to

report the performance of the enhancement algorithm. Some

of the metrics used to measure the performance of the

enhancement algorithms are defined below:

ContrastðCÞ ¼ f � b

f þ b
ð5Þ

where f is the mean gray-level value of a particular object in

the image called the foreground and b is the mean gray-level
value of a surrounding region called background.

CII ¼ Cprocessed

Coriginal
ð6Þ

Where Cprocessed and Coriginal are the contrasts in the processed

and original images, respectively.

Li et al. [59] compared a fractal-based enhancement
method with wavelet and morphologic enhancement methods.

They used three metrics contrast improvement index (CII),

peak signal-to-noise ratio (PSNR), and average signal-to-noise

ratio (ASNR) [59]) to compare the performance of these three

enhancement methods. However, they did not perform

detection on the enhanced images. It is important to realize

that defining an optimal metric to evaluate an enhancement

algorithm is still an open research problem. Thus, it may be

more appropriate to evaluate the performance of the enhan-

cement algorithms by studying the effect of the enhancement

on the accuracy of the detection algorithm that generally

follows it.

2.3 Conclusion

We have attempted in Tables 1 through 4 to summarize the

approaches that have been taken in CAD of masses and

calcifications. However, we would like reiterate that it is

TABLE 3 Summary of representative selection of calcification detection algorithms

Author No. Images Stage One Stage Two

TP FPI TP, % FPI

Strickland and Hahn [45] 40 — — 0.9–0.99 3–7

Yoshida et al. [46] 39 — — 95 1.5

Qian et al. [48] 100 — — 94 1.6

Gurcan et al. [49] 40 (105 clusters) — — 100 3.3

Netsch and Peitgen [51 ] 40 (105 clusters) — — 0.84 1

Chan et al. [52] — — — 80 1

Chan et al. [53] 52 100%

(obvious cases)

0.35 100 0.1

87% (subtle cases) 4 90 1.5

Davis and Dance [54] 50 100 0.08

Zhen et al. [56] 55 — — 100 0.18

Nagel et al. [58] 50 — — 83 0.8

Most detection algorithms consist of two stages. In the first stage the goal is to achieve high sensitivity. The second stage aims to reduce the number of false-

positives per image (FPI) without drastically reducing the sensitivity. It is not possible to make a comparison between these different algorithms since they have

not been trained and tested on the same datasets. TP, true positive.

TABLE 2 Summary of representative selection of mass detection

algorithms applied on regions of interest (ROIs)

Author No.

ROI

Detection Results

TPF

(Sensitivity)

FPF

(1-Specificity)

Az (Area

under ROC

Curve)

Wei et al. [37] 678 — — 0.86

Wei et al. [38] 168 — — 0.92

Kupinski et al. [40] 495 — — 0.93

Tourassi et al. [41] 1465 — — 0.87

Baydush et al. [42] 1320 98% 55.9% 0.94

Sahiner et al. [36] 678 90% 31% 0.87

The inputs to these algorithms are ROIs which may be obtained

automatically or manually. The aim is to determine if a given ROI contains

a mass or normal tissue. It is not possible to make a comparison between these

different algorithms since they have not been trained and tested on the same

datasets. The TPF is sensitivity as defined in Eq. 1. The FPF is 1-specificity

where specificity¼number of true negative [normal] classifications/number

of negative [normal] ROIs.

10.4 Computer-Aided Detection and Diagnosis in Mammography 1205



extremely difficult to make a fair comparison of the different

algorithms as they are often evaluated with private or local

databases. The performance of a detection method can very
dramatically over different databases. The performance

depends on factors such as the subtlety of cases and number

of cases. The choice of the evaluation technique that is used

to measure the performance is another crucial factor.

3 Computer-Aided Diagnosis of

Mammographic Abnormalities

The ultimate aim of the CADx task is to help the radiologist in

making recommendations for patient management. If a mass

is suspected to be malignant, a biopsy must be performed. If
not, the patient is either scheduled for a short-term follow-

up or is returned to the normal screening population. If

the information is insufficient for the radiologist to make a

decision, special radiographic views are taken and/or comple-

mentary modalities like ultrasound or magnetic resonance

imaging (MRI) are used to obtain additional information. A

flowchart showing the steps involved in the diagnosis of

abnormalities is shown in Fig. 3.
The diagnosis task is modeled as a two-class classification

task. Features are extracted from ROIs containing the

abnormality, and each ROI is classified using a classification

algorithm such as a neural network. In most cases, the

classification algorithm used is a supervised method that is

first trained on a set of sample cases called the training set. The

performance of the algorithm is then tested on a separate

testing set. Here, care must be taken that there is no overlap
between the training and testing sets. Special data sampling

techniques like cross-validation are often used in the

developmental stage. This topic is out of the scope of this

chapter and the interested reader can refer to any of one

of several excellent texts in machine learning or pattern

recognition [25]. The challenges in designing robust classifiers

in the context of medical imaging decision support systems

have been clearly summarized by Dodd et al. [60].

