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Abstract: Computer-aided diagnostic (CAD) systems can assist radiologists in detecting coal workers’
pneumoconiosis (CWP) in their chest X-rays. Early diagnosis of the CWP can significantly improve
workers’ survival rate. The development of the CAD systems will reduce risk in the workplace and
improve the quality of chest screening for CWP diseases. This systematic literature review (SLR)
amis to categorise and summarise the feature extraction and detection approaches of computer-based
analysis in CWP using chest X-ray radiographs (CXR). We conducted the SLR method through
11 databases that focus on science, engineering, medicine, health, and clinical studies. The proposed
SLR identified and compared 40 articles from the last 5 decades, covering three main categories of
computer-based CWP detection: classical handcrafted features-based image analysis, traditional ma-
chine learning, and deep learning-based methods. Limitations of this review and future improvement
of the review are also discussed.

Keywords: coal workers’ pneumoconiosis; computer-aided diagnostic; occupational lung disease;
pneumoconiosis; black lung; texture feature analysis; machine learning; deep learning; chest X-ray
radiographs; systematic literature review

1. Introduction

Pneumoconiosis is an occupational lung disease and a group of interstitial lung
diseases (ILD) caused by chronic inhalation of dust particles, often in mines and from
agriculture, that can damage both lungs and is not reversible [1–3]. There are three im-
portant occupational lung diseases, coal worker pneumoconiosis (CWP), asbestosis, and
silicosis, seen in Australia [4]. CWP (commonly known as black lung (BL)) is mainly caused
by long-term experience with coal dust, which is similar to silicosis lung disease caused
by silica and asbestos dust. Pneumoconiosis, including CWP, asbestosis, and silicosis,
killed 125,000 people worldwide between 1990 and 2010, according to the Global Burden
of Disease (GBD) [5]. The national mortality analysis from 1979–2002 reports that over
1000 people have died in Australia due to pneumoconiosis, with CWP, asbestosis, and
silicosis representing 6%, 56%, and 38% of the total, respectively. Pneumoconiosis has
increased due to poor dust control and a lack of workplace safety measures [6–9].

In clinical imaging, computer-aided diagnosis (CADx), also known as computer-aided
detection (CADe), is a system developed for the computer to help make quick decisions
for future treatment [10,11]. Medical image analysis is now an essential assessment for
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detecting possible clinical abnormalities at an earlier stage. CAD systems help to improve
diagnostic image systems, visualising suspicious parts and highlighting the most affected
area of images in X-rays, CT-scans, ultrasounds, and MRI [12,13].

CAD systems have been in use for more than 45 years and have multiple applications
in artificial intelligence and computer vision problems. Even though the CAD process is
well established in radiology, it is not an alternative to a clinician but is used as an aid that
helps radiologists to make better decisions. There is no automated way to detect and screen
for the CWP, except for radiologists who specialize in the field. The lack of an available
CWP database presents significant challenges to developing an automatic screening system.
This is due to the low prevalence of CWP and restrictions on the sharing of patient data.

There are several reviews on pneumoconiosis among coal miners; most of them
discussed the prevalence, risk factors, survival rate, and prevention of CWP based on
the pathological findings [7,14–26]. The past CAD studies of CWP disease indicate no
significant review of machine learning applications that might help improve future work in
the area. In this paper, we present a unique systematic review of contemporary approaches
to CAD for CWP in chest radiographs through classical, traditional, and deep learning
approaches, which will indicate the successes, limitations, and possible future directions
of research.

Section 1.1 overviews the international labor organisation’s (ILO) standard guideline
of pneumoconiosis classification. Section 2 provides the proposed method for this system-
atic literature review (SLR), the search strategy, database, and study selection. Section 3
reveals the study results in an integrated framework, including the study context and classi-
fication in terms of three feature analysis methods, texture analysis, opacity measurements,
non-textured analysis, and their detection approaches through classical, traditional, and
deep learning. Section 4 compared the CAD performance between the identified patterns
of feature analysis and detection approaches. Finally, we found some limitations and
suggested future directions for CWP detection in Section 5.

1.1. Standard Classification of Pneumoconiosis

The abnormality on a chest X-ray of the lung is signified by an increase or decrease in
density areas. The chest X-ray lung abnormalities with increased density are also known
as pulmonary opacities. Pulmonary opacities have three major patterns: consolidation,
interstitial, and atelectasis. Among them, interstitial patterns of pulmonary opacities are
mainly responsible for BL disease [27–29]. According to ILO classification [30], there are
two types of abnormalities, parenchymal and pleural, seen for all types of pneumoconiosis,
such as our target research topic BL disease or CWP.

The ILO has categorised pneumoconiosis into 0, 1, 2, and 3 stages, where 0 is normal
and 3 is the most complicated stage of the disease. The stage of the disease is indicated
by the profusion of small and large opacities, which may be round or irregularly shaped,
which presents the parenchymal abnormality. The ILO classifies the size (diameter) of
small rounded opacities as p, q, or r, indicative of diameters: p ≤ 1.5, 1.5 ≤ q ≤ 3,
3 ≤ r ≤ 10 mm and defined by the presence on the six significant zones (upper, middle,
lower) in both left and right lungs. On the other hand, the size (widths) of small irreg-
ular opacities is illustrated by the letters shown in standard radiograph areas, s ≤ 1.5,
1.5 ≤ t ≤ 3, 3 ≤ u ≤ 10 mm. Opacities with a dimension of more than 10 mm are defined
as large opacities. They are divided into three major categories, defined as 0 ≤ A ≤ 50 mm,
50 ≤ B ≤ Area(RUZ), and 50 ≤ C ≥ Area(RUZ), where RUZ indicates the area of the
right upper zone (RUZ).

