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ABSTRACT 
This thesis explores the junctions of mathematical and computer modeling of infectious 
disease epidemics, the basis of such research and the communication of results. With 
increasing frequency we turn to computers and software for any type of research 
problem encountered. Computer modeling is a blessing with many hidden trapdoors. 
Skipping mathematical modeling, resorting to code immediately, is ill advised. 
Validity, uncertainty, bugs and old mathematical truths must all be taken under careful 
consideration. The same duality is present in the communication of the results from 
computer models to the public, to decision makers and to peers. 
These topics are discussed in the context of four contributing papers. 
The first paper describes a computer model of an infectious disease epidemic in 
Sweden. Using Swedish travel data we were able to demonstrate a way of successfully 
restricting travel to delay the spread of disease. 
The second paper discusses a known fallacy common to many epidemic models, often 
overlooked when mathematical models are simulated on computers. It is demonstrated 
that it must be considered also with more complex models. The model in Paper I is 
used to exemplify the problem.  
The third study takes the parsimonial considerations of the first two papers to another 
level, proposing static models for use in epidemic modeling. Understanding, an eluding 
- especially in computer models - but essential component in all models, is benefited. 
The fourth study explores the epidemiology of sexual networks. Using survey datasets 
we show that with high probability, the sexually active population is largely connected, 
in a so called giant component, rendering the Swedish population an ideal isotope for 
sexually transmitted pathogens. 
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1 FOREWORD – CROSS DOMAIN 
This thesis is about two interfaces, the overlapping regions between three domains. The 
first is between two types of modeling - mathematical and modeling. The second is 
between computer modeling and the target audience - the public, decision makers and 
other scientists, in the fields of medicine and/or more theoretically oriented engineers 
and mathematicians.  
The following questions are contributed to: 

• Are travel restrictions effective?  
• What considerations should be taken when modeling epidemics, in general and 

specifically with computers, in terms of 
o simplicity and complexity? 
o understanding and validity? 
o data? 

• Given the difficulty of validating an epidemic model, how can we communicate 
the results to  

o decision makers?  
o scientists? 
o the public? 

• Why are sexually transmitted diseases endemic in Sweden and many other 
countries? 

Some readers will welcome an opportunity to thoroughly scrutinize my work of the 
past years; most readers will be able to grasp the theory and results at least 
superficially; all readers can derive pleasure or benefit from reading about infectious 
disease epidemiology and computer modeling. The language and format throughout is 
intended to encourage all of you. 
This foreword, briefly summarizing the papers, is followed by and introduction, as is 
customary. This is followed by a chapter on infectious disease epidemiology, outlining 
the key differences to the non-infectious sister field to which many of the readers may 
be more accustomed. Chapter 4 briefly summarizes the history of epidemic modeling 
and serves as an introduction to some important concepts in the field. Concepts of 
modeling in general and epidemic modeling in particular, follow in Chapter 5.  
The remainder of the preface I have opted to organize paper-wise, rather than collate 
reoccurring sections within. It would perhaps be suitable to have a chapter for each of 
the questions asked in the list above, but I feel that the issues are best illuminated and 
exemplified when the discussion is intertwined with the description of each of the 
papers. Some points are lost without at least an idea of what the papers are about. The 
issues are therefore included within the chapters dedicated to the papers individually, 
sometimes as named sections and sometimes as a brief mention.  

1.1 MODELING WITH COMPUTERS 

Computer modeling is hardly an unconventional approach, in this day and age. To any 
given problem presented or question asked, more often than not, we turn for a solution 
to software engineers and their calculating machines. What we have come to find is 
that, much less than before, problems have to be adapted to suit the tool. Much more 
than before, the modeler will try to answer the question that was actually posed, not a 
simplified or idealized version thereof.  
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Computers were originally dreamt up by mathematicians to solve mathematical 
problems that were infeasible to solve by hand or impossible to solve analytically. Soon 
economists, engineers and sociologists caught on to solve their problems. Being 
accustomed to what can be accomplished, problems are now posed directly with the 
computer in mind, often skipping tedious mathematical modeling. But that is both a 
relief and a concern.  
Speaking as en engineer, skipping the mathematics part, is not real engineering. 
Turning the problem over and over before you attempt to break it with the most readily 
available means has obvious benefits. Inconsistencies can be found, expected outcome 
can be assessed and used to validate the model and verify the output. If too much 
laboring is lost when we enthusiastically feed the problem into our machines, then we 
run the same risk as before the teraflops era, of finding that what comes out is a 
solution to another problem than the one originally stated, or, not a problem at all. 
Computers are blind, so is the software and neither can replace solid mathematical 
modeling entirely. 
The secondary aspect from which to view this collection of papers is that of 
communication. This concerns message, goal, target audience and not the least, the 
journals in which the papers are published. …to be considered when reading the thesis 
and papers. 
On a scale from mathematics to software engineering, from simplistic to realistic, from 
broad to narrow target audience, the models and papers described in this thesis cover a 
reasonably wide range over the middle of the spectrum. They will serve well to 
illuminate the issues.  