The metrics used to report the accuracy of these algorithms

are sensitivity and specificity. Sensitivity was previously

defined in our discussion of the evaluation of detection

systems (Equation 1). However, the use is slightly different

here in that a true-positive classification is defined as a lesion

for which the CAD predicts that it is cancerous and it is
actually found to be malignant. Specificity is the fraction of

benign lesions that are correctly identified by the CAD as

being benign (Equation 6).

Sensitivity ¼ Number of True Positive Classifications

Number of Malignant Lesions
ð7Þ

Specificity ¼ Number of True Negative Classifications

Number of Benign Lesions
ð8Þ

A plot of sensitivity versus 1-specificity is called a receiver

operating characteristic (ROC) curve and this is generally used

to report the performance of the diagnosis algorithm [61, 62].

An example of an ROC curve is shown in Fig. 4. It is

important to note that the ROC methodology can be correctly

applied in classification tasks where localization of the
abnormality is not an issue [63] like in the diagnosis task

described above. However, for tasks where localization is an

important issue, the ROC methodology has some inherent

problems as it does not require correct localization of the

abnormality. Also the ROC does not apply to situations where

the radiologist has to detect and localize multiple lesions on

the same image. For these situations the FROC curve should

be used to report performance. An example of an FROC curve
is shown in Fig. 4. The next two sections describe in detail the

steps involved in the diagnosis of masses and calcifications.

3.1 Diagnosis of Masses

Radiologists characterize masses by their shape and margin

properties. The mass shape can be round, oval, lobular,
or irregular and the mass margin or boundary can be

circumscribed, microlobulated, obscured, indistinct, or spicu-

lated [4]. Figure 8 shows a schematic diagram of some mass

shapes and boundary characteristics. We also note that masses

with spiculated and indistinct boundaries have a greater

probability of malignancy than circumscribed masses.

Most diagnosis algorithms begin with a region of interest

(ROI) containing a suspicious mass. The ROI may have been
selected manually by an experienced radiologist or may have

been automatically selected. Most techniques developed for

the diagnosis of masses consist of three stages: (a) segmenta-

tion of mass boundary in ROI, (b) feature extraction, and (c)

classification. In the segmentation stage, the mass is segmented

from the background normal tissue. Following this, features

TABLE 4 Summary of representative selection of calcification

detection algorithms applied on regions of interest (ROIs)

Author No.

ROI

Detection Results

TPF

(Sensitivity)

FPF

(Specificity)

Az (Area

under

ROC Curve)

Zhan et al. [47] 158 — — 0.92

Zhang et al. [35] 50 — — 0.90

Kim et al. [57] 172 — — 0.92

The inputs to these algorithms are ROIs, which may be obtained

automatically or manually. The aim is to determine if a given ROI contains

calcification or normal tissue. It is not possible to make a comparison between

these different algorithms since they have not been trained and tested on the

same datasets.
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that capture the differences between malignant and benign

masses are extracted. Finally, masses are classified as malignant

or benign. Each of these three stages is discussed in detail

below.

3.1.1 Segmentation

The segmentation of the mass may be manual, semiauto-

mated, or fully automated [64]. We will focus only on fully

automated segmentation methods in this section. The
segmentation of masses is extremely important as the success

of the classification algorithm depends on this stage. The two

major categories of segmentation methods are region growing

and discrete contour models [65].

The area overlap measure is used to quantitatively report

the performance of the segmentation algorithm. The area

overlap measure is defined as the ratio of the area of the mass

segmented automatically to the area of the mass segmented
manually by an experienced radiologist.

However, there is interobserver variability in the manual

segmentation of masses by radiologists. Thus, it has been

suggested that it is more appropriate to observe if the variance

between the boundaries marked by a radiologist and a

computer falls within the variance between radiologists,

rather than to measure the absolute difference of the computer

boundary from any one of the radiologists.
Timp and Krassemeijer [65] proposed a new segmentation

algorithm based on dynamic programming. They demon-

strated that their algorithm performed better than two other

segmentation methods (namely region growing and the

discrete contour model). Guliato et al. [66] used fuzzy

region growing methods for segmenting masses and classified

the masses as malignant or benign based on the transition

information around the segmented region. Kinoshita et al.
[67] used shape and texture features based on gray-level

co-occurrence matrices and a three-layer neural network for

classification. Kupinski and Giger [68] proposed two extended

region growing techniques for the segmentation of masses.

