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Cytological screening plays a vital role in the diagnosis of cancer from themicroscope slides of pleural e	usion specimens. However,
this manual screening method is subjective and time-intensive and it su	ers from inter- and intra-observer variations. In this
study, we propose a novel Computer Aided Diagnosis (CAD) system for the detection of cancer cells in cytological pleural e	usion
(CPE) images. Firstly, intensity adjustment and median 
ltering methods were applied to improve image quality. Cell nuclei were
extracted through a hybrid segmentation method based on the fusion of Simple Linear Iterative Clustering (SLIC) superpixels and
K-Means clustering. A series of morphological operations were utilized to correct segmented nuclei boundaries and eliminate any
false 
ndings. A combination of shape analysis and contour concavity analysis was carried out to detect and split any overlapped
nuclei into individual ones. A�er the cell nuclei were accurately delineated, we extracted 14 morphometric features, 6 colorimetric
features, and 181 texture features from each nucleus. �e texture features were derived from a combination of color components
based 
rst order statistics, gray level cooccurrencematrix and gray level run-lengthmatrix. A novel hybrid feature selectionmethod
based on simulated annealing combined with an arti
cial neural network (SA-ANN)was developed to select the most discriminant
and biologically interpretable features. An ensemble classi
er of bagged decision trees was utilized as the classi
cation model for
di	erentiating cells into either benign or malignant using the selected features. �e experiment was carried out on 125 CPE images
containing more than 10500 cells. �e proposed method achieved sensitivity of 87.97%, speci
city of 99.40%, accuracy of 98.70%,
and F-score of 87.79%.

1. Introduction

Pleural e	usion or pulmonary e	usion (PE) is the patho-
logic accumulation of �uid in the pleural cavity, between
the visceral and parietal layers surrounding the lung, as
demonstrated in Figure 1 [1, 2]. Normally, the pleural space
is lined by a thin layer of mesothelial cells and contains
about 5-10 ml of clear �uid for lubrication during respiratory
movement. When cancer cells grow or spread to the pleura,
they cause malignant pleural e	usion (MPE). Half of all
cancer patients have a high possibility of developing MPE.
Both primary and metastatic cancers can lead to a diagnosis
of MPE. Mesothelioma, a rare form of cancer, is the primary

cancer of the pleura. Lung cancer and breast cancer are the
most frequent metastatic cancers inmale and female patients,
respectively. Both malignancies are responsible for about 50-
65% of MPE. Lymphoma, tumors of the genitourinary tract,
and gastrointestinal tract are responsible for 25%. Tumors of
unknown primary account for 7-15% of all MPE [3]. From
statistics, as mentioned earlier, MPE is mostly caused by the
invasion of metastatic cancer to the pleura. Metastatic cancer
is the major cause of cancer morbidity and mortality. It is
estimated that metastasis is responsible for about 90% of
cancer deaths. Although cancer in the pleural e	usion is seen
in advanced stages ofmalignancy and leads to rapidmortality,
the survival time can be prolonged by earlier diagnosis
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Figure 1: �e presence of pleural e	usion in the pleural cavity [2].

together with prompt and e	ective treatment to slow cancer
progress. Currently available tools for detecting the presence
of MPE in the pleura are cytology, cytometry, and imaging
modalities such as X-ray, Ultrasound, Computed Tomog-
raphy (CT), and Magnetic Resonance Imaging (MRI). For
the assessment of malignancy, cytological examinations are
widely used by pathologists because they are simple, cheap,
less invasive, and highly useful tools [4].

In a cytological examination, �uid from the malignant
pleural e	usion is collected and smeared on cytological
glass slides using the staining methods. �en, cytologists or
pathologists visually examine for morphology changes and
visual abnormalities in every single cell under a microscope
to determinemalignancy prevalence [5].Manual screening of
cytology slides is tedious and subjective to inter- and intra-
observer bias. Since the presence of MPE implies advanced
malignancy and reduced survival, it is crucial to diagnose
malignancy in MPE as early and speedy as possible. �anks
to recent improvements in medical technology, automated
image analysis has the potential to allow for earlier and
faster diagnosis with more accurate and objective diagnosis
results. Hence, reliable CAD systems using CPE images are
in high demand. �ey can serve as an essential tool to
assist cytologists in the assessment of malignancy; however,
complex and unusual cases still require further examination
by cytologists. �e bene
ts of CAD systems are that they
accelerate the diagnosis process, make diagnosis objective,
and reduce any diagnostic divergence resulting fromdi	erent
observers. Consequently, they allow for the early and speedy
diagnosis and prognosis of cancer cells and help oncologists
in making e	ective treatment plans promptly.

Few researchers have researched the analysis of CPE
images for the automatic detection of cancerous cells from
CPE specimens. In 2001, F. Chen et al. [6] proposed the
automated classi
cation of adenocarcinoma and healthy cells
(especiallymesothelial cells and lymphocytes) inCPE images.
Morphology and wavelet features were used as inputs to
a backpropagation neural network to discriminate between
adenocarcinoma and benign cells. �eir study was based
on 60 adenocarcinoma cells and many (the number was
not speci
ed numerically) benign cells. Unfortunately, the

authors did not provide a method for segmenting nuclei
nor an evaluation of classi
cation performance. L. Zhang
et al. 2006 [7] introduced a fuzzy recognition method to
classify four types of cells, namely, healthy cells, cancer cells,
mild dyskaryotic cells, and severe dyskaryotic cells. Otsu
thresholding and fuzzy edge detection were used to segment
the cells. Seven morphological features were extracted from
each segmented cell and fed as input into a fuzzy recognition
system to classify those four types of cells. However, there was
a lack of clarity in the evaluation process in [4, 5]. �is has
encumbered the reproduction of these methods for practical
use. A.B. Tosun et al. 2015 [8] presented the automated
detection of malignant mesothelioma using nuclei chromatic
distribution. Firstly, the nuclei were extracted using a semi-
automatic approach in which the initial contour of cell nuclei
was manually segmented under the guidance of cytologists,
and level setmethodwas utilized to 
nalize the contour of cell
nuclei. For each extracted nucleus, its linear optimal transport
(LOT) was computed and subjected to linear discriminant
analysis based on k-nearest neighborhood algorithm classi-

er to di	erentiate between mesothelioma and benign cells.
�eir experiment was based on 1080 cell nuclei containing
590 mesotheliomas and 490 benign nuclei and obtained
100% accuracy. Unfortunately, their method was not fully
automated since cell segmentation was manually performed.
Moreover, none of the methods mentioned above deals with
the overlapped cell problem. Decomposing overlapped cells
into their constituents would enhance analysis performance
and robustness. As such, the approaches mentioned thus
far focus on detecting speci
c types of cancer cells such
as adenocarcinoma or mesothelioma cells in CPE images.
Meanwhile, an early and essential task in clinical practice
is to di	erentiate between benign cells and cancer cells
regardless of speci
c cancer types.�is may then be followed
by classifying cancer cells into the di	erent types (i.e., lung
carcinoma, mesothelioma, breast carcinoma, and so on). In
practice, a tool that can detect malignant cells from all MPE
cases is in high demand. Despite being linked with high rates
ofmorbidity andmortality, research e	orts for the automated
analysis ofMPE are still limited compared to other areas such
as cervical cancer, breast cancer, lung cancer, and so on.�us,
automated analysis of pleural e	usion samples remains to be
widely researched.