1.2 THE PAPERS 

Before we start with the background knowledge required to appreciate the papers, let 
me first briefly introduce them.  
The first paper describes a simulation of an infectious disease over the country of 
Sweden. It is an example of a simple mathematical model describing the dynamics of 
disease spread and using a computer program to simulate it. The core of the model is 
the way people travel and move over the country.  
We run the many thousands of simulations, each starting with a single infected person 
in Stockholm. The infection spreads from person to person within the municipality and, 
by way of the traveling model we set up, to other municipalities around the country. By 
carrying out many simulations we are sure to capture sporadic effects that might prove 
significant.  
We show that by limiting the travel distance we can achieve a significant delay in the 
spread of the disease. However, as others have consistently shown, travel restrictions 
alone are not able to stop an outbreak in its tracks.1, 2 
On a scale from simplistic versus complex, as a multi-scaled model, this model places it 
somewhere in the middle. We will discuss how much information was included in the 
model and whether or not we were overly scrutinous, particularly concerning the travel 
data. 
The second paper can be seen as an amendment to the first in that it describes an 
important trait, in our model and others, that is oftentimes overlooked - not without 
consequences for the result. Epidemics may be delayed or accelerated and other 
dependent variables will be affected. Depending on the problem at hand, the questions 
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to be answered, this may be perfectly in order, since the mean time will still be 
respected. In the model in Paper I, we were mostly interested in mean results. For 
calculating the total number of infected people at the end of an outbreak, for instance, 
the simplification works. 
Are computers to blame? Partly, yes. The computer program, the code, conceals certain 
facts that would be easily spotted by a capable mathematician on reviewing the 
underlying equations. The issue should be understood and considered for any result 
more intricately involving the timing of the epidemic and related processes. If not 
before, this is achieved by trying to model with mathematics before code.  
The problem addressed in Paper II is just one of the many traps set by seeing computers 
as an easy way out. I am not saying that this particular problem is exclusive to 
computer models, only that a new breed of scientists means that old lessons have to be 
relearned. Computers allow us to solve a new, bigger class of problems and it is very 
tempting to try an answer questions for which the underlying mathematical model is 
not suited. Computers do not substitute traditional mathematical ground work. Another 
question is of what use the rather complex result of a computer model is. A solution to 
a simple mathematical model can hold an equally simple truth, one that is both 
beautiful and powerful. Can we understand the output without really perceiving the 
intricacies of a computer simulation? If so, when applied to the real world, what insight 
can be lent?  
The point of the argument I cannot bring further than with an idea such as static 
modeling. Static modeling wholeheartedly embraces the simplicicist stance, the 
keywords being simplicity, transparency and interpretability. The model in Paper III, 
predicting hospital load during an influenza pandemic, is simple. The model proposed 
takes historical data on past flu pandemics and epidemics and transfers them to settings 
of today. Computers play a vital part in displaying the output, accounting for 
uncertainty, quickly visualizing the effect of changing certain parameters as well as 
solving some of the equations numerically. This is not to conceal the fact that the core 
mathematical model is so simple that it can be analyzed by anyone with pen and paper 
using simple algebra. 
Finally, Paper IV concerns sexually transmitted disease and asks the question just how 
closely knitted the sexually active population is. We do so by modeling the population 
and social contacts between people as a network. We set out to find the giant sexual 
component. 
Physicists have contributed to infectious disease epidemiology for quite some time 
mainly through their interest in network theory3-5 and statistical mechanics6, 7, the two 
fields actually having a few notable points of contact. Some very fundamental 
questions can be answered by very simple means, just by asking who can be reached by 
whom and how fast. 
If it is the case a giant component exists in the Swedish sexual network, then that would 
mean that most sexually active Swedes would be connected to each other via their 
partners, their partners’ partners and so on - an ideal habitat for certain sexually 
transmitted infections, in other words.  
The existence of a giant component can be demonstrated using some superficial 
knowledge about sexual contacts and a few cleverly applied theorems. The model is 
simple and idealized in order to be tractable. To support our claim, we wanted to 
simulate a few networks to see what they looked like, thus computers come to our aid 
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also in Paper IV. We add a tad more complexity to strengthen a particular assumption 
in the analytical part. The two models work hand in hand very nicely.  