One was based on the radial gradient and the other was based

on simple probabilistic models.

3.1.2 Feature Extraction

Different shapes and margins have different likelihoods of

malignancy. For example, masses with spiculated or indistinct

margins have a higher probability of disease than masses with

circumscribed margins. Similarly, irregular-shaped margins

have a higher likelihood of malignancy than round margins
[69]. Thus, for the diagnosis task, most features are designed

to capture the shape and margin characteristics of masses.

These features can be organized into (a) morphologic features

and (b) texture features.

Morphologic features are directly inspired by characteristics

for which a radiologist looks. On the other hand, texture

features have been designed to capture important differences

between malignant and benign masses that may not be evident
to human eye. Thus, texture features have the potential to

capture characteristics that are important diagnostically but

are not easily extracted visually.

To extract textural information, a number of researchers

have used the Haralick texture features. These features are

computed from GLCMs. While it may be beneficial to extract

texture-related features, it is important to note that this

particular method of computing texture features has a number
of limitations. Most mammograms are digitized at 12 bits per

pixel (bpp). One cannot compute the texture features on these

images directly because the co-occurrence matrices that these

methods generate would be very large and sparse. Thus, the

statistical features derived from them would not be reliable.

Thus, most researchers quantize the image to 6 bpp before

computing these features. However, a lot of information is lost

during the quantization process and thus the features may not
be reliable.

As Tuceryan and Jain [70] have discussed, the other major

limitations are that there is no well-established method

of selecting the displacement vector (d) and computing

co-occurrence matrices for different values of the vector is

not feasible. In addition, for a given vector, a large number

of features can be computed from the co-occurrence matrix,

and thus some form of feature selection method must be used
to select the subset of the most discriminatory features.

3.1.3 Classification

Various classification techniques have been used for classifying

masses as malignant or benign. Most of the techniques used

are supervised methods. Artificial neural networks and linear

discriminant analysis are some of the most popular tech-

niques. A review of these methods can be obtained from

machine learning textbooks [25, 71]. Brief summaries of
methods for diagnosis of masses and their major themes

follow.

Some authors have extracted texture and gradient features

in a transform domain rather than in the spatial domain. The

main intuition here is that masses can be better differentiated

in the transform domain. That is, the features computed in

Benign Malignant

Round Oval Lobulated Nodular Stellate

FIGURE 8 Morphologic spectrum of masses. Figure obtained from [76]

(�2004 IEEE).
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the transform domain would be more discriminatory than

features computed in the spatial domain.

Sahiner et al. [72] proposed the rubber band straightening

transformation (RBST) to transform a band of pixels sur-

rounding the mass to a rectangular strip. They extracted

texture features from the RBST image based on the SGLD

matrices to classify masses as benign or malignant. They used a

clustering algorithm and active contour models for segmenta-
tion. The main difficulty here is the accurate extraction of a

band of pixels around the segmented mass. Claridge and

Richter [73] used the Polar coordinate transform (PCT) to

map lesions into polar coordinates. A spiculation measure was

then computed from the PCT images to discriminate between

circumscribed and spiculated masses. Hadjiiski et al. [74]

classified masses as benign or malignant using texture features

computed from the RBST image. They tested the performance
of a hybrid classifier consisting of an adaptive resonance

theory network cascaded with LDA. They used a set of

manually segmented ROIs and reported a higher accuracy

with the hybrid classifier than with a back propagation neural

network or LDA. Pohlman et al. [75] used six morphologic

features to classify masses as benign or malignant. To segment

the lesions, they used an adaptive region growing technique,

which required the selection of manual seed points.
Most studies focus on classifying masses as malignant or

benign, however, some authors have also investigated the

classification of masses into other categories. Bruce and

Adhami [76] classified manually segmented masses as round,

nodular, or stellate using the wavelet transform modulus

maxima method. They used multiresolution shape features

and LDA for classification. Kilday et al. [77] classified tumors

as fibroadenoma, cyst, or cancer using a linear discriminant
function. They used a set of seven shape features based on the

radial distance measures (RDMs) from the centroid to the

points on the boundary and tumor circularity. Rangayyan

et al. [78] used morphologic features to characterize the

roughness of tumor boundaries. The features used were

moments of distances of boundary points from the center,

Fourier descriptors, compactness, and chord-length statistics.