To advance the utilization of MPE analysis, we propose
a novel CAD system based on the analysis of CPE images
which can classify cells as either benign or malignant. �e
main distinction of the proposed method from previous
literature is that it can detect malignancy in all MPE cases.
Our newly designed system is a fully automated system that
addresses the overlapped cell and unbalanced-data problems
which have so far been le� unsolved. In addition, the pro-
posed method takes advantage of the selection of dominant
features using a hybrid metaheuristic method. Our system
includes seven main stages: preprocessing, cell nuclei seg-
mentation, postprocessing, overlapped cell nuclei isolation,
feature extraction, feature selection, and classi
cation. �e
preprocessing stage aims to improve the quality of the images.
In the segmentation stage, our developed hybrid superpixel-
driven K-Means clusteringmethod, known as SLIC/K-Means
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hybrid, was used to extract cell nuclei regions. �en, a
series ofmorphological operationswere employed to improve
segmented cell nuclei boundaries and eliminate any false

ndings. Subsequently, the combination of the shape-based
analysis and concavity analysis was applied to isolate any
overlapping nuclei into individual ones. A�er the cell nuclei
were segmented, a total of 201 features from morphometric,
colorimetric, and textural features were extracted to create an
initial feature set. Our novel hybrid SA-ANN feature selection
approach was employed to obtain the optimal feature set
that encompasses the most discerning features. �e optimal
feature set was fed as input to an ensemble classi
er of bagged
decision trees to classify benign and malignant cells.

�is paper is divided into 
ve sections. In this section
we have presented an introduction to the diagnosis of
malignancy inPE and outlined relatedworks.�edescription
of the studied dataset is given in Section 2. Section 3 describes
the methodology used by the proposed CAD system. Sec-
tion 4 discusses the experimental results. Section 5 concludes
and presents the scope for future work.

2. Dataset Description

To date, there is no publicly available dataset of CPE images.
�us, we prepared the local dataset through the cooperation
with experts from the Department of Pathology, Faculty of
Medicine, Srinakharinwirot University, �ailand. �e local
dataset is based on the microscope images captured from
the archival cytology glass slides of pleural e	usion samples
from the university mentioned earlier. Firstly, all samples
were stained on the glass slides with a classical Papanicolaou
(Pap) staining method which can provide good cellular
morphology when inspected by the optical microscope [9,
10]. �en, two skilled and certi
ed cytologists captured the
digitized cytology images from the glass slides through a
digital camera mounted to a light microscope with 40x
magni
cation. �erea�er, they analyzed every single cell
within the collected images and annotated the regions of the
interest (i.e., cancer cells), which were used as the ground
truth. �e dataset with associated ground truth consists of
125 CPE images containing benign and malignant cells. �e
images have resolutions of 4050 x 2050 pixels and 4080 x 3702
pixels and are stored in 8-bit RGB space.

3. Methodology

�e framework of the proposed CAD system is presented
in Figure 2. �e method involves seven major stages: (a)
preprocessing, (b) nuclei segmentation, (c) postprocessing,
(d) identi
cation and isolation of overlapped cell nuclei, (e)
feature extraction, (f) feature selection, and (g) classi
cation.

3.1. Preprocessing Stage. During the staining of PE samples
and digitalizing of CPE images, there is usually a degradation
in quality, which includes uneven staining, uneven lighting,
poor contrast, and the presence of additive noise. �erefore,
preprocessing is essential in dealing with image quality prior
to the main analysis. Firstly, the images were resized into

1024 x 1024 pixels in order to achieve image normalization,
standardization, and computation time reduction.�en, each
image was enhanced using an image intensity adjustment
method that increases the contrast between the foreground
(region of interests) and background [11]. In order to reduce
noise without losing cell-edge clarity, R, G, and B compo-
nents were separated from the original RGB image. �en,
a median 
lter [12] was applied to each color component
independently. Finally, the 
ltered RGB image was obtained
by combining the 
ltered R, G, and B components together.
�e visual results before and a�er applying preprocessing to
di	erent images are depicted in Figures 3(a) and 3(b).

3.2. Segmentation of Cell Nuclei Using a Novel Hybrid SLIC/K-
Means Algorithm. Segmentation is one of the most essen-
tial processes in biomedical image analysis. Most of the
image analysis in cytology and histology is focused on
nuclei segmentation since cell nuclei providemore signi
cant
diagnostic value than other cell parts. To determine cell
malignancy, the cell nucleus needs to be segmented from
the background (i.e., cytoplasm, red blood cells). �en,
malignancy is predicted based on certain features extracted
from each nucleus. Since the results of nuclei segmentation
have a high impact on all subsequent analysis, it is crucial that
the nuclei are accurately extracted.

Few researchers have studied the automated segmenta-
tion of cells or nuclei in CPE images. E. Baykal et al. 2017
[13] introduced an active appearancemodel to segment nuclei
from the background in CPE images and compared it with
color thresholding, clustering, and graph-based methods.
�ey obtained 98.77% accuracy. However, their approach was
designed to segment an image with only one cell. It is hard
to use this in practice since there may be up to a million
cells in one image. In [14], they investigated the detection of
cell nuclei using supervised learning approach.�e approach
is based on the combination of Haar 
lter and AdaBoost
classi
er.�ree images with a total of 178 nuclei were used for
testing. A True Positive Rate of 89.32% and False Positive Rate
of 5.05% were obtained. �eir framework performed well
with an independent cell nucleus; however, it showed limi-
tations when it came to segmenting overlapped cell nuclei.
Moreover, it required extensive prior knowledge to train
the classi
er. In our previous works [15], we have proposed
several alternative nuclei segmentation methods such as Otsu
thresholding approach, K-Means clustering approach [16],
and supervised pixel classi
cation using ANN [17] on a small
dataset (24 CPE images). Recently, we collected more images
and built a new dataset containing 35 CPE images. Using
that new dataset, we employed twelve segmentation methods:(1) the Otsu method, (2) an ISODATA thresholding method,(3) a maximum entropy thresholding method, (4) cross-
entropy thresholding, (5) minimum error thresholding, (6)
fuzzy entropy thresholding, (7) adaptive thresholding, (8) K-
Means clustering, (9) fuzzy C-means clustering, (10) mean
shi� clustering, (11) Chan-Vese level set, and (12) graph cut
methods to extract the cell nuclei from CPE images, and
we compared the results attained [18]. From the comparison
results, Otsu, K-Means, mean shi� clustering, graph cut
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Figure 2: System framework of the proposed CAD system.

method, and a Chan-Vese level set method provided promis-
ing segmentation results. Although Otsu provided promising
results with low computational time, the segmentation accu-
racy of Otsu showed degradation in images with a high level
of noise because Otsu is sensitive to noise. �e images in the
studied dataset (124 images) have a great deal of noise. K-
Means, mean shi�, Chan-Vese, and graph cut methods were
found to be computationally expensive especiallywith images
containing a high population of cells. For machine learning
based segmentation methods, prior knowledge is required
to train a learning model. �us, there are still opportunities
for further enhancements in the nuclei segmentation of CPE
images. Reliable nuclei segmentation stays challenging due

to the high population of cells and high diversity of cell
appearance. In this study, we present a hybrid novel SLIC/K-
Means based nuclei segmentation method in which SLIC
superpixels are used as a presegmentation step to minimize
the computational time of K- means clustering.

