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SUMMARY

We propose a methodology for prostate cancer detection and localisation within the peripheral zone based
on combining multiple segmentation techniques. We extract four image features using Gaussian and median
filters. Subsequently, we use each image feature separately to generate binary segmentations. Finally, we
take the intersection of all four binary segmentations, incorporating a model of the peripheral zone, and
perform erosion to remove small false positive regions. The initial evaluation of this method is based on 275
MRI images from 37 patients and 86% of the slices were classified correctly with 87% and 86% sensitivity
and specificity achieved, respectively. This paper makes two contributions: firstly, a novel Computer Aided
Diagnosis approach which is based on combining multiple segmentation techniques using only a small
number of simple image features. Secondly, the development of the proposed method and its application in
prostate cancer detection and localisation using a single MRI modality with the results comparable to the
state-of-the-art multi-modality and advanced computer vision methods in the literature. Copyright c⃝ 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Prostate cancer is the most commonly diagnosed cancer among men and remains the second leading

cause of cancer death in men globally. In 2013, there were approximately 240,000 and 40,000 cases

reported in the United States and United Kingdom, respectively, and is estimated to reach 1.7 million

cases globally by 2030 [1, 2]. In the last decade, prostate cancer screening has been receiving more

attention because it can assist in detecting cancer at an early stage before there are any externally

detectable symptoms. Statistically, nine out of ten men survive for at least five years if the cancer

is diagnosed at the earliest stage [3]. However, early detection of prostate cancer remains a source

of uncertainty and controversy [3]. Clinical diagnostic tools such as prostate-specific antigen (PSA)

level, digital rectal examination (DRE), transrectal ultrasound (TRUS) and biopsy tests are very

popular and globally used despite their inconsistency in producing accurate results [4]. According

to Schroder et al. [5], although the use of PSA reduces the rate of death by 20%, the benefit was

associated with a high risk of overdiagnosis and overtreatment. It should be noted that the PSA test

is not able to predict the aggressiveness of cancer. As a result, slow-growing and non-aggressive

prostate cancer is frequently diagnosed in older patients [6]. In terms of TRUS-guided biopsy,
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2 A. RAMPUN ET AL.

many reports have shown that systematic biopsies do not detect all clinically significant cancers:

[6] showed in a large study that nearly a quarter (23%) of detectable cancers were missed [7].

Finally, according to [8] DRE is less effective than the PSA blood test in finding prostate cancer,

but it can sometimes find cancers in men with normal PSA levels. One common problem with DRE

is if a tumor is located away from the rectal wall, the physician will not be able to palpate it. A

recent study concluded that an abnormal DRE had 0.44 sensitivity and 0.68 specificity [9]. On the

other hand, although TRUS enables the accurate determination of prostate size and depicts zonal

anatomy, its ability to detect cancer tissue is limited with sensitivity and specificity varying between

40-50% [10].

Computer Aided Diagnosis (CAD) of prostate magnetic resonance imaging (MRI) has the

potential to improve the accuracy, sensitivity and specificity of clinical diagnostics. According to

[11], it could achieve a sensitivity ranging from 61%-81% (average: 71%), specificity 91%-96%

(average: 93.5%) and accuracy 84%-92% (average: 88%) while being a non-invasive technique.

Moreover, a study conducted in [6] has shown that combining anatomical, functional and

metabolic MRI information could achieve on average 83% (75%-92%) sensitivity. Unfortunately,

the assessment of prostate MRI requires a high level of expertise and suffers from observer

variability [6]. CAD systems can be of benefit to improve the diagnostic accuracy of radiologists,

reduce variability and speed up the reading time [6]. The initial goal of CAD is to automatically

delineate malignant regions, leading to a reduction of search and interpretation errors, as well

as a reduction of the variation between and within observers [6]. CAD has been successfully

implemented in different fields of medical imaging such as mammography [12], CT chest [13], CT

colonography [14] and brain imaging [15]. Figure 1 shows an example MRI image with the ground

truth of the prostate gland, central zone and tumor represented in yellow, green and red, respectively

(left image), while the right image shows a simpler schematic overview of the prostate derived from

the prostate anatomy proposed in [72] with central zone (CZ), peripheral zone (PZ), and tumor (T).

Note that the transitional zone (TZ) is located within the CZ but no definable boundary between

these regions is expected on MRI. The ultimate goal of this research is to develop a CAD tool

Figure 1. Prostate MRI image (left image) with its ground truth delineated by an expert radiologist and a
schematic (right image) overview of the prostate containing a tumor.

for prostate cancer detection and localisation within the PZ mainly because a) about 80% of the

prostate cancers appear in the PZ [10, 16, 17, 18] and b) in general, prostate cancer that arises in the

peripheral zone is more aggressive than that which arises in the transitional or central zones [74].

Therefore, in this paper we propose a new method for detecting prostate abnormality within the PZ

using four different image features (see Figure 3) extracted using Gaussian and median filters. The

main goal of this method is to identify malignant regions (and hence localise them) within the PZ by

taking the overlapping binary segmentation from each image feature. This means pixels (or tissues)

which are classified in the same malignant cluster in all image features are considered to have the

highest probability of being malignant. However, if a pixel is classified as belonging to a benign or

normal tissue cluster in one of the image features we considered it to be a benign or normal tissue

(this will be explained in more detail in section 4).

The novelty of this method resides in an approach which combines simple features (this is similar

to a forest of weak classifiers which together provide strong results), for the first time and applied

to prostate T2-W using one modality. To our knowledge, no existing methods in the literature have

used the technique of finding cancer regions by taking the overlapping binary segmentation extracted

from a small number of image features.

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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PROSTATE CANCER DETECTION AND LOCALISATION 3

2. RELATED RESEARCH AREA

CAD is a valuable tool and becoming increasingly important in assisting and automating specific

clinician’s tasks such as detection, localisation, the study of anatomical structure, treatment planning

and computer-assisted surgery [75]. We are focusing on developing a CAD tool for the detection

and localisation of abnormal region within the PZ in T2-MRI imaging. CAD can be applied in many

different medical imaging applications (such as brain, breast, chest and prostate) using different

segmentation techniques. According to [93] the most commonly used segmentation techniques in

CAD systems could be categorised into six groups:

1. Contour and shape based (e.g. Active Contour, Level Set, Graph Searching, Atlas-based,

Deformable models, etc).

