
Computer-Aided Discovery and Characterization of Novel Ebola 

Virus Inhibitors

Stephen J. Capuzzi1,#, Wei Sun2,#, Eugene N. Muratov1,3, Carles Martínez-Romero4,5, 
Shihua He6, Wenjun Zhu6,7, Hao Li2, Gregory Tawa2, Ethan G. Fisher2, Miao Xu2, Paul 

Shinn2, Xiangguo Qiu6,7, Adolfo García-Sastre4,5,8, Wei Zheng2,*, and Alexander Tropsha1,*

1 Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC 
Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 
27599, USA.

2National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, 
MD 20892, USA.

3 Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, 
Ukraine.

4Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, 
USA.

5Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New 
York, NY 10029, USA.

6Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 
1015 Arlington Street, Winnipeg, MB R3E 3R2 Canada.

7Department of Medical Microbiology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, 
Manitoba R3E 0J9, Canada

*Corresponding Authors Alexander Tropsha; Laboratory for Molecular Modeling, Eshelman School of Pharmacy, University of 
North Carolina, Chapel Hill, NC, 27599, USA; Tel: +19199662955; Fax: +19199660102; alex_tropsha@unc.edu. Wei Zheng; 
Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 
Medical Center Drive, Bethesda, MD 20892, USA. Tel: +13012175251; Fax: +13012176018; wzheng@mail.nih.gov.
#Contributed equally
Author Contributions:
SJC, and WS contributed equally.

Conflict of Interest Disclosure:

The authors declare no competing financial interest.

ASSOCIATED CONTENT

Supporting Information

Csv versions of Tables 1 and 2 containing molecular formula strings are provided as Supplementary Files 16 and 17, respectively. All 

QSAR models from Chembench, HiT QSAR, and GUSAR are available for download from Figshare (https://figshare.com/s/

d394aa911c37b08bcc64) in Supplementary Files 11–13, respectively. Additionally, all the datasets and Chembench models are 

provided in and on the Chembench Web-Portal (https://chembench.mml.unc.edu/), which provides public access and use of data and 

models used in this study. The P1, P2, HEK, and HeLa training sets are publicly indexed as “Ebola_SM1” and “Ebola_PCM4”, 

“151105_Ebola_Toxicity_HEK”, and “151105_Ebola_Toxicity_HELA”, respectively. The Chembench P1, P2, and HeLa models are 

publicly indexed as “153004_ebola_Strict_Model1_166_DragonH”, “151305_ebola_1224_PCM4”, and “151105_ebola_tox_HeLa”, 

respectively.

All other supplementary data, i.e., supplementary Figures and Tables, readme file with brief description of supplemental files, and 

Supplementary Files 1–10 and 14–18 are provided in Supplementary_data.zip. This material is available free of charge via the Internet 

at http://pubs.acs.org.

HHS Public Access
Author manuscript
J Med Chem. Author manuscript; available in PMC 2019 June 04.

Published in final edited form as:

J Med Chem. 2018 April 26; 61(8): 3582–3594. doi:10.1021/acs.jmedchem.8b00035.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://figshare.com/s/d394aa911c37b08bcc64
https://figshare.com/s/d394aa911c37b08bcc64
https://chembench.mml.unc.edu/
http://pubs.acs.org/


8Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount 
Sinai, New York, NY 10029, USA

Abstract

The Ebola virus (EBOV) causes severe human infection that lacks effective treatment. A recent 

screen identified a series of compounds that block EBOV-like particle entry into human cells. 

Using data from this screen, Quantitative Structure-Activity Relationship (QSAR) models were 

built and employed for virtual screening of a ~17 million compound library. Experimental testing 

of 102 hits yielded 14 compounds with IC50 values under 10 μM, including several sub-

micromolar inhibitors, and more than 10-fold selectivity against host cytotoxicity. These 

confirmed hits include FDA-approved drugs and clinical candidates with non-antiviral indications, 

as well as compounds with novel scaffolds and no previously known bioactivity. Five selected hits 

inhibited BSL-4 live-EBOV infection in a dose-dependent manner, including vindesine (0.34 μM). 

Additional studies of these novel anti-EBOV compounds revealed their mechanisms of action, 

including the inhibition of NPC1 protein, cathepsin B/L, and lysosomal function. Compounds 

identified in this study are among the most potent and well-characterized anti-EBOV inhibitors 

reported to date.
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INTRODUCTION

The 2014 Ebola outbreak was the largest and most persistent since the discovery of the 

Ebola virus (EBOV) in 1976. Alarmingly, a new EBOV outbreak was confirmed in the 

Democratic Republic of Congo in May 2017.1 Though advances in the research and 
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development of Ebola therapeutics have been made,2–4 Ebola drug discovery endeavors are 

hindered due to the high virulence of the EBOV and its biosafety level 4 (BSL-4) 

classification.5 Recently, a biosafety level 2 (BSL-2) Ebola virus-like particle (VLP) entry 

assay was developed and utilized for a drug repurposing screen of Food and Drug 

Administration (FDA)-approved drugs.6–8 The Ebola VLP contains glycoprotein (GP) and 

the matrix protein VP40 fused to a beta-lactamase reporter for monitoring of VLP entry into 

cells. Although this BSL-2 Ebola VLP assay enables rapid compound screening, it requires a 

centrifugation step for assay plates at 1,500 g for 45 minutes at 4 °C that limits its screening 

throughput. Computational approaches that leverage generated data can be used to design or 

select small sets of compounds for lead identification in order to reduce the time and costs of 

high throughput screening.

Using the existing data from the Ebola VLP entry assay as well as cytotoxicity data, QSAR 

models9 can be built and then employed for virtual screening of large chemical libraries to 

predict active compounds against EBOV infection with low expected toxicity. Indeed, 

QSAR modeling approaches have been previously employed for identification of 

compounds with efficacy against EBOV.10,11 Herein, we describe a study that relied on 

synergistic combination of statistical data modeling and experimental testing for both 

antiviral inhibitor potency and host cell cytotoxicity (Figure 1). Our study utilized both 

BSL-2 and BSL-4 assays to experimentally validate hits identified computationally.