�e 
rst step of the hybrid SLIC/K-Means method is to
perform superpixel segmentation as a presegmentation step.
Superpixels fragment the image into a set of structurally
meaningful segments where the boundaries of each segment
take into the consideration the edge information from the
original image. Superpixels are used in the preprocessing
stage for object recognition andmedical image segmentation.
Among the various superpixel segmentation techniques, we
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Figure 3: Visual results of segmenting cell nuclei from CPE images: (a) original image, (b) preprocessed image, (c) superpixels segmentation
using SLIC, (d) K-Means based unsupervised color segmentation on SLIC superpixels, and (e) postprocessed image (re
nement of nuclei
boundary and elimination of false 
ndings).

opted for a SLIC algorithm because SLIC generates compact
superpixels with a more regular shape (R. Achanta et al. [19]).
By breaking the image into regularly shaped superpixels, it
is easier to distinguish between the nuclei and background
depending on the superpixel shape. Moreover, SLIC is simple

to implement. It requires only the number of desired super-
pixels as the input parameter and needs a low computation
time compared to other superpixel techniques [20]. SLIC
generates compact, uniform superpixels by clustering pixels
based on their color similarity and proximity. �is is done
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by using a combined 5-dimensional space [labxy], where l,
a, b constitute the pixel color vector in LAB color model
and xy denotes the x and y positional coordinates of the
pixel position (x, y coordinates). SLIC takes as input the
desired number of approximately uniform superpixels. Once
SLIC generated the superpixels, we determined the median
color feature of each superpixel region in the L∗a∗b∗ color
space. K-Means clustering [21] was then utilized to classify
the color feature of each compact superpixel into nuclei or
non-nuclei, rather than having to perform clustering over
the full original image pixels. Since representing the image
as SLIC superpixels can give more accurate boundary infor-
mation than representing the image by pixels, performing
presegmentation using SLIC superpixels before K-Means
clustering allows us to preserve the natural shape of cell
nuclei. Also, it can reduce the complexity of the algorithm
dramatically.�is happens because the number of superpixels
is much smaller than the number of pixels. Hence, applying
K-Means clustering on SLIC superpixels, rather than on
pixels, can improve the algorithm e�ciency and lead to rapid
computation. �e visual results of nuclei segmentation on
di	erent images are illustrated in Figures 3(c) and 3(d).

3.3. Postprocessing Stage (Boundary Re�nement of Cell Nuclei
and False Findings Elimination). A�er the segmentation
stage, spurious regions such as blood cells or artifacts still
existed in the image. It is essential to remove these false

ndings for better accuracy and robustness. A series of
morphological operations (MO) were used to eliminate these
false 
ndings as well as to re
ne the boundaries of the
segmented nuclei. A morphological opening method was
applied to eliminate false 
ndings that were smaller than a
predetermined structuring element (SE). A�er performing
this opening operation, the boundaries of cell nuclei o�en
hold an irregular shape. A morphological closing operation
was subsequently utilized to re
ne the shape or boundary of
the cell nuclei.

An important consideration when applying MO is the
size and shape of SE. SE identi
es the pixels in the image
being processed and also designates the neighborhood to
be employed in the processing of each pixel. �ere are two
parameters (shape and radius) of SE to be speci
ed. In our
algorithm, both opening and closing operations are achieved
by using a disk shape with an SE radius of “n”. �e SE
radii “n” should be determined according to the size of
the undesired objects to be removed [22]. However, it is
di�cult to set SE radii of “n” that can work well across
all images in a dataset or across di	erent nuclei within
an image. �e optimal radius should be closely related to
the size of the false 
ndings that need to be eliminated.
Setting too large structuring element size oversimpli
es the
image, while using too small SE undersupplies the images
(blood cells or noise remain). Hence, we applied a multiscale
approach. �is means that each image was processed with
di	erent SE radii. For the opening operation, we adapted
the SE radii range to be n {7, 8, . . . . ., 15}, which corresponds
approximately to the expected range of undesired objects in
the pleural e	usion cell nuclei. For the closing operation, a

small SE (half the SE radii of the opening operation) size was
adopted. �e morphological opening and closing operations
are mathematically formulated as follows:

����� ⋅ �� = (����� ⊖ ��) ⊕ �� (1)

����� ⋅ �� = (����� ⊕ ��) ⊖ �� (2)

where ����� and �� denote the binary image and structuring
element, respectively. ⊖ and ⊕ represent erosion and dilation,
respectively.�e visual results of this postprocessing are given
in Figure 3(e).

3.4. Identi�cation and Isolation of Overlapped Cell Nuclei.
Most of the pleural e	usion images in this study con-
tain nuclei that overlap to di	erent degrees. Isolation of
overlapped cell nuclei is essential for optimal segmentation
performance since the size and shape of cell nuclei need
to be determined accurately for quantitative analysis. To
the best of our knowledge, the isolation of overlapped cell
nuclei in CPE images has only previously been addressed
in our previous works mentioned above. In our previous
studies, we employed watershed variants such as marker-
controlled and distance transform watershed methods to
split overlapped cell nuclei. Unfortunately, these methods
su	ered from oversplitting and did not perform well on
images with a great deal of overlapped cells. Existing splitting
methods for overlapped objects can be broadly grouped into
watershed methods and contour concavity analysis. With
these methods, the points to be separated are searched
across all objects in an image, and it is then determined
whether to split them or not. In contrast, we now propose
the integration of shape analysis and concavity analysis to
identify and split overlapped nuclei for better accuracy and
robustness.�e proposedmethod contains two substages: the
identi
cation of overlapped cell nuclei and their separation
into individual ones, the details for which are given in
Sections 3.4.1 and 3.4.2. Before any splitting process occurs,
shape analysis is performed to judge whether nuclei are
single or overlapped. If any overlapped nuclei are detected,
a splitting process based on concavity analysis is carried out
only on overlapped cell nuclei rather than on all nuclei in the
image. �is process can reduce computation time and also
prevent oversplitting and undersplitting.

3.4.1. Identi�cation of Overlapped Cell Nuclei Using Shape-
Based Analysis. During this step, we aimed to develop a
shape-based predetermination mechanism to identify the
presence of overlapped cell nuclei. Identi
cation of over-
lapped cell nuclei was performed in two consecutive steps:
(i) key features were extracted from cell nuclei and (ii) the
cell nuclei were classi
ed into two classes: single nucleus
or overlapped nuclei. It is our general observation that
shape features are useful in helping to di	erentiate between
individual and overlapped cell nuclei. Hence, we extracted
a set of shape features, containing solidity, eccentricity,
equivalent diameter,major axis length, andminor axis length.
�e formulation of shape-based features is explained and
shown in Figure 4. �e extracted key features given in
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Figure 4: Formula of extracted features.

Table 1: Extracted shape based features and their equations.

No. Features Formula

(1) Solidity
�
�����V���
��

(2) Eccentricity
�1�

(3) Equivalent
Diameter √4 ∗ �
����

(4) Major axis
length

2 ∗ �
(5) Minor axis

Length
2 ∗ �

Table 1 were utilized as input to SVM classi
er [23] to
classify and discriminate between single and overlapped cell
nuclei. SVM classi
er is a supervised learning mechanism
that requires training with prelabeled training data. A trained
SVM classi
er was applied to identify overlapped cell nuclei
in the image.