2. Machine learning based (e.g. Support Vector Machine (SVM), k-Nearest Neighbors (k-NN),

Fuzzy C-Mean (FCM), K-means, etc)

3. Region based (e.g. Thresholding, Edge-based, watershed, split and merge, etc)

4. Statistical based (e.g. Markov Random Field (MRF), Gaussian Mixture Model (GMM), etc)

5. Multiresolution based analysis (e.g. Discrete Wavelet Transform (DWT), etc)

6. Hybrid and soft computing methods (e.g. Level Set + Artificial neural network (ANN), Fuzzy

C-means + DWT, etc)

The most popular segmentation techniques in biomedical imaging fall under the supervised and

unsupervised machine learning based techniques, and contour and shape based methods. In this

section we will briefly discuss these techniques and their applications in biomedical imaging. For

the other techniques and their applications in medical imaging we refer to [11, 12, 13, 14, 15, 96].

The level set technique has been applied to several human organs (e.g. brain, cardiac, prostate,

breast, etc). Dubey et al. [77] proposed a semi-automatic segmentation method of MRI brain tumors.

Firstly, the method generated a tumor probability map by classifying each voxel into the tumor or

background class using intensity-based fuzzy c-means. Subsequently, the tumor probability map

was used to locally guide the propagation direction of the level set. Tsai et al. [78] developed a shape-

based approach using level sets and demonstrated their method by applying it to the segmentation

of cardiac and prostate MRI. The proposed method derived a parametric model for an implicit

representation of the segmenting curve by applying principal component analysis to a collection

of signed distance representations of the training data. The parameters of this representation were

then manipulated to minimize an objective function for segmentation. Liu et al. [79] proposed a

method for mass segmentation in mammograms using a level set to improve the initial segmentation

performed using a watershed algorithm. On the other hand, Shi et al. [80] used k-means clustering

followed by a morphological opening operation for initial mass segmentation. For the level set

segmentation a linear discriminant analysis (LDA) classifier with stepwise feature selection was

used to merge the extracted features into a classification score.

Recently, Yeo et al. [81], proposed a level-set segmentation method using active contour

modelling applied to synthetic and real images (e.g. brain and knee MRI and carotid CT image).

The proposed method consisted of an image attraction force, which was used to propagate contours

toward object boundaries, and a global shape force, which deforms the model according to the shape

distribution learned from a training set. On the other hand, Sachdeva et al. [82] proposed a method

which used intensity and texture information (extracted from Gray-Level Co-occurrence Matrices)

present within the active contour to overcome weak or diffused edges in an image. In [83], a novel

automatic approach to identify brain structures in magnetic resonance imaging (MRI) is presented

for volumetric measurements. This approach combines the active contour model with a support

vector machine (SVM) classifier. The SVM features are selected according to the structure of brain

tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). Jones et al. [95]

developed an interactive segmentation method by combining both region selection and user point

selection. Evaluation results showed on average more than 98% accuracy based on 248 intravascular

ultrasound (IVUS) images.

Graph searching techniques have been studied for the segmentation of biomedical images such

as brain, knee and glottis [84, 85, 86]. Pedoia and Binaghi [84] proposed a fully automatic 2D

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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4 A. RAMPUN ET AL.

brain segmentation using graph searching technique which consisted of border detection based on

two-dimensional graph searching principles and radial contour detection. In the border detection

phase, polar conversion is performed first, followed by skull and brain boundaries detection. Li

et al. [85] extended the optimal graph-searching techniques to 3D and higher dimensions using a

polynomial-time algorithm for surface segmentation in volumetric images. The method is efficient

and robustly tested on MR arterial walls and IVUS image. Finally, a study in [86] uses the output of

SVM to drive a graph-cuts segmentation, which was initially trained as a local Golgi detector based

on rotationally invariant features. It should be noted that in some of the described segmentation

approaches difference images have been used but in general these rely on multi-modality data or

on some temporal sequences, neither of which have been used in the proposed approach. In the

developed approach we rely on a single modality and the variation in appearance between normal

and abnormal tissues within the peripheral zone.

Despite the relevant achievements obtained, the main limitations of contour and shape based

methods for our research are

1. Most of them require a significant amount of user interaction for initial region selection. In

our case, we want to eliminate (or minimise) user interaction in finding cancerous regions.

2. They work well only if the boundary of the object is well defined within the image: such

methods work well for prostate gland detection [94]. In many prostate T2-W MRI, cancerous

regions are vague both in terms of appearance and shapes, and as such many training samples

would be needed.

3. The results of many of these methods are highly dependent on the initialisation.

Therefore, we applied an unsupervised machine learning based method: FCM clustering as

proposed by Chen and Zwiggelaar [66]. This method incorporates local spatial and intensity

information based on an adaptive local window filter whose weighting coefficients differentiate the

neighbouring pixels within the local window. The method is less sensitive in dealing with different

types of noise and intensity inhomogeneities. Several noise reduction techniques such as median

and Gaussian filters were used to reduce image noise and erosion is used to reduce false positives.

3. MODELLING THE PERIPHERAL ZONE

Pathologically, about 80% of prostate cancers arise in the PZ and the rest are within the CZ [16].

Since the percentage occurrence of cancers in the PZ is high and as these tend to be more aggressive,

we aim to detect prostate abnormality within this region. We did not perform prostate segmentation

because all prostates were already delineated by an expert. It should be noted that Zhu et al. [94]

developed a method to detect the prostate capsule. Based on the schematic overview shown in the

right image of Figure 1 (also proposed in [72]), we defined our 2D prostate model based on Figure

2.

Figure 2. Prostate gland (black) and the defined PZ below y = ax2 + bx+ c (green) which goes through
v1, v2 and v3.