To identify compounds with anti-EBOV activity and limited host cell cytotoxicity, we 

designed an integrated QSAR modeling system for virtual compound screening that is 

combined with experimental testing on a focused set of predicted compounds. In this study, 

existing antiviral activity and compound cytotoxicity data were collected and carefully 

curated; respective QSAR models were built and rigorously validated; these models were 

employed for virtual screening of a large chemical library (~17 million compounds), 

resulting in 102 hits prioritized for experimental testing; the anti-EBOV activity in the Ebola 

VLP assay and cytotoxicity in host cells of these hits were determined experimentally in 

BSL-2 and BSL-4 assays; and the mechanisms of anti-EBOV activity for confirmed hits 

were identified. Ultimately, 14 potent hits with activity ranging between 0.272 μM and 9.65 

μM as well as more than 10-fold selectivity over compound cytotoxicity in host cells were 

confirmed. Next, five selected hits were shown to inhibit BSL-4 live-EBOV infection in a 

dose-dependent manner. Two of these hits possessed novel scaffolds, making them 

candidates for further medicinal chemistry optimization as potential anti-EBOV agents. This 

study presents the first example of computationally-driven prioritization and experimental 

discovery of novel potent anti-Ebola compounds with high therapeutic windows in the 

published literature.

RESULTS

Model Performance

Prior to the modeling, MODIs of 0.69 and 0.68 were calculated for the P1 and P2 datasets, 

respectively. For each protocol, three separate software packages (Chembench, HiT QSAR, 

and GUSAR) employing different descriptors and different machine learning techniques 

(MLTs) were utilized for model building. In total, six individual models were built and 
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rigorously validated. Results of 5-fold external cross-validation are presented in 

Supplementary Table 1. In order to demonstrate that the predictive power of the models was 

not due to random correlation between bioactivity and chemical descriptors, 1000 rounds of 

Y-randomization was performed. No Y-randomized models had a CCR above 0.60.

For P1, models built with HiT QSAR and GUSAR had the highest predictive accuracy, 

irrespective of the use of different chemical descriptors and MLTs. For P2, HiT QSAR again 

showed the best performance. Additionally, the CCR of the Chembench model improved by 

~7% for P2 over P1. All models were deemed robust and statistically valid (see 

Supplementary Table 1).

For HeLa and HEK cell lines, MODI of 0.65 and 0.70 were obtained, respectively. For HeLa 

cytotoxicity, GUSAR yielded the best overall model. Chembench and GUSAR had inverse 

sensitivity and specificity profiles, indicating that Chembench could better identify toxic 

compounds, while GUSAR could better identity non-toxic compound. This observation 

highlights the reciprocal benefit of consensus modeling, i.e., utilizing all the models for VS. 

No Y-randomized models had a CCR in access of 0.60. All models were deemed robust and 

statistically valid. For HEK cytotoxicity, GUSAR again proved to be the best overall model. 

On the other hand, Chembench and HiT QSAR were not statistically validated, as several 

metrics fell below the 0.60 threshold. Thus, only GUSAR was used for prediction of HEK 

cytotoxicity. Y-randomized models for GUSAR did not exceeded a CCR of 0.60. A 

summary of all model performance can be found in Supplementary Table 1. Original HTS 

data are available in Supplementary Files 1–4. All datasets and developed models are 

provided in Supplementary Files 5–13. Datasets and Chembench models are also publicly 

available on the Chembench Web-Portal (https://chembench.mml.unc.edu/).

Interpretation of the developed models revealed high impact of lipophilicity on antiviral 

activity. Lipophilicity affects drug absorption, bioavailability, ligand-receptor interactions, 

clearance, and toxicity and traditionally plays an important role. Indeed, we have found that 

the average logP value for training set Ebola inhibitors is 3.8 compared with 2.2 for non-

inhibitors. From a design perspective, therefore, given that both logP values do not violate 

Lipinski’s rule for lipophilicity,12 increasing the logP may be desirable.

QSAR-Based Virtual Screening

QSAR-based virtual screening (VS) was carried out according to the workflow presented in 

Figure 2. Initially, ~17 million compounds (see Methods) were downloaded, prepared, and 

screened. As previously stated, “hits” were those compounds that were within the AD of the 

respective model and predicted by all models to have high antiviral activity and limited host 

cytotoxicity. In total, 102 VS hits were selected for experimental validation in the Ebola-

VLP entry assay. In the light of revealed importance of lipophilicity, we aimed to give a 

priority to hydrophobic compounds. LogP of the selected hits ranged between 2.63 and 7.22 

with the average value of 4.96, which is higher than average of 3.8 for training set Ebola 

inhibitors.
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Experimental Evaluation

Experimental confirmation of Anti-EBOV activity of 14 compounds—Based on 

the virtual screening results, 102 compounds were purchased and experimentally screened in 

the Ebola-VLP entry assay in parallel with an ATP content assay to determine compound 

cytotoxicity in host cells. All compounds were screened at 11 concentration dilutions 

ranging from 0.001 to 57 μM.13 Out of 102 compounds tested, 51 showed greater than 50% 

inhibition, indicating that half of compounds had confirmed anti-EBOV activity. Next, 20 of 

these 51 compounds exhibited the IC50 values under 10 μM. Because the compound 

cytotoxicity at higher compound concentrations might reduce the Ebola VLP entry in cells, 

these potential false positive compounds should be deprioritized. After comparing to the 

compound cytotoxicity data, 14 of these confirmed compounds showed a greater than 10-

fold selectivity index (SI) of anti-Ebola VLP entry over compound cytotoxicity. Vindesine 

and BIX-01294 inhibited the virus in the nanomolar range (Supplementary Figure 1). 

Moreover, these 14 confirmed compounds, except for ZINC91973695 and ZINC67869167, 

have known mechanisms of action (MOAs) and therapeutic indications (Table 1), including 

eight anti-cancer, two antihistamines, and two anti-psychotic and anti-inflammatory agents 

(Table 1). The remaining two compounds obtained from the ZINC database (ZINC91973695 

and ZINC67869167) have no previously reported bioactivities, anti-Ebola or otherwise. Five 

hits were further validated in a live EBOV infection assay at bio-safety level-4 (BSL-4). All 

five hits showed dose-response inhibition against EBOV infection (Figure 3). Vindesine was 

the most potent compounds with an IC50 of 0.34 μM. The IC50 values of NVP-ADW742, 

BIX-01294, ZINC67869167, and ZINC91973695 were between 1 μM to 10 μM in the live 

EBOV infection assays.