In pleural abnormalities, the ILO has shown that the parietal pleura is seen in the chest
wall, diaphragm, and other sites of the lungs that can diffuse the thickness and decay at
the appropriate angle of the lung frame. Figure 1 summarises parenchymal and pleural
abnormalities, followed by standard opacities and their perfusion measurements.
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It is difficult for radiologists to classify pneumoconiosis in both types of abnormalities.
The measurement of the size and shape of all regular and irregular opacities is quite diffi-
cult, especially in the earlier stage of CWP disease [31]. The radiographic changes in some
blood vessels forming the opacities’ shape and the size of pneumoconiosis are difficult to
diagnose. In addition, pleural plaque on plain chest radiographs shown in the shadows
of ribs may lead to misclassification of conditions consistent with pneumoconiosis [32,33].
Therefore, the development of significant computer-aided diagnosis (CAD) schemes is
necessary to reduce the risk in the workplace and improve the chest screening for pneumo-
coniosis diseases.

2. Method

This paper’s systematic literature review (SLR) method consists of three main sections,
namely planning, conducting, and reporting. The planning section presents the necessity
for the SLR, the review questions and protocol, and the evaluation of the protocol. In the
conducting section, inclusion and exclusion criteria are defined and applied to select the
appropriate literature for inclusion in the review. In the reporting section, the findings
of the articles considered for inclusion in the review are reported, and their results are
discussed, including details on feature analysis and detection approaches.

This SLR compares the state-of-the-art for CAD diagnosis of CWP detection in chest
X-ray radiographs based on three detection approaches, classical, traditional machine
learning, and deep learning. To keep the SLR focused, an overarching research question
was defined:

“What is the current body of machine learning to detect CWP in CAD systems using
chest X-ray radiographs?”

2.1. Search Strategy and Database Selection

Three components form the overarching research question were identified: domain
(‘Black Lung’), trigger (‘Machine Learning’), and action (‘Chest X-ray’). Using these compo-
nents in an initial search string, seven highly relevant papers from a web search (through
GoogleScholar) were selected. Studying these papers and proceeding through several
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iterations, several other relevant keywords were identified and added to the initial search
string. Another component was added to the search string to account for the agent (e.g.,
human, user). After analyzing the similarities and relevance of the phrases in each of the
search string components, the final search string was refined to:

(“Black Lung” OR “Coal Workers Pneumoconiosis” OR Pneumoconiosis) AND (Detec-
tion OR Diagnosis OR “Computer-Aided Diagnosis” OR Identification OR Classification OR
Analysis) AND (“Chest” OR “X-ray” OR “Radiographs” OR “Chest-X-ray-Radiographs”)
AND (“Machine Learning”, “Deep Learning” OR “Convolutional Neural Networks “ OR
“Neural Network” OR “Artificial Neural Network” OR “Support Vector Machine” OR
“k-nearest neighbor”)

To address the research question, 11 databases that focus on science, engineering,
medicine, health, and clinical studies, respectively, were selected for the review: Science Di-
rect, Scopus, Springer Link, Pubmed, Medline, IEEE, Embase, Web of Science, Compendex,
ACM, and CINAHL.

2.2. Study Selection Criteria

The SLR process and results of applying the search string and filtering for relevance
are shown in Figure 2. Firstly, the search string was applied using the advanced search
guideline for each of the eleven databases. Although all keywords remained the same, a few
modifications were required, resulting in 443 articles across the eleven databases. Secondly,
the title, abstract, and keywords of all search results were read to find relevance for this
review, resulting in 123 articles. After removing duplications, the full text of the remaining
articles was read, resulting in 36 papers that were the most relevant to the research question.
When all references in the 36 papers were checked, four more relevant papers were added,
increasing the total number of reviewed papers in this SLR to 40 (see Figure 2).
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3. Study Results

The systematic literature review found four hundred and forty-three studies in the
literature, forty of them meeting the criteria for inclusion. Returned articles were from 1974
to 2021, focusing mainly on pneumoconiosis in coal workers, and included three detection
approaches, classical, traditional machine learning, and deep learning methods. The
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Analysis of Returned Articles section (Section 4) discusses these in detail. After reviewing
the final selection of 40 papers, three interesting patterns were identified. The papers were
divided into categories illustrating those patterns: CAD with texture analysis, opacity
measurements, and non-texture analysis. These are discussed in the Analysis of Returned
Articles (Sections 4.1–4.3, respectively).

