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 Eulerian models are used to represent the air traffic environment as traffic flows 
between interconnected control volumes representing the airspace system. While these 
models can be manually derived for simple air traffic patterns, computer-based approaches 
are essential for modeling realistic airspaces involving multiple traffic streams.  A computer-
aided methodology for deriving large-dimensional Eulerian models of air traffic flow is 
described here. Starting from the specification of a few airspace parameters, and traffic 
data, the modeling technique can automatically construct Eulerian models of the airspace. 
The synthesis of air traffic flow control algorithms using the model predictive control 
technique in conjunction with these models is given. It is shown that the flow control logic 
synthesis can be cast as a linear programming problem. The flow control methodology is 
illustrated using air traffic data over two regions in U.S. airspace. 

I. Introduction 
he development of an Eulerian1 approach to modeling air traffic was discussed in recent research efforts2, 3. 
These works were motivated by research initiatives currently underway4, 5 within the air traffic management 

(ATM) research community to develop decision support tools for analyzing and controlling air traffic flow, to more 
efficiently manage operations of the U.S. National Airspace System (NAS). The focus of the present paper is on the 
development of a computer-aided methodology for deriving Eulerian models of the airspace, and employing it for 
air traffic flow control. The approach uses the NASA-developed Future ATM Concepts Evaluation Tool6 (FACET) 
software as its foundation. 
 The Eulerian approach models the airspace in terms of line elements approximating airways, together with 
merge and diverge nodes. Since this modeling technique spatially aggregates the air traffic, the order of the airspace 
model depends only on the number of line elements used to represent the airways, and not on the number of aircraft 
operating in the airspace. Eulerian models are in the form of linear, time-varying difference equations.  
 The one-dimensional modeling methodology is an intuitive approach for deriving models of traffic flow 
networks formed by jet routes and Victor airways. However, not all aircraft in the airspace strictly follow the jet 
routes or Victor airways. This situation is likely to continue in the future as more and more aircraft opt to fly wind-
optimal routes to their destinations7.  This introduces the need for a more flexible modeling framework. This 
framework, first advanced in Reference 2, discretizes the airspace into surface elements (SELs), within which the 
traffic flow is aggregated into eight different directions. This modeling provides adequate fidelity in en route 
airspace where the traffic flow is largely two dimensional. The traffic at all flight levels in Class A airspace (at or 
above 18,000 ft) is classified as belonging to any one of these eight directions, with inflows and outflows from 
airports and other external sources. Each surface element is connected to its eight neighbors, with the connection 
strengths being determined by the actual traffic flow patterns. 
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 Eulerian models are then derived by examining traffic flows over a specified sample time interval into and in 
between the surface elements. These models are then used for analysis and flow control system design. Details of 
the modeling approach will be given in Section II. It has been shown in References 2 and 3 that the Eulerian models 
can be used to carry out a variety of analyses on the air traffic flow, such as controllability, reachability and model 
decentralization.    
 An important application of the Eulerian models is in development of quantitative decision support tools for air 
traffic flow control. The present research has explored the application of the model-predictive control technique8 
(MPC) to the air traffic flow control problem. This will be discussed in Section III, together with two examples. 
Conclusions from the present research are given in Section IV.  

II. Computer-Aided Eulerian Traffic Flow Modeling 
The Eulerian modeling process begins with the definition of a grid of surface elements covering the region of 

airspace being modeled. The surface element grid is defined by latitude-longitude tessellation on the surface of the 
earth in geocentric polar coordinates. Each surface element has equal angular dimensions in longitude and latitude as 
shown in Figure 1. However, due to the spherical nature of the airspace being modeled, surface elements far north or 
south of the equator will have smaller physical dimensions than those near the equator. All the results reported in 
this paper are based on one-degree latitude-longitude increments. The eight different en route traffic flow directions 
within each surface element are indicated in Figure 2. In addition to these, the surface elements above airports will 
include one output stream for landing aircraft. The aircraft taking off from airports under a surface element are 
included in one of the eight en route traffic flow directions. Surface elements lying on the boundary of the airspace 
being modeled will have additional inputs representing traffic entering the system from un-modeled airspace (e.g., 
international flights). 