The generic prostate’s PZ model in this paper is mainly inspired from similar models proposed

by Makni et al. [73] and Liu et al. [91] which used catenary and polynomial curves, respectively.

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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PROSTATE CANCER DETECTION AND LOCALISATION 5

From a radiological point of view, the prostate is mainly divided into two regions in MR (the PZ and

CZ). Therefore, according to Makni et al. [73], when segmenting these regions, expert radiologists

tend to follow the rule of ’imagining’ outlines due to contrast or strong artifacts. The process of

distinguishing these regions are heavily relying on a priori knowledge of their most likely locations

[73]. Indeed, a more accurate way (probably more complex and time consuming) could be achieved

by segmenting the PZ within the prostate gland. However, these approaches are complicated and

require high accuracy in distinguishing tissues in the PZ and CZ. In cases where there is no clear

boundary between the PZ and CZ, most segmentation based methods suffer from over-segmentation

(hence, could lead to many false positives). In contrast, defining quadratic curves is simple and fast.

In our CAD system, we used the quadratic equation y = ax2 + bx+ c based on three crucial

coordinate points of the prostate which are v1, v2 and v3, which are determined by the outmost x
and y coordinates of the prostate boundary: xmin, xmax, ymin, ymax (see Figure 2). For example,

xmin and ymax can be determined by taking the minimum x and maximum y coordinates along the

prostate boundary. Moreover, the x coordinates of v1 and v3 are captured from xmin and xmax and

their y coordinate is determined by taking the y coordinate between ymin and ymax. On the other

hand, the x coordinate of v2 is taken from the x coordinate xmin and xmax and its y coordinate

is determined by taking 3

4
(0.75) of the distance from ymin to ymax. The coefficient (ϵ = 0.75) is

selected as it gives balanced results in terms of accuracy, sensitivity and specificity (see Figure 13).

Mathematically, these can be represented in equations (1), (2), (3) and (4).

Cp = ((xmin + xmax)/2, (ymin + ymax)/2) (1)

v1 = (xmin, (ymin + ymax)/2) (2)

v2 = ((xmin + xmax)/2, ymin + ((ymax − ymin)× ϵ)) (3)

v3 = (xmax, (ymin + ymax)/2) (4)

Once the coordinates of v1, v2 and v3 are defined, we can determine the values of a, b and c (therefore

a final quadratic equation is defined). Finally, by taking every x coordinate from xmin to xmax into

a quadratic equation we are able to determine the y coordinate which will define the PZ’s boundary

(the main goal is to analyse the region under the green line in Figure 2). The approximation model

is able to capture most of the PZ area, easy to implement and computationally efficient.

4. METHODOLOGY

Figure 3 shows the overview of the proposed methodology. First, we perform Gaussian and median

filtering on the original image to obtain G1 and M1. We extract a probability image from G1 and M1

using greyscale frequency before we obtain the third feature (F1) which is the magnitude of G1 and

M1. This means, each element in F1 is the sum vector of each component from G1 and M1. On the

other hand, the fourth feature (F2) is the vector magnitude of probability images from G2 and M2.

Subsequently, we use each feature separately to generate binary segmentations taking the feature

space and intensity values into account. We perform erosion on each of the segmentations to remove

small false positive regions. Finally, we take the intersection of all four binary segmentations, taking

a model of the peripheral zone (see Section 3) into account.

4.1. Preprocessing

Since MRI images often suffer from different types of noise, it is necessary to apply different types

of denoising methods before doing any further processing. From a clinical point of view, this is an

appropriate step to enhance characteristics of a important region of interest (such as textures and

boundaries). Moreover, it does not deform the anatomical locations of tissue regions because this

step deals only with noise without affecting the spatial information.

Hendrick [59] reported that one type of noise in MRI images is Gaussian noise. Therefore,

Gaussian smoothing is selected, which is also effective in reducing noise that is problematic for

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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6 A. RAMPUN ET AL.

Figure 3. Overview of the proposed methodology. Intensity values are represented by greyscale colours, with
the darkest representing the lowest intensity.

image analysis algorithms. For example, image segmentation is often affected by the presence of

too many local minima/maxima and inflection points in the data [19]. Studies performed by Barentsz

et al. [89] and Viswanath et al. [90] suggested that most cancers shows textural distortions in T2-

W images. Litjens et al. [92] captured these characteristics using Gaussian filters. Many previous

studies have applied Gaussian filters in denoising MRI images and mammograms [59, 60, 61].

We are aware that there are more sophisticated denoising methods such as those based on Fourier

analysis [87] or anisotropic filtering [88] which could be explored in future work. The 2D Gaussian

function is defined as

g(s, t) =
1

2πσ2
.e−

s
2+t

2

2σ2 (5)

where s is the distance from the origin in the horizontal direction, t is the distance from the origin in

the vertical direction, and σ is the standard deviation of the Gaussian distribution. In the proposed

method we used the following parameters: the kernel size (ks) is 15× 15 and the standard deviation

(σ) is 3.0. See subsection 4.2 for the selection of the Gaussian parameters (σ and ks) and their

resulting variability can be seen in Figure 12.

On the other hand, we used median filtering to preserve the regional boundaries (e.g. tumor

regions). It is claimed that using median filtering is much better at preserving sharp edges [30] and

in our case we want to preserve the information-bearing structures such as tumor boundaries [10].

The median filter works by replacing the pixel value with the median value in the neighborhood of

that pixel. We used a sliding window of 5× 5 pixels. Other sizes are possible (such as 3× 3, 7× 7
and 9× 9) give similar results.