In texture analysis, different statistical approaches were applied to extract features
from chest X-ray radiographs. The size and shape of round opacities were measured from
regions of interest (ROI) identified in chest X-ray radiographs. In non-textured analysis,
deep convolutional neural networks (CNN) were applied to chest X-ray images. Figure 3
presents articles categorised by these CAD framework approaches. It indicates the SLR
article publication year and the coal mining dataset’s country.
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From the overall study of the 40 papers, 26 were classified in the texture analysis cate-
gory, 6 papers in opacity measurements, and 8 papers in non-textured analysis categories.
Five major categories of texture feature analysis methods were found; they are summarised
in Table 1 and are discussed in detail in Section 4.1. The study’s theoretical framework
(Figure 3) indicates the number of publications included based on their year of publication
and type (journal, conference, or report). The context also indicates that only one type of
chest X-ray radiograph view, called the posterior–anterior (PA), was used throughout the
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literature. The coal workers’ data were collected from different countries, including the
USA, China, Japan, Mexico, and Australia.

Table 1. Details of different texture features and their descriptions.

Feature Types Features Name Descriptions

Fourier
spectrum-based

RMS variation A measurement of the magnitude of lung texture

First moment Central tendency of lung texture

Second moment A measure of dispersion from the overall central tendency

Third moment A measure of the nature (coarse or fine) of the lung texture

Co-occurrence
matrix-based

Correlation
Measurement of the relationship from different angles or directions

between each pair of pixels on the image. Most of them used directions
such as 0◦, 45◦, 90◦ and 135◦

Contrast or inertia Contrast measurements of pixel intensity (greyscale tone or colour
tone) using a pixel and its neighbor across the whole image

Homogeneity
Measures the proximity of the pairs of pixels across the diagonal of the
co-occurrence matrix. It should be elevated if the greyscale levels of all

diagonal entries is similar

Entropy Measures spatial disturbances in pixel intensity relations which could
be responsible for the image abnormality

Energy
Shows the uniformity of the intensity relationships of the pixels by

measuring the number of repeated pairs. The higher value of energy
means the bigger homogeneity presents in the texture

Histogram-based

Mean A measure of the colour intensity of each pixel on which the image
brightness depends

Variance A measure of the breadth of the histogram indicates the deviation of
the grey levels from the mean value

SD A scalar value computed from the image array that shows the lower or
higher contrast of the colour intensities

Skewness
The positive and negative asymmetry represents the degree of

distortion of the histogram in relation to the mean intensity
distribution, giving an idea about the image of a surface

kurtosis It is a measure of the degree of sharpness of the histogram relative to
the mean intensity distribution

Entropy
Entropy measures the random nature of the distribution of coefficient

values on intensity distributions. It provides high readings with an
image of more intensity levels

Energy
The energy characteristic measures the uniform distribution of the
intensity levels. It provides high readings with an image of fewer

intensity levels

Wavelet
transform-based Energy

A wavelet coefficient is calculated from the distribution of grey level
intensity in the sub-band images on a successive scale. The different

energy levels of the sub-bands provide the differences in
texture patterns

Density
distribution-based

Density of a region Measures how many pixels are contained in a particular region. The
rapidly changing density of a region indicates the profusion of opacities

Density of rib areas
Measures the mean of the pixel densities obtained from all the rib areas.
The higher contrast occurs when the opacities appear around the edges

of the ribs.

Density of intercostal areas
Measures the average pixel densities for all intercostal areas. A higher
contrast occurs when the opacities appear around the edges between

the intercostal and rib areas
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Investigation of the methodology and detection approaches used in the reviewed arti-
cles also identified three detection approaches: classical methods including computer and
international labor organization (ILO) classification-based detection; traditional machine
learning methods; and CNN methods. A summary of studies categorised based on their
detection approaches is presented for classical approaches (Table 2), traditional machine
learning (Table 3), and deep learning (Table 4). In Tables 2–4, the country of origin of the
datasets is indicated, with the USA shown as U, China as C, Japan as J, Mexico as M, and
Australia as A. It is important to note that many of the papers do not share all of the values
that were sought for this analysis. As a result, we could not incorporate these missing
values into Tables 2–4. On the other hand, our aim was to draw attention to the specific
number of CWP radiographs, feature analysis methods, and detection approaches used in
their study.

Table 2. Summary of classical approaches included studies.

Year and Country
of Data Ref No. Feature Analysis

Method
Classical Approaches Number of

CWP CXR

Evaluation
Performance

Accuracy

2009 (M) [34] Histogram analysis Computer and ILO
standard 11 AUC > 80.00%

2002 [35] Opacity measurement NN and ILO
standard-based 1 -

2001 [36] Opacity measurement NN and ILO
standard-based 1

2001 [37] Opacity measurement NN and ILO
standard-based 1 -

2000 [38] Opacity measurement NN and ILO
standard-based 1 -

1997 (U) [39] Fourier spectrum Computer and ILO
standard-based 68 -

1990 (J) [40] Fourier spectrum Computer and ILO
standard-based -

1988 (J) [41] Opacity measurement Computer and ILO
standard-based 9 81.0%

1987 (J) [42] Co-occurrence matrix,
density distribution

Computer and ILO
standard-based 11 81.8%

1980 (U) [43] Opacity measurement Computer and ILO
standard-based 3 67%

1976 (U) [44] Fourier spectrum Computer and ILO
standard-based 141 82.9%

1976 (U) [45] Density Distribution Computer and ILO
standard-based 36 80.5%

1975 (U) [46] Density Distribution Computer and ILO
standard-based 36 80.5%

1975 (U) [47] Histogram analysis Computer and ILO
standard-based 38 84.0%

1974 [48] Fourier spectrum,
co-occurrence matrix

Computer and ILO
standard-based 141 88.0%
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Table 3. Summary of traditional machine learning approaches included studies.