 Since the present form of the Eulerian model is discrete in space and time, a sample interval τ must also be 
specified. Although the spatial and temporal discretizations are based mainly on the level of detail desired in the 
model, due to the assumption that each surface element is connected only to eight of its neighbors, the sample time 
interval must be chosen so that no aircraft in a surface element travels beyond its immediate neighbors in a sample 
interval. Thus, the dimensions of the smallest surface element and the airspeed of the fastest aircraft in the airspace 
determine the acceptable sample interval.  

  As in References 2 and 3, the air traffic flow pattern is modeled within each surface element using two sets 
of parameters. The first of these are the inertia parameters aii, one for each of the eight streams representing the 
fraction of the aircraft that remained from the previous sample time. By definition, in any stream i, the fraction of 
aircraft that left the SEL in the previous sample interval is given by (1- aii).  

 The second set of parameters are the flow divergence parameters βmn representing the aircraft that switched 
streams within the SEL. Since the aircraft in a stream may stay in it, or switch to any of the other 7 en route streams, 
or land at an airport, for a given SEL there is a matrix of 9×8 = 72 flow divergence parameters. In order to satisfy 
the principle of conservation of aircraft in a surface element, for each stream n, the divergence parameters to all the 
outputs must add up to unity, i.e.; 

 ∑ =
=

9

1m
mn 1β  

Note that one of the βmn is not independent. By convention, let 

 ∑−=

≠
=
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It is assumed that an aircraft will nominally remain in the same stream, so the default values of the divergence 
parameters are: 
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 Figure 3 illustrates the model of a stream in a surface element. The dynamics of the air traffic flow in a SEL can 
be described using the inertia parameters and the divergence parameters, through the principle of conservation of 
aircraft. For instance, the difference equation describing the air traffic flow in the easterly stream in the surface 
element i, j can be derived as2, 3: 

 ( )( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( )kqkqkykukxa1kx exo
3,j,i

depart
3,j,i3,1j,i3,j,i

8

1m
m,j,im,3,j,i3,3,j,i3,j,i ττττβ ++++∑=+ −

=
 

In this equation, x(k) denotes the number of aircraft in the stream at the sample instant k, u(k) are the aircraft 
flow rates held back in the stream through flow control actions, y(.) is the air traffic flow rate from the neighboring 
SEL, qdepart is the air traffic flow rate joining the stream from airports under the SEL and qexo is the air traffic flow 
rate entering the airspace.  The control variables in this equation are the air traffic flow rates u(k) for metering 
actions, and the departure traffic flow rates qdepart from the airports under the SEL.  

 
 
 

 
 

Figure 1.  Latitude-Longitude Tessellation Used in Eulerian Flow modeling 
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Figure 2. Traffic Flow Directions in a Surface Element 
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Figure 3. EATF Model of an Air Traffic  Stream in a Surface Element 
 
The en route output equations for a surface element can be written as: 
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Moreover, the landing air traffic flow rate into the airports under the SEL are given by: 

 ( ) ( ) ( ) ( ) ( ) 9m,kx1ky
8

1n
n,j,in,m,j,im,j,i =∑=

=
β

τ
 

 Several surface elements are required to model realistic airspaces. In the present work, the numbering 
convention of the surface elements (i, j) is that the index j is increasing from left to right, in the easterly direction, 
and i is increasing from bottom to top, in the northerly direction. Air traffic flow models of several SELs can be 
combined to form the overall Eulerian model of the airspace, and can expressed in a compact form as: 

 ( ) ( ) ( ) ( ) ( ) ( )kqBkqBkBukxkA1kx exo
e

depart
d +++=+  

The departure traffic may be subdivided according to those airports where they will be controlled by a ground 
delay program, and where they will not. It is assumed that external traffic qexo cannot be controlled directly. If the 
controlled inputs are combined into a vector v(k), and all other inputs are collected together into a disturbance vector 
w(k), the dynamic equation for the airspace is of the form: 

 ( ) ( ) ( ) ( ) ( )kwBkvBkxkA1kx 21 ++=+  

 The state vector x(k) can be initialized using traffic data and then propagated forward in time. These 
equations can be used to facilitate analysis and synthesis of flow control strategies. 