They performed two experiments: classification of masses as
circumscribed or spiculated and classification as benign or

malignant. They achieved higher accuracy for the first task.

3.2 Diagnosis of Calcifications

Calcifications in mammograms may be observed individually

or in clusters. Individual calcifications are less worrisome than

clustered calcifications. A cluster is defined as a group of three
or more calcifications within a 1 cm2 area [17]. Radiologists

characterize clusters of calcifications by distribution and the

morphology of the calcifications [4]. The distribution can be

diffuse, regional, segmental, linear, or clustered. Fourteen

categories for describing the calcification morphology have

been defined [17]. Some of the most common for biopsied

lesions are dystrophic, punctate, indistinct, pleomorphic, or

fine branching [17].

Most diagnosis algorithms begin with an ROI containing

a cluster of calcifications. The ROI may have been selected

manually by an experienced radiologist or may have been

automatically selected. A flowchart showing the steps involved

in the diagnosis of calcifications is shown in Fig. 3. The steps

are (a) segmentation of individual calcifications, (b) feature
extraction, and (c) classification.

3.2.1 Segmentation of Individual Calcifications

Segmentation is the most difficult step in the computer-aided

diagnosis of calcifications. The extremely small size of calci-

fications makes this problem worse. The motivation for

performing segmentation is that features are then extracted

from the individual calcifications. As explained in the next
section, there are two categories of features: individual

calcification features and calcification cluster features. Radio-

logists do not look at every individual calcification to make a

diagnosis but tend to focus on the global properties of a

cluster to make a diagnosis. Thus, it maybe more appropriate

to develop better cluster features than to develop new methods

for individual calcification segmentation.

3.2.2 Feature Extraction

As was the case for masses, the features used for the diagnosis

of calcification can be viewed as capturing morphologic

or texture information. Researchers have reported that mor-

phology is one of the most important clinical factors

in calcifications diagnosis [79]. However, it is important to

note that the accuracy of diagnosis algorithms which use

morphologic features depends on the robustness of the
segmentation algorithm. Features for calcification classifica-

tion can also be organized in terms of whether they describe

properties of the cluster as a whole or of the individual

calcifications that make up the cluster. Some of the common

cluster features include the number of microcalcifications, the

mean microcalcification area, standard deviation of the

microcalcification contrast, and the number of microcalcifica-

tions per unit area.

3.2.3 Classification

As for masses, a variety of classifiers have been used to

automatically discriminate between benign and malignant

clusters of microcalcifications. A summary of the important

algorithms for calcification CADx follows.

Chan et al. [80] used morphologic and texture features for

the classification of calcifications. The rationale for using
texture features was that a malignancy would cause changes in

the texture of the tissue surrounding it. Texture features were

extracted from the SGLD matrices, and morphologic features

consisted of both individual calcifications features and cluster

features. They also used a genetic algorithm and LDA to select

the best subset of features. Feature selection is an important
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task, but neither of these techniques search the space of all

possible subsets of features and hence do not necessarily give

the most optimal feature subset.

Santo et al. [81] combined the output of multiple classifiers

to classify calcifications as malignant or benign. Some of the

classifiers classified individual microcalcifications of a cluster,

whereas other classified the entire cluster. Thus, they used

features to characterize single calcifications and clusters. The
final output was a weighted combination of the outputs of

the various classifiers used.

Tsujii et al. [82] used the Karhenen-Loeve (KL) transform or

PCA to reduce the dimensionality of the feature set and applied

a trend oriented radial basis function neural network to classify

calcifications. It is important to note that while the KL trans-

form is optimal in the mean square sense, it does not necessarily

produce the most discriminatory features. KL would be opti-
mal if the final goal was image or data compression. However,

since in this case, the final goal is pattern classification, KL is

not ideal and other techniques such as multiple discriminant

analysis may be more appropriate for this task.

Morphology is regarded as the most important clinical factor

for the diagnosis of calcifications and a number of authors have

developed shape features for diagnosis. Kallergi [79] developed

a classification method that used only morphologic features.
These features were designed after an in-depth study of the

clinical characteristics of calcifications and produced very

impressive results [79]. Veldkamp et al. [83] used cluster shape

features, cluster position features, and distribution features for

the classification of calcifications. They used a sequential

forward selection procedure for feature selection. Shen et al.

[84] developed a set of shape features for classifying calcifi-

cations as malignant or benign. The features used were
compactness, moments, and Fourier descriptors. The Fourier

descriptors were defined as the Fourier coefficients of boundary

pixels. One of the advantages of using these features is that

they are translation, rotation, and scale invariant.