We calculated the probability images using equation (6) and calculate the vector sum using

equation (7). Probability images are commonly used to model the expected appearance of an object

(e.g. tumor region) in a given reference space. Many studies suggested that prostate cancer appears

darker within the PZ and is similar to the tissues outside the prostate gland. By computing a

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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PROSTATE CANCER DETECTION AND LOCALISATION 7

probability image we are able to quantify the likelihood of every pixel/voxel belonging to specific

tissues (e.g. tumor region). This also means each pixel/voxel can be represented by a value of the

likelihood of being malignant. The conversion to probability images acts as a normalisation across

the feature images and as such these can all be treated in the same framework. We calculate the

probability image for each of G1 and M1. This means, for an f(i, j) image, the probability value

for the kth grey level is calculated using:

P (i, j) =
#(f(i, j) = k)

M ×N
(6)

where #(f(i, j) = k) is the number of pixels at the kth intensity level in a M ×N image, and

as such each element in P is the probability value for a particular intensity level. Others have

exploited probability images for segmentation [62, 63]. To calculate features F1 and F2, we find

the sum vector for every corresponding element in G1 and M1 using equation (7). According to

[65] by taking the square root of the sum of squares between two corresponding signals produces

a good image with little noise and continuous edge marking while another study performed in [64]

suggested that equation (7) can improve the signal to noise ratio (SNR). In this case, corresponding

signals are the corresponding pixels in G1 and M1.

In(i, j) =
√

G2
n(i, j) +M2

n(i, j) , n = 1 or 2 (7)

In total, four features are extracted, namely the Gaussian feature (G1), the median feature (M1),

the magnitude Gaussian and median features (F1) and the magnitude of the probability images of

Gaussian and median features (F2). Before image segmentation is performed, we applied noise

reduction to F1 and F2 to minimise the noise retained/created after being processed using equations

(6) and (7). In the proposed method we applied a robust noise reduction method developed by

Garcia [20] which is robust in dealing with weighted, missing, and outlying values by using an

iterative procedure (which is the case in G2 and M2). Figure 4 shows examples of all extracted

features G1, F1, F2 and M1. We can see that the malignant region appears brighter in F2 and darker

in the other features.

Figure 4. Example extracted features, from left to right: G1, F1, F2 and M1. The outline prostate is defined
by the yellow line and the malignant region (in the PZ) is indicated by the red arrow.

4.2. Gaussian parameters

The selection of the parameters for the Gaussian smoothing function is based on the studies in

[23, 24, 25, 26, 27], which indicated that, the standard deviation (σ) and kernal size (ks), are linked.

According to the experiments with different Gaussian convolution algorithms conducted in [23],

the authors showed that the amount of error (the smaller the error the closer the denoised image

is in comparison to the original image) did not change significantly after σ ≥ 2. This means, for

many Gaussian algorithms the error is much higher (less accurate) when σ<2. On the other hand,

for the selection of kernel size (ks) several authors [24, 25, 26, 27] suggested that in general, filter

size should be ⌈3σ⌉ to ⌈5σ⌉ and odd [27, 28]. For instance, if σ = 2.5, the recommended minimum

kernel size is 9 (3× 2.5 = ⌈7.5⌉ = 8, since it should be an odd number according to [27, 28], the

nearest odd value is 9). Similarly, selecting σ = 1 would suggest the smallest kernel size of 3× 3.

Although there are no quantitative experimental results for optimal Gaussian parameters on medical

images such as MRI or ultrasound, their results indicate a general guideline for selecting Gaussian

parameters. In the proposed method we used several σ values together with several kernel sizes

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
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and chose the ones that give the highest accuracy, sensitivity and specificity (see Figure 12). The

selection of parameters is not the major focus of this study but the development of a novel method

of prostate cancer detection and localisation within the PZ is.

4.3. Clustering

In the proposed method, image segmentation is performed using a Fuzzy C-Means (FCM) algorithm

as it has been widely applied in a variety of medical image segmentation applications [29, 66].

However, one common problem with FCM is its ability in handling different types of noise

and intensity inhomogeneities taking local spatial and intensity information into account. The

FCM algorithm assumes that every pixel can belong to multiple classes with varying degrees of

membership. The algorithm works by assigning membership to each data point corresponding to

each cluster center on the basis of distance between the cluster and the data point. The closer the data

point to the cluster center the higher its membership value for that cluster. Let Y = (y1, y2, ..., yR)
denote an image with R pixels to be partitioned into d clusters. FCM iteratively minimises the

objective function defined as

Jfcm =

d
∑

p=1

R
∑

q=1

um
pq∥yq − vp∥

2 (8)

with the following constraints:
∑d

p=1
upq = 1 for ∀q and 0 <

∑R

q=1
upq < R for ∀p, where upq

represents the membership of pixel yq to the pth cluster, yq represents the feature data of the qth

pixel, and vp is the prototype value of the pth cluster centre. The parameter m (equal to 2 in

this study) is a weighting exponent on each fuzzy membership that controls the fuzziness of the

resulting partition. We segment every image feature into four different classes. We selected four

classes based on the number of tissue categories in the prostate: normal (non-neoplastic) prostatic

tissue, benign prostatic hyperplasia, high-grade prostatic intraepithelial neoplasia, and prostatic

adenocarcinoma [52]. The first two categories are benign tissues, the third one is a risk factor for

maligancy (we included this into one of the malignant classes to reduce false negatives) and the last

one is malignant. Most cancer regions in the PZ tend to have a dark appearance [16, 31]. Moreover,

several studies suggested that prostate cancer tissue tends to appear darker on a T2-weighted MRI

image [32, 33, 34]. In fact, radiologists also tend to use darker regions to identify abnormality

within the PZ [35]. Since most malignant regions contain lower intensities, cancerous regions could

be detected within the prostate by taking the segmented regions that correspond to the first two

lowest intensity fuzzy c-means clusters (indicated by the superscript ’low’ in Figure 5) in G1, F1

and M1. However, since malignant regions in F2 are represented by higher average intensity values,

we take segmented regions which correspond to the two highest intensity fuzzy c-means clusters.

This process can be represented using the following equation

O = Glow
1

∩ F low
1

∩ Fhigh
2

∩M low
1

(9)

where ‘low’ and ‘high’ are low and high intensity represented in the segmented regions within the

prostate and O represents the overlapping region from all four binary segmentations. Figure 5 shows

an example of this process.