3.4.2. Splitting Overlapped Cell Nuclei Using Concavity Anal-
ysis. When overlapped nuclei were identi
ed via shape
analysis, we separated the overlapped nuclei regions from
the single nucleus regions. �en, contour concavity analy-
sis (CCA), introduced in [24], was utilized to isolate the
overlapped cell nuclei into individual ones. CCA includes
contour evidence extraction and contour estimation. Con-
tour evidence extraction involves two subprocesses: contour
segmentation and grouping. In contour segmentation, canny
edge method was utilized to extract the edge map. �en,
curvature scale space (CSS) method based on curvature
analysis was applied to detect the concave points representing
the corner points of the object boundaries. Once the contour
segments were obtained through the detection of concave
points, the contour segments belonging to the same object
were merged through a grouping process. �e grouping
process was performed using the properties of 
tted ellipse. It
groups contour segments of objects composed of an elliptical
shape. When contour evidence was acquired, the contour
estimation was carried out using a stable direct least square

ttingmethod.�evisual result of identi
cation and isolation
of overlapped cell nuclei is illustrated in Figure 5.

3.5. Features Extraction. A�er the cell nuclei were accurately
delineated, feature extraction was established to extract the
features that re�ect the observation of cytologists. In the
literature of cytology and histology image analysis, the

dominant features for the diagnosis of malignancy used by
cytologists are related to morphometric, colorimetric, and
textural features [25–29]. In keeping with other cytological
images, CPE images are also rich in various features like
color, shape, and texture. In this study, 201 features related
to themorphometric, colorimetric, and textural features were
extracted and combined to obtain a robust, information-rich,
and discerning feature set.

3.5.1. Morphometric Features. �ere are certain di	erences
in morphology between benign and cancer cell nuclei in
CPE images. For instance, excessive growth of cell nuclei
size and a signi
cant variation of cell nuclei size in an
image are suggestive of malignancy. Moreover, cell nuclei
shape irregularities such as unsmooth nuclei margins occur
in malignant cases. �us, in this study, 14 morphometric
features were extracted to evaluate nucleus size and shape
irregularity. �e description of these features is given in
Table 2 and coded as F1-F14.

3.5.2. Colorimetric Features. �e usage of colorimetric fea-
tures has tremendously increased in computer vision tasks
due to their discriminative ability across di	erent types of
objects. Color provides useful information to determine
malignancy. According to the cytological study, if any partic-
ular nuclei are a	ected by disease, the nucleus region changes
in color. For instance, malignant cell nuclei become darker in
color. In order to capture color features,means of R,G, B,H, S,
and V components were extracted independently from RGB
and HSV models. �ese features were coded in the range of
F15 to F20.

3.5.3. Textural Features. In cytological pleural e	usion
images, malignant and cancer cell nuclei di	er heavily in
their distribution of color and chromatin. For instance, the
frequent appearance of a distinct mass in a nucleus may be
suggestive of malignancy. Texture features have been widely
adopted in literature to exploit color and chromatin distribu-
tion. In this study, three statistical textural descriptors: 
rst
order statistics (FOS), gray level occurrence matrix (GLCM),
and gray level run-length matrix (GLRLM)were employed to
extract the textural features.

(1) Color Component Based First Order Statistics (CCFOS).
FOS describes the distribution of pixel intensities within a
nucleus region [30]. In related literature, the combination
of color and FOS features has achieved better accuracy
compared to conventional FOS features [31, 32]. �us, seven
FOS features for seven color components (namely, gray, R, G,
B, H, S, and V from RGB and HSV model) were extracted
for each nucleus. �e extracted features were named by color
component based on FOS (CCFOS) and encoded from F21
to F69. �e reason for extracting seven color components
was to obtain FOS textures from the view of di	erent
color components. Di	erent color components describe the
di	erent de
ned textures as given in Figure 6. �e details of
these extracted features are given in Table 3 and coded from
F21 to F69.
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Figure 5: Visual demonstration of identi
cation and splitting of overlapped cell nuclei.
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Figure 6: Individual color components of RGB and HSV color models in the segmented cell nuclei of CPE images.
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Table 2: List of morphometric features and their associated equations.

Code Feature Name Equation

F1 Area

�∑
�=1

�∑
�=1
�(�, �)

F2 Perimeter �V�� �����+√2 (��������)
F3 Roundness, circularity

4� ∗ �
�� �
�!���
2
F4 Solidity

�
�����V���
��
F5

Equivalent circular
diameter

√4 × �
���
F6 Compactness

�
�� �
�!���
2
F7 Eccentricity 2 ∗ (√(!�/2)2 − (!�/2)2)

!�
F8 Diameter

 �
�!���
2�
F9 Major axis length (!�) √(�1 − �2)2 − (&1 − &2)2
F10 Minor axis length (!�) √(�2 − �1)2 − (&2 − &1)2
F11 Elongation ma/perimeter

F12 MaxIntensity max(����'*�'��-)
F13 MinIntensity min(����'*�'��-)
F14 MeanIntensity mean(����'*�'��-)
�(�, �) is the segmented image of rows � and columns�. �� and�� are the major axis and minor axis of the nucleus, respectively. 	1, 
1 and 	2, 
2 are the end
points of the major axis and minor axis.

Table 3: List of CCFOS features and their associated equations.

Feature Name Equation

Mean (:) �−1∑
�=0
��(�)

Standard
deviation(;)

�−1∑
�=0
(� − :)2 ∙ �(�)

Smoothness 1 − (11 + ;2)
Variance

�−1∑
�=0
(� − :)2 �(�)

Skewness ;−3 �−1∑
�=0
(� − :)3 �(�)

Kurtosis ;−4 �−1∑
�=0
(� − :)4 � (�) − 3

Energy

�−1∑
�=0
�(�)2

�(�) is the number of pixels with gray level �, and L represents the number of
gray-level bins set for �.

(2) GLCM and GLRLM. FOS captures features only on
individual pixels. It ignores the spatial relationship between
neighboring pixels. In order to capture texture features that
take into account the spatial relationship between neighbor-
ing pixels, GLCM [33, 34] and GLRLM [35] based higher

order statistic features were considered. GLCM represents
the distribution of cooccurring intensities in a nucleus at
a speci
c given distance and orientation. When extracting
GLCM features, it is required to de
ne three parameters:
distance (d) and orientations (�) that determine the o	set
and angle between adjacent pixels, and the number of gray
levels (NG) in the image. In this study, d and NG were set
to 1 and 8, respectively. � was adopted for four orientations
0∘, 45∘, 90∘, 135∘ in order to take into account the rotation
of the image. �us, 22 GLCM features for four di	erent
orientations were extracted. GLRLM represents the length of
homogeneous runs for each gray level in a de
nite direction.
Similar to GLCM, GLRLM is constructed at four orientations
and 8 gray levels. 11 GLRLM features in four di	erent
orientations (0∘, 45∘, 90∘, 135∘) were extracted. Tables 4 and
5 describe the lists of GLCM and GLRLM feature and their
associated equations. Finally, a feature vector was generated
by combining 14 features of form morphology and 6 color
features and 181 textural features from CCFOS, GLCM, and
GLRLM.�e list of extracted features is given in Table 6. �e
class of each nucleus is labeled as either positive or negative
class under the guidance of cytologists.

3.6. Feature Selection. �e initial feature set contains 201
features related to morphometry, colorimetry, and texture.
Directly utilizing all candidate features for classi
cation may
cause redundancy and irrelevancy. Redundancy can lengthen
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Table 4: List of GLCM features and their associated equations.