One limitation of using shape features is that the success of

the shape features is very dependent on the accuracy of the

segmentation algorithm. Sometimes, calcifications may have

poor contrast and so the segmentation may not be very
accurate. Thus, researchers have also developed algorithms

that do not use shape features. Dhawan et al. [85] proposed

image structure features for classification of calcifications.

To represent the global texture they used second-order

histogram based features and wavelet based features to

represent the local texture. They also proposed cluster features

based on the first order histograms of segmented clusters.

Optimal features were selected using multivariate cluster
analysis and a genetic algorithm based search method.

3.3 Conclusion

A number of mass CADx algorithms have been developed.

Although, these methods have not been integrated into

commercial systems yet, it is interesting to note that the

reported performances of mass CADx algorithms are often

been better than that of mass CAD algorithms. On the other

hand, the performance of calcification CAD algorithms is

much better than the performance of calcification CADx

algorithms, probably due to the fact that segmentation is a

very difficult task.

We have attempted in Tables 5 and 6 to summarize the
approaches that have been taken in CADx of masses and

calcifications. However, we would like reiterate that it is

extremely difficult to make a fair comparison of the different

algorithms as they are often evaluated with private or local

databases. The performance of a CADx algorithm can very

dramatically over different databases. The performance

depends on factors such as the subtlety of cases and number

TABLE 6 Summary of representative selection of calcification

diagnosis algorithms

Author No. of

Images

Diagnosis Results

TPF, % FPF Az (Area

under

ROC curve)

Chan et al. [80] 145 — — 0.89

Santo et al. [81] 102 75.7 73.5% 0.79

Tsujii et al. [82] 128 — — 0.76

Kalleri [79] 100 100 85% 0.98

Veldkamp et al. [83] 280 — — 0.83

Shen et al. [84] 143 100 — —

Dhawan et al. [85] 191 — — 0.96

The input to these algorithms are ROIs, which may be obtained manually

or automatically. It is not possible to make a comparison between these

different algorithms since they have not been trained and tested on the same

datasets. TPF is sensitivity as defined in Eq. 7. FPF is 1-specificity as defined

in Eq. 8.

TABLE 5 Summary of representative selection of mass diagnosis

algorithms

Author No. Images Diagnosis Results

TPF FPF Az (Area under

ROC Curve)

Sahiner et al. [72] 168 — — 0.94

Bruce and Adhami [79] 60 80% — —

Kinoshita et al. [67] 92 81% — —

Hadjiiski et al. [74] 348 — — 0.81

Pohlman et al. [75] 51 — — 0.76–0.93

Kilday et al. [77] 82 69% — —

Rangayyan et al. [78] 39 95% — —

The inputs to these algorithms are ROIs which may be obtained manually

or automatically. It is not possible to make a comparison between these

different algorithms since they have not been trained and tested on the same

datasets.
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of cases. The choice of the evaluation technique that is used to

measure the performance is another crucial factor.

4 Commercial Computer-Aided

Detection Systems

Three FDA-approved commercially available CAD systems

have been developed to aid radiologists in detecting mammo-
graphic abnormalities. Currently, there are no FDA-approved

systems for CAD.

4.1 R2 Technology, Inc.

R2 Technology’s Image Checker� was the first commercial

mammographic CAD system approved by the FDA [86]. This

device is designed to search for signs that may be associated

with breast cancer. Masses are marked with an asterisk, while

microcalcification clusters are marked with a triangle. The

detection accuracy of calcifications was reported as 98.5%

sensitivity at 0.74 false positives per case (set of four images).

The detection accuracy of masses was reported as 85.7%
at 1.32 false-positive marks per case.

4.2 Intelligent Systems Software, Inc.

The FDA approved the Intelligent System Software Inc. (ISSI)
CAD system MammoReaderTM in 2002. MammoReader was

designed to detect primary signs of breast cancer in mammo-

gram images including microcalcification clusters, well- and

ill-defined masses, spiculated lesions, architectural distortions,

and asymmetric densities. Masses are marked with crosshairs

and microcalcification clusters with outlines [87]. The

reported overall sensitivity was 89.3% (91.0% in cases where

microcalcifications were the only sign of cancer and 87.4% in
the remaining cases where malignant masses were present).

The system made 1.53 true-positive marks and 2.32 false-

positive marks per case among cancer cases and 3.32 false-

positive marks among cases without cancer.

4.3 CADx Medical Systems

CADx Medical Systems was the third company to receive

approval for a mammographic CAD system called Second-

LookTM [88]. SecondLook was designed to mark areas of a

mammogram that are indicative of cancer. It marks masses

with circles and microcalcification clusters with rectangles.