1.2.1 Target 
Although the first two papers concern almost the same model, they are quite different 
in both style and intended audience. While the first is a policy paper published in an 
open access journal and has decision makers in its list of targeted audience, the other is 
more theoretical, intended only for the enjoyment of other modelers and those 
interested in the field. 
Paper III makes its appearance in a medical journal. It describes software, the proposed 
usage of which is amongst decision makers and epidemiologists primarily, but can also 
be understood by the general public. In spite of this, it is the one paper of the four that 
is most firmly grounded in the engineering field. The programming was preceded by 
laborious mathematical modeling, numerical modeling as well as a literature review of 
the field and other studies.  
The message of paper IV is clear enough. As for the recipient, this paper targets public 
health informers, but only as the middle man. The insufficiently enlightened general 
public should listen attentively to this argument for a more responsible sex life. 
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2 INTRODUCING MODELERS 
The capture of the mechanism of the universe in the language of mathematics is a true 
art. Mathematical modeling and it is essential in understanding many things around us. 
The hydrogen bond between water molecules, for example, is what gives rise to the 
formation of the beautiful hexagonal patterns we see emerge as water freezes to crystals 
and is essential for the existence of life. It has captured the imagination of scientists 
through centuries and withstood most attempts of modeling. As enthralling as it is to 
look upon a snowflake, for a certain breed of people, the equations describing their 
growth are even more beautiful than the real thing. In any case, one must agree that 
enclosing the richness of nature in the rigorous structure of mathematics, enabling us to 
explain and predict, is one of the pinnacles of human achievement.  
Chemical bonds are one thing. To model epidemics is to model humans and their 
erratic behavior. The obstacles imposed by the complexities of a conscious mind that 
itself is able to do mathematics, is what makes sociology seem inapproachable by 
mathematics. “Physics would be a lot harder if atoms could think.” as Nobel laureate 
Murray Gell-Mann said.8 Yet, in sociology, it is not the brain that is to be modeled, but 
the statistical properties of humans as a group. Richard Swartz9: 

…it is easy to forget that our world becomes unmanageable without 
generalizations, atomized [as it is] in an infinite number of special 
cases that rarely, if ever, allow themselves to be summed to a 
sensible whole.”  

Although he was talking about bigotry, I think this rather sums up why mathematical 
modeling always has part to play in sociology. If not, Auguste Comte, one of the 
founders of sociology, spoke about “social physics” before the precedent term was 
coined10 and, underlining the foresight in this coinage, Anatol Rapoport developed 
social network models in the 1940s. For further reading, consult Coleman11, Karlsson12, 
Rashevsky13 or Simon14.  
Often, indeed, people are modeled as were they particles. Helbing15 found that an 
obstacle, like a column, suitably placed in front of an emergency exit will facilitate the 
evacuation of a crowd in case of an emergency. In fact, the simplest models 
demonstrating epidemic spread though a human population, are simple in comparison 
to Helbing’s. 
See if you can spot this one16: 

There's definitely, definitely, definitely no logic 
To human behaviour 
But yet so, yet so irresistible 