Features Equations

Autocorrelation ∑
�
∑
�
(� ∙ �) �(�, �)

Contrast ∑
�
∑
�
|� − �|2�(�, �)

Correlation I ∑
�
∑
�

(� − :	)(� − :
)�(�, �);	;

Correlation II ∑

�
∑
�

(� ∙ �) � (�, �) − :	:
;	;

Cluster Prominence ∑

�
∑
�
(� + � − :	 − :
)4 �(�, �)

Cluster Shade ∑
�
∑
�
(� + � − :	 − :
)3 �(�, �)

Dissimilarity ∑
�
∑
�

@@@@� − �@@@@ ∙ �(�, �)
Energy ∑

�
∑
�
�(�, �)2

Entropy −∑
�
∑
�
�(�, �) ∙ log (� (�, �))

Homogeneity I ∑
�
∑
�

�(�, �)1 + |� − �|
Homogeneity II ∑

�
∑
�

�(�, �)1 + |� − �|2
Maximum Probability !���,��(�, �)
Sum of square ∑

�
∑
�
(� − V)2�(�, �)

Sum average

2�∑
�=2
� ∙ �	+
(�)

Sum energy − 2�∑�	+
(�) ∙ log (�	+
 (�))
Sum variance

2�∑
�=2
(� − ��! ����
&)2 ∙ �	+
(�)

Di	erence variance

�−1∑
�=0
�2 ∙ �	−
(�)

Di	erence entropy −�−1∑
�=0
�	−
(�) ∙ log(�	−
 (�))

Information measure of correlation I
(−∑� ∑� � (�, �) ⋅ log (� (�, �))) − (−∑�∑� � (�, �) ⋅ log (�	 (�) �
 (�)))

max (−∑� �	 (�) ⋅ log (�	 (�)) , −∑� �
 (�) ⋅ log (�
 (�)))
Information measure of correlation II (1 − exp[−2((−∑

�
∑
�
�	 (�) �
 (�) ⋅ log(�	 (�) �
 (�))) − (−∑

�
∑
�
� (�, �) ⋅ log(� (�, �))))])

1/2

Inverse Di	erence Normalized ∑
�
∑
�

�(�, �)1 + |� − �|2/F
Inverse di	erence moment normalized ∑

�
∑
�

�(�, �)
1 + (� − �)2/F

�(�, �) is the (�, �)�ℎ entry of the cooccurrence probability matrix, and � represents the number of gray levels used, while �	, �
 and �	, �
 are the mean and
standard deviation of the �.

computation time. In turn, irrelevancy may cause poor pre-
dictive accuracy. To handle these problems, feature selection
was performed in advance of classi
cation. Feature selection
is o�en applied in computer vision when many features

get extracted. It improves the prediction performance and
generalization capability and provides a faster andmore cost-
e	ective model. Feature selection is generally divided into
two techniques: 
lter and wrapper [36]. In 
lter techniques,
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Table 5: List of GLRLM features and their associated equations.

Features Equations

Short run emphasis (SRE)
1��
�∑
�=1

�∑
�=1

�(�, �)�2
Long run emphasis (LRE)

1��
�∑
�=1

�∑
�=1
� (�, �) ∗ �2

Low gray-level run emphasis (LGRE)
1��
�∑
�=1

�∑
�=1

�(�, �)�2
High gray-level run emphasis (HGRE)

1��
�∑
�=1

�∑
�=1
� (�, �) ∗ �2

Short run low gray-level emphasis (SRLGE)
1��
�∑
�=1

�∑
�=1

�(�, �)�2 ∗ �2
Short run high gray-level emphasis (SRHGE)

1��
�∑
�=1

�∑
�=1

� (�, �) ∗ �2
�2

Long run Low gray-level emphasis (LRLGE)
1��
�∑
�=1

�∑
�=1

� (�, �) ∗ �2
�2

Long run high gray-level emphasis (LRHGE)
1��
�∑
�=1

�∑
�=1
� (�, �)∗ �2 ∗�2

Gray level nonuniformity (GNU)
1��
�∑
�=1
[ �∑
�=1
�(�, �)]

2

Run length nonuniformity (RNU)
1��
��∑
�=1
[ �∑
�=1
�(�, �)]

2

Run percentage (RP)
����

�(�, �) denotes the number of runs of pixels of gray level � and the run length �,� is the number of gray levels in the image, � is the number of di	erent run
lengths in the image, �� is the total number of runs, and �� is the number of pixels in the image.

Table 6: List of various features extracted from each nucleus.

Name of Feature sets Number of Features Ranges

Morphometric Features 14 F1-F14

Colorimetric Features 6 F15-F20

CCFOS (Textural Features) 49 F21-F69

GLCM (Textural Features) 88 F70-F157

GLRLM (Textural Features) 44 F158-201

Combined Feature Set 201 F1-F201

the features are chosen depending on their relevance ability
with respect to the target. Filter methods are computationally
fast and easy to implement.However, there is a possibility that
the chosen features might contain redundant information
since the selection process is carried out on the statistical
measure of each feature. Unlike the 
lter approach, the
wrapper approach depends on learning methods. It utilizes
the estimated accuracy of the learning method as a perfor-
mance measure to evaluate the usefulness of a feature. As
an extension of the wrapper approach, the hybrid approach,
which combines metaheuristics methods and supervised
learning methods as integral components of feature selection,
has been widely utilized in medical image analysis [37–
39]. Experiments have found that hybrid methods are more

e�cient in 
nding optimal solutions compared to 
lter and
wrapper methods. �e main bene
t of the hybrid methods
is the ability to avoid being stuck in the local optima. In
this study, a novel hybrid feature selection method based on
hybridizing simulated annealing, one of the metaheuristics
methods, with an arti
cial neural network, one of the popular
machine learning methods, was developed to select the most
relevant and informative features. �e proposed method is
known as a hybrid simulated annealing coupling arti
cial
neural network (SA-ANN) feature selection. �e details of
SA-ANN are given in the subsection below.

3.6.1. Hybrid SA-ANNFeature Selection. Simulated annealing
is a global optimization algorithm that is inspired by the
natural annealing process inmetallurgy. Itmodels the anneal-
ing process of heating material and then gradually cooling
it by lowering the temperature at a controlled rate, thus
minimizing system energy [40]. It is typically used to search
for the global minimum in a high-dimensional data space.
�e main advantage of SA is that it allows up-hill moves in
the iteration to avoid being stuck at a local minimum. SA
has been widely used as a supervised or unsupervised feature
subset selectionmethod in datamining techniques, especially
for microarray gene classi
cation in biomedical data analysis
[41–43]. Inspired by those works, in this study, we developed
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Input: �����
�- -��,G��H�, I�!�, �'�ℎ�
Output: �����H�����'������ ←L �
����H�����'��'�����(�����
�- -��)��-�(��������), �������� ←L ������	
���	 �

(H�����'������)����� ←L ��������
��� (� = 1 : G��H�)N�O������ ←L �
����N���ℎ���
��'�����(��������)��-�(��), �� ←L ������	
���	 �

(N�O������)
�� (��-�(��) ≤ ��-�(��������)�������� ←L ��
������(���(��-��������� − ��-���I�!� ) > T��� ())

�������� ←L ��
�	��U (��-�(��������) ≤ ��-�(�����)����� ←L �����������I�!� = I�!� ∗ �'�ℎ�

�	�T���
�(�����)
Algorithm 1: �e main loop of hybrid SA-ANN based feature
selection.