After selecting the regions of interest (segmented areas which are under the approximate PZ’s

boundary (green line in Figure 2)), we combine all binary segmentations and find its overlapping

region as shown in Figure 5. Finally, we perform erosion to remove noisy pixels which will be

explained in the next subsection. Note that segmented areas above the green line were ignored in

this study because we are only interested in detection within the PZ.

4.4. Post processing

By performing erosion on the binary segmentation, we can reduce the number of false positives.

The number of pixels removed from the objects in an image depends on the size and shape of the

structuring element used. In the proposed method we used a ‘disk’ shaped structuring element with
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Figure 5. After performing FCM clustering on every feature, we only take segmented regions which
correspond to the first two lowest intensity FCM in G1, F1 and M1, and segmented regions which correspond
to the two highest intensity clusters in F2. Note that only segmented areas which are under the green line in
Figure 2 (the estimation of the PZ’s boundary) will be taken into account. Segmented areas above the green

line were removed.

size either 1 or 2. The size selection of the structuring element depends on the size of the segmented

region within the peripheral zone. If the size of the segmented region within the peripheral zone

covers ≥ 20% of the size of the peripheral zone, the size of the structuring element is 2, otherwise

1. This ensures that every segmented region is not over eroded or under eroded during the process.

5. DATABASE DESCRIPTION

Data from 37 patients (range: 40-74 years) with biopsy-proven prostate cancer were included in this

study. All patients underwent T2-W MR imaging at the Department of Radiology at the Norfolk

and Norwich University Hospital, Norwich, UK. MR acquisitions were performed prior to radical

prostatectomy. All patients gave their written consent to participate in this study which was approved

by the institutional review board. All images were obtained on a 1.5 Tesla magnet (Sigma, GE

Medical Systems, Milwaukee, USA) using a phased array pelvic coil, with a 24× 24 cm field of

view, 512× 512 matrix, 3mm slice thickness, and 0.5mm inter-slice gap. Each patient has 5 to 12

slices. However, since our current study is focusing only within the PZ, slices with no visible PZ

(the whole prostate gland is covered by the CZ) were excluded in this study (e.g. see Figure 6). All

images were manually annotated by an expert radiologist (and further validated/confirmed by two

independent radiologists) with more than 10 years experience in diagnosing prostate cancer in MRI.

In total our database contains 275 slices (135 malignant and 140 normal slices). Each slice contains

the annotations of prostate gland, central zone and cancerous regions (if present).

Figure 6. The whole of the prostate gland is fully covered by the CZ. All cases like this were excluded in
our study because our current focus is within the PZ.
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6. EXPERIMENTAL RESULTS

Data was analysed and classified as to whether the prostate contains cancer. The detection of cancer

occurs when there are any retained segmented regions (Glow
1

∩ F low
1

∩ Fhigh
2

∩M low
1

) within the

peripheral zone. Subsequently, we compared the result with the ground truth whether the prostate

contains cancer regions or not. We use several quantitative measures to evaluate the results such

as sensitivity, specificity and accuracy. Each of these metrics can be calculated using the following

equations

Sensitivity(Sen) =
TP

TP + FN
(10)

Specificity(Spe) =
TN

TN + FP
(11)

Accuracy(Acc) =
TP + TN

TN + TP + FP + FN
(12)

where TP and FP denote the number of true positives and false positives, respectively. Similarly,

TN and FN indicate the numbers of true negatives and false negatives. Accuracy means the number

of correct classified slices (or pixels in voxel based classification) out of the total number of slices.

Sensitivity measures the proportion of actual positives which are correctly identified (in this case

the percentage of malignant slices which are correctly identified) whereas specificity measures the

proportion of actual negatives which are correctly identified (in this study the percentage of normal

slices which are correctly identified). The proposed method achieved 86% accuracy (237 samples

are classified correctly) and 38 samples data are misclassified with 7% (20 samples) false negative

and 6% (18 samples) false positive results. In addition, the method produced 87% sensitivity and

86% specificity. On the other hand, in terms of voxel based classification (only within the PZ) we

achieved 0.86 ± 0.06, 0.83 ± 0.05 and 0.96 ± 0.07 accuracy, sensitivity and specificity. Erosion

with flexible size of structuring element and regions intersection (Glow
1

∩ F low
1

∩ Fhigh
2

∩M low
1

)

reduce the number of false positive and false negative results by ≈ 20%.

6.1. Correct detection (classification)

Figure 7 presents several examples of correct detection/classification. Correct detection means an

image (MRI slice) is classified correctly (malignant or normal) regardless of the location of tumor

within the PZ. The segmentation results are divided into three different categories; small malignant

region, large malignant region and obscure malignant region. For the first category, the proposed

method shows its sensitivity dealing with small malignant regions within the PZ as shown in image

3, 9, 10, 16 and 18. In those images, the proposed method managed to segment malignant regions

correctly (in red line) despite their small sizes. In the second category, we show results in detecting

and localising malignant region in larger areas. This can be seen in images 1, 4, 7, 13, 14, 15, 17,

19 and 20 where cancers are spread quite substantially within the PZ and some within the CZ.

Results in Figure 7 show that these regions were segmented within the expert radiologist’s ground

truth. Finally (third category), we show results when malignant regions are obscure within the PZ.

In image 2, there are three dark regions (left, middle and right) within the PZ and visually it is

very difficult to identify which one of those regions is cancerous. As a result, although the proposed

method managed to segment the malignant region, there is one false postive region in the middle

of the PZ. On the other hand, in image 8 we can visually see that there is no sign of irregularity

(the whole PZ looks uniform), which makes the abnormal regions obscured. Other examples of the

experimental results can be seen in image 5, 6, 11, 12, 21, 22, 23 and 24.

Figure 8 shows examples of experimental results in normal slices. The PZs in image 25 to 28

show no sign (or small signs) of irregularity which made it easier to identify normal slices.
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PROSTATE CANCER DETECTION AND LOCALISATION 11

Figure 7. Malignant slices: prostate capsules are delineated in yellow and central zones and tumors are in
green and red, respectively. The detected regions are indicated as the highlighted regions.