2.1 ENTER COMPUTERS 

Most definitely: exactly at the point where computers enter, mathematics looses some, 
if not most, of its elegance. The exquisite texture of symbols and elegance of compact 
formalism is replaced by variables spelled out in plain English in page after page of 
code glaring brightly from a screen. As if this were not enough, variables are assigned 
values, the sort of thing mathematicians go to great lengths to avoid. Mathematics has 
after all been developed over centuries to formalize human thought. Programming 
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languages have been developed in a very short span of time to formalize the 
comparatively rather gnomish instruction set of a processor.  
Then again many mathematicians would rather not have their equations have anything 
to do with reality either and computers may be seen as a step towards this. The process 
is too useful to be hard-neckedly ignored. The remarkable development in the field of 
computer hardware and programming tools have, in addition to offering new insights in 
phenomenon replicable in the lab, enabled scientists to put mathematical models to the 
test by computer simulation, in an environment that, in other cases, is as close to reality 
as we can hope to achieve. Inescapably, ethics often prevent us from performing 
controlled experiments on human subjects, in a lab or otherwise. This is the case for 
sociology most of the time and certainly for infectious disease epidemiology all of the 
time. Real events of course allow us to gather data but it is impossible to control for 
variables in a way that would completely satisfy empirically. 
It is the physicists that have promoted research into computer modeling. They have 
recently found that there is little work for them to do in theoretical physics. 
Advancement in that area can be entrusted to handful of theoretical geniuses. Instead 
physicists have had to expand in to other fields, applying statistical mechanics, 
wherever they are welcome and most other places as well. No area of research has been 
considered out of reach for applied physics. Some went into sociology, spawning the 
modern research into network theory. 
The heart of the issue is that the equations of the mathematical model require solving. 
Some are hard to solve analytically, some are impossible. The benefit of a computer is 
that it enables the numeric solution of hard or impossible equations. That’s what 
attracts mathematicians. First and foremost, however, it enables the modeler to propose 
models that he or she knows to be intractable to start with. That’s what attracts the 
physicist. The explosion of new models proposed in all fields of science can surely not 
be a bad thing, even though the average quality may have declined some what in later 
years. 
Models may be proposed for the exclusive processing of computers. When it comes to 
sociological models, from which epidemic models inherit, computer models have an 
edge. They can represent individuals explicitly and assign each a different behavioral 
model.17 Mathematical models cannot.18 Micro-simulation models or agent based 
models are motivated thus. Although I have put substantial effort into micromodels,19 I 
will touch upon it only briefly in this thesis. 

2.2 ENTER DATA 

In epidemic modeling, physicists and engineers are now doing what mathematicians 
have been doing the past century. Neither are necessarily epidemiologists. In order to 
be an epidemiologist and not just a modeler, you have to get your hands dirty with the 
data. Until then, everything you do is just theory. 
Epidemiologists are expert statisticians and data analysts. That means searching, 
finding, analyzing, cleaning and aggregating data. Data never fits the model, the model 
always has to be adapted to the data, theory and method developed, margin of error 
estimated – never the other way around. It’s raw, it’s erroneous, it’s biased and people 
always underestimate the work going into en epidemiology paper with the words 
“available data”. 
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All the results in this thesis have been preceded by months of working with data. Paper 
I and II build on enquiry data from SIKA20 regarding travel of all kinds by all kinds of 
people to and thro in Sweden. In the process I amused myself with creating a map of 
Sweden as it would look if the cities were moved in order to minimize fuel 
consumption.21 Paper III uses a multitude of data sources, mostly published aggregated 
data, but also population data22 and data from the Hospital Discharge Register23. Paper 
IV uses the data from a Swedish sex enquiry24. 
This thesis will also discuss considerations of processing and applying data. 
Chapter 4 will continue the introduction to epidemic modeling. An introductory chapter 
on infectious disease epidemiology (IDE) cannot be postponed, however. 
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3 INFECTIOUS DISEASE EPIDEMIOLOGY 
Diseases have throughout most of the history of human kind been believed to be a 
punishment for their sins from deities.25 This has contributed to the species-
preservational practice of shunning and stigmatizing patients, before certain diseases 
were recognized to be contagious. The Christian church considered leprosy patients as 
unclean.26 There was awareness early on in the western world, China and Africa, that 
avoiding smallpox patients was a sensible thing to do.27 16th century French knew to 
avoid suspected bearers of the Italian disease and vice versa, the disease in question 
known since 1543 as Syphilis, the name of the shepherd who offended Apollo in a 
poem by Girolamo Fracastoro.28  
In others cases, there is no ground for any kind of social intervention, if the disease in 
question is not contagious, substance abuse for instance. Infectious and non-infectious 
diseases have thus been separated in history since eons. Typically in the former branch 
one finds those diseases that are the most terrible, most feared and that time and time 
again have altered the course of history - the bubonic plague, smallpox, syphilis and 
pandemic influenza etc. Hippocrates used the terms epidemic and endemic* to 
differentiate those diseases that occurred from time to time in large numbers, to those 
that were always in the population. 
It is worthwhile to consider the origin of infectious diseases. Bacteria and viruses are 
living organisms, obeying the same rules of selection as the rest of us. With that in 
mind it is entirely possible to think of a time without infectious diseases. Evolution 
would preserve those species that specialized to a large, moving population which in 
the early days of humanity did not include us. Denis Mollison writes in the introduction 
to Epidemic models: their structure and relation to data29: 