a novel hybrid feature selection method by hybridizing SA
with an arti
cial neural network (ANN). ANN is a machine
learning algorithm that mimics the structure of the biological
brain. During feature selection via hybrid SA-ANN, the cost
value of SA based search space was computed depending on
the number of samples correctly predicted by ANN. Firstly,
the random initial feature subsets were created.�ese subsets
were assessed using a 3-layer ANN trained by a Levenberg-
Marquardt (LM) backpropagation algorithm [44] containing
a 
xed number of hidden neurons. �e features with the
most minimal cost were initialized as the best feature set. At
each iteration of SA, the neighboring subset was randomly
generated by implementing a neighborhood function. �en,
in a similar manner to the 
rst stage, a 3-layer ANN trained
by LM backpropagation algorithm was used to evaluate the
cost of the neighboring subset. If the neighboring subset had
a lower cost than the initial subset, we would then change
the initial subset to its neighboring subset. Alternatively, if
the neighboring subset had a higher cost, then the individual
would move to that subset only if the acceptance probability
condition was ful
lled. Otherwise, the individual remained
in the initial subset. By accepting individuals that increase the
cost, the algorithm avoids getting stuck by a local minimum
in early iterations and explores globally for better solutions.
As the algorithm progresses, the temperature is reduced
causing individuals to converge towards the subset with a
minimum cost and hence an optimal point. Hybrid SA-ANN
feature selection can be summarized using the pseudocode
in Algorithm 1, wherein feature set, MaxIt, Temp, and
alpha are the candidate features, maximum numbers of
iteration, initial temperature, and the temperature reduction
rate, respectively. S best is the output that represents the
corresponding optimal feature set.�e selected features in the
optimal feature set were utilized for training and testing the

classi
er. �e code implementation of proposed hybrid SA-
ANN feature selection is based on theMatlab implementation
available in [45] and modi
ed as necessary.

3.7. Classi�cation. �e selected features were utilized as input
to the classi
er to di	erentiate between benign andmalignant
cells. In cytology and histology image analysis, classi
cation
models revolve around Support Vector Machine (SVM)
[26, 27], Naı̈ve Bayes (NB) [27], arti
cial neural network
(ANN) [28], K-nearest neighborhood (KNN) [8, 27], Logistic
Regression (LR) [29], Linear Discriminant Analysis (LDA)
[8], Decision Tree (DT) [46], and Ensemble Classi
er (EC)
[31].�e selection of a classi
cation model for medical image
analysis depends on the type and size of the dataset to be
classi
ed. Our dataset of cell nuclei was large and highly
unbalanced wherein the class of cancer nuclei was limited
while the class of benign nuclei was abundant. Ensemble
classi
cation has yielded preferable results for classi
cation
of skewed data [47, 48]. �us, to deal with the unbalanced-
data distribution, we adopted an ensemble classi
er that
employs bootstrap aggregation (bagging) decision trees and
is termed as ECBDT [49, 50]. �e core idea of using ECBDT
was to develop multiple bootstrap data-samples and to build
multiple base classi
ers for each bootstrapped sample. One
hundred decision trees were used as the base classi
ers. �e

nal prediction of ECBDT was obtained through major vot-
ing. �e block diagram of the ECBDT classi
er is depicted in
Figure 7. �e classi
er was trained in 5-fold cross-validation.

4. Experiments

4.1. Experimental Setup. �e proposed CAD system pre-
sented here was developed in a Matlab environment using
a PC with Intel� Core i7, CPU@3.40 GHz, RAM@16.0
GB. �e study was based on 125 cytology pleural e	usion
images containing around 10500 cells. �e studied dataset
was randomly partitioned into training and testing sets in an
80-20% ratio. 80% of the images were allocated to the training
dataset to train the classi
er and 20% to the testing dataset
to validate the trained classi
er. Training and testing datasets
were disjointed (i.e., the same image was not assigned to
represent both training and testing datasets). It is noteworthy
that all the experiments carried out in this study are based on
the same experimental setting and environment.

4.2. Experimental Results and Discussion. To obtain a com-
prehensive discussion, the experimental results are discussed
in two phases. �e 
rst phase is the segmentation phase,
which encompasses preprocessing, the segmentation of cell
nuclei, postprocessing, and the isolation of cell nuclei. �e
second phase is the classi
cation phase, which comprises
feature extraction, feature selection, and classi
cation.

4.2.1. Segmentation Phase. Intensity adjustment and median

lter methods were employed to enhance image contrast
and suppress the noises, respectively. �en, a novel hybrid
SLIC/K-Means segmentation method was developed to seg-
ment the cell nuclei from the entire image. In SLIC/K-Means,
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Figure 7: Block diagram of ensemble classi
er of bagged decision trees (ECBDT) used in this study.

Table 7: Comparison of time complexity in segmentation methods
using testing images.

Segmentation methods Average processing time

Classical K Means 66.6 seconds

Proposed Method 5.8 seconds

the SLICmethod is 
rstly performed to presegment the image
into the small compact superpixels.�en,K-Means clustering
is carried out to cluster each superpixel into two groups
by using the extracted features from superpixels. Features
extracted over the uniform and compact SLIC superpixels
tend to be more discriminative, helping K-Means to produce
better segmentation. Good adherence to the image bound-
aries exhibited by SLIC superpixels results in smoother and
more accurate segmentation.UtilizingK-Means clustering on
superpixels can shorten computation because the number of
superpixels is signi
cantly lower than the number of pixels. It
scales up linearly in computational cost and memory usage.
�e proposed segmentation method extracts cell nuclei at a
lower computational cost and preserves the natural shape of
the cell nuclei while achieving excellent segmentation results.
In the hybrid SLIC/K-Means segmentation method, we need
to specify two parameters: the number of superpixels for
SLIC and the k clusters for K-Means. �e desired number
of superpixels was set to 500. According to our previous
work, k was set at 2 because cell nuclei are segmented in
a straightforward way when k is 2. False 
ndings such as
artifacts or blood cells may present obstacles to accurate
segmentation. �ese undesired regions were 
ltered out
with a series of morphological operations. Subsequently,
the boundaries of cell nuclei were furthered re
ned. �e
visual results of the proposed SLIC/K-Means n and classical

Table 8: Comparison of time complexity in splitting methods using
testing images.

Splitting methods Average processing time

Concavity analysis 10.2 seconds

Proposed method 6.8 seconds

K-Means, supplemented by the same preprocessing and
postprocessing approaches, are demonstrated in Figure 8.
Compared to classical K-Means clustering based segmenta-
tion, the proposed method performs better in preserving the
natural shape of the cell nuclei. Moreover, it is signi
cantly
faster than classical K-Means in computation, as given in
Table 7.

Almost all the images in the studied dataset possessed
an overlapped cell nucleus to di	erent degrees. Separating
them into individual ones was hence essential. In almost
all related literature, cell splitting is applied directly on the
entire segmented image.�ismeans that the splitting method
is processed not only on overlapped regions but also on
single cell nuclei regions. Such an attempt can lengthen
computation time. In contrast, we propose a sequential
combination of shape-based analysis and concavity analysis
to identify overlapped areas and isolate them into individual
ones. First, shape-based analysis was performed to determine
the overlapped cell nuclei and separate them from single
cell nuclei regions. �en, contour concavity analysis based
splitting is applied only on the identi
ed overlapped nuclei,
rather than on all nuclei in the image. By identifying over-
lapped regions before applying the splitting method, one can
not only prevent over- and undersplitting but also shorten
computation time, as tabulated in Table 8. �e visual results
of splitting overlapped cell nuclei are illustrated in Figure 9.