Year and
Country
of Data

Ref No.
Feature

Analysis
Method

Traditional
Machine Learning

Approaches

Number
of CWP

CXR

Evaluation Performance

Accuracy Specificity Recall AUC

2019 (A) [49]
Histogram

analysis SVM, MLP, NN 71

SVM = 73.17% 92.31% 73.30%

MLP = 71.11% 72.00% 70.00%

NN = 83.00% 85.00% 82.00%

2017 (J) [50]

Fourier
spectrum,

co-occurrence
matrix,

histogram
analysis

ANN 46 -

Category
1 = 38.2%

-

Category
1 = 73.0%

Category
2 = 52.5%

Category
2 = 79.0%

Category
3 = 60.1%

Category
3 = 85.0%

2014 (J) [51] Density
distribution

SVM, RT, NN
15 right-

lung
- -

RT = 93.2% -

NN = 93.2%

SVM = 93.2%

2014 (C) [52] Wavelet
analysis SVM and ensemble 40 90.5% 93.3% 84.9% 96.1%

2014 (J) [53]

Fourier
spectrum,

co-occurrence
matrix

ANN 15 - - - 93.0%

2013 (J) [54] Density
Distribution

SVM, RT, NN
12 right-

lung
- -

RT = 91.67%

NN = 91.67%

SVM = 100.0%

2013 (C) [55]

Co-occurrence
matrix,

histogram
analysis

ANN 40 79.3% 70.6% 91.7% 85.8%

2013 (C) [56]
Wavelet
analysis SVM and DT 40

SVM = 87.2% SVM = 90.6% SVM = 80.0% SVM = 94.0%

DT = 83.2% DT = 89.4% DT = 70.0% DT = 86.0%

2011 (J) [57] Co-occurrence
matrix SVM 68 69.7% - - -

2011 (J) [58]

Fourier
spectrum,

co-occurrence
matrix

ANN 12 - - - 97.2%

2011 (C) [59]

Co-occurrence
matrix,

histogram
analysis

SVM and ensemble 250 88.9% 87.7% 92.0% 97.8%

2010 (J) [60] Density
distribution SVM, RT, NN 6 right-

lung - - - -

2010 (C) [61]

Co-occurrence
matrix,

histogram
analysis

SVM and
Classifiers
ensemble

259 92.83% 90.25% 96.65% -

2009 (J) [62] Density
distribution SVM, RT, NN 6 right-

lung - - - -

2009 (C) [63] Histogram
analysis SVM 196 94.1% 94.6% 93.6%

2009 (C) [64] Co-occurrence
matrix SVM 59 95.15% 94.2% 95.6%
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Table 3. Cont.

Year and
Country
of Data

Ref No.
Feature

Analysis
Method

Traditional
Machine Learning

Approaches

Number
of CWP

CXR

Evaluation Performance

Accuracy Specificity Recall AUC

2002 (M) [65]

Co-occurrence
and spatial
dependence

matrix analysis

SOM, NN, KNN 74

SOM = 71.0%

- -NN = 75.0%

KNN = 72.0%

2001 (C) [66] Co-occurrence
matrix NN 212 86.8% - - -

Table 4. Summary of deep learning approaches included studies.

Year and
Country of

Data
Ref No.