The sensitivity of the system was reported to be 85% for
screening-detected cancers (combination of masses and

microcalcification clusters). Additionally, it identified cancer

locations in 26.2% of mammograms acquired within 24

months before cancer diagnosis. CADx did not report

SecondLook’s false-positive rate.

4.4 Independent Studies of Commercial
Computer-Aided Detection Systems

Several large-scale independent trials of the R2 Image

Checker� system have been conducted to test the performance

of this system in a clinical setting. In a study conducted by

Vyborny et al. [89], it was shown that the R2 Image Checker
system detected 86% of the spiculated masses at 0.24 FPI on

a dataset of 375 images whereas it had a detection sensitivity

of 53% for nonspiculated masses. All of these masses were

given a subtlety rating of subtle, medium, or obvious by

three radiologists.

It is important to note that of the 375 clearly spiculated

masses, 271 were classified as ‘‘obvious,’’ 73 had a subtlety

rating of ‘‘medium,’’ and only 31 had a subtlety rating of
‘‘subtle.’’ While the R2 Image Checker system detected 94%

of the obvious spiculated masses, it detected only 70% of the

medium spiculated masses and 52% of the subtle spiculated

masses. Though the overall results (86% at 0.24 FPI) for the

detection of spiculated masses are impressive, it is important

to note that the study used a large number of obvious masses

and a much smaller number of subtle masses. Thus, there

is still room for improvement, even in the detection of
spiculated masses.

Freer and Ulissey [90] tested the performance of the R2

Image Checker system on more than 12,860 patients in a

community breast center. For the first 20,624 radiographs,

they observed that 14,214 computer cues or marks were made

by the CAD system. Of these, 13,846 marks (97.4%) were

dismissed by the radiologist as false positives. This corres-

ponds to a false-positive rate of 0.671 FPI. The CAD system
detected 67% (18 of 27) malignant masses and 100% of the

clustered calcifications (22 of 22). The authors argue that

dismissing the large number of false-positive marks was easy

for a radiologist to do [90]. However, another study claims

that dismissing false-positive cues can be difficult [91]. This

study clearly showed that the R2 Image Checker system is

better at the detection of calcifications than at the detection of

masses.
Baker et al. [92] studied the performance of two CAD

systems for the detection of architectural distortions on a set

of 80 images. They observed that the R2 Image Checker

system had a sensitivity of 38% at 0.7 FPI while the CADx

SecondLook system had a sensitivity of 21% at 1.27 FPI. They

concluded that the sensitivity of current systems for the

detection of architectural distortions is very low and that

considerable improvements are needed for this detection task.
On the basis of these studies, radiologists tend to trust the

calcification cues more than the mass cues. This is also

documented in the literature and prominent radiologists like

C. J. D’Orsi have published papers saying that ‘‘I would

initially use only the calcification prompt and feel extremely

comfortable that I have not missed any substantial calcifica-

tions when no cues for calcium are present’’ [128]. Thus,
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there is room for improvement in the detection accuracy of

architectural distortions.

All of the commercially available CAD systems perform

much better at detecting calcifications than at detecting masses

or architectural distortions. One also cannot make a direct

comparison of these systems as there has been no clinical

study that compares the performance of these systems on the

same set of cases.

5 Recent Advances and Future Directions

in Breast Cancer Computer-Aided

Detection/Computer-Aided Diagnosis

In this section we highlight some of the most recent

advances in breast cancer CAD/CADx and point to some

ongoing challenges and areas of research that will require

future work.

5.1 Computer-Aided Detection: Masses

Improvement is needed in the detection of all categories of

masses. Improvements are required both in terms of

increasing sensitivity and lowering the number of FPI. The

sensitivity for detection of calcifications is much higher than

that of masses and the number of FPI is lower for calcifications
than for masses. This difference in performance has been

exhibited in independent studies and manufacturer reports.

For example, R2 Technologies reports that the Image

Checker system operates with 98.5% sensitivity at 0.185 FPI

for calcifications and 86% sensitivity at 0.24 FPI for spiculated

masses [86]. An independent study reported that the Image

Checker system performed with 100% sensitivity at 0.29 FPI

for calcifications and 67% sensitivity at 0.39 FPI on masses
(spiculated and nonspiculated together) [90]. However, R2

Technologies’ assessment indicates that the system’s per-

formance is substantially lower for spiculated rated as

‘‘subtle’’ (sensitivity dropped to 52%) [86]. Thus, while such

systems now provide radiologists with a powerful aid for

calcification detection, improvements are needed in mass

detection.