14 BioMed Research International

(a) (b) (c)

Figure 8: Comparison results of nuclei segmentationmethods: (a) original image, (b) proposed method (SLIC +K-Means), and (c) K-Means
clustering based segmentation.

(a) (b) (c)

Figure 9: Comparison results of overlapped nuclei splitting methods: (a) segmented nuclei (input), (b) proposed splitting method based on
the combination of shape analysis and concavity analysis, and (c) contour concavity analysis (note that the yellow rectangular box indicates
the over- and undersplitting).

Figure 9(a) shows the segmented nuclei image. Figure 9(b)
represents the resulting images from our proposed splitting
methods (i.e., the combination of shape analysis and contour
concavity analysis) and Figure 9(c) depicts the resulting
images from classical contour concavity analysis. As shown
in Figure 9(b), employing a splitting method only on the
identi
ed overlapped region can prevent the single cell
nuclei from oversplitting and overlapped cell nuclei from
undersplitting. �is happens because the splitting method is
focused solely on the overlapped area. �e yellow shading

box in Figure 9(c) is illustrated to highlight the over- and
undersplitting which result from using the classical concavity
analysis based splitting method.

4.2.2. Classi�cation Phase. Once the nuclei were accurately
delineated, 201 features representing the morphometric, col-
orimetric, and textural features were extracted from each
nucleus. In order to avoid redundancy and irrelevancy, hybrid
SA-ANN feature selection was developed to choose the most
discerning and informative features. Promising features that
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Figure 10: Correlation matrix for the selected features using hybrid SA-ANN feature selection (note that correlation =1 (white) means the
highest correlation, -0 (black) no correlation).

Table 9: Description of selected features through hybrid SA-ANN feature selection.

No. Feature Code Feature Name Feature Set

(1) F37 Smoothness of B component CCFOS

(2) F163 Short run high gray-level emphasis GLRLM0

(3) F 51 Smoothness of S component CCFOS

(4) F 82 Sum of square GLCM0

(5) F 96 Cluster Prominence GLCM45

(6) F 55 Energy of S component CCFOS

(7) F 146 Homogeneity II GLCM 135

(8) F 19 Mean color of S component Colorimetric

(9) F 25 Skewness of R component CCFOS

(10) F 187 Long run high gray-level emphasis GLRLM 90

(11) F 88 Information Measure of Correlation GLCM0

(12) F 132 Di	erence Entropy GLCM 90

(13) F 2 Perimeter Morphometric

(14) F 12 MaxIntensity Morphometric

(15) F 183 High gray-level run emphasis GLRLM 90

(16) F4 Solidity Morphometric

(17) F 70 Autocorrelation GLCM 0

(18) F 28 Mean from G component CCFOS

(19) F 168 Run percentage GLRLM0

(20) F 128 Sum Entropy GLCM0

correctly map to the target are identi
ed by supervised
ANN and used in the annealing process. �e SA-ANN
algorithm was iterated 50 times with an initial temperature
(temp=10) and temperature reduction rate (alpha=0.99).�e
algorithm was adapted to select a di	erent desired number
of features (nf) such as 15, 20, 25, 30, 35, and 40. Based
on the experimental results obtained, it was deduced that

selecting more than 20 features resulted in slightly decreased
classi
cation accuracy. �us, the SA-ANN algorithm was

xed to select 20 features out of 201 features. �e list of
selected features and their correlation matrix are described in
Table 9 and Figure 10, respectively. By analyzing the selected
features, it was revealed that they included one or more
representative features from each group of features given in
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Section 3.5. Among 20 selected features, 16 features were
textural features. �us, it is reasonable to conclude that tex-
tural features supply more diagnostic information than other
features. Moreover, the correlation matrix demonstrates that
proposed hybrid SA-ANN feature selection selected the most
signi
cant features with less redundant information. �e
selected features were used as input to the classi
cation
model to predict malignancy. Classi
cation model choice
depends on the size and the type of data to be predicted.
Our data is highly skewed, wherein the cell nuclei, belonging
to malignant (positive), were limited, and the cell nuclei

belonging to benign (negative) were abundant. �us, we
adopted ensemble classi
cation which provides preferable
results to the classi
cation of unbalanced data. As mentioned
in Section 3.6, the dataset was 
rstly bootstrapped randomly,
and 100 decision trees were used as the base classi
ers to
classify the bagged datasets. �e 
nal classi
cation result was
obtained throughmajor voting. To evaluate classi
cation per-
formance, we compared the ground truth and classi
cation
results with respect to four performance metrics: sensitivity,
speci
city, F-score, and accuracy. �ese four performance
measures are formulated in (3)-(8).

���-���V��& = I
�� �-���V�(I
�� �-���V� + ��'-�N�����V�) (3)

�����U����& = I
��N�����V�(I
��N�����V� + ��'-� �-���V�) (4)

 
���-��� = I
�� �-���V�(I
�� �-���V� + ��'-� �-���V�) (5)

T���'' = ���-���V��& (6)

� − -��
� = 2 ∗  
���-��� ∗ T���''( 
���-��� + T���'') (7)

����
��& = (I
�� �-���V� + I
��N�����V�)
(I
�� �-���V� + ��'-� �-���V� + ��'-�N�����V� + I
��N�����V�) (8)

To make a fair and objective comparison, a common
public dataset is required. By far, we are not aware of
any common publicly available dataset. Also, the diagnosis
schemes of CPE images in related literature are di	erent
from the proposed diagnosis scheme.�us, we built our own
experimental setup wherein the impact of using di	erent
feature selection methods and di	erent classi
cation models
on classi
cation performance was observed. In the 
rst
three experimental scenarios, we compared the classi
ca-
tion accuracy achieved with and without features using
the proposed classi
er (i.e., ECBDT). In the 
rst scenario,
we compared the results between our proposed SA-ANN
approach and an “all features” approach (i.e., without feature
selection). Secondly, the result of the SA-ANN approach
was compared with the results of the SA approach. In the
third scenario, we established a comparison between the SA-
ANN approach and other robust hybrid feature selection
methods: PSO-ANN and GA-ANN approach. Furthermore,
in the fourth experimental scenario, we employed seven
alternative classi
ers, namely, SVM [23], ANN [51], NB [52],
KNN [53], LR [52], LDA [54], and DT [55] classi
ers, and
coupled them with the feature selection approaches. �e
result achieved by the proposed synergy between SA-ANN
feature selection and ECBDT classi
cation was compared
with the results obtained through various pairings.�erefore,
for each feature selection approach, the experimental results
are presented with respect to four performance measures and
eight classi
cation models (including ECBDT). �e results

from four experimental scenarios are shown in Table 10.
We clarify that hybrid SA-ANN coupling with an ECBDT
classi
er (shaded in bold) is our proposed method. As
reported in Table 10, utilizing the feature selection methods
(i.e., SA-ANN, SA, PSO-ANN, GA-ANN, or SA) provided
better accuracy compared to the all features approaches (i.e.,
without feature selection) for all classi
ers. �e results also
demonstrate that, with the exception of coupling with SVM,
KNN, and LR classi
ers, the proposed SA-ANN selection
marginally improves accuracy compared to the SA based
approach and yields better accuracy compared to PSO-ANN
and GA-ANN approaches when coupling with ANN, NB,
LD, DT, and proposed ECBDT classi
ers. When coupling
with an SVM classi
er, the PSO-ANN approach yields better
results compared to other selection approaches. Similarly, the
GA-ANN approach yields better accuracy compared to other
feature selectionmethodswhen couplingwithKNNclassi
er.
Likewise, the SA approach yields better accuracy compared to
other feature selection methods when coupling with LR. �e
superior feature selection method for each classi
er is shown
in italic. It was observed that di	erent classi
ers perform
di	erently for di	erent selected features. However, regardless
of the feature selection methods utilized, ECBDT (ensemble
classi
er) consistently provided better accuracy compared to
other single classi
ers. From the experimental results, it is
inferred that the synergy of hybrid SA-ANN coupling with
an ECBDT classi
er outperformed other pairs of feature
selection approaches and classi
cation models described



BioMed Research International 17

Table 10: Comparison of classi
cation performance achieved by di	erent synergy between feature selection methods and classi
cation
models.