The spectacular success of humans in dominating the world’s 
ecology has meant that they – and their domestic animals and their 
crops – provide an unprecedented rich resource for parasites. Not 
surprisingly parasites have evolved, and continue to evolve to 
exploit this resource.  

However, the distinction between infectious and non-infectious disease epidemiology 
should preferably not be drawn particular diseases as such, but rather methodology of 
understanding they’re causes. The clinical study of either type of disease, is after all, 
rather similar. The epidemiological fields are markedly dissimilar.  
Epidemiology in general is the study of that which causes illness in a population. A 
typical definition is30:  

The study of the relationships of various factors determining the 
frequency and distribution of diseases in the human population. 

We read the words frequency, distribution and population. Population means large 
numbers and large numbers means statistics, connotations to frequency and distribution 
being almost excessive. The definition implies that epidemiology is not so much a 
clinical field as a subfield of statistics and/or public health. In fact the clinical element 
which does exist is too often ignored.31 Epidemiologists, the non-infectious disease 

                                                 
* Today the usage of the term endemic is not exclusive to non-infectious diseases. Malaria, for 
instance, is an infectious disease that is always present in many parts of the world. 
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kind, at any rate, try to group the population according to characteristics in order to find 
differences between those who are cases and those who are not. Causes and effects are 
discerned and exposures measured put in relation to cases. Usually the method is 
different forms of statistical regression: linear, logistic, cox etc, making epidemiology 
akin to a science of the likes of sociology, to name just one. The power of these 
methods applied to the data that have be collected in cohorts, some for several decades, 
have been enormously successful in advancing medicine and public health, providing 
firm scientific ground for what we should and should not do to avoid cancer for 
instance. In the press, it seems, reports about an X times increased risk of B for people 
being C, eating D and/or engaging in E are never more than a few days apart. 
The US Surgeon General William Stewart is often accused of momentously 
announcing that it was time to close the book on infectious disease epidemiology*. 
Unfair attribution or not, this quote resonates of the general attitude at the time. 
Improved sanitation, vaccines and antibiotics had all but extinguished threats like 
smallpox and polio, with malaria next in line.35 It seemed that what little we had yet to 
learn in IDE was of little significance and that resources could be put to better use in for 
instance non-IDE. Smoking had recently been established as the primary cause of lung 
cancer and the promise of similar unveilings from population and patient data banks 
was irresistible for scientists.  
Of course, no small amount of western chauvinism is detected in this way of thinking. 
In the undeveloped world, many plagues that the west had rid itself of, continued to 
persist and cripple nations.36  
40 years and some 230 newly emerged infectious diseases later37: most antibiotics 
rendered virtually useless38 and we now have the likes of Legionnaire’s disease and 
AIDS with no vaccine in sight. New hemorrhagic fevers and respiratory infections 
emerge every now and then as well as new infectious agents like prions to complement 
the comparatively well studied bacteria and viruses. Mostly the new infections are of 
zoonotic origin emerge in the parts of the world where monitoring is the weakest the 
reprisal of our western chauvinism.37  
Nevertheless, infectious disease epidemiology remains a sub branch of epidemiology 
along with environmental epidemiology, genetic epidemiology etc. Non-IDE remains 
the flagship, still receiving most of the funding.  