Masses can be of varying sizes and shapes and thus
multiscale, multiorientation methods would be most appro-

priate for this task. With multiorientation methods, the aim is

to extract the directional information present which may

help improve the performance of the detection algorithms.

To the best of our knowledge, there have been no studies on

the statistical properties of masses such as the radius of the

central mass region, number of spicules, length, or thickness

of spicules. We believe that such a systematic study would
help create better detection and diagnosis algorithms.

5.2 Computer-Aided Detection:
Architectural Distortions

Architectural distortion (AD) refers to the mammographic

presentation of a breast lesion in which the normal structure

of the breast parenchyma is distorted as if being pulled into a

central point, but without a radioopaque central density [4].
Although ADs are less prevalent than masses or calcifications,

they are the third most common mammographic sign of

cancer and are strongly suggestive of malignancy; approxi-

mately 48% to 60% of AD that are biopsied are found to be

cancer [5, 92], and about 80% of those cancers are invasive

[92]. It is estimated that 12% to 45% of cancers missed in

mammographic screening are ADs [9, 93, 94] and thus it

is important to detect architectural distortions accurately.
However, detection of ADs is an extremely difficult task and

current commercial systems perform very poorly on the

detection of ADs [92]. A recent, small study suggests that

current CAD systems do not detect AD with adequate

sensitivity or specificity. Baker et al. [92] found that one

commercial system achieved a per-image sensitivity of 30/80

(38%) at 0.70 FPI and another achieved a per-image sensitivity

of 17/80 (21%) at 1.27 FPI. Computer aids that improve the
detection of AD have the potential to reduce morbidity and

save lives through earlier cancer diagnosis.

Current methods likely fail to detect ADs because they are

typically designed to detect a radio-opaque circular density.

New methods that focus on identifying radiating lines,

regardless of the presence of a central mass region have the

potential to be more sensitive for the detection of AD. We

believe a multiscale and multiorientation approach would
be most ideal for the detection of architectural distortions.

Another important issue to contend with is that radiating lines

may have variable widths, frequencies, and so forth Knowledge

of degree of variation would help in the design of more

sophisticated AD detection algorithms. However, to date there

has been no systematic study of the natural range of

appearances of ADs and spiculated masses.

5.3 Computer-Aided Diagnosis: All Lesion
Types

A significant drawback to mammography is its poor positive-

predictive value. Less than a third of mammographically

suspicious breast lesions that are biopsied are found to be

cancer [11]. Thus, it would be exceedingly valuable to produce

CADx systems that could aid in the decision to recommend

biopsy or short-term follow-up mammography. Avoiding
benign biopsies would spare many women stress, anxiety,

discomfort, and expense. Moreover, there is the possibility of

increasing the sensitivity of mammography through CADx

since it is estimated that about half of missed cancers are

missed due to misinterpretation rather than oversight [9].

This is a challenging problem because it is difficult to reduce
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the number of false positives while maintaining a high rate of

cancer detection. While several studies have investigated

CADx systems, no methods have progressed to commercial

systems. A brief description of the status of current diagnosis

methods and ideas to improve them are discussed in the

following sections.

Currently, the performances reported in the literature are

better for calcification detection algorithms than for calci-
fication diagnosis algorithms. As mentioned earlier, the

most challenging step in the diagnosis is the segmentation

of calcifications. There are two possible ways in which the

diagnostic performance could be improved. First, since

segmentation cannot be perfect, features that are robust to

segmentation errors are highly desirable. Second, it is known

that radiologists do not look at every individual calcification

to make a diagnosis but look at the global properties of the
cluster. Thus, more emphasis could be given to designing

sophisticated cluster features that capture the spatial arrange-

ment of calcifications.

Mass diagnosis algorithms perform relatively better than the

calcification diagnosis algorithms. This is possibly due to the

fact that segmentation of masses is an easier task as compared

to the segmentation of individual calcifications. However, they

still must be improved before they can be clinically adopted
and incorporated into commercial systems. There have been

no similar studies conducted for the diagnosis of architectural

distortions and this is an open area of research.

5.4 Computer-Aided Detection/
Computer-Aided Diagnosis: Multiview,
Multimodality

Radiologists use information from both CC and MLO views to

search for abnormalities. Most detection algorithms analyze

only a single view at a time. Recently, some researchers have

been working on using information from both the MLO

and the CC image for the mass detection step [95]. This

methodology faces a number of challenges. The registration of

objects in the CC and MLO view and combination features
from both views is a difficult task. These algorithms try to

extract the correlation of lesions between the two views.