Mechanisms of action against EBOV entry

We probed the chemical biology of these hit compounds in both viral and host systems in 

order to uncover the mechanisms of anti-EBOV action. We examined the potential sites for 

drug interaction including Niemann Pick C1 (NPC1) protein, lysosomal function, cathepsin 

B, and cathepsin L,14–16 as well as the direct binding of these compounds to the Ebola VLP 

proteins using thermal shift binding assays.17 The results of chemical biology studies 

revealed that these compounds may act via one or more these targets/mechanisms.

Direct binding of compounds to Ebola envelop viral proteins—The process of 

EBOV entry into cells involves binding of viral envelop protein(s) to the cell membrane 

receptor protein/molecule, endocytosis, movement of endocytic vesicles to early/late 

endosomes and lysosomes, and ejection of viral RNA into the cytosol.18 Therefore, 

inhibition of viral protein binding to cell membrane proteins/binding partners can effectively 

reduce viral entry and subsequent viral replication in cells. Because the cell surface binding 

protein/molecule for Ebola viral proteins is still unclear, we determined direct binding of 

these compounds to recombinant Ebola protein. To examine whether these compounds 

directly interact with the EBOV, their ability of stabilizing Ebola protein was tested in a 

thermal shift assay using recombinant Ebola VLP. None of the compounds at 50 uM were 

able to protect Ebola VLP from thermal denaturation. (Supplementary Figure 2).
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Inhibitions of cathepsin B and L activities—Cathepsin B and L are lysosomal 

endopeptidases that had been reported to prime EBOV proteins in lysosomes before the viral 

RNAs are injected into the cytosol for virus replication. Inhibition of cathepsin B or L 

significantly reduces EBOV infection.14 GANT61 (an inhibitor of GLI1 and GLI2-induced 

transcription), deptropine (an antihistamine), and ebastine (an antihistamine) inhibited the 

enzymatic activity of cathepsin L (Figure 4a and 4b). Only GANT61 inhibited enzymatic 

activity of cathepsin B (Figure 4c and 4d).

Inhibition of function of NPC1 protein—The NPC1 protein has been reported as an 

intracellular receptor for EBOV.15,16,19 Significant reduction of EBOV entry and infection 

were observed in the NPC1-deficient cells and mouse models.15,20 Ebastine increased 

cholesterol accumulation in cells determined by the filipin staining assay, which indicated a 

functional impairment of NPC1 protein; whereas, the other eight evaluated hits did not 

impair NPC1 protein function (Figure 5a).

Enlargement of lysosome size—Lysosomes in cells are enlarged after treatment with 

certain compounds that damage lysosome functions, resulting in accumulation of lipids and 

other macromolecules.21 The enlarged lysosomes are often observed in the patient cells with 

lysosomal storage diseases caused by mutations in lysosomal proteins and lipid 

accumulation.22 EBOV entry is significantly reduced after the lysosomal functions are 

impaired by compounds. All of the nine evaluated hits increased LysoTracker dye staining in 

cells, indicating an enlargement in lysosome size (Figure 5b).

Cheminformatics Analysis

Assay Liabilities—First, using substructural pattern matchers implemented in ZINC15,23 

the 14 experimentally confirmed hits were found to be free of chemical aggregation 

liabilities.24 Furthermore, we followed a recent ACS editorial25 and this journal 

requirements (http://pubs.acs.org/paragonplus/submission/jmcmar/jmcmar_authguide.pdf) 

for the evaluation of pan-assay interference compounds (PAINS)26. Although several recent 

studies,27,28,29 demonstrated that PAINS alerts are not reliable indicators of assay 

interference propensity, we have performed this analysis and found that none of the hits 

possessed any PAINS alerts. In addition, as the assay employed herein relied on a beta-

lactamase reporter system, all 14 hits were also checked for potential beta-lactamase 

inhibition trends using PubChem Promiscuity.30 No heightened beta-lactamase assay 

activity trends were observed, indicating that these hits are not assay artifacts 

(Supplementary File 14).

Chemical Similarity to Training Set Compounds—Hierarchical clustering analysis 

revealed that majority of the hits are structurally dissimilar from each other, aside from 

afimoxifene and endoxifen (Supplementary Figure 3). Clustering thus indicates the hits 

discovered in this study access a wide range of chemical space across several unique 

chemotypes. The structural similarity based on the Tanimoto coefficient (Tc) of the 14 hits 

were then compared with compounds in the antiviral training sets (Supplementary Table 2) 

in order to assess the uniqueness of hits. In addition to being highly structurally similar to 

each other, afimoxifene and endoxifen both have Tc above 0.90 to tamoxifen, which was a 
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previously reported anti-Ebola inhibitor.31 Likewise, tetrandrine is highly structurally similar 

(Tc=0.97) to cepharanthine, a training set active compound. The most potent hit in this 

study, vindesine, had a Tc of 0.96 to vinblastine, which was the most potent hit in the 

original screen.31 These hits, while not entirely unique from a chemical perspective, 

illustrate that the developed QSAR models are robust and that the experimental assays are 

reproducible. The remaining 10 hits were considerably dissimilar from any training set 

compounds (Tc = 0.63–0.89), thereby constituting novel anti-Ebola chemotypes as 

compared to the training set compounds.

Comparison to Previously Reported EBOV Inhibitors

The potencies and structures of the 14 hits identified in this study were compared to a 

compiled set of 60 previously published compounds with either in vitro or in vivo anti-Ebola 

activity.2,7,32,33 The full list of previously known published compounds and their potencies 

can be found in the Supplementary File 15.

The most potent hit identified from virtual screen was vindesine (0.272 μM), a vinca 

alkaloid microtubule inhibitor. Previously, other vinca alkaloids were reported as sub-

micromolar inhibitors of the EBOV in vitro. These vinca alkaloids, vinblastine (0.048 μM), 

vinorelbine (0.066 μM), and vincristine (0.141 μM),7 are highly structurally similar to 

vindesine (Table 2). Colchicine and nocodazole, microtubule inhibitors that are structurally 

distinct from the vinca alkaloids, were also previously reported as sub-micromolar 

inhibitors. The identification of vindesine as one of the most potent hits identified to date 

highlights the robustness of the developed QSAR models, as well as the efficacy of this class 

of compounds and compounds with the same associated MOA as viable anti-Ebola 

compounds.