3.1 DEFINITION REVISITED 

As we have seen, history itself warrants a division of the disciplines of epidemiology. 
The way epidemiologists study their particular diseases is in many ways similar, but in 
more ways fundamentally different. The key difference is illustratively captured in the 
typical definition of epidemiology above. 
The keyword is factor, which when concerning the study of infectious diseases is 
commonly also a case. The incidence of cancer patients does not decline if the 
effectiveness of patient treatment is improved upon. Treating tuberculosis patients, on 
the other hand, will affect the risk of future patients falling ill. A cancer patient is not a 

                                                 
* The quote has all the trademark of a popularized misquote. There are only secondary sources and 
Stewart himself has no recollection. Supposedly the quote is from a conference in 1967,32 but the 
published transcript gives no confirmation. The Public Health Service has looked into this and can 
neither confirm nor deny the quote. 33 In any case, it is so widely spread and marks the era very 
suitably, rather like Marie Antionette and post-construction about cupcakes.34  
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factor. A tuberculosis factor is. Non-infectious disease epidemiologists in bewilderment 
find that it is not possible to separate case and exposure, rendering useless all 
regression models - all that I know of, at any rate.  
Like the mother roe deer banishes her kids of last year, the very definition of 
epidemiology painfully expresses the need for a division of fields. In studying IDE, we 
need models of another kind. For example, in order to glance at the infinite range of 
possible random events that play such a great part in determining the outcome of an 
outbreak, stochastic models are commonplace in IDE in a way that is not immediately 
required in non-IDE.  
Many joint ventures still remain, of course. Firstly, all the methods of non-IDE are still 
available for IDE in dealing with non-communicable diseases, significantly food borne 
diseases, where the disease in question is not primarily transmitted between humans. 
The distinction in this case between exposure and case is rather more clear. Genetic and 
other factors of our upbringing and environment are still important for the susceptibility 
of infectious disease*. This is plainly seen in the west when comparing to other parts of 
our world. Poverty is a major determinant for infectious diseases.36, 37, 39 
Although never a direct cause in IDE, environment and other facilitating factors are 
always there,40 so it cannot be seen unfit to do some reverse thinking. For some time 
evidence has been amounting that many of the diseases we see as non-infectious, really 
are caused be viruses or bacteria. Cancer immediately springs to mind. 18 % of all 
cancer cases are attributable to infections, 8 % in the developed world, 26 % in the 
developing world.41 These figures are likely underestimated.42 All the facts are not in. 
Stomach ulcer is another such disease, a discovery earning the Nobel Prize in 2007, but 
the list may also include diabetes and obesity.43-46 This should be incitement enough for 
minds from both fields to get together and do some interdisciplinary thinking and 
perhaps even shed some more light on peculiarities like pie chart models and biologic 
interaction.47, 48 

3.2 THE MAIN DIFFERENCES  

Giesecke31 suggested five traits that primarily separate the discipline of infectious 
disease epidemiology from its non-infectious sister. The first has already been 
discussed. The second has been touched upon. 

• A case may be an exposure. 

• Contact patterns play a major role. 

• Sub-clinical infections influence epidemiology. 

• Immunity 

• There is sometimes a need for urgency. 

In non-infectious disease epidemiology one seeks the causes of a disease in what we 
eat, how we live or in the genome.48 Sometimes these factors are exclusive, sometimes 
they combine and interact. The role of the epidemiologist is to determine those factors, 
explain the mechanisms and finally quantify them and any interactions. In infectious 
disease epidemiology the analogous process is called contact tracing. While the above 

                                                 
* The reciprocal fact that genes could be seen as a form of disease agent from parent to child should 
probably be ignored in this discussion. 
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factors may be - and some clearly are - factors also for infections, the proximal cause of 
all cases is always another case. The question of causality, discussions about which 
always venture into the philosophical, is thereby somewhat simplified. 
In practice the difference is far from marginal. Doubling the exposure is expected to 
double the number of cases, provided there is no interaction. All other things equal, in a 
country with twice as many cars as another, we would expect twice as many car 
accidents. To first approximation at any rate, this is linear growth. Granted, 
epidemiology would not be a science if reality were this easy. There may be limiting as 
well as accelerating associations. Complications abound.  
However, growth patterns in non-IDE have no correspondence to, for example, a 
measles epidemic. A single infected index case can spawn an exponential growth in 
incidence. Factors, for instance global immunity, factors which at first glance appear 
random, may pivot the outbreak, either quenching it or accelerating it many-fold.  
For certain diseases, when all factors have been ruled out, there are still individuals 
who will not become cases no matter what the exposure, suggesting immunity. 
Immunity is at the heart of infectious disease dynamics. The equations (4-1) on page 14 
demonstrate this. Ultimately, immunity - or rather, the depletion of susceptibles - is 
what kills the epidemic. In the case of measles and many other diseases, the interplay of 
immunity and prevalence is thought to be a major mechanism behind keeping it 
endemic and periodic.  
In non-IDE, on the other hand, immunity is but a complicating statistic.   

