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Epigenetic dysfunction has been widely implicated in several diseases especially cancers

thus highlights the therapeutic potential for chemical interventions in this field. With rapid

development of computational methodologies and high-performance computational

resources, computer-aided drug design has emerged as a promising strategy to

speed up epigenetic drug discovery. Herein, we make a brief overview of major

computational methods reported in the literature including druggability prediction, virtual

screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular

dynamics simulations, quantum chemistry calculation, and 3D quantitative structure

activity relationship that have been successfully applied in the design and discovery of

epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual

drug design strategies in epigenetics drug discovery and future directions in this field.
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INTRODUCTION

Covalent modifications on nucleosomes, the basic building blocks on chromatins, including
methylation, acetylation, phosphorylation, and ubiquination specifically regulate downstream gene
expression patterns in a context-dependent manner that form the fundamental molecular basis of
epigenetics (Strahl and Allis, 2000; Berger, 2007). Dynamic regulation of epigenetic modification
collections leads to different functional outcomes that plays a pivotal role in biological processes
including genome reprogramming, gene transcription, DNA damage response and homeostatic
regulation (Li, 2002; Vidanes et al., 2005; Kouzarides, 2007; Gut and Verdin, 2013). Epigenetic
dysfunction is tightly related with the pathogenesis and progression of several diseases including
malignant diseases especially cancers and chronic diseases such as immune-mediated diseases,
neurodegenerative disorders and diabetes which underscoring the importance of these covalent
modifications (Best and Carey, 2010; Dawson and Kouzarides, 2012; Tough et al., 2016; Hwang
et al., 2017).

Proteins responsible to modulate epigenetic marks on nucleosomes could be roughly divided
into three categories based on their relative function including writers (enzymes that deposit
covalent modifications), erasers (enzymes that remove covalent modifications), and readers
(proteins that recognize specific modifications and recruit chaperons). Encouraging success has
been achieved in the development of epi-probes for dissecting epigenome in recent decades
(Shortt et al., 2017). However, there is still formidable challenge for epigenetic drug discovery
in both academia and industry due to complexity in epigenetics regulatory network and the
limits in assays and drug development technologies. So far only seven epigenetic agents targeting
two epigenetic enzymes (DNA methytransferases, histone deacetylases) have been approved for
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human use. The indications of approved epigenetic drugs
are limited to malignant diseases such as myelodysplastic
syndromes (MDS), acute myeloid leukemia (AML), chronic
myelomonocytic leukemia (CML), peripheral T-cell lymphoma
(PTCL), and cutaneous T-cell lymphoma (CTCL) while the
applications of epigenetic drugs in chronic diseases treatment
were less explored (Mann et al., 2007; Derissen et al., 2013;
Laubach et al., 2015; Lee et al., 2015). Hence, there is urgent need
to develop novel epigenetic drugs with multidisciplinary efforts
and extensive collaborations that may accelerate the pace of drug
discovery process.

With advanced development of computational
methodologies, computer-aided drug design (CADD) has
emerged as a burgeoning research filed (Zheng et al., 2013).
Currently, many pharmaceuticals companies and research
institutions all over the world have established their own
CADD departments and continued efforts have been made
toward the development and optimization of drug design
methodologies and software (Kim et al., 2017). In silico
druggability assessment helps researchers to identify more
chemical-tractable targets and prioritize screening endeavor
(Trosset and Vodovar, 2013). Based on rapid advancement
of crystallography and successful applications of homology
modeling, structure-based virtual screen (SBVS) has proven a
useful method to quickly identify bioactive hits in early-stage
discovery activities (Lounnas et al., 2013). Ligand-based drug
design (LBDD) strategies like three dimensional quantitative
structure activity relationship (3D-QSAR), 2D similarity-based
searching, scaffold hopping and pharmacophore studies are also
efficient approaches for hit enrichment and activity prediction
based on available information of known inhibitors (Meena
et al., 2011; Andrew et al., 2016; Yadav et al., 2017b). Moreover,
quantum mechanical calculation and molecule dynamic (MD)
simulation provide the in-depth understanding in protein
catalytic mechanism that is quite useful mechanism-based
drug design (Scheraga et al., 2007). In silico pharmacokinetic
properties assessment allows the prediction of absorption,
distribution, metabolism, elimination, and toxicity (ADMET)
of drug candidates that is an important cheminformatics
tool in drug design (Gaur et al., 2015; Yadav et al., 2016).
Collectively, combined with the gained availability of diverse
compound databases, these cost effective structure-based or
ligand-based strategies significantly increase the efficiency in
drug discovery and provide new horizons and promising
avenues to conquer life-threatening diseases (Figure 1,
Table 1).

Although these leading computational strategies have been
successfully applied in traditional drug discovery pipeline,
there are relatively few reports focusing on its contribution
in epigenetic landscape (Li et al., 2015). In this review,
we mainly focus on recent progress on the applications of
these strategies and highlight representative studies and major
contributions of computational approaches in this field. Other
successful drug discovery studies using wet lab approaches
are beyond the field of this review and not covered here
that may also be interesting aspects in epigenetic-related
studies.

WRITER

Epigenetic writers are the enzymes responsible for transferring
methyl groups or acetyl groups to DNA, histone or other
non-histone substrates from cofactors S-adenosyl-L-methionine
(SAM) or acetyl coenzyme A (Ac-CoA). Based on their
distinct functions, writers are usually divided into three
categories, namely DNA methyltransferases (DNMTs), protein
lysine/arginine methyltransferases (PKMTs/PRMTs) and histone
acetyltransferases (HATs). These enzymes alter chromatin
organization and contribute to downstream gene expression
regulation through site-specific modification that are involved in
the multiple function pathways (Gelato and Fischle, 2008). To
elucidate their roles in physiological or pathological states, there
has been increasing interest in the discovery of writer inhibitors
through in silico approaches and many successful stories have
been reported in the literature (Figure 2). In this section, we will
present an overview of the current applications of computational
methods used in hit identification targeting epigenetic writers.

DNA Methyltransferases
DNA methyltransferases catalyze DNA methylation by
depositing a methyl group on the 5-position of the cytosine
(Robertson, 2001). In mammalian cells, there are five members
identified so far: DNMT1, DNMT2, DNMT3A, DNMT3B,
and DNMT3L. Among them, DNMT1 is characterized as
the maintenance methyltransferase that shows preference for
hemimethylated DNA substrates while DNMT3A and DNMT3B
belong to de novo methyltransferases subfamily that function
in complex form and catalyze the methylation of unmethylated
DNA (Okano et al., 1999; Goll and Bestor, 2005). In DNMTs,
the founding member DNMT1 is the best studied. DNMT1
introduces a new methyl group into newly synthesized DNA
strand in the context of CpG dinucleotide that maintains
methylation patterns of template strand during DNA replication
(Bestor, 2000; Auclair and Weber, 2012). Aberrant promoter
DNA hypermethylation leads to silencing of tumor suppressor
genes, which has been frequently observed in various carcinomas
(Feinberg et al., 2006; Zhang and Xu, 2017). Therefore, DNMTs
have become one of the most promising targets for cancer
therapy and many computational approaches have evolved to
fuel the development of epi-probes and epi-drugs targeting
DNMTs (Medina-Franco et al., 2015).

Homology Modeling-Driven Studies
Homology modeling is a quite effective strategy especially when
interested protein crystal structures are not available and it
functions as the most valuable research tool to fill the sequence-
structure gap for structure-based drug design (Dwivedi et al.,
2015). The accuracy of homology models mainly depends on
the sequence identity or similarity between the template protein
and the protein to be modeled (Chothia and Lesk, 1986). As
commonly accepted, homology models based on more than 50%
of sequence identity with proteins whose structures have been
experimentally acquired are usually very accurate and can be used
for drug discovery purposes (Hillisch et al., 2004).
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FIGURE 1 | Traditional workflow of structure-based drug design (SBDD) and ligand-based drug design (LBDD).

Since there was no DNMT1 crystal structure ever released
until 2008, drug development against this therapeutic target
progressed slowly (Syeda et al., 2011). To circumvent this,
Siedlecki et al. built a homology model of human DNMT1
catalytic domain based on available structural information of
M.HhaI, M.HaeIII, and DNMT2 in the MODELLER module of
INSIGHT2000 (Siedlecki et al., 2003). In a follow-up study, based
on this established homology model, Siedlecki and co-workers
performed docking-based virtual screening of a diversity set
containing 1,990 compounds from the National Cancer Institute
(NCI) that represented more than 140,000 compounds using
DOCK version 5.1.0. The screen resulted in the discovery of

RG108 (compound 1 in Figure 2) that came out on top in
biochemical assays (Brueckner et al., 2005; Siedlecki et al., 2006).