Feature
Analysis
Method

Deep
Learning

Approaches

Number of
CWP CXR

Evaluation Performance

Accuracy Specificity Recall AUC

2021(C) [67] Non-texture
CNN ResNet 512 92.70% - - -

2021(A) [68] Non-texture
CNN CheXNet 71 92.68% 83.33% 100% 97.05%

2020(A) [69] Non-texture
CNN

Cascaded
Learning,
CheXNet

71
Cascaded = 90.24% 88.46% 93.33% -

CheXNet = 78.05% 80.77% 73.33%

2020 (C) [70] Non-texture
CNN InceptionV3 923 - 93.30% 62.30% 87.80%

2020 (A) [71] Non-texture
CNN

VGG16,
VGG19,
ResNet,

InceptionV3,
Xception,
DenseNet,
CheXNet

71

VGG16 = 82.93% 80.00% 84.62%

-

VGG19 = 80.49% 80.00% 80.77%

ResNet = 85.37% 80.00% 88.46%

InceptionV3 = 87.80% 86.67% 88.46%

Xception = 85.37% 93.33% 80.77%

DenseNet = 82.93% 80.00% 84.62%

CheXNet = 85.37% 93.33% 80.77%

2019 (A) [49] Non-texture
CNN

15 layers
CNN 71 90.24% 89.29% 90.74% -

2019 (A) [72] Non-texture
CNN

DenseNet,
CheXNet 71

CheXNet = 85.37% 80.00% 88.46%
-

DenseNet = 80.49% 73.33% 84.62%

2019 (C) [73] Non-texture
CNN

LeNet,
AleXNet,

InceptionV1,
InceptionV2,
GoogleNetCF

1600

GoogleNetCF = 93.88%

- - -

InceptionV1 = 91.60%

InceptionV2 = 90.70%

AleXNet = 87.90%

LeNet = 71.6%

4. Analysis of Returned Articles

This section discusses the results and analysis of the articles returned in the study. The
three patterns identified in the returned study articles from Section 3, CAD with texture
analysis, opacity measurements, and non-texture analysis, are discussed in Sections 4.1–4.3,
respectively. Section 4 details the three detection methods found in the returned articles
from Section 3; classical methods (including computer and ILO-based detection), traditional
machine learning, and deep learning (CNN-based) methods, discussed in Sections 4.4.1–
4.4.3, respectively.

4.1. Datasets

Texture analysis was the key use of CAD of CWP in chest X-ray radiographs in
the past year. A set of texture elements with regular or irregular patterns is called an
image’s texture and represents the spatial arrangement of intensities in a particular region.
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The measurements of those arrangements are known as texture feature vectors of that
region [74]. In medical imaging, texture analysis plays a vital role in finding object, defect,
and pattern of an image. There are four types of texture analysis methods, statistical-based,
model-based, transform-based, and structural-based, used in the literature [75]. The CAD
of pneumoconiosis especially focuses on statistical and transform-based texture analysis
methods [76–78].

The study found five major categories of texture feature analysis methods, where
texture feature was extracted using Fourier spectrum [39,40,44,48,50,53,58], co-occurrence
matrix analysis [42,48,50,53,55,57–59,61,64,79], histogram analysis [34,47,50,55,59,61,63,66],
wavelet transform [52,56], and density distribution [42,45,46,51,54,60,62]. The details of the
five methods are discussed in the following subsections and the texture features extracted
from them, as described in Table 1, are summarised.

4.1.1. Fourier Spectrum Analysis

In 2D images, an essential small unit presents the local information of a given pixel,
and the texture spectrum indicates the frequency distribution within those units [74,80].
It also signals that a similar texture unit categorises every local texture of the given pixel.
The popular Fourier transform (FT) of a particular region of interest (ROI) of an image
transforms spatial information into a frequency domain where the spectrum contains
the uniform texture image as well as its position [81]. The texture power spectrum (PS)
is measured using different size ROIs [50,53,58] by Fourier transform, where different
enhancement methods are used before calculating PS values. Recently, Katsuragawa et al.,
Turner et al., and Kruger et al. have also applied the FT with the visualisation of texture
patterns for the diagnosis of CWP in CXR [40,44,48]. The RMS (root mean square) variation
and momentums (first to third) values from the PS of abnormal lung ROIs are noticeably
separated from normal lungs [39]. Ledley et al., used simulation software to produce
texture characteristics that give geometrical size and shape formats in a grey-level image.
The descriptions of Fourier spectrum-based features can be found in Table 1.

4.1.2. Co-Occurrence Matrix Analysis

A co-occurrence matrix is an n-dimensional spatial arrangement. Each pair of rows
and columns represents the possible pixel intensity (greyscale tone or colour tone) of an
image [74]. The matrix is also referred to as the grey-level co-occurrence matrix, grey-level
co-occurrence histogram, and spatial dependence matrix. In 1973, Haralick et al. [82]
recommended 28 features extracted from the co-occurrence matrix for image classification.
In the last few decades, these features have hardly been used in many CAD systems. This
review also noticed that in the CAD of pneumoconiosis, texture features were extracted
using grey-level co-occurrence matrix, grey-level co-occurrence histograms and spatial de-
pendence matrix [42,48,50,53,55,58,59,61,64,65]. This study observed that texture features,
correlation, contrast, homogeneity, entropy, and energy were mainly used to detect CWP in
the chest X-ray radiographs (CXR). Their descriptions can be found in Table 1.

The texture feature In CXR is significantly affected by the quality of film images,
which indicates the structural pattern difference between ribs and veins, which are not
mentioned in the ILO standard of pneumoconiosis classification based on perfusion of
opacities. Kobatake et al. [42] extracted the features of a film CXR dataset in matrix values,
correlation, contrast or inertia, homogeneity, entropy, and energy which were also proposed
by Kruger et al. [48]. In 2017, Okumura et al. [83] followed up their previous work in [84,85],
which also extracted similar feature patterns from all ROIs by Fourier transform in different
directions of the gradient vectors. In 2013, Cai et al. [55] tested the different texture features,
including the co-occurrence matrix, as did Yu et al. [59,64]. This study also found that the
CAD performances on grey-level co-occurrence features in [59,64] are more noticeable than
those of Cai et al.
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4.1.3. Histogram Analysis

The histogram of an image represents the total tonal distribution of pixel values
within the image. The tonal distribution indicates the variation of colours, especially grey-
level intensity distribution, measured from histogram analysis [86,87]. In CAD of CWP
diseases, several researchers have proposed extracting texture features using histogram
analysis [34,47,50,55,59,61,63,66]. Most of them were computed using a set of common
features, namely, mean, variance, skewness, kurtosis, energy, and entropy, from the grey-
level intensity distribution of ROIs images. Their descriptions can be found in Table 1.