The second most potent hit identified from the virtual screen was BIX-01294 (0.97 μM). 

This compound is among most potent reported anti-Ebola compounds. Moreover, 

BIX-01294 is structurally dissimilar from other previously reported compounds (Table 2) 

and has a unique primary MOA (G9a histone methyltransferase inhibition).34 In contrast to 

vindesine, the identification of BIX-01294 demonstrates the ability to QSAR-based virtual 

screening to retrieve structurally novel chemotypes.

The next most potent series of hits includes afimoxifene (1.36 μM), tetrandrine (2.16 μM), 

NVP-ADW742 (3.05 μM), and endoxifen (3.05 μM). Afimoxifene and endoxifen are 

metabolites of tamoxifen (Table 2), which was previously reported as a sub-micromolar 

Ebola inhibitor 7. Likewise, tetrandrine is structurally similar to cepharanthine (Table 2),7 as 

both are isolated from the same plant genus. NVP-ADW742, on the other hand, is 

structurally dissimilar from any previously reported compound (Table 2). However, 

additional tyrosine kinase inhibitors have shown efficacy against the EBOV with a range of 

potencies in vitro, such as sunitinib (1.91 μM) and nilotinib (24.3 μM).7

The remaining hits, i.e., ZINC91973695, deptropine, GANT 61, ZINC67869167, Hh-Ag1.5, 

cediranib, ebastine, osanetant, have potencies ranging from 6.09 μM – 9.65 μM (Table 1). 

Each of these hits is structurally unique with respect to previously published compounds 
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(Table 2). In addition to being structurally novel among EBOV inhibitors, ZINC91973695 

and ZINC67869167 have no previously reported bioactivities.

DISCUSSION

The power of virtual screening is its ability to quickly process millions of compounds and 

prioritize a small set of highly confident predictions for experimental confirmation. This 

approach not only saves time and cost as compared to the experimental high throughput 

screening, but also may lead to the evaluation of additional approved drugs that could be 

missed in the physical compound screening library. A combination of virtual screening with 

experimental confirmation is especially useful for challenging assays due to high biosafety 

requirements, limited patient samples, expensive reagents, or difficult formats (small animal 

or 3D cell culture). In this study, we prioritized 102 compounds from an in silico library of 

~17 million compounds for testing in the EBOV entry assay using QSAR modeling and 

virtual screening. Fourteen of these hits were experimentally confirmed, including 5 selected 

hits against live-EBOV infections, and their anti-Ebola mechanisms of action were 

determined using.

The EBOV entry process has been extensively studied. Viral envelope glycoproteins attach 

to the surface of host cell, and the virus enters through micropinocytosis and endocytosis. 

Although a cell surface receptor and a few other components are still not clear, several key 

host factors including cathepsin B/L in the endosome14 and Niemann Pick C1 protein 

(NPC1) in the lysosome have been reported as regulators of EBOV entry.15,16 The chemical 

biology and anti-Ebola MOAs of the 14 experimentally validated hits were evaluated for 

interactions with both host and viral targets.

In addition to discovering compounds with unique scaffolds, we also uncovered the anti-

Ebola MOAs of these compounds. We have found that the antihistamines ebastine and 

deptropine inhibited Ebola entry through negatively regulated lysosome function and 

blocking cathepsin L activity. We also found that osanetant, an anti-psychotic, induces the 

enlargement of lysosomes and impairs lysosomal function. Additionally, BIX-01294 showed 

sub-micromolar activity to inhibit EBOV entry. Our LysoTracker dye staining data indicated 

that BIX-01294 may block EBOV entry through a blockade of lysosome function in host 

cells. BIX-01294 is a G9a histone methyltransferase (HMTase) inhibitor.34 HMTases have 

not been implicated in EBOV entry or replication. Additional chemical biology experiments 

to test the importance of HMTases in EBOV entry should be performed. Two hedgehog-

signaling pathway modulators, Hh-Ag1.5 and GANT61,35 showed moderate anti-Ebola 

activity. Our results revealed multiple mechanisms of action involved in the inhibition of 

EBOV entry by GANT61. GANT61 caused enlargement of lysosomes and inhibited both 

cathepsin L and cathepsin B, which are known to impair EBOV entry. Two hits from the 

QSAR-based screen, ZINC91973695 and ZINC67869167, have no previously reported 

bioactivities. Results of our chemical biology evaluations showed that both compounds 

induced enlargement of lysosomes, which may implicate the blockage of lysosomal function 

as a mechanism of action for these two compounds with novel anti-Ebola scaffolds.
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A few analogs of previously reported Ebola entry inhibitors or compounds with the same of 

mechanisms of action were also identified. The most potent hit from our screen (and one of 

the most potent reported EBOV inhibitors) was vindesine, a vinca alkaloid microtubule 

inhibitor. Indeed, the vinca alkaloid microtubule inhibitors vinblastine, vincristine, and 

vinorelbine were also potent hits in the original screen.31 Likewise, though afimoxifene and 

endoxifen are novel hits, Selective Estrogen Receptor Modulators (SERMs) have been 

shown in several studies to have anti-Ebola activity.31,36,37 The same is true for the receptor 

tyrosine kinase (RTK) inhibitors cediranib and NVP-ADW742, as sunitinib has been 

previously reported to have anti-Ebola activity.31 Last, tetrandrine, a calcium-ion channel 

blocker, was reported38 as potent anti-Ebola inhibitor during the course of our study. Thus, 

these results demonstrate the ability of our QSAR models to reliably retrieve compounds 

with anti-Ebola activities and confirm the reproducibility of the VLP-assay.