Similarly, Kuck et al. carried out virtual screening (VS) of a
larger data set including more than 65,000 lead-like compounds
based on the aforementioned DNMT1 homology model. Top-
ranked compounds were re-scored by GLIDE, GOLD, and
AUTODOCK followed by experimental tests. Among them,
NSC14778 (compound 2 in Figure 2) presented inhibitory
activities against DNMT1 and DNMT3B with the IC50 value
of 92 and 17µM, respectively while nanaomycin A (compound
3 in Figure 2) selectively inhibited DNMT3B with the IC50

value of 500 nM. To explain the selective inhibitory activities
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TABLE 1 | The online public and commercial databases and compound collections used for virtual screening in epigenetics.

Database Size Website Applications

ZINC Over 35

million

http://zinc.docking.org GCN5; KDM4A/C; HDAC1; BRD4/T; SIRT2-3

SPECS ∼320,000 http://www.specs.net DOT1L; DNMT1; SET7; DNMT3A; PRMT1; G9a; FTO; PRMT5; EZH2;

HDAC8; LSD1; BRD4; Menin-MLL1

NCI ∼260,000 https://cactus.nci.nih.gov/ DNMT1; Class I/IIa HDACs; KDM4A/B; BRD2

Maybridge ∼56,000 http://www.maybridge.com LSD1; HDAC2; HDAC8

ChemBridge ∼1.1 million http://www.chembridge.com Type I PRMTs; PRMT5; p300/CBP; BRD4; Spindlin1; SIRT3

CoCoCo ∼7 million http://cococo.isof.cnr.it SMYD3

Enamine ∼2.4 million http://www.enamine.net LSD1; PRMT5

ChEMBL ∼1.7 million http://www.ebi.ac.uk/chembldb/index.php GCN5; BRD4

ChemDiv ∼1.5 million http://www.chemdiv.com PRMT5; BRD4; Spindlin1

Dictionary of Natural

Products

∼40,000 http://dnp.chemnetbase.com BRD4

ASINEX ∼87,000 http://www.asinex.com/libraries_synergy.html/ HDAC1

InterBioScreen ∼550,000 https://www.ibscreen.com HDAC1

eMolecules Over 8 million http://www.emolecules.com BRD4; WDR5-MLL1

Life chemicals ∼1.35 million http://www.lifechemicals.com BRD4

DrugBank ∼10,000 http://www.drugbank.ca SIRT3

WDI ∼80,000 http://www.daylight.com/products/wdi.html HDAC1; HDAC6

Data accessed in December 28, 2017.

of nanaomycin A, the authors established homology model of
DNMT3B catalytic domain based on DNMT3A crystallographic
structure, which provided structural basis for mechanism
interpretation (Kuck et al., 2010a,b).

In order to further disclose the mechanism of action (MOA)
of nanaomycin A, Caulfield and co-workers performed >100 ns
molecular dynamic simulation using the CHARMM27 force field
in NAMD version 2.62. The previously established DNMT3B
homology model bound to nanaomycin A was used with either
presence or absence of cofactor SAM in the simulation. The
results suggested that nanaomycin A and SAM could bind
to DNMT3B in a cooperative manner. Besides, nanaomycin
A could form long-lasting interactions with key residues that
involved in the methylation process which further validated the
hypothesis supported by previous docking simulation (Caulfield
and Medina-Franco, 2011).

High Throughput Virtual Screening
In 2014, through docking-based virtual screening based on the
complex structure of mouse DNMT1 bound to S-adenosyl-L-
homocysteine (SAH) (PDB ID: 4DA4), Chen et al. reported a
novel non-nucleoside DNMT1 inhibitor DC_05 that showed
significant selectivity toward other protein methyltransferases
(Chen S. et al., 2014). Further medicinal chemistry optimization
led to the discovery of more potent compound DC_517
(compound 4 in Figure 2) with the IC50 value of 1.7µM. The
putative binding models were generated based on molecular
docking studies, which gave detailed interpretation of the
structure-activity relationship (SAR).

In 2017, in order to identify novel DNMT3A inhibitors, Shao
et al. conducted a multi-step docking-based virtual screening
in combination with pharmacophore mapping. Through initial

screening and follow-up similarity-based analog searching, the
authors discovered novel DNMT3A inhibitor compound 40_3
(compound 5 in Figure 2) with the IC50 value of 41µM, which
may serve as the starting point to develop more potent DNMT3A
inhibitors (Shao et al., 2017).

Quantum Mechanical Calculation
In 2012, based on the ab initio methods, Alcaro and co-
workers developed the force field parameters implemented in the
MacroModel package for the treatment of charge distribution
and overall charge assignment of nucleic acids that undergo
methylation. It gives essential insights related to the correct
charge treatment and force field parameterization, which is an
important issue in molecular modeling of epigenetic phenomena
and shed light for the nucleic acids-related epigenetic functional
study and in the development of DNA intercalating, subtype-
selective DNMTs inhibitors (Alcaro et al., 2002).

Histone Methyltransferases
Histone methylation is one of the most important post-
translational modifications on histones and results in either
activation or repression depending on specific sites. The
methylation marks could recruit different methyl-binding
proteins and mediate downstream signaling pathways, which
could be basically regulated by dynamic interplay between
histone methyltransferases (HMTs) and demethyltransferases
(HDMTs) (Martin and Zhang, 2005). Histone methyltransferases
can be mainly divided into two categories based on their relative
substrates: protein lysine methyltransferases and protein arginine
N-methyltransferases (Li et al., 2012). Among them, PKMTs
consist of SET domain-containing PKMTs (SUV, SET1, SET2,
EZ, and RIZ) and non-SET domain-containing PKMT (DOT1L)
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FIGURE 2 | Chemical structures of epigenetic writer inhibitors mentioned in this review.

(Kouzarides, 2002). As for PRMT family, it could be further
classified into three subcategories: type I PRMTs responsible
for arginine monomethylation and asymmetric dimethylation
(PRMT1, 2, 4, 6, 8), type II PRMTs (PRMT5, 9) for arginine
monomethylation and symmetrical dimethylation and type III
PRMT (PRMT7) only with arginine monomethylation activity
(Wolf, 2009). Emerging evidence demonstrated that deregulated
alternations of methylation patterns were implicated in the
pathogenesis of various cancers and other malignant diseases
(Spannhoff et al., 2009; Jones et al., 2016). Consequently,
continued efforts have been devoted to drug design for HMTs,
which open up vast ranges of prospects for diseases treatment
(Table 2).

Pharmacophore-Based Drug Discovery
With the increasing knowledge of known active molecules
available in databases, pharmacophore modeling methods are
receiving more attention in the era of rational drug design that
could quickly extract the key steric and electronic features for
ligand-receptor interactions (Guner et al., 2004; Yadav et al.,
2010, 2012). In 2007, Spannhoff et al. presented first target-
based virtual screening with NCI diversity set to discover
novel PRMT1 inhibitors. The GRID-based pharmacophore
model, the methodology originally introduced by Ortuso et al.
in 2006, was applied as post-docking filter to analyze all
preliminary docking solutions (Ortuso et al., 2006). The study
resulted in the identification of allantodapsone (compound 6
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TABLE 2 | The HMTs inhibitors derived based on virtual screening or high

throughput screening.

Targets Virtual screen High throughput screen

Ia IIb IIIc I II III

PRMT1 ⋆ ⋆

PRMT3 ⋆ ⋆

PRMT4 ⋆ ⋆

PRMT5 ⋆ ⋆

PRMT6 ⋆ ⋆

DOT1L ⋆ ⋆

SUV420H1 – – – ⋆

SUV420H2 – – – ⋆

SMYD2 – – – ⋆

SMYD3 ⋆ ⋆

GLP – – – ⋆

G9a ⋆ ⋆

NSD2 ⋆ – – –

SETD2 – – – ⋆

SETD7 ⋆ ⋆

SETD8 ⋆ ⋆

EZH1 – – – ⋆

EZH2 ⋆ ⋆

aThe IC50 values smaller than 1 µM.
bThe IC50 values at the range of 1–10 µM.
cThe IC50 values at the range of 10–100 µM.

The stars here denote that the IC50 value of the most potent compound against this target

is in the corresponding range.

in Figure 2) with the IC50 value of 1.7µM (Spannhoff et al.,
2007a).

In the follow-up study, Heinke et al. expanded their work
to a larger compound collection, the ChemBridge database
containing 328,000 molecules (Heinke et al., 2009). Based
on previously reported binding modes of allantodapsone,
the pharmacophore models were generated in LigandScout
with one HBD, one hydrogen bond acceptor (HBA), two
hydrophobic/aromatic features, one included volume and
23 excluded volumes leading to the identification of nine
compounds with PRMT1 inhibitory activity below 35µM.