 Typically, not all states are of interest for analysis or for flow control. An output equation can be formulated 
to provide the variables of interest as: 

 ( ) ( ) ( )kvDkxkC)k(y 1+=  

 The Eulerian air traffic flow model consists of the time-varying difference equation for the state vector, and 
the time-varying algebraic equation for the output vector. These equations can be formulated for surface elements in 
any desired region of the NAS, and combined together to form a basis for analysis and flow-control system design.   

A.  Determining the Parameters of the Eulerian Model from Traffic data 
 While the Eulerian modeling process is intuitively simple to carry out, it is impractical to manually derive 

these models for airspaces containing more than a few surface elements. During the present research, a computer 
aided modeling technique has been developed to automatically derive Eulerian models of arbitrary dimension using 
the FACET software as the traffic propagation engine.   

 Staring with a specification of the airspace boundaries, surface element size and sample time interval, the 
first step in the modeling process is that of determining the location of every aircraft in the airspace with respect to 
the surface element grid. Within each SEL, the heading angle of aircraft is then used to sort them into one of the 
eight streams. As an additional criterion, this determination may also be based on the surface elements they are 
likely to occupy at the end of the sample time interval. This provides the initial condition for the Eulerian model. 

 Next, the aircraft trajectories are propagated using the FACET software for one sample interval. The new 
locations of the aircraft in the SELs, together with the aircraft location data at the beginning of the sample interval 
are then used to compute the inertia and divergence parameters for each SEL during the sample time duration. This 
process is repeated for the time duration of interest.  

  A flowchart of the automatic modeling methodology is given in Figure 4.  The modeling algorithm has been 
implemented in the form of a software package called MAESTRO (Modeling and Analysis Environment for 
Studying Traffic–flow Requirements and Operations). Starting with the specifications of a few parameters, this 
software package enables the user to construct models of arbitrary size. The software also incorporates linear 
algebraic algorithms9 to help carry out controllability, observability, reachability, order reduction, decentralization 
and covariance analysis.  All the results given in this paper were generated using this software package.  
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Figure 3. A Flowchart of the Automatic Eulerian Air Traffic Flow Modeling Methodology 

III. Model Predictive Air Traffic Flow Control 
One of the objectives of the present research is to demonstrate the application of Eulerian models for the 

synthesis of closed-loop air traffic flow control algorithms. These algorithms can initially be used as decision 
support tools, and as other airspace automation initiatives4,5 mature in the future, they could be used in a more 
automated mode. A block diagram illustrating the components of the air traffic flow control system is given in 
Figure 4. 

 Closed-loop air traffic flow control logic helps achieve the desired traffic flow rates at arrival airports and 
keep traffic densities within limits in the national airspace by regulating the departures at airports and by modulating 
the flow through metering regions in the airspace. If the traffic density is low except at isolated time intervals, and 
the flow control problems are localized, effective flow control can be achieved using simple strategies. But as the 
traffic density increases, purely heuristic approaches may result in undesirable flow fluctuations in the airspace, and 
tools for flow control become important.  Note that the traditional approach to air traffic flow control in the NAS is 
through heuristic means.  
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Figure 4. Air Traffic Flow Control System 
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Although sophisticated decision support tools10 have been developed to manage aircraft trajectories, 

computational tools to manage traffic flows have not yet reached comparable levels. This section will demonstrate 
how the Eulerian models can be used to design en route flow control strategies. Due to the high order of the system 
dynamics, its time varying nature, and control limits, the model predictive control technique9-11, 12 is used for the 
flow control algorithm synthesis. 

The basic idea in this control technique is to use a model of the system to predict the outputs up to N steps ahead 
(prediction horizon) using a nominal control policy. Nominal control policies are often adopted as either zero or 
constant values of control, subject to the control constraints. Next, an optimization problem is solved to determine 
the values of control that will minimize the error between the actual and the desired values of the outputs over the 
prediction horizon.  