CONCLUSIONS

Our study is the first case of QSAR-driven experimental discovery of novel anti-Ebola 

agents with limited host cell toxicity. Robust and predictive QSAR models for both anti-

Ebola activity and host cytotoxicity were developed and used for virtual screening of ~17 

million compounds in order to identify Ebola inhibitors with high therapeutic windows 

(selectivity indices). Ultimately, 102 VS hits were tested in both Ebola VLP and ATP 

content cytotoxicity assays; 14 of these hits had IC50 < 10 μM and SI > 10, which is 

comparable to the measured potencies of several previously reported compounds. The two 

most potent hits in the screen were vindesine, a vinca alkaloid microtubule inhibitor, and 

BIX-01294, an HMTase inhibitor (Table 2). In a live-EBOV assay, vindesine had an IC50 of 

0.34 μM. Several of the hits were SERMs and RTKs, which have MOAs known to be related 

to anti-Ebola activity. We investigated the previously uncharacterized MOAs for anti-Ebola 

activity of several hits, including both host factors and direct Ebola VLP interactions. Two 

compounds, ZINC91973695 and ZINC67869167, represent novel chemotypes and can be 

considered as leads for future anti-Ebola chemical optimization.

In addition to the identification of these compounds, this study demonstrates that FDA-

approved drugs, such as vindesine, and compounds that have not yet passed clinical trials for 

their primary indications, like cediranib, can be repurposed as antivirals. Such compounds 

are of particular interest, as they may have the potential, pending additional pre-clinical 

evaluation, to be granted orphan drug status in the United States for EBOV disease. The 

integrated computational and experimental strategy employed in this study represents an 

advancement for the rapid discovery of Ebola therapeutics.

EXPERIMENTAL SECTION

Computational

Data Collection, Curation, and Classification

Antiviral Data: Prior to this work, the Ebola VLP was prepared at the Icahn School of 

Medicine at Mount Sinai, and VLP-based qHTS screening campaigns were performed at the 

National Center for Advancing Translational Sciences (NCATS) at the National Institutes of 
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Health (NIH).31 The results of 4 qHTS screening campaigns (2 primary and 2 confirmatory) 

were extracted from PubChem (AIDs 1117318, 1117313, 1117312, and 1117308).39,40 

These data are available in Supplementary Files 1–4.

Each of the four screens has three readouts, including a blue, green, and ratio (blue/green) 

channel. The blue channel analyzes the efficacy of the compound at inhibiting VLP entry 

activity in the host cell. The green channel indicates the healthy and viable cells that loaded 

with CCF2-AM. The ratio channel screen measures the ratio of blue/green spectra. The beta-

lactamase in the VLP hydrolyzes the CCF2-AM dye used in the assay to give a blue 

fluorescence spectrum. An effective inhibitor will prohibit the beta-lactamase in the VLP 

from hydrolyzing CCF2-AM, resulting in reduction of the intensity of the blue fluorescence 

spectrum. A low blue emission spectrum indicates that the compound is inhibitory, while a 

high green emission spectrum reflects the absence of host cytotoxicity. A simplified schema 

of the assay is depicted in Figure 6.

In total, 3121 compounds were tested. These data were then curated according to our well-

established protocols.41–43 Briefly, mixtures, inorganics, and organometallics were removed. 

Additionally, replicate compounds were identified and sets were removed if screening 

results conflicted; if the results were concordant, then one representative compound was 

selected. After curation, 3104 unique compounds remained.

Cytotoxicity Data: Host cell cytotoxicity data for a subset of compounds tested for anti-

EBOV activity were obtained from the researchers at the NCATS. Compounds were tested 

for host cytotoxicity potential in HeLa and HEK cell lines. In total, 171 unique compounds 

were tested in HeLa cell line, and 156 unique compounds were tested in HEK cell line. All 

156 compounds tested in the HEK cell line were also tested in the HeLa cell line. Data 

curation was performed as above, and one organometallic was removed, leaving 170 and 155 

compounds for consideration from the HeLa and HEK cell lines, respectively. These data are 

available in Supplementary Files 5–6.

Determination of Antiviral Activity: Only compounds with dose-response curve classes44 

of 1.1, 1.2, 2.1, 2.2, and 4 were considered for potential inclusion into the QSAR model 

training set. In order to comprehensively characterize the results of the screens, two separate 

protocols were used to classify “active” and “inactive” compounds for subsequent QSAR 

modeling. In the first protocol (P1), a compound was classified as “active” if and only if the 

compound had an AC50 < 10 μM and Maximum Inhibition ≥ 70% in both a primary and 

confirmatory screen. Similarly, an “inactive” compound had an AC50 ≥ 10 μM and 

Maximum Inhibition < 70% in both a primary and confirmatory screen.

In the second protocol (P2), an “activity” score was calculated for each compound, j, 

according to the following equation

Activity score( j) = 50 ×
max AC

50
− AC

50
(j)

max AC
50

− min AC
50

+ 50 × 1 −
(max(efficacy) − efficacy(j))

(max(efficacy) − min(efficacy))
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where activity score(j) is the relative activity of a specific compound; max(AC50) and 

min(AC50) are the maximum and minimum AC50 in the screen, respectively, and AC50(j) is 

the AC50 of a specific compound; max(efficacy) and min(efficacy) are the maximum and 

minimum efficacies in the screen, respectively, and efficacy(j) is the efficacy of a specific 

compound. If a compound had an activity score ≥ 70 in either primary or confirmatory 

screen, the compound was classified as “active”. Similarly, if a compound had an activity 

score < 70 in either a primary or confirmatory screen, the compound was classified as 

“inactive”.

Determination of Cytotoxicity: For both the HeLa and HEK cell lines, a compound was 

considered “toxic” if the associated pAC50 > 4.0 (AC50 < 100 μM); whereas, a compound 

was considered “non-toxic” if the pAC50 ≤ 4.0 (AC50 ≥ 100 μM) or the curve class was 4, 

indicating no response. Only compounds with dose-response curve classes44 of 1.1, 1.2, 2.1, 

2.2, and 4 were considered.

Antiviral Training Set Balancing: In both protocols (P1 and P2), the data were imbalanced 

towards the inactive class. Thus, in order to balance the active and inactive classes in a 1:1 

ratio, the inactive class was down-sampled.45 Fifty percent of the corresponding inactives 

with the highest Tanimoto similarity46, i.e., the most similar inactives to the compounds 

from active class based on MACCS keys fingerprint,47 were chosen, and the remaining 50% 

of the corresponding inactives were randomly selected. Important to note that all rationally 

chosen inactives had different nearest neighbors among actives.48 For P1 and P2, a total of 

166 compounds (83 active and 83 inactive) and 1224 compounds (612 active and 612 

inactive) formed the respective training sets. These compounds are available in 

Supplementary Files 7–8.