Ligand-based pharmacophoremodeling is also a powerful tool
in drug discovery campaigns. In 2012, Wang et al. constructed
four rational pharmacophore models with HBA, HBD, and
ring/aromatic (RA) as key chemical features based on 17
reported active molecules in Discovery Studio version 2.1. Then
established models were used as the query to search theoretical-
soluble small molecule library. Through cluster analysis in
combination with biological assays, A9 and A36 (compounds
7–8 in Figure 2) were identified as PRMT1 inhibitors with the
IC50 values of 41.7 and 12.0µM, respectively (Wang et al., 2012).
Kinetic analysis demonstrated that A9 was a peptide-competitive
PRMT1 inhibitor whereas A36 was the non-competitive PRMT1
inhibitor that could be used as the parent compounds for further
chemistry optimization.

The pharmacophore modeling has also been widely applied
in hit identification targeting other HMTs. In 2016, aiming to

identify novel EZH2 inhibitors, Wu et al. conducted ligand-based
pharmacophore modeling based on validated EZH2 inhibitors
(Wu et al., 2016). The reliability of constructed models was
evaluated by enrichment capacity analysis using molecules in test
sets. Based on the established models, they identified novel EZH2
inhibitors DCE_254 (compound 18 in Figure 2) with the IC50

value of 11µM.
In 2015, through integrated structure-based pharmacophore-

modeling and molecular docking, Meng et al. discovered a SET7
inhibitor, namely DC_S100 with the IC50 value of 30.0µM
(Meng et al., 2015). Docking-based SAR analysis followed
by structure optimization led to the identification of DC-
S239 (compound 19 in Figure 2), with the IC50 value of
4.6µM. In addition, DC-S239 could dose-dependently inhibit
the proliferation of MCF7, HL60, and MV4-11 with the IC50

values at micromolar range supporting its potential use in cellular
context.

Molecular Dynamics Simulation
Molecular dynamics simulation is a useful theoretical technique
to investigate the conformations and dynamic behaviors of
biomolecules in long-time scale that provides atomic-level
insight into the regulatory mechanism (Lindorff-Larsen et al.,
2011; Okumura et al., 2018). To characterize the elusive roles
of the N-terminal region and dimerization arms for PRMT1
activity, Zhou et al. performedMD simulations using GROMACS
4.3 package based on hPRMT1 homology model in monomer
and dimer states (Zhou et al., 2015b). The simulations captured
the dynamic correlations between the N-terminal region and
dimerization arms.Moreover, the normalized covariance analysis
and principal component analysis (PCA) were applied to analyze
the energy landscape of different conformations at reduced
dimensions. Through network topology analysis, a long-distance
communication pathway was theoretically proposed which was
further validated by biochemical mutational experiments. The
simulations disclosed the underlying molecule mechanism of
allosteric communication between the two regions and provided
the rationale for mechanism-based PRMT subtype-selective
inhibitors.

Molecule dynamic simulations could be not only wildly
applied in protein dynamic regulation studies but also in MOA
studies for small molecule inhibitors. In order to uncover the
molecular basis of diamidine inhibitors for selective PRMT1
inhibition, Yan et al. conducted extensive MD simulations
and molecular mechanics/Poisson–Boltzmann solvent-accessible
surface area (MM/PBSA) calculation to analyze the interaction
patterns in the binding cavity for the docking complex which
provided the avenue to designmore potent and specific inhibitors
(Yan et al., 2014; Zhang et al., 2017a,b). A similar MD study
was reported by Yang and co-workers to propose binding poses
of identified PRMT1 inhibitors and circumvent the limitations
introduced by inaccuracy of molecule docking methods (Yang
et al., 2017).

High Throughput Virtual Screening
The big explosion of available structural information of HMTs
has greatly facilitated the application of docking-based virtual
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screening (DBVS). In 2007, via virtual screening and 2D
similarity-based analog searching, Spannhoff et al. identified
RM65 (compound 9 in Figure 2) as the PRMT1 inhibitor with
the IC50 value of 55.4µM (Spannhoff et al., 2007b). In 2010, a
similar study was reported by Feng and co-workers in structure-
based virtual screening with 400,000 compounds. In this study,
NS-1 (compound 10 in Figure 2) was identified as the PRMT1
inhibitor with an IC50 value of 12.7µM which directly targeted
the peptide substrates instead of enzymes (Feng et al., 2010).
In 2014, Xie and co-workers used the combinatorial dockings
methods including GLIDE and DOCK for in silico screen. The
authors identified DCLX069 and DCLX078 (compounds 11–
12 in Figure 2) with the IC50 values of 17.9 and 26.2µM,
respectively in biochemical assays (Xie et al., 2014).

A number of attempts have also been made to identify
other PRMTis besides PRMT1 inhibitors. In 2015, Alinari
et al. used comparative modeling and structure-based virtual
screening with ChemBridge CNS-Set library of 10,000 small
molecule compounds leading to the identification of first-in-
class PRMT5 inhibitor CMP5 (compound 13 in Figure 2). In
cellular context, CMP5 could selectively inhibit the proliferation
and transformation of EBV-driven B-lymphocyte (Alinari et al.,
2015). In 2016, Ferreira et al. started their work based on the
two basic amine tails that mimicked the side chain of substrate
arginine and established PRMT-focused virtual library. Through
initial biochemical screening and structure-based optimization,
the authors identified compound 27 (compound 14 in Figure 2)
as the selective CARM1 inhibitor with an IC50 value of 0.05µM
and ligand efficiency of 0.43 (Ferreira de Freitas et al., 2016).
In 2017, Ji et al. carried out molecular docking studies with
semi-flexible docking methods in GOLD and identified selective
PRMT5 inhibitor P5i-6 (compound 15 in Figure 2) with an IC50

of 0.57µM (Ji et al., 2017). Similarly, Ye et al. identified PRMT5
inhibitor named DC_C01 (compound 16 in Figure 2) with the
IC50 value of 2.8µM via docking-based virtual screening and
structure modification (Ye et al., 2017). Concurrent with the two
studies described above, through hierarchical docking strategies
and chemistry optimization, Chen et al. identified DCPR049_12
(compound 17 in Figure 2) with promising inhibitory activity for
type I PRMTwith the IC50 value at nanomolar range (Wang et al.,
2017).

Besides PRMTs, docking-based virtual screening strategy was
also applied in the epi-probe design for other HMTs. In 2015,
in an attempt to search for SMYD3 inhibitors, Peserico et al.
performed high-throughput virtual screening of the CoCoCo
database containing nearly 260,000 molecules in GLIDE version
5.7 (Peserico et al., 2015). The study led to the identification
of BCI-121 (compound 20 in Figure 2) as the best candidate
for SMYD3 inhibition that could reduce global H3K4me2/3
and H4K5me levels in colorectal cancer. Similarly, Chen et al.
identified the DOT1L inhibitor DC_L115 (compound 21 in
Figure 2) with an IC50 value of 1.5µMvia structure-based virtual
screening of approximately 200,000molecules in SPECS database
(Chen S. et al., 2016).

Very recently, Wang and co-workers developed a target-
specific scoring function based on epsilon support vector
regression (ε-SVR) named the SAM-score for SAM-dependent

methyltransferases. Based on the built regression model, the
authors identified compound 6 (compound 22 in Figure 2) as the
DOT1L inhibitor with an IC50 of 8.3µM (Wang et al., 2017).
There are also some successful studies reported elsewhere for
the discovery of other HMT inhibitors (compounds 23–26 in
Figure 2) for G9a and SETD8 based on in silico approaches (Chen
W. L. et al., 2016; Kondengaden et al., 2016; Milite et al., 2016).

Histone Acetyltransferases
Histone acetyltransferases (HATs) transfer acetyl groups onto
N-terminal tails of core histone and consequently give rise to
DNA relaxation, which is closely related to gene activation
(Brown et al., 2000). HATs can be divided into four categories
on the basis of their sequence similarities, including the GNAT
family (GCN5 and PCAF), the MYST family (MOZ/MORF,
YBF2/SAS3, SAS2, and TIP60), p300/CBP and RTT109 (Dancy
and Cole, 2015). Recently, emerging evidence implicated that
deregulation of HATs was closely correlated with tumorigenesis,
neurological disorders and inflammatory diseases (Yang, 2004;
Rajendrasozhan et al., 2009; Sheikh, 2014). Several HAT
inhibitors have been reported, such as bi-substrate inhibitors,
natural products, and small molecules. However, there is still
a large gap between activities in vitro and their potential
applications as therapeutic agents in vivo due to the lack of
potency and selectivity for the current inhibitors which is a
long-standing challenge in the field.

In 2010, Bowers et al. conducted structure-based, in silico
screening approach with a screening set of ca. 500,000
commercially available compounds to identify the p300 inhibitor
(Bowers et al., 2010). The compounds were scored and ranked
based on ICM (Internal Coordinate Mechanics) score in the
ICM-VLS software version 3.5. Then top 194 compounds
were cherry-picked by visual inspection and purchased from
ChemBridge for biochemical analysis. Among them, C646
(compound 27 in Figure 2) was identified with Ki value of
400 nM. Further in vitro assay demonstrated that C646 was
cofactor-competitive and selective p300 inhibitor. The detailed
interaction patterns were confirmed by site-directed mutagenesis
in accordance with the predicted computational model.