3.2.1 Need for speed pertaining to policy 
The last of the points above may now have become apparent. The recent outbreak of 
the novel flu should convince anybody of the difference a speedy response will make in 
a way that is not an issue in non-IDE. That is why developments in influenza vaccine 
production, shortening by a few weeks the time from the discovery of a new strain until 
the vaccine is in production, is a very worthwhile endeavour.49 
The implications stretch into policy. Many countries, including Sweden, have vast 
systems for collecting data and are very good at it. Some would have infectious disease 
control snugly fitted into this system of keeping logs and registering. Admittedly, this is 
an integral part of infectious disease control, but keeping tabs, for the most part, only 
establishes the chain of events after they have taken place. This is the way we view 
statistics in non-IDE: in retrospect. The need-for-speed principal emphasizes how much 
more there is to IDE and infectious disease control. An agency is needed to act, when it 
happens and preferably before it happens. Data is needed in real time.50 

3.2.2 More differences 
A pivotal circumstance is social contact patterns and contact rate. It is of course 
intuitively reasonable that the number of people we meet everyday, on average, is very 
influential for disease spread. Modelers easily show that not only the average, but also 
the distribution, is important, i.e. some people have many contacts, others have few. So 
called social hubs, core groups and super-spreaders are studied for natural reasons as 
they can explain outbreaks in cases where other models are too simple.3, 51-53 Although 
it is an enjoyable field of study, it is not only for recreational purposes that epidemic 
modelers have become so interested in social networks, that is, the population as 
structured in nodes and links. Studying the properties of complex networks has proved 
invaluable. These are some of the topics for later chapters. 
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Another factor the non-infectious disease epidemiologists need not concern themselves 
with is subclinical (asymptomatic) cases. A case that shows no symptoms is not a case, 
but the fact that she may be an exposure i.e. she may be infectious regardless of 
symptoms, means that it is of the utmost relevance for an infectious disease 
epidemiologist to study the prevalence and infectiousness of sub-clinical cases. This 
gives epidemiology a sinister element stemming from ignorance, rather like black 
matter in astrophysics. Often vaccination leads to an increase in the proportion of sub-
clinical cases. The plot thickens. 