The Eulerian air traffic flow model over multiple time steps can be used to readily assemble an output predictor 
as: 

 ( ) d
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where,  

 

( )
( )

( )

( )
( )

( )

( )
( )

( ) 



















+++

+++
+

=



















+

+
=



















+

+
=

)Nk(qNkq

)1k(1kq
kq

q~,

Nku

1ku
ku

u~,

Nky

1ky
ky

y~

exodepart

depart
)k(depart

d

MMM

exo

exo

q
q

 

 



























=

− 01NN

0123

012

01

0

x

AAC

AAAC
AAC

AC
C

M

L

M

,    



























=

− N01NN

3231230123

212012

101

0

u

DBAC

DBCBACBAAC
0DBCBAC
00DBC
000D

M

LL

OM

L

L

L

 

 



























=

− 0AAC

0CACAAC
00CAC
000C
0000

M

11NN

323123

212

1

d

LL

OM

L

L

L

τ

τττ
ττ

τ

 

A set of performance variables yperf is next defined. These performance variables represent the traffic flows that 
the model predictive control algorithm expects to control, and can be individual air traffic flows in specific surface 
elements, or linear combinations of traffic flows into airports or regions of interest in the en route airspace.  

The essence of model predictive control is that at each time step over the prediction interval, it is desired to 
minimize the difference between the actual values of the performance variables and the desired or command values 
yd. The variables comprising yperf and its desired values yd are selected based on the specific air traffic flow control 
objectives.   

For the present work, the 1-norm is a suitable choice for the minimization problem in terms of the performance 
variables and their desired values. As a consequence, the optimization problem can then be cast as a linear 
programming problem. The objective of the air traffic flow control is to minimize:  
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p)1N(
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with p being the number of performance variables included in the flow control problem. Note that the performance 
variables can be cast as: yperf = Yp y for some matrix Yp, and y~Y~y~ pperf =  where pY~  is a block-diagonal matrix 
with Yp comprising the N+1 blocks. With this definition, the expression for the performance variables can be 
written as: 

 ( ) d
dpupxpperf q~MY~u~MY~kxMY~y~ ++=  

The linear programming problem can then be expressed in the form: 
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The vector γ consists of bounding variables, one variable for each term in the 1-norm. Note that the symbol 1 in the 
cost function represents a row vector of ones and I in the inequality is an identity matrix. 

Additional constraints in the problem are that the controls must be greater than or equal to zero to be physically 
meaningful.  Since the controls are part of the solution vector, the lower bounds can be handled directly. Another 
constraint is that the outflows in the streams where metering is taking place must be greater than or equal to zero, 
which in effect defines the upper bounds on the controls. Since these upper bounds are dependent on the state of the 
system, they cannot be specified directly, and must be included as constraint equations. Let these constrained 
outputs be defined as yc = Yc y with Yc a matrix of 0’s and 1’s, and y~Y~y~ cc =  where cY~  is a block-diagonal 
matrix with Yc comprising the N+1 blocks. The additional constraint equation is: 
 

 [ ] ( )[ ] 0q~MY~kxMY~
u~

MY~0 d
dcxcuc ≥++







γ
 

This constraint equation augments the previous equations. Slack variables are introduced as in standard linear 
programming problems to transform the inequality constraints into equality constraints.  The linear programming 
problem for the model predictive control problem is then formed as follows. Let the vector of unknown quantities be 

 [ ]tttttt tsru~z γ=  

where r, s, and t are column vectors of slack variables of dimensions (N+1)p, (N+1)p, and (N+1)m, respectively, 
where m is the number of control inputs, 

 [ ]01ct =    

where 1 is length (N+1)p and 0 is length (N+1)(2m+2p), and  
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For the controls, the lower bounds are zero, and although the upper bounds are determined by constraints, a 
value of 50 was specified as a practical measure. The lower bounds on the slack variables are set to zero and the 
upper bounds are set to a large number, 1032 in the present work. Likewise, the lower bounds on the bounding 
variables are set to zero and the upper bounds are set to a large number, 1032. 

In the case where departure controls are included, the appropriate columns of dp MY~ appear in the F matrix on 
the left-hand side of the constraint equation, and an additional constraint is needed. While the requirement that the 
output must be non-negative could be used, in this case the maximum value of the control is determined by the 
number of departures in that stream where control is being applied. This gives a simpler expression to implement. 
Let dq̂~ be the subset of departures where control is to be applied, and let du~  be the subset of the controls applied 
to the departures. Then the constraint is: 

 0u~q̂~ dd ≥− . 