Very recently, Lasko and co-authors performed similar
docking-based in silico screening with nearly 800,000 compounds
and 1,300 available compounds were test in radioactive p300
acetylation assays (Lasko et al., 2017). Among them, hydantoin
and a conjugated thiazolidinedione were identified with the
IC50 values of 5.1 and 11.5µM, respectively. More efforts were
devoted to the optimization on hydantoin scaffold yielding A-485
(compound 28 in Figure 2) with an IC50 value of 60 nM. A-485
was a first-in-class highly potent, selective p300/CBP catalytic
inhibitor and displayed significant selectivity against other HATs
members. Besides, it inhibited proliferation across a broad range
of cancer cell lines with specificity for hematological and prostate
cell lineages and retarded tumor growth in xenograft models,
which underscored the therapeutic potential targeting p300/CBP.
Another small molecule discovered by virtual screening from
ChEMBL bioassay database was C14 (compound 29 in Figure 2)
with an IC50 value of 225 nM on PfGCN5 in parasite growth
assay (Kumar et al., 2017). C14 displayed promising antimalarial
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activity and showed no effect on mammalian fibroblast cells
supporting its safe use for further applications.

ERASER

Erasers are key modifying enzymes in charge of the removal
of epigenetic marks that participate in dynamic regulation
on gene expression patterns (Mosammaparast and Shi, 2010).
Based on their different substrates and their relative functions,
erasers could be divided into different families such as histone
deacetylases (HDACs), RNA demethyltransferases, histone
demethylases (HDMs), histone deubiquitinases, and so on
(Arrowsmith et al., 2012). Among them, HDACs are the most
studied targets for pharmacological interventions. So far, five
epi-drugs targeting HDACs have been approved for clinical
use and other HDAC inhibitors like entinostat and CUDC-907
have entered into clinical trials for advanced cancer treatment
(Falkenberg and Johnstone, 2014; Li and Seto, 2016). In the
following section, we will focus on representative computational
work in drug discovery and related mechanism studies that
expert in this field (Figure 3).

Histone Deacetylases
In mammalian cells, HDACs consist of 18 isoforms and are
broadly classified into four categories based on their distinct
structural features and subcellular localization: Class I (HDAC1,
2, 3, and 8), Class II (Class IIa HDAC4, 5, 7, 9, and Class
IIb HDAC6, 10), Class III (NAD-dependent Sirtuins; SIRT1-
7) and Class IV (HDAC11) (Gregoretti et al., 2004; Li and
Seto, 2016). HDACs catalyze the deacetylation of histone as well
as non-histone substrates and are implicated in fundamental
physiological processes including gene transcription, cell cycle
regulation, DNA damage response, and metabolism homeostasis
(Bode and Dong, 2004; Minucci and Pelicci, 2006). There
is a growing body of evidence that deregulation of HDACs
activity is strongly correlated with the pathogenesis of several
diseases including hematological malignancies and solid tumors
that implicates the significance of target intervention (Minucci
et al., 2001; Zhu et al., 2004; Buurman et al., 2012). Significant
progress has been made in the development of HDAC inhibitors
(HDACis) over the recent decades based on in silico approaches
(Yanuar et al., 2016). The following chapters will focus on some
representative studies using computational methods in this field,
some of which are described below.

Quantum Mechanical Calculation
Hydroxamic acid moiety presented in most common HDACis
is usually recognized as problematic fragment with poor
pharmacokinetic profile. To rationally design non-hydroxamic
acid HDACis with more favorable physico-chemical properties,
Wang et al. performed density functional theory (DFT)
calculations to investigate binding modes and related binding
free energy of potential zinc binding groups (ZBGs) (Wang
et al., 2007). In model active site, only the side chains of zinc-
coordinated residues were kept for calculation including two
formats and one imidazole that represented as the functional
groups of zinc-coordinated histidine and two aspartic acid

residues. The calculation results proposed alternatives with novel
structural features that favored zinc binding including 3-hydroxy
pyrones or β-amino ketones, which may be further utilized for
medicinal chemistry optimization on current HDACis.

Apart from the applications in novel hit discovery, quantum
mechanical calculation could also enable precise and solid
interpretation into mechanism studies that facilitates the drug
design of novel and specific HDACis. Finin et al. proposed
that H143-D183 catalytic dyad was indispensable for HDAC8
enzymatic activity by abstracting proton from the bridged water
molecule while Zhang et al. underscored the role of H142-D176
dyad in proton-shuttle process (Finnin et al., 1999; Wu et al.,
2010). In addition, the controversial function of potassium ion
near the active pocket present in HDAC crystal structures is also
under debate (Gantt et al., 2010; Werbeck et al., 2014). Based on
QM/MM simulations including the complete catalytic residues in
the quantum region, Chen et al. explained disagreement for those
observations and uncovered the unique catalytic mechanism
of HDAC8. The results disclosed the inhibitory role of the
potassium ion at the active site and uncovered the significance of
the pKa values of zinc-coordinated moiety in HDACis that would
be of great value in developing potent and subtype-selective
mechanism-based HDACis (Chen K. et al., 2014).

Quantitative Structure-Activity Relationship Analysis
QSAR analysis is a well-established ligand-based computational
methodology to describe the quantitative relationship between
compound biological activity and its physicochemical properties
or structural features, which is the milestone progress in the era
of rational drug design (Gupta, 2007; Yadav et al., 2013, 2017a).
Since therapeutic value of HDACis has been addressed over
recent years and many potent HDACis have been identified so
far, comprehensive QSAR studies were conducted using different
kinds of data sets to facilitate drug design and discovery against
this drug-actionable target. In 2004, Wang et al. developed QSAR
models based on hydroxamic acid-based HDACis and found
statistically significant relationship between charge distribution,
hydrophobicity, geometrical shape of compounds and its relative
anti-proliferative activities for PC-3 cell lines (Wang et al., 2004).
Since then, the number of QSAR modeling studies increased at a
dramatic rate (Xie et al., 2004; Guo et al., 2005; Juvale et al., 2006;
Chen et al., 2008; Kozikowski et al., 2008; Ragno et al., 2008).

The first QSAR studies used for virtual screening was reported
by Tang and co-workers (Tang et al., 2009). Based on validated
QSAR models, the authors screened the in-house library with
ca. 9.5 million compounds and identified four novel scaffolds
that favored HDACs inhibition (compounds 30–33 in Figure 3).
In 2012, Xiang and colleagues developed pharmacophore and
3D-QSAR models on a series of (benz)imidazole inhibitors
(Xiang et al., 2012). The results led to the discovery of 27
inhibitors with putative HDAC2 inhibitory activity. Later on,
several groups employed QSAR modeling workflow for HDACis
activity and selectivity prediction (Silvestri et al., 2012; Zhao
et al., 2013b). In 2014, Kandakatla et al. conducted ligand based
3D-QSAR pharmacophore modeling and identified eight hit
compounds from Maybridge and NCI databases as potential
HDAC2 inhibitors (Kandakatla and Ramakrishnan, 2014). In
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FIGURE 3 | Chemical structures of epigenetic eraser inhibitors mentioned in this review.

the same year, based on 79 previously published substrate-based
SIRT1 inhibitors, Kokkonen and coworkers performed CoMFA
studies that was successfully applied in the bioactivity prediction
of 13 newly synthesized compounds (Kokkonen et al., 2014).
Similarly, Cao et al. developed QSAR models using support
vector classification and regression with scrupulous examination
based on published HDAC8 inhibitors that was applied in next-
round drug screening (Cao et al., 2016).

High Throughput Virtual Screening
In 2007, Price and colleagues initiated virtual screening with
HDAC-focused library containing 644 hydroxamic acids (Price
et al., 2007). The study resulted in the identification of
ADS100380 (compound 34 in Figure 3) with an IC50 value of
0.75µM followed by iterative optimization. Similarly, another
successful application of structure-based virtual screen for the
discovery of HDACis was carried out by Park et al. based
on HDAC1 homology model (Park et al., 2010). The newly
identified inhibitors (compounds 35–36 in Figure 3) presented

novel chemotypes that had not yet been reported before with
IC50 values at micromolar range. In 2016, Yoo et al. rationally
designed selective HDAC6 inhibitors with the IC50 value of
0.199µM (compound 37 in Figure 3) inspired by preliminary
virtual screening efforts with LeadQuest chemical database
containing 80,600 entries (Yoo et al., 2016). Very recently, Hu
designed a versatile VS pipeline with better screening power for
the rapid discovery of selective HDAC3 inhibitors (Hu et al.,
2017). Many efforts have also been devoted to the discovery
of Sirtuins inhibitors, the NAD-dependent class III histone
deacetylases that was reported elsewhere (Salo et al., 2013;
Kokkonen et al., 2015; Padmanabhan et al., 2016).