For the abnormality of CWP in CXR, where different sizes of angular opacities are
present, better image enhancement techniques highlight small, round, regular, and irregular
opacities [35,88,89]. The multi-scale difference filter bank was also used in [59,61,63] before
histogram features were extracted, which improved the image contrast from different
angles. Murray et al. [34] proposed a partial least squares approach for detecting CWP,
where a multi-scale bandpass filter was used to extract features from histograms based on
the different amplitudes and frequency-based representation which computed the different
grades of opacities.

4.1.4. Wavelet Analysis

In statistical analysis, multiresolution techniques refer to transforming an image into
another presentation in which multi-scale statistics are presented. Because the texture
format presents so many difficulties, wavelet analysis is a very popular method to visu-
alise textural features in a multi-scale format. The discrete wavelet transformation with
decomposition scales one decomposed image into four sub-bands representing the finest
wavelet coefficients that are the essential features. Both single and combined values of
sub-band images act as features [90–92]. The energy feature is an integrated value of
single or combined decomposed images extracted in [52,56] for CWP detection in CXR.
The descriptions of energy features can be found in Table 1—only two articles related
to wavelet-based texture feature analysis in CAD of pneumoconiosis disease. Zhu et al.,
proposed the 2D tree structural wavelet decomposition [93] for the first time in their article
from 2013 [56] and 2014 [52]. They used a maximum of twenty-eight wavelets and seven
scale tree decomposition to extract energy texture features from sub-band full-size images.
For better classification, they input the logarithmic values of energy features into different
traditional machine learning classifiers.

4.1.5. Density Distribution Analysis

In statistical analysis, the distribution of density among the textural features of a
co-occurrence and histogram matrix is also a method of CAD systems. This study found
literature related to the density matrix of distribution of the gradient vector on film
CXR [42,45,46]. Here, the gradient vectors demonstrate the rates of density variation
in different directions. The rapid increase in the density of a region indicates the profusion
of opacities. An image’s texture varies depending on the scanner’s quality, which is very
expensive in the clinical diagnosis system. To address this issue, Abe et al. [51,54] and
Nakamura et al. [60,62] proposed a charge-coupled device (CCD) scanner for CAD of
pneumoconiosis in CXR, where they computed the feature characteristics based on density
distribution in a particular region or the areas between the ribs and its inter-costal. Their
descriptions can be found in Table 1. They found the different feature characteristics of
abnormal CXR, which execute the classifier performance.

4.2. Opacity Measurement

The CAD of coal mining disease also relies on analyses based on the evaluation and
measurement of the size and number of small round opacities [36–38,41,43,94]. Small round
opacities may appear anywhere in the lung and overlap within rivers and blood vessels.
An image enhancement is applied to the CWP lung in which the grey-level difference
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indicates the round opacities [41,43]. The method highlights that the density of the lung
opacity area is less than its surrounding background in an image.

In automatic detection of CWP from CXR, the redundant parts of the lung are a
problem, especially in detecting of small round opacities. Kondo et al., proposed a moving
normalisation technique to overcome this issue, which removed the redundant parts, such
as ribs and blood vessels, in the ROI image. As a result, the small round opacities are
visible in each ROI, and classification was done based on the size and number of opacities
according to ILO standards [36–38,94].

4.3. Non-Texture Analysis

In the automatic diagnosis of CWP, several models have been developed in recent
years based on deep convolutional neural networks (CNN), a family of deep machine
learning methods. Every CNN has two parts: feature extraction and classification [95]. In
the feature extraction part, several convolutional blocks are composed of a set of polling
and activation functions. The deep CNN features of different classes are classified using
one or more fully connected layers [95–97]. In the most recent computer vision applications,
CNN has been used in many fields, including medical image analysis, which achieved
outstanding state-of-the-art performances [98,99]. This study only found eight research
articles based on the use of CNN to detect CWP in CXR in which non-texture features
were extracted from the lung image [49,67–73]. Zheng et al. [73] investigated the CAD of
CWP with the CXR films dataset, which indicated that traditional texture analysis is not
enough to diagnose. They applied a pre-trained CNN model, GoogleNet [100], to classify
normal and different stages of abnormal X-ray films where three scales of convolutional
kernels improve the abstract feature quality. They also verified the non-textured feature
performances with older versions of CNN, for example, LeNet [101] and AlexNet [102].
Zhang et al. [67] investigated the non-textured feature’s performances with two groups of
radiologists. They found that the ResNet [103] model extracted the proper features from
the six sub-regions in the lung, which outperformed the radiologists.