Cytotoxicity Training Set Balancing: The “toxic” and “non-toxic” classes were relatively 

balanced; thus, no down-sampling of the larger class was required. For HeLa and HEK cell 

lines, a total of 170 compounds (90 toxic and 80 non-toxic) and 155 compounds (83 toxic 

and 72 non-toxic) formed the respective training sets. These compounds are available in 

Supplementary Files 9–10.

Modelability Index (MODI): The MODelability Index (MODI) estimates the likelihood of 

obtaining predictive QSAR models for a binary data set of compounds.49 MODI is defined 

as a weighted ratio of the number of nearest-neighbor pairs of compounds in descriptor 

space with the same activity class versus the total number of pairs. MODI threshold of 0.65 

was previously found to separate the modelable from non-modelable data sets.49 MODI was 

calculated for all antiviral and cytotoxicity datasets prior to QSAR modeling in the present 

study as described earlier.49

Computational Methods

QSAR Model Generation and Validation—Three separate packages, Chembench,50,51 

HiT QSAR,52 and GUSAR,53 were employed for consensus classification modeling of both 

antiviral activity (P1 and P2) and host cytotoxicity (HeLa and HEK). QSAR models built on 

Chembench used Dragon 6.0 descriptors54 and the random forest55 machine-learning 
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algorithm. For models built with HiT QSAR, Simplex Representation of Molecular Structure 

(SiRMS) descriptors56 and random forest (RF) were used. GUSAR models utilized a 

combination of Multilevel Neighborhoods of Atoms (MNA) and Quantitative 

Neighborhoods of Atoms (QNA) descriptors57 and a radial-basis function with self-

consistent regression (RBF-SCR) as the machine-learning algorithm.53 We have followed 

best practices of QSAR modeling developed earlier by our group. All models were 

rigorously validated using five-fold external cross validation.9 Y-randomization was 

performed for all models.9 Models were statistically evaluated according to, sensitivity (SE), 

specificity (SP), correct classification rate (CCR), positive predictive value (PPV), and 

negative predictive value (NPV). These statistical metrics are calculated by the equations 1–

5, respectively.

SE =
TP

TP + FN
(1)

SP =
TN

TN + FP
(2)

CCR =
SE + SP

2
(3)

PPV =
TP

TP + FP
(4)

NPV =
TN

TN + FN
(5)

Here, TP and TN represent the number of true positives (correct classifications of actives), 

and true negatives (correct classifications of inactives), respectively; whereas, FP and FN 

represent the number of false positives (incorrect classifications of actives) and false 

negatives (incorrect classifications of inactives), respectively.

Virtual Screening: Two in silico libraries, the ZINC drug-like library23 and previously 

untested drugs and experimental compounds from the NCATS Chemical Genomics Center 

Pharmaceutical Collection (NPC), totaling ~17 million compounds after curation (see 

above), were virtually screened using the developed QSAR models of antiviral activity and 

host cytotoxicity. A model was deemed acceptable for virtual screening if and only if the 

CCR, SE, SP, PPV, and NPV were all above 0.60, and no associated Y-randomized model 
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had a CCR above 0.60. An applicability domain (AD) was used for all models. Consensus 

prediction was utilized, meaning that for a compound to be considered a virtual screening 

“hit”, it must be within the AD of each model and be predicted as “active” and “non-toxic” 

in all developed QSAR models of antiviral activity and host cytotoxicity, respectively 

(Figure 2). Once virtual screening “hits” were experimentally validated, the Sequential 

Agglomerative Hierarchical Nonoverlapping (SAHN) method implemented in the ISIDA/

Cluster program58 was used to probe the uniqueness of hit chemotypes and to identify the 

most structurally similar compounds in the training set and in the published literature.

Experimental Methods

Ebola VLPs containing a beta-lactamase-fused VP40 and GP were prepared in Dr. García-

Sastre’s lab, as previously described.6 LiveBLAzer FRET–B/G Loading Kit and CCF2-AM, 

Dulbecco’s modified Eagle’s medium (DMEM), and Opti-MEM reduced serum medium 

were purchased from Life Technologies (Carlsbad, CA, USA). An ATP content cell viability 

assay kit was purchased from Promega (Madison, WI, USA). 1536-well polystyrene plates 

were purchased from Greiner Bio-One (Monroe, NC, USA). Compounds were purchased 

from Sigma-Aldrich (St. Louis, MO, USA), Santa Cruz (Dallas, TX, USA), ChemBridge 

Corporation (San Diego, CA, USA), Enamine Ltd (Kiev, Ukraine), Maybridge Chemical 

Company (Altrincham, United Kingdom), Vitas-M Laboratory (Champaign, IL, USA), 

Ambinter (Orléans, France) and AKos Consulting & Solutions Deutschland GmbH (Steinen-

Schlächtenhaus, Germany) at the highest available purity. All of the compounds were 

dissolved as a 10 mM stock solution in dimethyl sulfoxide (DMSO) and diluted in DMSO at 

a 1∶3 dilution to generate eleven concentrations in 384-well plates, followed by reformatting 

into one 1536-well compound plate for high throughput screening.

Materials—All commercially available reagents, compounds, and solvents were purchased 

and used without further purification. Column chromatography on silica gel was performed 

on RediSep column using the Teledyne Isco CombiFlash Rf system. Preparative purification 

was performed on a Waters semi-preparative HPLC. The column used was a Phenomenex 

Luna C18 (5 micron, 30 × 75 mm) at a flow rate of 45 mL/min. The mobile phase consisted 

of acetonitrile and water (each containing 0.1% trifluoroacetic acid). A gradient of 10% to 

50% acetonitrile over 8 minutes was used during the purification. Fraction collection was 

triggered by UV detection (220 nm).