Figure 8. Normal slices: prostate capsules are delineated in yellow and central zones in green. The lack of
segmented regions on the images indicates no cancer regions present.

6.2. Correct detection with incorrect localisation

This section presents two examples of results where overall classification is correct but the tumor

location is incorrect. For localisation, we compare the position of the segmented region based

on (Glow
1

∩ F low
1

∩ Fhigh
2

∩M low
1

) ⊆ Mr, where Mr is a cancerous region within the PZ. In our

evaluation, incorrect localisation is when the area of the segmented region is < 50% within the

cancerous region delineated by an expert radiologist. On the other hand, correct localisation means

≥ 50% of the area of the segmented region is within the annotated malignant region. Our method

produced 81% (109 slices true positives) correct localisation with respect to the number of malignant
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slices (135 samples) which means 6% (8 slices) of malignant cases were classified correctly but

tumors were localised incorrectly and the other 18 slices are false negatives. This may have been

caused when normal regions have dark or very similar appearance with cancerous regions (low

intensity) in the PZ. According to [58] low signal intensity may be seen in the PZ on T2-weighted

when blood products may persist after prostate biopsy. Moreover, when the location of the tumor

is outside our PZ model (area under the green line in Figure 2). Figure 9 shows examples from our

experimental results for correct classification but incorrect localisation.

Figure 9. In both slices (image 29 and 30) the segmentation results show correct overall classification (true
positive) but incorrect localisation in comparison to the location of the ground truth.

6.3. False positives and negatives

Figure 10 shows four examples of false positive results from four different prostates. In images 31,

32, 33 and 34, there are clearly dark regions (higher probability of cancer) within the PZ which

leads to false positive results. Based on the results in Figure 10, we can visually see that irregularity

can occur in some normal slices which makes it hard to differentiate between malignant and normal

regions. On the other hand, Figure 11 shows examples of false negative results from four different

prostates. The malignant regions show obscure irregularity which lead to false negatives.

Figure 10. False positive results from four different prostates.

Figure 11. False negative results from four different prostates. Tumor regions are delineated in red.

6.4. Parameters justification

Figure 12 shows the justification of our selected parameters. Based on the varying σ = 2, 3, 5, 7 and

9, the following kernel sizes 7× 7, 9× 9, 15× 15, 21× 21 and 27× 27 are applied, respectively.

The results show that better sensitivity (above 80%) is achieved when 2 ≤ σ ≤ 5. The sensitivity

of the proposed method decreases when σ > 5 due to the level of smoothing applied to images.

For instance, higher value of σ would affect (e.g. over-smoothed) the appearance of small

malignant regions, hence decreases the sensitivity. On the other hand, the method achieved its

highest specificity when σ = 5. Using σ ≤ 5 still gives similar sensitivity to the other methods

in the literature (see Table I). Although varying the σ and kernel size did not change the results

significantly, we have shown the quantitative results for the justification of our selected parameters.

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm



PROSTATE CANCER DETECTION AND LOCALISATION 13

Figure 12. Sensitivity, specificity and accuracy using different values of σ and ks.

Figure 13. Coefficient ϵ = 0.75 produce balanced results, with higher specificity for larger ϵ values and
higher sensitivity for lower ϵ values.

Figure 13 shows results using different ϵ values. Our experimental results show that ϵ = 0.75
produced balanced results in terms of accuracy, sensitivity and specificity. A larger ϵ value (e.g.

0.95) reduces the area under the curve (green line in Figure 2), hence most cancerous tissues were

missed which increased specificity but reduced the algorithm’s sensitivity. On the other hand, a

smaller ϵ value (e.g. 0.55) increases the area under the curve (green line in Figure 2). This increased

the algorithm’s sensitivity (and false positives) because the larger area leads to a higher chance of

cancerous tissues being detected.

7. DISCUSSION

Various methods using different frameworks, modalities and features have been proposed in the

literature and our method achieved similar results. Nevertheless, it is extremely difficult to make a

quantitative comparison due to:

1. Differences in datasets (different modalities such as T2-weighted (T2-W) MRI, diffusion-

weighted (DWI) MRI, dynamic contrast enhanced (DCE) MRI, Magnetic resonance

spectroscopy (MRS), etc) and frameworks used in the other studies.

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2015)
Prepared using cnmauth.cls DOI: 10.1002/cnm



14 A. RAMPUN ET AL.

2. Absence of public datasets also makes a quantitative comparison of methodologies in the

literature difficult. Each team of researchers has their own datasets which cause huge range of

variability in terms of noise and image quality.

3. Studies were conducted within different regions of the prostate. For example, some studies

were conducted within the prostate PZ only and some took the whole prostate gland into

account.

4. Some evaluation was at volume, slice, regions or voxel level.

However, to have an overall qualitative estimate (therefore our comparisons are subjective due

to the differences stated above) of the functioning of our method we compared with some of

the previous studies in Table I, where methods are categorised as CAD and non-CAD. Studies

classified as CAD are methods which are similar to our method (abnormality/malignancy is

automatically determined by computer algorithm). On the other hand, non-CAD are studies which

involved human readers which, means abnormality/malignancy determination is performed by

radiologists/observers.

Table I. Results are ordered based on performance (ACC and AUC are accuracy and area under the curve,
respectively), sensitivity and specificity, respectively (all measured in %). For region, each study is either

conducted for the whole prostate (WP) or only for the PZ.