As commonly accepted, each computational approach may
not perform optimally when applied alone due to complexity
of epigenetic network and this highlighted the importance
of various combined in silico approaches in epigenetic drug
discovery. Hou et al. developed ZBG-based pharmacophore
model with enhanced sensitivity for virtual screening leading
to the identification of selective HDAC8 inhibitor H8-A5
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(compound 38 in Figure 3) with the IC50 value of 1.8µM.
Then molecular docking followed by 50 ns MD simulation was
performed to give detailed insight of the MOA of identified
hits (Hou et al., 2015). In 2017, Ganai and co-workers
employed top-down combinatorial strategy of molecule docking
and molecular mechanics generalized born surface area (MM-
GBSA), MD simulation and trajectory clustering, energetically-
optimized pharmacophore. The authors identified distinct hot
spots in highly homologous HDAC1 and HDAC2 that shed
light on the development of specific HDAC2 inhibitors against
neurological diseases (Ganai et al., 2017). Hsu and co-workers
employed VS approach against classified NCI database leading
to the identification of class IIa-selective HDACis (compounds
39–41 in Figure 3). Homology modeling was performed to
generate HDAC5 andHDAC9 3D structures that provide atomic-
resolution insight into the selectivity of these inhibitors (Hsu
et al., 2017).

RNA Demethyltransferases
RNA methylation is one of most important chemical marks in
epigenetic landscape among which N6-methyladenosine (m6A)
is the most abundant and conserved modification in eukaryotes
(Desrosiers et al., 1974). Reversible N6-methyladenosine could
be dynamically regulated by related writers and erasers involved
in gene expression, RNA splicing, transport, and stability (Fu
et al., 2014). Fat mass and obesity-associated (FTO) enzyme is
one of the RNA demethylases and depends on Fe (II) and α-
KG cofactors for its oxidative demethylation activity (Jia et al.,
2011). Genetic variations of FTO are functionally associated with
human obesity and metabolic disorders (Frayling et al., 2007).
Recent studies demonstrate that FTO is highly expressed in
MLL-rearranged AML and plays pivotal role in leukemogenesis
(Li et al., 2017). Collectively, these studies hold promise for
drug design and development targeting FTO for therapeutic
translation.

In order to gain detailed insight into molecular mechanism
for its catalytic specificity, the complex crystal structure of FTO
and 3-meT substrate was resolved, which laid foundations for
structure-based drug design (Yadav et al., 2010). Chen et al.
employed virtual screening strategy in an effort to identify
inhibitors targeting FTO active site. After initial screening against
the drug-like SPECS database in Dock version 4.0, the primary
results were evaluated in Sybyl and revisited byAutoDock version
4.0. Then top 300 compounds were selected for cluster analysis to
ensure scaffold diversity. Finally, 114 compounds were picked out
for biochemical validation leading to the identification of natural
product rhein (compound 50 in Figure 3) as the competitive
FTO inhibitor. Further decomposed binding energy prediction
highlighted the electrostatic interactions between R316 and
rhein, which was validated by follow-up biophysical studies
(Chen et al., 2012; Aik et al., 2013). Later on, more efforts have
been devoted to the drug design and discovery of selective FTO
inhibitors (Huang et al., 2015; Toh et al., 2015). These identified
structurally different inhibitor collections may serve as the parent
templates applied in ligand-based drug design approaches. The
small molecule sets could be used to establish focused and biased

libraries that may be useful for rational drug design against other
RNA demethylases.

Histone Demethyltransferases
Histone demethylation remained ambiguous until the hallmark
discovery of first lysine specific demethylase LSD1 in 2004 (Shi
et al., 2004). These demethyltransferases catalyze lysine/arginine
demethylation and function as transcription corepressor that
is tightly associated with dynamic regulation of methylation
patterns shaping the epigenome (Dimitrova et al., 2015). Since
then, more histone demethylases have been identified and
their biological relevance has been disclosed (Kooistra and
Helin, 2012). Currently, histone demethylases could be mainly
categorized into two subfamilies based on homology and
substrate specificity: LSD demethylases (LSD1-2) and Jumonji C
(JmjC) domain-containing demethylases (JHDMs) (Markolovic
et al., 2016). Dysfunction of histone demethylases has been
observed in malignant diseases especially cancers such as
colorectal cancer, bladder cancer and lung cancer (Hayami et al.,
2011; Højfeldt et al., 2013). Harris et al. delineated the potential
oncogenic role of LSD1 (KDM1A) in leukemia using the mouse
model of MLL-AF9 leukemia (Harris et al., 2012). In another
study, the authors showed that KDM2B was highly expressed
in leukemia samples and played central role in the etiology and
progression of acute myeloid leukemia (He et al., 2011). Thus,
histone demethylases were considered as putative epi-targets for
discovering anticancer agents. In the following section, we will
discuss the successful applications of computational approaches
in the field.

High Throughput Virtual Screening
In order to pursue novel LSD1 inhibitors, Hazeldine et al.
undertook the virtual screen strategy against Maybridge
compound library. Sitemap was employed to assess the
druggability of potential active chamber. Through high
throughput virtual screen in GLIDE, the authors identified a
total of 10 hits with GlideScore lower than −7.5 kcal/mol. The
most effective compound (compound 42 in Figure 3) featuring
amidoximes moiety displayed moderate in vitro activity with
the IC50 value of 16.8µM (Hazeldine et al., 2012). Later on,
Sorna and co-workers reported structure-based docking studies
with the ligand library containing 13 million compounds. High
Throughput Virtual Screen (HTVS) protocol integrated in
Schrödinger suite was applied and the database was subsequently
refined by rule of five filters to weed out nonbinders and
compounds with undesirable physicochemical parameters. Top
15% compounds were selected and re-ranked by combinatorial
scoring with GLIDE, ICM, and GOLD to discard false positives.
Based on chemical diversity analysis and visual inspection
of initial docking results, 121 compounds were selected
for biochemical validation and further medicinal chemistry
optimization led to the identification of novel LSD1 inhibitor
12 (compound 43 in Figure 3) with the IC50 value of 0.013µM
(Sorna et al., 2013). Continued efforts have been made toward
the discovery of potent, selective epi-probes against LSD1 and
other histone demethylases (compounds 44–45,47 in Figure 3)
based on computational approaches (Schmitt et al., 2013; Kutz
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et al., 2014; Roatsch et al., 2016). Chu et al. utilized GEMDOCK
to screen the NCI database (∼236,962 compounds) in silico and
identified a selective KDM4A/KDM4B inhibitor (compound 48
in Figure 3) with the IC50 value at micromolar level (Chu et al.,
2014). In 2016, Korczynska et al. performed molecular docking
screens using ZINC fragment library (∼600,000 commercially
available fragments) in DOCK version 3.6 leading to the
identification of 5-aminosalicylates as the KDM4C inhibitor with
good ligand efficiency. Further docking analysis and fragment
linking optimization yielded more potent inhibitor with Ki

value of 43 nM (compound 49 in Figure 3) against KDM4C
that highlighted the viable applications in fragment-based drug
discovery (FBDD) (Korczynska et al., 2016).

3D-QSAR Pharmacophore Modeling
In 2015, Zhou et al. presented pharmacophore-based ligand
mapping strategy against LSD1 using refined SPECS database
(∼171,143 small molecules) in Discovery Studio version 2.5.
3D conformations of 37 compounds with known activities (22
compounds for training set and 15 compounds for test set) were
generated and used to generate pharmacophore in HypoGen
module. The reliability of the pharmacophore model was verified
by Fischer randomization test and decoy set prediction. Through
combinatorial pharmacophore mapping and optimized docking
in database screening, the authors identified XZ-09 (compound
46 in Figure 3) as a selective LSD1 inhibitor with the IC50

value of 2.4µM that may serve as a lead compound for further
optimization (Zhou et al., 2015a).

READER

The posttranslational modifications on histone tails with
different modification states are recognized by specific epigenetic
readers, which recruit effector modules to stimulate different
functions. Until now there are several well-characterized
epigenetic readers including acetyl-lysine readers, methyl-
lysine readers, methyl-arginine readers, and phospho-serine
readers. Among them, lysine acetylation and methylation
related readers were studied extensively as drug targets in epi-
drug design and discovery. The acetyl-lysine readers consist
of bromodomains and the tandem PHD domains (Lange
et al., 2008; Filippakopoulos et al., 2012). And the readers
associated with lysine methylation include PHD zinc finger
domains, WD40, Tudor, double/tandem Tudor, MBT, Ankyrin
Repeats, zf-CW, PWWP, and chromodomains (Kim et al.,
2006; Collins et al., 2008; Musselman and Kutateladze, 2009;
He et al., 2010; Rona et al., 2016; Schapira et al., 2017).
Emerging evidence demonstrated the dysfunction of epigenetic
readers is implicated in various diseases such as cancer,
intellectual disability, aging, autoimmune disease, inflammation
and acquired immune deficiency syndrome (Baker et al., 2008;
Greer and Shi, 2012; Jung et al., 2015). So far, several successful
compounds selectively targeting epigenetic reader domains have
been reported and some of them enter into clinical studies
(Greschik et al., 2017). Herein, we focus on the computer-
aided drug discovery in epigenetic readers and review the
successful examples to illuminate the advantages and potential

applications of computational drug design and discovery in this
field (Figure 4).