1H spectra were recorded using an INOVA 400 MHz spectrometer (Varian). Samples were 

analyzed on an Agilent 1200 series LC/MS using a Zorbax Eclipse XDB-C18 reverse phase 

(5 micron, 4.6 × 150 mm) column and a flow rate of 1.1 mL/min. The mobile phase was a 

mixture of acetonitrile and H2O each containing 0.05% trifluoroacetic acid. LC Method A: a 

gradient of 4% to 100% acetonitrile over 7 minutes was used during analytical analysis. LC 

Method B: a gradient of 4% to 100% acetonitrile over 3 minutes was used during analytical 

analysis. High resolution mass spectrometry was recorded on Agilent 6210 Time-of-Flight 

LC/MS system. Spectra of compounds are listed in Supplementary File 18.

Cell culture methods—HeLa and HEK293 cells were purchased from the American 

Type Culture Collection (ATCC, Manassas, VA, USA). The cells were cultured in DMEM 
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supplemented with 10% fetal bovine serum (FBS, GE healthcare, Piscataway, NJ, USA) and 

100 U/mL of penicillin and 100 μg/mL of streptomycin (Life Technologies, Carlsbad, CA, 

USA) at 37 °C in a humidified atmosphere with 5% CO2. Cells were passaged at 90% 

confluency.

Ebola VLP beta-lactamase assay for HTS in 1536-well plates—A chemical 

biology screening campaign was performed. Ebola VLP assay was conducted as previously 

described.7 Briefly, HeLa cells were seeded at 750 cells/well in 3 μL of assay medium 

(DMEM+10% FBS) in 1536-well assay plates. Compounds were prepared in a 1536-well 

compound plate, and 23 nL of each compound was transferred into 1536-well assay plate 

using an NX-TR pintool station (WAKO Scientific Solutions, San Diego, CA, USA). After 1 

h incubation at 37 °C with 5% CO2, 1 μL/well of VLP solution was added to the assay plates 

using a BioRapTR FRD dispenser. The plates were then spinoculated, followed by 

incubation at 37 °C with 5% CO2 for 4.5 h. 1 μL CCF2-AM beta-lactamase substrate was 

added in to each well, and the plates were incubated for 2 h at room temperature. The assay 

was detected at dual fluorescence intensities (Ex1= 405±20, Em1= 460±20, and Ex2= 

405±20, Em2= 530±20 nm) using EnVision plate reader (PerkinElmer, Boston, MA, USA).

Cell viability assay with the ATP content assay kit—The cell viability assay was 

performed as previously described.7 Briefly, HeLa and HEK293 cells were plated at 750 

cells/well in 3 μL in 1536-well assay plates, followed by the addition of tested compounds at 

23 nL/well. After a 4.5 h incubation at 37 °C and 5% CO2, cell viability was measured by 

adding 3 μL of ATP content assay mixture to each well. Luminescence values were obtained 

using a ViewLux plate reader (PerkinElmer, Boston, MA, USA).

Ebola live virus assays—Vero E6 cells were plated in the 96-well plate (black with 

optical bottom). Briefly, serial dilutions of 5 drugs (diluted in DMEM 2% FBS starting at 10 

μM) and DMSO as control, were added to the wells, and incubated for 1 h at 37 °C with 5% 

CO2. The cells were infected with EBOV/Mayinga-eGFP at a MOI of 0.1 TCID50/cell. The 

assay was run in triplicate at a biosafety level-4 (BSL-4) facility. The fluorescence was read 

72 h after infection using a BioTek Synergy HT.

Filipin staining and LysoTracker-red staining—The assays were performed as 

previously described.59 Fibroblast cells were plated at 1,000 cells/well in 4 μL of assay 

medium (DMEM + 10% FBS) in 1536-well assay plates and incubated overnight at 37 °C 

and 5% CO2. Compounds were added to the assay plate at 23 nL/well. After 24 h incubation 

at 37 °C and 5% CO2, 2 μl/well of 50 ng/ml filipin or 0.5 μM LysoTracker Red DND-99 was 

added to the plate. After 1 hr. incubation at 37 °C and 5% CO2, the plates were washed 

twice. The fluorescence intensities were then read with a fluorescence plate reader (GE 

Healthcare, Chicago, Illinois, USA). U18666A [3-β-(2-[diethylamino]ethoxy)-androst-5-

en-17-one, monohydrochloride] was used as the positive control.60

Cathepsin B/L assay—Cathepsin B/L assays were performed as previously described.8 

Briefly, recombinant 5 ng of cathepsin B, or cathepsin L were added into each well in 384-

well plate. Indicated drugs were added into the recombinant enzymes, followed by initiation 

of the reaction by addition of fluorescent substrate. The activity measurements were done 
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using Tecan plate reader (Tecan US, Inc., Morrisville, NC, USA). Cathepsin L inhibitor and 

ED64 were used as positive controls.8

Thermal shift binding assay with Ebola VLP—The thermal shift binding assay was 

performed as previously described.17 Ebola VLPs were pre-incubated with indicated drugs 

for 10 min at room temperature. The mixture was then subsequently heated at 49 °C for 3 

min, followed by centrifugation at 13, 000 × g at 4 °C for 20 min. The supernatant was 

collected and denatured by heating at 75 °C for 10 min in the presence of SDS loading 

buffer (Life Technologies, Carlsbad, California, United States). The samples were separated 

by SDS-PAGE gel electrophoresis and detected by anti-beta-lactamase antibodies (Life 

Technologies, Carlsbad, California, United States).

Data analysis and statistics

Half maximal inhibitory concentration (IC50) values of compound activity data were 

calculated using Prism software (GraphPad Software, Inc. San Diego, CA). All values were 

expressed as the mean ± SEM (n ≥3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations used

AD Applicability Domain

Bla Beta-Lactamase

BSL Biosafety level

CCR Correct Classification Rate

EBOV Ebola Virus

FDA Food and Drug Administration

FN False Negatives

FP False Positives

FRET Fluorescence Resonance Energy Transfer

Capuzzi et al. Page 15

J Med Chem. Author manuscript; available in PMC 2019 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MLT Machine Learning Technique

MNA Multilevel Neighborhoods of Atoms

MOA Mechanism of Action

MODI Modelability Index

NCATS National Center for Advancing Translational Sciences

NIH National Institutes of Health

NPC1 Niemann Pick C1

NPV Negative Predictive Value

PAINS Pan-Assay INterference compoundS

PPV Positive Predictive Value

QNA Quantitative Neighborhoods of Atoms

RF Random Forest QSAR, Quantitative Structure-Activity Relationship

RBF SCR, Radial-Basis Function with Self-Consistent Regression

RTK Receptor Tyrosine Kinase

SAHN Sequential Agglomerative Hierarchical Nonoverlapping

SE Sensitivity

SERMs Selective Estrogen Receptor Modulators

SI Selectivity Index

SiRMS Simplex Representation of Molecular Structure

SP Specificity

Tc Tanimoto coefficient

TN True Negatives

TP True Positives

VLP Virus-like Particle

VS Virtual Screening
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Figure 1. 