Authors
Data
size

Performance Sen Spe Category Modalities Region

Sung et al. [37] 42 ACC=89 89 89 CAD DCE WP

Niaf et al. [49] 30 AUC=89 - - CAD
T2-W+DCE+

DWI
PZ

Vos at al. [6] 34 ACC=89 - - CAD T2-W+DCE PZ

Sham et al. [67] 24 F -measure=89 - - CAD
T2-W+ADC+

DCE
PZ

Ampeliotis et al. [38] 10 ACC=87 - - CAD T2-W+DCE WP

Our method 37 ACC=86 87 86 CAD T2-W PZ

Tiwari et al. [39] 19 ACC=84 - - CAD T2-W+MRS WP

Chan et al. [70] 15 AUC=84 - - CAD
T2-W+ADC
+PD+T2 map

PZ

Vos et al. [68] 34 ACC=83 - - CAD DCE PZ

Rampun et al. [36] 25 ACC=82 81 84 CAD T2-W PZ

Artan and Yetik.[10] 15 ACC=82 76 86 CAD DCE PZ

Tabesh at al.[47] 29 ACC=81 - - CAD
Histological

images
WP

Artan et al. [69] 21 ACC=78 74 82 CAD
T2-W+

ADC+DCE
PZ

Puech et al. [71] 100 AUC=77 100 45 CAD DCE PZ

Kim et al. [55] 20 ACC=75 73 77 Non-CAD DCE WP

Han et al. [46] 46 - 96 92 CAD Ultrasound WP

Engelbrecht at al.[44] 36 - 93 - Non-CAD T2-W+DCE PZ

Shimofusa at al.[45] 60 - 93 - Non-CAD T2-W+DWI WP

Ito et al. [56] 111 - 87 74 Non-CAD DCE WP

Litjens et al. [11] 188 - 83 - CAD DWI+DCE WP

Futterer et al. [40] 34 - 83 83 Non-CAD T2-W WP

Reinsberg et al. [41] 42 - 81-93 64-73 Non-CAD DWI+MRS WP

Girouin et al. [42] 46 - 78-81 32-56 Non-CAD DCE WP

Ocak et al. [18] 50 - 73 88 Non-CAD DCE WP

Llobet et al. [43] 303 - 57 61 CAD Ultrasound WP

Schlemmer et al. [54] 28 - - 68 Non-CAD DCE WP

Table I presents the experimental results of 26 different methods/studies (including our method)

and their accuracies, sensitivities, specificity and modalities (some authors did not report one or two
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of these). Although results may be more or less similar, due to several factors mentioned previously

the comparisons in this section needs to be treated with caution. Note that every method or study

used a different number of patients, modalities and frameworks. However Table I gives a sense of

how well the proposed method is capable of analysing cancerous regions in MRI.

In terms of performance, the methods proposed in [6, 37, 49, 67], achieved the highest result

of 89%, all used support vector machines (SVM) as classifier. Sung et al. [37] employed SVM as

a classifier to distinguish prostate cancer from non-cancerous tissues based on a set of perfusion

parameters. Vos et al. [6] used first order statistics of the scalar values of volume as statistical

features. Sham et al. [67] developed a decision support system (DSS) which used SVM to generate

cancer probability maps from multiparametric MR images and Niaf et al. [49] reported that SVM

produced the best result based on a comparison study of four different supervised learning methods

(SVM, linear discriminant analysis, k-nearest neighbours and naive Bayes classifiers) based on a

feature set derived from grey-level images such as first-order statistics, Haralick features, gradient

features, etc. This was followed by a study in [38] which is 2% below the best performance (and

1% above the result of our proposed method) in Table I. Ampeliotis et al. [38] used probabilistic

Neural Networks (PNNs) to classify a set of feature vectors extracted from T2- morphological

images and T1-W DCE. Other methods [10, 36, 39] achieved more than 80% accuracy. Artan

and Yetik [10] developed a random walker (RW) algorithm with automated seed initialisation to

segment cancerous region within the PZ using weighted image features and Rampun et al. [36]

developed an algorithm which compared local peaks information between the right and left region of

prostate’s PZ by measuring percentage similarity and Ochiai coefficients to determine the presence

of abnormality. A method proposed by Tiwari et al. [39] integrated a semi-supervised multi-kernel

(SeSMiK) scheme with a graph embedding framework for data fusion and dimensionality reduction

for not only prostate cancer detection but also grading. All non-CAD methods did not report their

accuracies except Kim et al. [55] which is, with 75%, below the CAD’s average accuracy.

For sensitivity results, Puech et al. [71] reported their CAD software known as ’ProCAD’

achieved 100% but only at 45% specificity. The developed software allows for the 2D and multislice

2D contouring of suspicious regions based on a seeded region growing algorithm using standard

visualization features such as wash-in and wash-out slopes. Han et al. [46] proposed a method which

used a combination of image features and clinical features (e.g. location and shape) and performed

SVM to classify cancer and non-cancer region, achieved the second best result of 96% in a single

modality. Non-CAD methods [44, 45] used perfusion parameters in multimodalities achieved 93%

sensitivity the same as the maximum achieved in [41]. Our method achieved comparable result

with Sung et al. [37] (89%) and Ito et al. [56] (87%) in a single modality, while Llobet et al. [43]

whose method employed a Hidden Markov Model and k-nn classifiers based on texture descriptors

extracted from spatial grey-level dependence metrics and grey-level maps achieved the lowest

sensitivity (57%). This may have been influenced by evaluation on a large dataset (4944 ultrasound

images). Methods in [41] and [42] show variations of 81-93% and 78-81%, respectively. On the

other hand, Niaf et al. [49], who used a combination of three different modalities, achieved 82%

similar to the method proposed in [11] based on two modalities. Litjens et al. [11] used a SVM

classifier to generate a 3D likelihood map which was used to find points of interest using a local

maxima detector. Subsequently, a region is segmented around each local maxima and for every

region statistics of the voxel features were calculated and used to discriminate malignant and benign

regions.

Finally, in terms of specificity the method of Han et al. [46] obtained the highest result of

92% followed by [37] (89%). Other CAD methods which achieved more than 80% are Artan and

Yetik.[10], Rampun et al.[36] and our reported method. The result reported in [18], which used

perfusion parameters, achieved 88% is the highest among Non-CAD methods followed by Futterer

et al. [40] (83%), while the method in [42] achieved the lowest specificity varying from 32 to 56%.