Arzhaeva et al. [49] developed a new CNN model, applying cascade learning to the
automatic detection of pneumoconiosis, in which the model achieved the best accuracy
compared to other statistical and traditional machine learning approaches. To address
the dataset limitation, they used two augmented techniques which improved the deep
CNN quality and increased the performance [104,105]. Dadong et al. [69] employed the
same enhanced techniques as [105] to increase training data. Therefore, their 15-layer CNN
model was used to extract features from the augmented train data and then evaluate the
efficiency in non-augmented test data. Transfer learning improves CNN with small datasets
in recent applications. Transfer learning is a method of transferring knowledge from one
class to another that has similar characteristics. This saves time and aids in deep learning
training on small datasets. Due to the unavailability of the dataset, Devnath et al. [72]
at first investigated the efficiency of CNN with and without transfer learning for the
detection of black lung disease in CXR, with the result that transfer learning with CNN was
found to be a good approach [106–108]. Therefore, they proposed a comparison of seven
CNN models, VGG16 [109], VGG19, Inception-V3 [100], Xception [110], ResNet50 [103],
DenseNet121 [111], and CheXNet121 [112]. Wang et al., used a larger CWP dataset to
investigate the potentiality of the deep learning model. They proposed only one CNN
model, Inception-V3, for automated feature extraction and classification of pneumoconiosis
in digital CXR, and compared this with the performances of two certified radiologists [70].
Recently, Devnath et al. [68] proposed an innovative method to detect CWP in CXR for
a small dataset. They used a CNN model to extract multi-level and multidimensional
features from the proposed architecture [112].

4.4. Detection Approach of CWP

This section discusses the feature classification methods used in the above literature.
This study found three patterns of detection proposed in the CAD system of CWP. These
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are: classical methods, including computer and ILO-based detection, traditional machine
learning-based detection, and deep learning (CNN-based) detection. The details of these
approaches are outlined in the following sub-sections.

4.4.1. Classical Methods

In the past year, the texture features were mostly classified using classical computer-
based methods and ILO-based standard classification [34,39–48], as shown in Figure 4. A
linear discriminant analysis (LDA) and partial least squares (PLS) regression function has
performed this in computer-based classification methods [34,44–48]. LDA and PLS are the
classic statistical approaches for reducing the dimensions of characteristics to improve the
classification. Besides this classification method, some researchers used the classical ILO
standard-based guideline as shown in Figure 4. The profusion of small round opacities
and ILO extent properties indicated normal and abnormal classes. Neural networks have
been applied to find the shape and size of round opacities from ROI images [36–38,94]. The
X-ray abnormalities were categorised and compared with the results of the standard ILO
measurement of the size and shape of the round opacities, as in Figure 1.
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A summary of all classic approaches corresponding to feature extractions with various
inputs is shown in Figure 4. The performances of the classical methods are demonstrated
in Table 2. The CAD performances of the 15 articles reviewed in Table 2 include classical
methods with their corresponding data information and feature extraction methods. In
the performance analysis of the classical methods, we found that the computer-based
statistical approaches LDA and PLS were achieved overall accuracy with characteristics
based on Fourier spectrum, histogram, and co-occurrence matrix analysis [44,47,48]. The
descriptions of features are mentioned in Table 1.

4.4.2. Traditional Machine Learning

Most texture features, from Fourier spectrum, co-occurrence matrix, histogram, wavelet
transform, and density distribution, are classified using different traditional machine learn-
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ing classifiers, namely support vector machines (SVM) [51,52,54,56,57,59–63], decision trees
(DT) [52,56], random trees (RT) [51,54,60,62], artificial neural networks (ANNs) [53,55,58],
K-nearest neighbors (KNN) [65], self-organizing maps (SOM) [65], backpropagation (BP),
radial basis function (RBF) neural networks (NN) [51,54,60,62,65,66], and ensemble clas-
sifiers [52,59,61]. Figure 5 shows how the researchers connected various texture features
with traditional machine learning classifiers to detect CWP in CXR. A set of features was
derived from the corresponding transformation of various X-ray inputs. Transformation
methods were discussed separately in the feature analysis section above. The abstracts of
these features for CWP detection are described in Table 1.
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This review found that SVM performed best compared to the other classifiers on
ROI-based texture features, which also indicated that SVM with a radial basis function
(RBF) kernel is more noticeable than linear and polynomial kernel functions. The maximum
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AUC (area under the curve) value of the receiver operating characteristic (ROC) curve
indicated the SVM classifier’s ability to classify texture features. It was also seen that an
ensemble of multiple classifiers would improve detection performance. In [52,59,61], the
authors proposed an ensemble of multi-classifier and multi ROI decisions for the diagnosis
of CWP, which improved the overall classification result. Details of the performance of
individual machine learning classifiers and their overall learning have been demonstrated
in Table 3.

The four feature extraction methods (Fourier spectrum, wavelet, histogram, and co-
occurrence matrix analysis) outperformed classical approaches with the traditional machine
learning classifiers. Table 3 summarises the CWP detection assessment performance based
on the 18 reviewed articles that used different machine learning classifiers. Among all
classifiers, the SVM exceeded the others in terms of histograms and co-occurrence character-
istics of chest X-ray radiographs [59,61,63,64]. Moreover, SVM was used in the maximum
and a bigger number of CWP data sets in the literature, demonstrating average accuracy,
specificity, recall, and area under the curve (AUC).