Overall study design. The present study synergistically incorporates computational modeling 

and experimentation.
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Figure 2. 

Screening workflow. A virtual chemical library of ~17 million compounds was screened 

against a battery of antiviral (P1 and P2) and cytotoxicity (HEK and HeLa) models. Hits 

selected for experimental validation were predicted to be EBOV inhibitors with limited host 

cytotoxicity. Then computational hits were experimentally validated, then their activity was 

evaluated using percent inhibition, IC50 values, and selectivity index (SI).
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Figure 3. 

Confirmatory dose-response curves against BSL-4 live-EBOV infection. Five hits were 

selected for screening in Vero E6 cells using a eGFP-EBOV assay. Vindesine (red) was the 

most potent compounds with an IC50 of 0.34 μM. The IC50 values of NVP-ADW742 

(black), BIX-01294 (green), ZINC67869167 (orange), and ZINC91973695 (blue) were 

between 1 μM to 10 μM. All experiments were performed in triplicate. Data are represented 

as mean ± SEM.
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Figure 4. 

Inhibition of protease activities of recombinant cathepsin L and cathepsin B by Ebola entry 

inhibitors. a and b. recombinant cathepsin B or cathepsin L were treated with 10 μM of 

GANT61, ZINC67869167, ZINC91973695, tetrandrine, deptropine, osanetant, BIX-01294, 

cediranib, and ebastine. c. Dose-response studies of GANT61, deptropine and ebastine in 

cathepsin L assay. d. Dose-response studies of GANT61 in cathepsin B assay. All 

experiments were performed in triplicate and data are representative of at least two 

independent experiments. Data are represented as mean ± SEM.
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Figure 5. 

Cholesterol accumulation and enlargement of lysosome induced by Ebola entry inhibitors. a. 

U18666A and ebastine increased filipin staining in fibroblasts (green: filipin; blue: nuclei). 

b. U1866A, GANT61, ZINC67869167, ZINC91973695, tetrandrine, deptropine, osanetant, 

BIX-01294, cediranib, and ebastine increased LysoTracker staining in fibroblasts (orange: 

LysoTracker red; blue: nuclei). All experiments were performed in triplicate and data are 

representative of at least two independent experiments. Data are represented as mean ± 

SEM.
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Figure 6. 

Simplified schema of Ebola VLP assay. Ebola VLPs contain Ebola GP and the VP40 protein 

fused to a beta-lactamase (Bla) reporter. HeLa cells are loaded with the beta-lactamase 

substrate CCF2-AM. If the VLP enters into the cell, Bla hydrolyzes the substrate CCF2-AM, 

disrupting the fluorescence resonance energy transfer (FRET) in the substrate, thus causing 

blue fluorescence. Inhibition of the VLP by a chemical will preserve the substrate FRET, 

maintaining a green fluorescence. The ratio of blue/green fluorescence intensities represents 

the VLP activity of inside cells.
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Table 1.

Experimental results for the top 14 hits. Most experimentally confirmed hits have known MOAs and 

therapeutic use indications.

Name Potency, µM Selectivity Index Indication MOA

Vindesine 0.272 1837 Anticancer Microtubule Inhibitor

BIX-01294 0.966 45 Anticancer HMTase Inhibitor

Afimoxifene 1.96 123 Anticancer Estrogen Receptor Modulator

Tetrandrine 2.16 22 Anti-inflammation Calcium Channel Blocker

NVP-ADW742 3.05 13 Anticancer Tyrosine Kinase Inhibitor

Endoxifen 3.05 164 Anticancer Estrogen Receptor Modulator

ZINC91973695 6.09 82 N/A N/A

Deptropine 6.58 76 Antihistamine Anticholinergic

GANT61 6.83 73 Anticancer Hedgehog Antagonist

ZINC67869167 6.83 73 N/A N/A

Hh-Ag1.5 7.67 65 Anticancer Hedgehog Agonist

Cediranib 7.67 65 Anticancer Tyrosine Kinase Inhibitor

Ebastine 9.56 51 Antihistamine Histamine H1 Antagonist

Osanetant 9.65 52 Antipsychotic Neurokinin 3 Receptor Antagonist
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Table 2.

Structural similarity of top hits to previously published compounds. The Tanimoto coefficient (TC) between 

experimentally confirmed hits and compounds in the literature was calculated using ISIDA (see Methods).

Hit (IC50) TC Published Compound (IC50)

Afimoxifene (1.96 μM)

0.99

Tamoxifen (0.73 μM)

Tetrandrine (2.16 μM)

0.97

Cepharanthine (1.53 μM)

Vindesine (0.272 μM)

0.96

Vinblastine (0.048 μM)

Endoxifen (3.05 μM)

0.93

Tamoxifen (0.73 μM)

Deptropine (6.58 μM)

0.89

Benztropine (2.64 μM)

Cediranib (7.67 μM) 0.79 Gefitinib (9.68 μM)
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Hit (IC50) TC Published Compound (IC50)

Ebastine (9.56 μM)

0.73

Clemastine (1.10 μM)

BIX-01294 (0.966 μM)

0.72

Bosutinib (3.85 μM)

NVP-ADW742 (3.05 μM)

0.72

Bazedoxifene (3.43 μM)

ZINC91973695 (6.09 μM)

0.69

Dronedarone (2.20 μM )

Hh-Ag1.5 (7.67 μM) 0.66 Bazedoxifene (3.43 μM)
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Hit (IC50) TC Published Compound (IC50)

Osanetant (9.65 μM)

0.71

Mibefradil (4.32 μM)

ZINC67869167 (6.83 μM)

0.71

Aprindine (7.69 μM)

GANT61 (6.83 μM)

0.47

Thioproperazine (4.32 μM)
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