Since this is an inequality, another set of slack variables must be added, so that the vector of unknowns becomes 

 [ ]ttttttt vtsru~z γ= . 

For simplicity of notation it will be assumed that the control vector is partitioned so that the metering controls for 
the prediction horizon [k, k+N] are first, and the departure controls over the same interval are second; i.e.: 
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Let dM̂ be the matrix composed of the columns of Md corresponding to the departures where control is applied. 
Then the left and right hand sides of the constraint equations are of the following form. 
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The linear programming problems for various air traffic flow control situations formulated in this section are 
solved using a software package called PCx13 from Argonne National Laboratory. This software has been integrated 
into the Eulerian modeling software (MAESTRO) mentioned in the previous section.  

A flowchart of the model predictive air traffic flow control implementation is given in Figure 4. Since the 
coefficients of the Eulerian model used for MPC are derived from the traffic data, the application of controls will 
change the traffic flow. This will in turn cause changes in the model. In order to synthesize correct control decisions 
for the next sample, the model coefficients must be recomputed using the air traffic resulting from the application of 
controls in the previous sample. Thus, every control action must be followed by the recomputation of the model 
coefficients. The new model must then be used in the MPC flow control methodology. 
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Figure 4.  Model Predictive Air Traffic Flow Control Using the EATF Model  
 

The following sections will illustrate two different air traffic flow control examples using the MPC 
methodology. 

B. Dallas-Fort Worth Area Metering 
The objective of this example is to regulate the air traffic flow descending into the area surrounding the Dallas-

Ft. Worth (DFW) airport for the time period between noon to 2 PM on a typical day. Figure 5 illustrates the region 
under consideration. Each surface element included in the control problem is denoted with the numeral 1. The 
airport is near the middle of this figure. The surface elements are 1 degree by 1 degree, or approximately 60 nm 
north-south by 50 nm east-west. The sample time interval is 6 minutes. The metering locations are indicated by 
hourglass symbols and the directions are indicated by short line segments in this figure. There are a total of 40 
controls, which were selected in part by observing the traffic flow over the specified period. The Eulerian traffic 
flow model has 512 state variables. For simplicity, the descending air traffic streams are summed by quadrants NW, 
NE, SE, SW as shown in the figure, resulting in four outputs to be controlled.  

The time history of the outputs without flow control inputs are shown in Figure 6. It can be observed that the 
traffic does not follow any particular pattern. The model predictive control strategy is next implemented, with the 
requirement that the desired flow rate into each quadrant be less than or equal to 2 aircraft/sample. The prediction 
time horizon is 4 samples. The time history of aircraft flows into the four quadrants under closed-loop control are 
given in Figure 7. It can be observed that the flow is much more regular, but the control objectives are not strictly 
satisfied at all sample instants. Note that it is not possible to achieve exact control due to the fact that the metering 
controls are constrained, and that the flow is not metered in certain directions. 
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Figure 5. Metering Controls in the Vicinity of DFW Airport 

 
In the foregoing discussions, the aircraft flows in four separate zones were regulated. A more practically useful 

control objective is the regulation of the total traffic flow into the DFW airport area. In view of this, the MPC 
problem is next reformulated with one output defined as the sum of all 16 landing outputs, and requiring the desired 
flow rate to be less than or equal to 8 aircraft/sample. The model predictive flow control then produces the time 
history shown in Figure 8. This figure also indicates the aircraft flow without control. 

 

Figure 6. Air Traffic Flows into the DFW Airport Area without Metering 



Presented at the 2004 AIAA Guidance, Navigation, and Control Conference, August 16 -19, 
Providence, RI.  Paper Number: 2004 - 5317 

 
© Optimal Synthesis Inc., 2004. Published by American Institute of Aeronautics and Astronautics with Permission 

 

12

 
Figure 7. Air Traffic Flows into the DFW Airport Area with Metering 

  
As in the previous case, the present control objective is strictly met only at certain samples. However, the flow 

rate much more regular under closed-loop control. Achieving a better flow control will require the introduction of 
additional metering SELs in the modeled region. 