Druggability Prediction
Based on the complex crystal structure information of epigenetic
readers with their relative substrates or small molecule inhibitors,
the druggability of these targets could be easily predicted by
computational methods. Many pragmatic programs have been
developed and applied to explore potential drug-actionable
pocket and assess the druggability of these binding sites (Halgren,
2009; Fauman et al., 2011). In 2011, Santiago et al. conducted
the systematic druggability prediction for methyl-lysine binding
proteins (Santiago et al., 2011). Based on the terms like steric
volume, enclosure and hydrophobicity of the pocket, the Dscores
of potential pockets were calculated using SiteMap. The results
revealed that the druggability of different of methyl-lysine
readers was highly variable dependent on backbone motion
and intramolecular interactions, among which chromodomains,
WDR domains and PWWP domains were more targetable
than others like Tudor and PHD domains for small molecule
inhibitors.

In 2012, to explore the druggability for bromodomains, the
acetyl-lysine binders, Vidler et al. retrieved the available crystal
structures of 33 human bromodomains from the Protein Data
Bank (PDB) and evaluated druggability in SiteMap (Vidler et al.,
2012). Among them, bromodomain, and extra-terminal (BET)
family was predicted as the highly druggable target, which
was already proved by small molecule inhibitors studies, but
it could not represent the whole bromodomain families. The
authors classified 49 bromodomains into eight categories based
on common binding site features and found that only one of
them showed the comparable druggability with the BET family
including CECR2, FALZ (A/B), GCN5L2, PCAF, TAF1 (A/B)(2),
and TAF1L(2). Other groups were predicted with low scores
suggesting to be challenging for epi-drug discovery. Collectively,
these work uncovered novel druggable readers that were less
explored before, which provided new opportunities for drug
discovery.

Combinatorial in Silico Virtual Screen
Approaches
With the rapid development of BET inhibitors, more complex
crystal structures were obtained, which made structure-based
virtual screen and chemical modifications more easily. Based
on the well-known critical interactions between BET family and
related inhibitors, many computational studies were performed
to develop novel chemotypes for BET family.

In 2013, a high throughput virtual screening was performed
with more than 7 million small molecules from the Dictionary of
Natural Products, the ChEMBL database, and the ZINC database
by Lucas and colleagues in order to discover novel inhibitors
of BRD4(1) (Lucas et al., 2013). Based on standard precision
and extra precision algorithm for molecular docking in GLIDE
version 5.6, top-ranked 500 hits were clustered into 33 diverse
categories. According to the prediction of several properties
including physicochemical, pharmacokinetic, toxicological and
binding promiscuity using various computational approaches,
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FIGURE 4 | Chemical structures of epigenetic reader inhibitors mentioned in this review.

22 candidate compounds were selected for further experimental
validation. Finally, 7 compounds comprising 6 different novel
scaffolds (compounds 51–56 in Figure 4) were identified with
significant binding affinity. The subsequent resolved complex
structures of BRD4(1) with XD14, XD1, and XD25 revealed the
accurate binding modes consistent with the docking simulation.

In 2015, Allen et al. developed in silico screening approaches
against kinases and bromodomains, which integrated machine
learning and structure-based drug design strategies. At last
several BRD4 inhibitors (compounds 57–58 in Figure 4) and

one dual EGFR-BRD4 inhibitor (compound 59 in Figure 4)
were identified (Allen et al., 2015). Similarly, Xue and co-
authors performed another structure-based virtual screening
against BET bromodomains (Xue et al., 2016). Approximately
10,000 compounds were firstly screened against BRD4(1) in
GLIDE version 6.1. Through binding free energy assessment
and cluster analysis, 15 representative compounds were chosen
for biological evaluation. The results showed two compounds
with benzo[cd]indol-2(1H)-one scaffold were identified as novel
inhibitors targeting the BRD4(1). Before the optimization of
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this scaffold, binding modes of these two compounds were
predicted by molecular docking in order to characterize the
critical interactions. A 20 ns MD simulation was subsequently
performed, which indicated the conformations were stable
and reasonable for hit optimization. Further SAR analysis
and resolved complex crystal structures provided guidance for
hit optimization leading to the discovery of compound 85
(compound 60 in Figure 4) with high-potency biological activity.

Concomitantly, Tripathi et al. carried out a virtual screening
against BRD2(2) using 1,700 compounds in NCI Diversity
Set III library (Tripathi et al., 2016). The candidates were
selected according to the free energy values, critical binding
conformations, and ligand efficiency. Among them, crystal
structure of compound NSC127133 (compound 61 in Figure 4)
in complex with BRD2(2) was resolved, which displayed distinct
structural features. In 2017, Ayoub et al. performed high
throughput virtual screen with 6,000,000 compounds in ZINC
database using the crystal structure of BRDT(1) (Ayoub et al.,
2017). A dihydropyridopyrimidine scaffold (compound 62 in
Figure 4) was identified with highly selectivity for BET family
and submicromolar affinity for BRD4(1) and BRDT(1), which
could be easily synthesized in one step.

With many new scaffolds uncovered from high throughput
virtual screening, Raj et al. made an attempt to screen with
flavonoids and derivatives instead of a common library with
large collections of compounds (Raj et al., 2017). The followed
ADMET properties analysis demonstrated the good drug-
likeness properties of the identified compounds (compounds 63–
66 in Figure 4) suggesting potential applications in the therapies
for BET-related diseases. In another study, Deepak et al. designed
three benzotriazepipne analogs using in silico tools with the
aim to improve the selectivity between BET family members
(Deepak et al., 2017). Combined with ensemble docking, MD
simulation and binding energy calculation, compound Bzt-W49
(compound 67 in Figure 4) was synthesized and showed about
10-folds selectivity toward BRD4 compared to BRD2.

Besides the virtual screening efforts against BET family,
drug discovery toward other readers has also progressed a
lot in recent years. In 2016, a structure-based pharmacophore
modeling combined with molecular docking were carried out to
identify small molecule inhibitors of methyllysine reader protein
Spindlin1 (Robaa et al., 2016). Several hits (compounds 68–
70 in Figure 4) were subject to 2D-chemical similarity search
and medicinal optimizations which improved the potency over
10-folds.

In addition to the in silico structure-based virtual screening
against commercial libraries directly, the ligand-based
computational methods would also help to improve the
efficiency of virtual screening. In 2013, Vidler et al. carried out
substructure searches for advanced enrichment of chemotypes in
two branches (Vidler et al., 2013). For one thing, substructures
that mimicked the acetyl-lysine moiety were searched in
database. For another, similarity searching was performed
to identify distinct chemotypes from known inhibitors using
pharmacophore models, shape-based 2D fingerprint searches.
The extensive set of substructures obtained was submitted to
molecular docking in eMolecules database and manual selection

for further experimental validation. Finally six novel hits
(compounds 71–76 in Figure 4) including four unprecedented
acetyl-lysine mimetics were identified. Structure-guided
chemical modifications were performed based on complex
crystal structures to improve the potency. In 2016, Hugle et al.
screened PurchasableBoX library to select analog of previously
identified bromodomain inhibitor XD14 (compound 52 in
Figure 4) (Hügle et al., 2016). Several candidates were used
to explore the SAR of XD14 and additional structural features
of BRD4 through DFT calculation, atom-based QSAR and
ligand-based pharmacophore, which offered the guidance for the
development of novel BRD4(1) inhibitors.

Fragment-Based Drug Discovery
Fragment-based drug discovery has been widely practiced in
drug discovery and some FBDD-derived drugs have entered
into the clinical study (Erlanson et al., 2016). Many CADD
integrated tools have been designed for scaffold replacement and
fragment growing such as Molecular Operating Environment
(MOE) developed by Chemical Computing Group, which could
accelerate the pace of FBDD-guided drug discovery. In 2012,
Chung et al. firstly built a fragment library that contained
substructures with acetyl-lysine mimetic functional groups to
identify novel BET inhibitors (Chung et al., 2012). The library
was filtered to eliminate unsuitable substructures based on “rule
of three” and predicted pKa values. The remaining fragments
were clustered and then representative members were selected
in each cluster according to docking results. Coupled with
follow-up experiments, Chung and colleagues identified several
compounds (compounds 77–81 in Figure 4) with two novel
fragment scaffolds, which significantly extended the chemotypes
of current inhibitors.