Nevertheless, these comparisons are subjective as accuracy, sensitivity and specificity are highly

influenced by several factors mentioned previously. For example although the method proposed in

[43] produced the lowest sensitivity, the evaluation is based on 303 prostates. On the other hand,

the method proposed by [38] shows higher accuracy on 10 different cases but has not been tested
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on larger datasets. Similarly, although Han et al. [46] achieved the highest sensitivity and specificity

(based on Table I ) but was evaluated on 46 ultrasound images (46 patients).

The challenges of developing a CAD system remain open due to its complexity and limitations

both in single and multimodalities imaging. In this study, we are aware that many researchers have

attempted to improve results in detecting prostate cancer in MR imaging. Engelbrecht et al. [44]

and Sung et al. [37] showed the advantages of using perfusion parameters (e.g. wash in and wash

out rates) in detecting prostate cancer in DCE. The method proposed in [6] used a multiparametric

MR of T1- and T2-weighted imaging showing better results using a single modality. Shimofusa

et al. [45] showed a significant improvement in prostate cancer detection using diffusion-weighted

imaging in addition to T2-weighted MRI and reported that sensitivity increased from 87% to 93%.

In another study, Reinsberg et al. [41] combined the use of diffusion-weighted MRI and 1H MR

Spectroscopy which lead to 93% sensitivity with 73% specificity. The method proposed in [36]

used local peak information to detect prostate abnormality by measuring the information difference

between left and right PZ regions in a single modality of T2-weighted imaging. Han et al. [46] used

clinical knowledge to discriminate the cancer region by location and shape of the region in addition

of image features to increase specificity. Moreover, Kim et al. [55] made a comparison between

T2-weighted and DCE imaging and reported that DCE has better accuracy (75%) and sensitivity

(73%) but 11% lower in specificity (88% in T2-W). Another comparison study was made by Ito et

al. [56] between power Doppler ultrasound (PDUS) and DCE imaging and concluded that DCE has

higher sensitivity (87%) and specificity (74%) in comparison to PDUS which only achieved 69%

and 61%, respectively within the PZ. Llobet et al. [43] who evaluated their method based on 4944

ultrasound images showed similar results with the ones reported on fewer samples by Schlemmer et

al. [54]. However, in contrast to the earlier methods, our method is different in the sense that:

1. The proposed method does not need a training phase to be able to discriminate malignant and

benign tissues in contrast to the methods in [6, 11, 38, 39, 49, 54, 10].

2. We only used a single modality for abnormality detection which is T2-Weighted MRI. The

methods in [44] used multimodality such as diffusion MRI and MR Spectroscopy. Similarly,

the method proposed in [6] used a multiparametric MR of T1- and T2-weighted imaging.

Engelbrecht at al. [45] suggests that various techniques such as dynamic contrast material

enhanced MR imaging, diffusion-weighted imaging, and MR spectroscopy have the potential

to improve the detection of prostate cancer. On the other hand [41] combined the use of

diffusion-weighted MRI and 1H MR Spectroscopy to get better results in discriminating

malignant and normal tissues.

3. The method in [46] used additional clinical knowledge (e.g. location and shape of the region)

to discriminate cancer regions in addition of image features while our method only used image

features to achieve similar results.

4. Our method used a small number of image features to discriminate malignant and benign

regions and produced similar results to the state of art in the literature whereas the methods in

[46, 47] used more features.

5. The methods in [18, 37, 44, 45] used various perfusion parameters on a single modality while

our method is purely based on image features but still managed to achieve similar results.

The proposed method produced similar accuracy, sensitivity and specificity to the state of art in

the literature particularly in single modality T2-Weighted MRI. However, due to various factors

mentioned a direct comparison is less appropriate. Several studies [6, 41, 44, 45, 49] have suggested

that using image fusion (e.g. combining MRI T2-W with DCE) produces better results in detecting

prostate cancer. Nevertheless, other researchers have attempted to make a single predictor (T2-W

MRI only) by detecting prostate cancer on the basis of comprehensive analysis of various perfusion

parameters, such as in [18] achieved 75% sensitivity and 80% specificity (50 patients). However,

without the parameters they achieved higher sensitivity of 94% but much lower specificity of 37%.

In another study, Miao et al. [53] reported 76% and 70% sensitivity and specificity, respectively (30

patients) while a study conducted in [42] achieved 50-60% sensitivity and 13-21% specificity in 46

patients. Kim et al. [55] reported 55% sensitivity and 88% specificity (20 patients), and Schlemmer
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et al. [54] achieved 79% sensitivity in 28 patients. On the other hand, other investigators [46]

have studied the prospect of combining clinical knowledge and image features to detect prostate

cancer and achieved similar results. Whether using a single modality, image fusion or using clinical

features, none of these methods provide superior results. Therefore developing a CAD tool for

prostate cancer detection and localisation remains a challenge.

In our study, one obvious drawback of the proposed method is the risk of classifying correctly

with incorrect localisation of the tumor, which could be problematic from a clinical point of view.

Secondly, in some cases when the prostate’s peripheral zone is almost non-existent, the proposed

method is more likely to produce false positives. This is due to the intensities being very similar

between the central gland and the malignant region [58]. Finally, if the prostate’s shape does not

conform to the shape of our prostate model a smaller area of the PZ will be analysed which

may increase the chance of malignant regions being missed. Therefore, in order to accommodate

these limitations for future work we are planning to use a multiparametric approach (e.g. T2-

W+DWI+DCE) instead of stand alone T2-W MRI. This means more image features can be extracted

which could help to distinguish malignant and benign tissues. In addition, we intend to cover the

whole prostate gland instead of only the PZ.

8. CONCLUSIONS

The proposed method specifies regions which have the highest probability to be malignant (see

results in Figure 7), hence help radiologists to perform targeted biopsies and potentially improve the

accuracy of prostate cancer diagnosis [57].

In conclusion, we have presented a novel method of prostate cancer detection and localisation

within the PZ and successfully applied it on 37 patients. Gaussian and median filters together

with probability image information show promising potential to be effective texture descriptors to

identify cancer regions within the peripheral region. Our idea, which is based on regions intersection

and flexible size of erosion’s structuring element, suggest a good potential to reduce false positive

and false negative results in the proposed method.
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