 
Figure 8. Air Traffic Flow Rate into DFW Airport Area Under Metering 
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C. Air Traffic Density Control in a Region 
A flow control problem that sometimes arises in the NAS is that of maintaining the density of air traffic in 

certain regions below a certain specified level to limit the workload on the human air traffic controller. This example 
illustrates how the MPC methodology can be used for traffic density control.  For illustrative purposes, in this 
example, the aircraft density in a single surface element will be regulated. Extending this approach to multiple 
surface elements is straightforward.  

The traffic density is defined in this paper as the total number of aircraft within a surface element at a sample 
instant. Since the airspace volume represented by surface element is known, the actual traffic density/unit volume 
and the total aircraft count are proportional.  The density is computed by summing the aircraft in each of the eight 
streams in the surface element of interest. For the present example, the surface element of interest is between 33 and 
34 degrees North latitude and 82 and 83 degrees West longitude, an area east of Atlanta’s Hartsfield airport.  This 
region was selected arbitrarily among those that appeared to have a steady flow of traffic. Metering points were 
chosen at the streams in neighboring SELs that feed into the controlled SEL. The surface element of interest is 
shown in Figure 9. This example has 72 states and 8 controls. 

Note that metering controls have been placed in neighboring surface elements, in directions pointing towards the 
surface element. The desired density is then chosen to be 4 aircraft or less, and the number of prediction steps is 
taken as 2. A comparison of the controlled and uncontrolled densities is shown in Figure 10. The MPC-based 
controller is able to maintain the desired density to within 2 aircraft or less in most cases. 
 

 
Figure 9. Surface Elements Considered in the Traffic Density Control Example 

The two examples given in this section illustrate the MPC-based air traffic flow control logic synthesis. 
Although the performance of the MPC controllers was satisfactory, significant improvements are possible through 
additional analysis of the Eulerian models. 
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Figure 10. Density Control Results 

IV. Conclusions 
This paper presented the development of a computer-aided Eulerian air traffic flow modeling methodology and 

its application to deriving quantitative flow control strategies. The flow control algorithms can initially be used as 
decision support tools, and as other airspace automation initiatives mature in the future, they can be used in a more 
fully automatic mode. 

The Eulerian modeling methodology divides the airspace into interconnected surface elements, and the dynamics 
of the traffic flow through and between these surface elements is then derived by invoking the principle of 
conservation. Although the Eulerian approach preserves no information on the motion of individual aircraft, it 
provides a convenient formalism for aggregating air traffic flow information. An automatic procedure for deriving 
the Eulerian models from individual aircraft trajectories was developed during the present research. In this approach, 
the user provides inputs such as the region of the national airspace to be modeled, spatial discretization, sample time, 
metering locations, airports subject to departure control, the output locations and the time interval of interest. The 
automatic modeling procedure then uses the FACET software to assemble the Eulerian model. A software package 
termed as the MAESTRO (Modeling and Analysis Environment for Studying Traffic–flow Requirements and 
Operations) has been developed and integrated into FACET to assist the user in automatically constructing Eulerian 
air traffic flow models. 

Various types of analysis can be conducted using the Eulerian traffic flow models. By aggregating the traffic 
information in the form of discrete-time, linear time-varying models, the Eulerian model enables several types of 
useful analyses on the air traffic flow in the airspace.  

 The model predictive control technique was employed in conjunction with the Eulerian model to synthesize 
air traffic flow control algorithms. The MPC technique uses the Eulerian model to make predictions over a specified 
time-horizon about the future values of performance variables under a nominal control policy.  An optimization 
technique is then used to refine the nominal control policy so as to achieve the desired values of states and outputs.  

 The present research considered the 1-norm of the error between desired and predicted performance variables 
as the performance index. Inequality constraints were specified on the control variables and output variables. Since 
Eulerian models are linear, the resulting optimization problem is in the form of a linear program. This linear 
programming problem was then solved using a well-known software package. Flow control synthesis for two 
different problems was then demonstrated.  

 This paper demonstrated that it feasible to use the Eulerian air traffic flow models for analysis and flow 
control system synthesis. The methodology given here can be readily tailored to practical traffic flow control 
problems to improve the efficiency of en route air traffic flow control in the future. Investigation of alternate control 
techniques will be future interest. 
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