In 2013, Zhao et al. built a fragment library to discover
novel BRD4 inhibitors (Zhao et al., 2013a). The fragment
compounds in ZINC database were filtered by particular rules
including molecular weight ≤ 250 Da, rotatable bonds ≤ 5, log
P ≤ 3.5, and 1 ≤ smallest set of small ring ≤ 4. According
to the Tanimoto similarity calculated in Pipeline Pilot, 487
representative fragments were purchased to build the fragment
library. Through molecular docking with established in-house
library and crystallization experiments, 9 fragments were
identified in the binding pocket of BRD4(1) in the solved crystal
structures and four of them (compounds 82–85 in Figure 4) were
presented in Figure 4. Further pharmacokinetic study showed
the great potential for further drug development. In 2017, Ali
et al. performed docking-based virtual screening with fragment-
like database containing nearly 800,000 compounds from ZINC
database in an effort to pursue BRD4 inhibitors (Ali et al., 2017).
Finally, the authors unveiled the discovery of a novel scaffold
(compound 86 in Figure 4) contained [1,2,4]triazolo[4,3-
α]quinoxaline as BET inhibitors. Several rounds of chemical
modification led to the synthesis of analogwith high potency and
improved pharmacokinetic properties.

Target-Specific Scoring Function
Considering the better druggability for BET family, many
efforts were devoted to the discovery of novel BET inhibitors.
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However, the performance of either virtual screening or high
throughput screening varies and shows high rate of false
positives, which restricts the applications in this field. In order to
improve enrichment factor in screening, a BRD4-specific score
named BRD4LGR was developed through machine-learning-
assisted approach by Xing et al. (Xing et al., 2017). First-
round virtual screening was performed in GLIDE version 5.6
and 453 compounds were selected for in vitro evaluation
resulting in a high false positive rate of 95%. Based on
the first-round screening results and other reported studies,
structure and activity data of 814 compounds was collected
to construct specific scoring function. The authors identified
critical molecular interaction features from reported complex
structures and established logistic regression model to correlate
the interaction features to potencies. Compared with GLIDE
and PMF, BRD4LGR discriminated BRD4 inhibitors and non-
inhibitors more effectively with high specificity and sensitivity.
A second-round virtual screening using BRD4LGR identified 15
new active compounds with a lower FP rate at 85%. Beyond
this, BRD4LGR was capable of interpreting key structure-activity
relationships of BRD4 inhibitors, which would be quite valuable
for chemistry optimization.

In a follow-up study, Jiang et al. employed virtual screening
strategy with an in-house compound library containing 887
FDA-approved drugs using BRD4LGR scoring model (Jiang
et al., 2017). The docking-based virtual screening coupled
with similarity-based analog searching led to the discovery of
nitroxoline (compound 87 in Figure 4) as a potent and novel
BET inhibitor that was previously used to treat urinary tract
infections. The successful application of BRD4LGR suggested
potential use of nitroxoline in the treatment of BET family-
related diseases.

Quantum Mechanical Calculations
Quantum mechanical calculations are commonly used to
understand the nonbonding interactions, such as cation-π and
hydrogen bond interactions. In order to explain the different
affinity of 1,5-naphthyridine derivatives,Mirguet et al. carried out
in vacuo QM calculations to calculate the bound conformations
of several derivatives in their complex with BRD2 (Mirguet
et al., 2014). The results showed that the differences in internal
geometric energy might account for differences in relative
bioactivity.

Besides, quantum mechanical calculations could be applied
in combination with other computational studies in epi-probes
discovery. In 2014, Rooney et al. identified two CREBBP
bromodomain inhibitors with weak activity by in silico screen
and biochemical assays (Rooney et al., 2014). Further structure-
based chemical modifications led to the compound (R)-1
(compound 88 in Figure 4) with the IC50 value of 758 nM. The
complex structure of (R)-1 and CREBBP bromodomain revealed
an induced-fit pocket that didn’t exist in apo-form. (R)-1 formed
a cation-π interaction with R1173 to maintain the stability of
the conformation. In an effort to rationalize the importance of
the cation-π interaction, the authors undertook MD simulation
in which the cation-π interaction was observed for 40% of the
trajectory time. Then the strength of cation-π interaction was

estimated by DFT calculations with the strength value of 3.2–
4.7 kcal mol−1 in accordance with the experimentally measured
average strengths involving lysine or arginine. Meanwhile, DFT
calculations were also applied to confirm the significance of
internal hydrogen bound in ligand conformation which were also
applicable in other studies.

PROTEIN-PROTEIN INTERACTION

Epigenetic enzymes from the same protein subfamily often
share similar catalytic core pockets and cofactors within family
members, thus making it quite difficult to discover and design a
selective inhibitor. A growing body of evidence suggests that a
variety of protein–protein interactions (PPIs) are indispensable
for integrity and oncogenic function of epigenetic enzymes.
Therefore, these PPIs appear to be alternative drug targets to
modulate chromatin state in epigenetic drug discovery. Due
to the unique structural features of PPIs, which have large
and flat contact surface and the lack of well-defined pockets,
it remains challenging to explore small molecule inhibitors
targeting epigenetic interactome (Wells and McClendon, 2007).
However, with high-resolution protein complex structures
resolved, advanced computational tools developed and renewed
understanding of PPIs mechanisms, great progress has been
made in the development of small molecule inhibitors (Scott
et al., 2016). Here, we focus on the application of CADD
methods, including structure-based virtual screening, scaffold
hopping, structure-based pharmacophore modeling, and ligand-
based pharmacophore profiling in the discovery and design
of small molecule inhibitors targeting important epigenetic
PPIs including EZH2-EED, WDR5-MLL1, and Menin–MLL1
(Figure 5).

EZH2-EED

Polycomb repressive complex 2 (PRC2) specifically trimethylates
lysine 27 at histone H3, which is one of the cardinal marks for
transcriptional repression (Simon andKingston, 2009). Enhancer
of zeste homolog 2 (EZH2) is the catalytic subunit of PRC2,
which requires two additional subunits embryonic ectoderm
development (EED) and suppressor of zeste 12 (SUZ12) for
full functional activity (Czermin, 2002; Cao and Zhang, 2004).
Aberrant PRC2 activity has been reported in the initiation
and progression of wide range of cancers (Chang and Hung,
2012). Thus drug design and discovery targeting the PRC2
complex formation represents the unique strategy in chemical
intervention.

Drug repositioning is an increasingly attractive strategy widely
applied in biopharmaceutical companies to identify alterative
therapeutic indications from approved drugs (Ashburn and Thor,
2004). In 2014, in order to pursue EZH2-EED inhibitors, Kong
et al. utilized structure-based virtual screening approach to enrich
the hits from in-house compound library containing ca. 1,000
existing drugs (Kong et al., 2014). The standard precision and
extra precision mode in GLIDE version 5.5 were subsequently
employed to perform docking-based virtual screening leading
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FIGURE 5 | Epigenetic PPI inhibitors. (A–C) Chemical structures of the inhibitors mentioned in this review. (D–F) The detailed interactions patterns of EZH2-EED (PDB

code: 2QXV), WDR5-MLL1 (PDB code: 3EG6), and Menin-MLL1 (PDB code: 4GQ6). EED, WDR5, and Menin are represented in surface contours. The side chains of

key residues involved in hydrophobic interactions are depicted in red while the ones involved in polar interactions are depicted in yellow.

to the identification of astemizole (compound 89 in Figure 5),
a FDA-approved antihistamine drug as moderate EZH2-EED
inhibitor with K i value of 23.0µM. Further biophysical assays
and cellular studies demonstrated the competitive MOA of
astemizole and its inhibition for intracellular PRC2 activity.

WDR5-MLL1

Mixed lineage leukemia 1 (MLL1) is the histone
methyltransferase responsible for the H3K4 methylation.
MLL1 interacts with many chaperons including WD repeat-
containing protein 5 (WDR5), a common unit that is essential
for the integrity of the catalytic core complex (Dou et al.,
2006). Therapeutically targeting WDR5-MLL1 interaction by
peptidomimetic inhibitors has been demonstrated as a promising
strategy for MLL fusion-mediated acute leukemogenesis (Karatas
et al., 2013).