However, this is difficult since the breast tissue is elastic and

deformable and the tissue is compressed to different degrees

when the two views are obtained and it is difficult to account

for this compression.

Mammography is the modality used for the screening of

breast cancer. However, in diagnostic mammography,
complementary modalities like ultrasound or MRI are often

used to obtain additional information. An open area of

research is the task of how the information from different

modalities could be combined by CAD/CADx systems to

make a better diagnosis. The major challenge in this task

would be the combination of features extracted from multiple

modalities. A number of studies have investigated CAD/CADx

using non–x-ray modalities, especially ultrasound, which have

not been reviewed in this chapter (e.g., [96–112]).

Radiologists analyze current and prior mammograms

(if available) simultaneously to detect signs of cancers. A few

researchers have been trying to incorporate this principle into

CAD and CADx algorithms. Hadjiiski et al. [113] proposed

the use of texture and morphologic features for the diagnosis
of malignant and benign masses from mammograms from

multiple examinations. The main challenge is the registration

of structures on the current and prior mammograms. This is a

difficult task because the breast tissue is deformable. During

mammography the breast tissue is compressed and this causes

changes in the relative positions of the breast structures during

multiple examinations.

5.5 Computer-Aided Detection/
Computer-Aided Diagnosis: Evaluation
Methodologies

The standard methodology for reporting the performance of

diagnosis algorithms is ROC analysis and its counterpart for

detection algorithms is the FROC methodology. The ROC

methodology has been studied in detail and a number of
statistical measures for analyzing the ROC curves are available.

In comparison, the FROC methodology is less developed

and until recently, the statistical analysis of the FROC curves

was quite weak (see [63, 114]). Traditional analyses treated

responses on the same case as if they were made indepen-

dently. For this reason, these methods have been rightly cri-

ticized [115, 116]. Recently, major progress has been made

in this field [16], including a new method of analyzing the
FROC data, called jackknife free-response receiver operating

characteristic (JAFROC), which does not need to assume

independence of ratings on the same image. This state-of-the-

art FROC methodology, which is now rapidly evolving, will

help to make fair comparisons between two systems and will

help improve the evaluation of CAD systems

Most diagnostic algorithms perform a two-class classifica-

tion. An ROI is either classified as malignant or benign and
the performance of the algorithm is reported using an ROC

curve. Since detection algorithms are not perfect, in a fully

automated system, the ROIs to be classified would actually

contain benign, malignant, or false-positive signals. Thus,

a few groups [117] have started working on a three-class

classification task for the diagnosis task. In this methodology,

ROIs are classified as malignant, benign or false-positive.

Since CAD and CADx systems are expected to act as aids
to radiologists, it is critical to evaluate whether radiologists

change their management recommendations when the systems

are used. The multiple-reader, multiple-case (MRMC) ROC

method has been advocated as the ‘‘best practice’’ for

evaluating competing imaging modalities, including

CAD/CADx systems [118]. Pilot studies are needed to
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obtain estimates of the components of variability that arise

from patient cases and from readers as well as interaction

terms [119–121]. While many aspects of good experimental

design and analysis have been elucidated, there are still

important questions to be addressed concerning how radio-

logists interact with decision aids and how the design of CAD/

CADx systems might be modified to improve that interaction.

For example, the effects of prevalence [122, 123] and cueing
conditions are actively being studied [124].

5.6 Computer-Aided
Detection/Computer-Aided Diagnosis:
What Role in the Clinic?

Current commercial systems have been approved for use as

‘‘second readers’’ and much of the research has focused on
this paradigm as well. Currently, we face a crisis in mammo-

graphy in which women’s access to breast cancer screening is

being endangered by a shortage of breast imaging specialists.

A recent report from the Institute of Medicine discusses

this challenge and suggests that it would helpful to have

nonspecialists, even technologists to prescreen mammo-

grams [125]. We argue that a CAD system could potentially

fill the same role. This would, of course, require improvements
over the performance of current systems.

Another shift in the role of CAD/CADx systems that should

be considered is tailoring the human–computer interaction.

Systems have typically been investigated as one-size-fits-all

tools that provide the same information in the same manner

to all users. It is possible that future systems that interact in

a flexible manner with radiologists may be more useful and

useable. For example, perhaps a CAD system could be
personalized on the basis of automatic classification of lesions

into BIRADSTM categories (i.e., Dr. X wants to be prompted

on lobulated or spiculated masses only) or a perhaps a CADx

system could adjust its output based on the user’s expectations

about the disease prevalence [122].
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