4.4.3. CNN-Based

For the period 2019–2021, this review only found eights studies that proposed using
deep convolutional neural network (CNN) models to classify CWP (black lung disease) in
CXR [49,67–73]. They used different pre-trained deep learning models for non-textured
feature extraction then applied a fully connected layer with binary classifier for normal or
abnormal (black lung) classification. Over the past few years, various CNN models, such
as VGG16 [109], VGG19, AlexNet [102], Inception [100], Xception [110], ResNet50 [103],
DenseNet121 [111], and CheXNet121 [112], have been developed based on the ImageNet
database classification results. Each CNN model consists of two main parts: the base
(top-removed), and the other is called the top. The base part of the CNN model is used as
an automatic deep feature extractor and consists of a set of convolutional, normalisation,
and pooling layers. The top part is used as a deep classifier and consists of a number of
dense layers that are fully connected to the outputs of the base part of the model, as shown
in Figure 6.

Devnath et al., investigated the CNN classifier performance with and without deep
transfer learning, which suggested that the transfer learning with the deep CNN technique
will improve the classification of black lung disease with a small dataset [71,72]. Arzhaeva
et al., show that CNN performed better than the statistical analysis methods, including
texture features from ROIs and ILO standard classification of pneumoconiosis in CXR [49].

Zheng et al. [73] applied transfer learning of five CNN models, LeNet [101], AlexNet [102],
and three versions of GoogleNet [100], for CAD of CWP in a CXR films dataset. They
showed that the integrated GoogleNetCF performed better than others on their dataset.
Zhang et al. [67] implemented the ResNet [103] model to categorise normal and different
stages of pneumoconiosis using six subregions of the lung, as shown by an example in the
left column of Figure 6. They verified the best CNN performance with two groups of expert
radiologists. Wang et al. also verified the performance of the Inception-V3 model with two
certified radiologists [70] and found that CNN is more efficient than human performance.
More recently, Devnath et al. [68] proposed a novel method for CWP detection using multi-
level features analysis from the CNN architecture as shown in the bottom section of Figure 6.
They applied transfer learning of the CheXNet [112] model to extract miltidimensional
deep features from the different levels of their architecture. They then used these features to
the traditional machine learning classifier, SVM. This intregrated framework outperformed
the state-of-art different traditional machine and deep learning methods.

Deep learning-based CAD approaches to CWP disease were demonstrated in Table 4,
in which the performances from 8 reviewed articles are summarised. Non-texture features
were extracted using different CNN approaches. Among all detection approaches, deep
transfer learning of GoogleNet, ResNet, and CheXNet achieved an average accuracy of more
than 92% in the detection of CWP from chest X-ray radiographs. Overall analysis revealed
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that deep learning methods outperformed other traditional and classical approaches in
CWP detection.
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5. Study Limitations and Future Directions for Research

The literature search was based on the search string indicated in Section 2.1. The
authors acknowledge that there could be other keywords or phrases that might have been
missed in our search string. The search was also limited to the 11 selected databases, based
on other literature reviews conducted in domains related to computer science, information
technology, engineering, medicine, clinical health study, and computer-aid diagnosis of
medical imaging. This review’s findings suggest several important knowledge gaps and
future directions in research on the diagnosis of CWP (black lung disease) in CXR.

5.1. Direction 1: Combination of All Private Datasets

This review noticed that the datasets used in the literature are not publicly available,
except for the Japanese Society of Radiological Technology (JSRT) database. This indicates
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a need for a common dataset on which future researchers could benchmark and compare
their system’s performance. A suggestion from the review would be to collect all datasets
into a common public source to enable a large and common dataset resource for the future
research of CWP.

5.2. Direction 2: Apply Deep Transfer Learning

Over the past few years, transfer learning has been widely used with deep learning
applications that overcome data shortages and long-term training issues, and lead to lower
generalisation errors. This review concluded that transfer learning of deep CNN would be
the best approach to diagnosing of black lung in CXR. A suggestion is to apply transfer
learning with different CNN models, to compare performance to select the best one.

5.3. Direction 3: Apply SVM on the Deep CNN Feature

The authors suggest applying a machine learning algorithm, especially the SVM, for
feature classification based on past research. Although the feature classification could be
either textured or non-textured, the non-textured feature classification is recommended.
CNN has a special characteristic to producing a discriminative level of feature after every
convolutional layer. The multi-level CNN features could be a good starting place to
implement SVM to detection CWP.

5.4. Direction 4: Apply Ensemble Learning

This review found that the ensemble of multi-model decisions for multi-level detection
has positively impacted CWP detection. There are different ensemble learning methods,
such as prediction label voting, prediction probability voting, weights averaging, weights
multiplying, and multi-model predictions voting. The authors suggest that to improve
performance, ensemble learning should be tried.

6. Conclusions

This paper reviewed the literature on CWP detection published in the last 5 decades.
To date, about 40 studies investigated CAD methods for detecting of pneumoconiosis. We
classified and summarised the feature extraction and detection approaches utilized for
CAD in CWP using chest X-ray radiographs. Most of these studies employed classical and
traditional machine learning approaches. At the time of writing, eight studies employed
deep learning approaches which outperformed other detection methods. The accessibility
of a large pneumoconiosis database will be the ultimate key to developing of an automated
screening system. This review discussed future research in CWP detection, especially the
CNN-based method for improving CAD systems for the detection of different pneumoco-
niosis. This study also described five major categories of texture feature analysis methods,
which are widely used in various machine learning applications.
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