Feature Selection (FS) Performance Metrics
Classifiers

SVM ANN NB KNN LR LDA DT Proposed ECBDT

All features (No FS)

Sensitivity 72.18% 75.19% 66.17% 72.93% 71.43% 75.19% 71.43% 74.48%

Speci
city 95.47% 94.48% 93.41% 95.51% 94.82% 95.12% 94.10% 96.11%

F-score 57.31% 55.25% 46.93% 57.91% 54.44% 57.64% 51.91% 61.73%

Accuracy 94.21% 93.44% 91.95% 94.29% 93.57% 94.05% 92.88% 94.98%

PSO-ANN

Sensitivity 73.65% 70.91% 69.16% 74.29% 69.23% 69.16% 71.83% 76.47%

Speci
city 96.64% 96.11% 95.67% 96.72% 96.11% 95.67% 96.32% 97.09%

F-score 76.29% 77.33% 74.30% 75.96% 69.96% 74.30% 80.42% 80.28%

Accuracy 97.21% 97.25% 96.64% 97.21% 97.29% 96.64% 97.73% 97.73%

GA-ANN

Sensitivity 87.97% 86.47% 64.66% 87.97% 87.22% 64.66% 86.47% 86.47%

Speci
city 97.22% 97.09% 99.44% 98.20% 97.31% 99.44% 98.63% 98.93%

F-score 74.29% 72.78% 74.14% 80.14% 74.36% 74.14% 82.14% 84.25%

Accuracy 96.72% 96.52% 97.57% 97.65% 96.76% 97.57% 97.98% 98.26%

SA

Sensitivity 85.71% 86.47% 90.23% 84.21% 84.96% 90.23% 84.21% 87.22%

Speci
city 97.22% 97.73% 97.60% 97.52% 98.37% 97.60% 99.14% 99.27%

F-score 73.08% 76.41% 77.67% 73.93% 79.58% 77.67% 84.53% 87.22%

Accuracy 96.60% 97.13% 97.21% 96.80% 97.65% 97.21% 98.34% 98.62%

Proposed SA-ANN

Sensitivity 85.71% 72.93% 72.93% 84.21% 79.70% 72.93% 86.47% 87.97%

Speci
city 97.22% 99.70% 99.66% 97.52% 98.16% 99.66% 99.27% 99.40%

F-score 73.08% 81.86% 81.51% 73.93% 75.18% 81.51% 86.79% 87.79%

Accuracy 96.60% 98.26% 98.22% 96.80% 97.17% 98.22% 98.58% 98.70%
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Comparison of Accuracy

Figure 11: Comparison of accuracy using di	erent pairs of feature selection methods and classi
ers.

above in terms of classifying cells in CPE images. To get
clear comparison results, we further plotted the comparison
of accuracy and F-score as illustrated in Figures 11 and 12,
respectively. Moreover, a Receiver Operating Characteristics
(ROC) curve for di	erent classi
ers coupling with SA-ANN
feature selection is depicted in Figure 13. It shows that
the ROC curve of the proposed method is on the le�
upper corner and has higher classi
cation rate stability when
compared to other methods in the study. �e visual results
of detected malignant nuclei (both correct and failed cases)
are depicted in Figure 14. Figure 14(a) shows annotated
malignant cell nuclei labeled by two experts inwhich blue and
green represent the two experts. Figure 14(b) describes the

diagnostic results of the proposed CAD system wherein the

red bounding boxes represent the detected malignant cells.

Even though the proposed method yields promising results,

there are still some failures especially when the malignant

characteristics of a cell occur in the cytoplasm. �erefore, it

remains for future work to detect for malignancy based on

the combined analysis of cell nuclei and cytoplasm.

5. Conclusion

In this study, we presented a novel CAD system to detect

cancer cells on CPE images. Firstly, intensity adjustment
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Figure 12: Comparison of F-score using di	erent pairs of feature selection methods and classi
ers.
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Figure 13: ROC curve for the performance of SA-ANN feature selection by blending with eight di	erent classi
ers.

and median 
lter methods were employed to enhance image
contrast and suppress noise, respectively. �en, the cell nuclei
were extracted using a novel hybrid SLIC/K-Means seg-
mentation method followed by postprocessing. Overlapped
nuclei regions were then identi
ed through shape-based
analysis. Subsequently, concavity analysis was utilized to
isolate the detected overlapping regions into individual ones.
A�er the cell nuclei were accurately delineated, 201 features
that comprise the morphometric, colorimetric, and textural
features were extracted fromeach nucleus. A feature selection
framework based on a hybrid SA-ANN was developed to
select the most signi
cant and informative features from the
initial feature set containing those 201 features. �e chosen
features were used as input into ECBDT classi
er to predict
for malignancy. �e proposed method can achieve 87.97%
sensitivity, 99.40% speci
city, 98.70% accuracy, and 87.80%
F-score. �e results achieved were compared with the results
gained through an “all features”, SA, PSO-ANN, and GA-
ANN approaches by coupling with eight di	erent classi
ers,
namely, ECBDT, SVM, ANN, NB, KNN, LR, LDA, and DT.

�e comparison results demonstrated that the hybrid SA-
ANN approach signi
cantly improves accuracy compared to
the “all features” approach for all classi
ers. It marginally
improves accuracy compared to the PSO-ANN, GA-ANN,
and SA methods for most classi
ers. Furthermore, the
ECBDT classi
er consistently improves classi
cation perfor-
mance compared to other individual classi
ers: SVM, ANN,
NB, KNN, LR, LDA, and DT. �e proposed CAD system
based on the synergy between SA-ANN feature selection and
an ensemble classi
er outperformed all other combinations
conducted in this study. Nevertheless, there were still some
failures, especially when the malignant characteristics of a
cell occur in the cytoplasm. Hence, the future work of this
research is to extend the combined analysis of cytoplasm and
nuclei and further classify the detected malignant cells into
di	erent types, such as lung carcinoma, breast carcinoma,
mesothelioma, and lymphoma. �ere is also a potential of
adapting the proposed CAD system to the same kind of
cytopathology images captured from other body �uid types
such as the peritoneal, cerebrospinal, and synovial �uid.
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(a) (b)

Figure 14: Visual demonstration of diagnostic results using the proposed CAD system to detect malignant cells in CPE images: (a) the
original image with ground truthmalignant cells annotated by two experts (blue and green circles represent the two experts) and (b) detected
malignant cells through the proposed CAD system.
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