In 2016, Getlik and co-workers designed focused library
in silico guided by crystal structure information and initial

SAR exploration on previously identified benzamides scaffold
(Getlik et al., 2016). An exhaustive virtual enumeration
was performed in Pipeline Pilot to search all accessible
building blocks containing benzamides moieties. The set of
compounds with poor physicochemical properties were removed
by OICR HTS filters. About 1,200 acyl halides and 9,000
acids/esters were enumerated and used for further medium-
throughput virtual screening. Subsequently, molecular docking
was performed in GLIDE with one H-bond constraint to the
side chain of S91 in WDR5. Through overall consideration
of the docking score, binding pose, structural complexity
and synthetic difficulty, 50 representative compounds were
selected by visual inspection and prioritized as candidates for
synthesis and verification. Finally, 4-(trifluoromethyl)pyridin-
2(1H)-one moiety was discovered as better alternative in
replacement of the benzamide moiety. Among the derivatives,
the optimized antagonist 16 days (compound 90 in Figure 5)
was the most potent inhibitor against WDR5-MLL1 with
the Kdisp value of 60 nM, which offered novel therapeutic
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options in the treatment of leukemia harboring MLL fusion
proteins.

Menin-MLL1
The oncoprotein MLL1 can directly associate with cofactor
Menin through N-terminal 43 amino acids including twoMenin-
binding motifs (MBMs), MBM1 (Kd = 53 ± 4.2 nM) and
MBM2 (Kd = 1.4 ± 0.42µM) (Grembecka et al., 2010).
Menin-MLL1 interaction is required for oncogenic function
of MLL fusion proteins and contributes to related leukemia
pathogenesis (Yokoyama and Cleary, 2008; Huang et al., 2012).
Thus, the Menin-MLL1 PPI interface has been spotlighted
as a potential target for epi-drugs development against MLL-
mediated leukemia.

In 2014, Li et al. employed structure-based pharmacophore
modeling targeting the Menin–MLL1 interface based on the
interaction patterns of Menin and MBM1 complex structure
(PDB ID: 4GQ6) (Shi et al., 2012; Li et al., 2014). 10 best
pharmacophore models were generated in Discovery Studio
3.0, considering the features of HBD, HBA, and hydrophobic
group. Based on overall consideration of the fitness score in
generated models, excluded volumes and hot spots analysis,
one pharmacophore model with two hydrophobic groups
and a hydrogen bond acceptor was selected as a query
for follow-up virtual screening. Then an in-house library
comprising 900 exiting drugs was built and queried by
the constructed pharmacophore model. 29 compounds were
finally selected for biochemical verification. Among them,
two aminoglycoside antibiotics, neomycin and tobramycin
(compounds 91–92 in Figure 5), were identified as Menin–
MLL1 inhibitors in fluorescence polarization competition assay
with binding affinities of 18.8 and 59.9µM, respectively.
Thermal shift assay and isothermal titration calorimetry
validated the direct interactions between the two antibiotics and
Menin. Molecular docking analysis indicated these antibiotics
competitively occupied the binding site of MLL1 in the central
cavity of Menin.

In 2016, Xu and co-workers conducted the structure-based
molecular docking and ligand-based pharmacophore modeling
to obtain Menin-MLL1 inhibitors (Xu et al., 2016). To establish
the ligand data set, 74 previously reported inhibitors classified
into three categories were collected and 5,000 decoy compounds
were generated based on 10 compounds with best potency by
DecoyFinder (Cereto-Massagué et al., 2012). For one thing,
molecular docking with various constrained conditions was
subsequently performed in GLIDE. According to the Glide
score and enrichment factor (EF) values, non-constraint SP
docking approach performed best and was more appropriate
for SBVS that could well distinguish known inhibitors from
decoys for Menin-MLL1 inhibitors. For another, ligand-based
pharmacophore models with 4–6 pharmacophore features (HBA,
HBD, hydrophobic group, aromatic ring and positively or
negatively charged group) were generated from those collected
inhibitors with pIC50 > 5.0. 3D-QSAR models were then
developed based on the built pharmacophore models through
partial least-squares (PLS) regression analysis. Through the
joint LBVS and SBVS computational strategies, five compounds

with novel scaffolds were identified as Menin-MLL1 inhibitors
validated by fluorescence polarization assay. Among them,
DCZ_M123 (compound 93 in Figure 5) showed the most potent
inhibitory activity in vitro with the IC50 value of 4.7µM and
could effectively inhibit the growth of MLL leukemia cells by
impairing the Menin-MLL1 interaction in cell-based assays.

Scaffold hopping was proposed as a promising strategy to
look for novel molecular entities with similar three dimensional
conformations and properties (Schneider et al., 1999). As a
shape-based three dimensional structure superposition method,
it has been extensively used to generate potential alternatives
of known compounds based on the bioisosteric replacement
of core motif within molecules (Sun et al., 2012; Lamberth,
2017). In 2016, Yue et al. applied a shape-based scaffold
hopping approach to reposition approved drugs targeting the
Menin-MLL1 interaction (Yue et al., 2016). In the study,
reported bioactive conformations of representative Menin-MLL1
inhibitors MI-2-2 and MIV-6R (PDB code 4GQ4 and 4GO8,
respectively) were used as query (Shi et al., 2012; He et al.,
2014). An in-house library comprising∼1,600 existing drugs was
aligned onto the query to perform 3D similarity searching using
SHAFTS (Liu et al., 2011; Lu et al., 2011). A set of 12 top ranked
compounds with SHAFTS similarity scores >1.2 (maximum
2.0) were selected for primary validation, which indicated that
loperamide, previously used as anti-diarrhea agents, showed
weak inhibition with the IC50 value of 69µM. Further molecular
docking analysis and medicinal chemistry optimization led to
the identification of more potent loperamide-derived analog.
Among them, DC_YM21 (compound 94 in Figure 5) presented
nanomolar inhibitory activity of the same order of magnitude as
the reported inhibitor MI-2-2.

FUTURE PERSPECTIVES

Computational methods are indispensable and creditable tools
in both academia and industry that undoubtedly streamline
the epi-drug and epi-probe discovery process. The focal point
of this review is the state of art of CADD methods in epi-
drug design and discovery framework over the past decades.
Tremendous progress has been achieved in epigenetic drug
discovery based on in silico approaches as we have mentioned
above which unequivocally draws a positive picture in the field.
However, it is widely accepted that these aforementioned hit-
finding methodologies are far from perfect and not omnipotent
in all situations. There are still formidable challenges that
need to be overcome which limit the effective applications
of current computational methods. Firstly, current molecular
docking scoring functions rank the compounds collections with
inherent poor prediction accuracy in novel target drug discovery
whose function has just been unraveled not long ago (Sable
and Jois, 2015). Secondly, traditional docking algorithms fail
to take complicated factors into full consideration like protein
flexibility, solvation, entropy, and dynamic inclusion of water
molecules (Clark, 2008; Lavecchia and Di Giovanni, 2013). Thus,
it’s difficult to precisely predict the absolute binding energy
for ligand-protein interactions based on current methodologies.
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There are some reviews that investigate protein flexibility in detail
(Barril and Fradera, 2006). However, the current computational
methodology considering this issue is time-consuming that needs
to be further improved. Thirdly, despite the fact that epigenetic
enzymes have been actively pursued as potential drug targets,
there is still conspicuous lack of potent chemical probes for
a large number of knotty targets like HATs and epigenetic
protein-protein interactions, which needs to be further explored.
For these less well-studied epi-targets, there are few inhibitors
with limited diversity of scaffolds ever reported that hinders
the ligand-based drug design and development. For instance,
PRMT5-MEP50 complex formation could enhance the stability
and activity of PRMT5 and the PPI is essential for cancer cell
invasion in lung cancer and breast cancer (Chen et al., 2017).
Heterooctameric PRMT5-MEP50 complex structure has been
resolved which enables structure-based drug design. Nonetheless,
no chemical probes have ever been reported for such novel
targets. Fourthly, the bioactivities of identified inhibitors vary
considerably due to different assay platforms in differ different
labs. Some of the reported inhibitors belong to pan-assay
interference compounds and present non-specific interactions
that have not been carefully examined (Dahlin et al., 2017).
Overinterpretation of these results leads to misleading readouts
and would go to the cul-de-sac in drug discovery process.
Taken together, there are still many problems left unsolved
which encourage the researcher to devote more drug discovery
efforts in order to fill the vacancy in this field. To tackle with
these issues, integrated SBVS and LBVS approaches should be
applied to counterbalance their own limitations in a parallel
manner in virtual screen campaigns. As for novel targets

with fewer inhibitors ever reported, computational methods

should be applied in synergy with experimental approaches.
Multidisciplinary efforts shall be devoted to generate more
diverse machine learning datasets for the establishment of
target-customized scoring functions, which in turn help to
exploit chemical space available in database as thoroughly as
possible. Meanwhile, the researchers should carefully examine
the biological data before interpreting the biological results. This
appeals to the researchers to develop a reliable experimental
platform to standardize current biochemical assays. It could
be expected that with rapid development of computational
power and methodologies, more epi-drugs and epi-probes will
be developed in the near future, which could not only help to
uncover the elusive role of each node in epigenetic regulatory
network but also guide optimum therapeutic options in the
treatment of epigenetic-related diseases.
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