3.3 A FINAL THOUGHT 

I’d like to end this chapter with some free theorizing about what an infectious disease 
really is, completely speculative on my part. Apologies for my exuberance, but this is 
where I reward myself for writing this thesis.  
Given that infectious diseases evolve and adapt, same as any species subject to 
Darwin’s laws of selection: One strategy to ensure the continued existence of the 
species is to avoid detection by predators. Non-symptomatic infection is to infectious 
diseases what camouflage is to stick insects. Furthermore, it is not immediately 
beneficial for a population to destroy its own habitat; at least not before it has had the 
chance to spread into new ones. The ultimate infectious disease is not a disease at all, 
having reached the point where it is not considered parasitical in any host, a commensal 
organism, one that neither helps nor harms us.  
How many diseases that are not diseases thrive in our population? 90 % of the cells in 
the adult human are microbes, after all.54 Those that help us could very well have been 
diseases at one point in our history. 8 % of our DNA is estimated to originate from 
ancient retroviruses55 just as the mitochondria, vital in aerobic metabolism in all 
eukaryotes, is though of as having bacterial origin.56 
We do not know the infectivity of these silent invaders since we tend to focus our 
energy on that which presents a threat. 
With this in mind, fighting a particular disease with treatment and isolation is a doubly 
beneficial activity, not only for the direct effects of decimating the population of 
infectious agents, but also by constraining the evolutionary paths into more benign 
organisms, ultimately into non-somaticity. Chlamydia might be headed this way.57  
At any rate, thinking along these lines presents another argument in support for 
intensifying our efforts against emerging diseases. The threat against humanity from 
infectious diseases lies not in the ones we know about, not even in the ones we don’t 
know about but from the one’s that are about to emerge. 
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4 EPIDEMIC MODELING AND ITS HISTORY 
Daniel Bernoulli, the Swiss mathematician, was the first to calculate the immunity level 
of smallpox in the population and hence the vaccination level required to deter small 
pox epidemics.58 He formulated and solved his mathematical model in 1760. Real 
progress in the field, however, would have to wait until much later when it was realized 
how much common ground epidemiology and demographics shared.59 Many concepts 
from demographics were introduced in the early 20th century. Surprisingly, many 
concepts would still be developed independently within the two fields.59 
Ross, Hamer and others60, 61 were interested in malaria, Italian for bad air, which was a 
major nuisance to infra structure projects in the colonized world, for example during 
the building of the Panama Canal.62 Since it is tick borne it was conceptually harder to 
model than for example measles. Still it was Ross who would first discover the critical 
elements that signify infectious disease modeling, the rate of contact between infectious 
and susceptible. 
Typical of infectious diseases is that they can lie dormant in the population or other 
reservoirs, held back by the acquired immunity of the persons they would otherwise 
infect. Occasionally there may be local outbreaks that die out quickly. Suddenly, when 
the circumstances are right, in particular, when the general susceptibility has fallen 
under a certain level, the disease erupts and incidence levels climb, not gradually, but 
with near exponential growth. Exponential growth, wherever it is observed in nature, 
from rodent spawning to nuclear fission, indicates that the growth is not accelerated by 
external factors but rather fuelled by itself, as is the case for an epidemic.  
More analogies transfer directly from other exponential growth processes. 
Corresponding to uranium and carrots in the above examples, epidemics are nourished 
by a plentiful supply of susceptible hosts. The element of criticality, that is, the sudden 
development from dormant to eruptive, as a consequence of a very small change in the 
environment, is called the critical mass in nuclear science and the tipping point when it 
comes to marketing shoes.63 In infectious disease epidemiology criticality is captured in 
epidemic threshold theory, first developed by Kermack and McKendrick.64, 65 With 
various mathematical models we can determine the level of susceptibility required for 
an outbreak, be it 5 % or 20 %. 
The epidemic threshold is central to the upcoming chapters and indeed the entire thesis. 
Recommended reading for those interested in the history of epidemic modeling is the 
Brief History of R0 -part of Heesterbeek’s paper A Brief History of R0 and a Recipe for 
its Calculation.59  

4.1 THE CLASSIC SIR MODEL 

Mathematicians made their first entrance in infectious disease epidemiology the 1950s, 
a sudden interest being raised after Bailey published a classic book on mathematic 
modeling of diseases66. Before that Kermack and McKenrick, demographers, 
introduced what is known as the classic SIR-model.65 All models today, in one way or 
another, take as their point of origin Kermack and McKendrick’s model. Though it is 
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very simple it encapsulates some very important features common to many infectious 
diseases, including a simple definition of R0

*.  
The SIR-model introduces the three stages Susceptible, Infectious and Removed. The 
last of these is understood to denote immune, recovered, removed, resistant or 
deceased, whichever your fancy, in either case, neither infectious nor susceptible. 
Individuals in the model may pass through these stages in order, usually starting off as 
susceptible. Once infected by others, they move on to the infectious stage.  
The SIR in SIR-model, of course, abbreviate these three stages, but different 
interpretations of the composing letters are abundant as well as pure misconceptions 
e.g. “systemic inflammatory response”.67, 68  
A version of the classic SIR model of disease spread can be written thus69: 
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The contact rate, which we only just mentioned in the previous chapter, appears here as 
β. People move from the susceptible to the infectious stage at a rate proportional to the 
average number of contacts of a susceptible individual with infectious people, NIβ  
sometimes known as standard incidence. N is the total population. Originally the 
classic SIR-model was stated using the well known mass action principal with the 
infection coefficient, Iβ , but this is in my view inadequate for reasons nicely explained 
in Hethcote69. The coefficient to the next transition between I and R, describes the 
resting time within the infectious stage, γ1  being the average infectious period. 
Perhaps the most urgent extension to this model is to introduce the latency stage, 
commonly and equally inexplicably, known as the Exposed stage and assigned the 
letter E. Hence we have the SEIR-model - in Paper I call it the SLIR-model, L for 
Latent. In some models it is irrelevant to model an R-stage, people stay infectious 
longer than the time scale of interest: SI. In others, people return to a susceptible state 
after a period of temporary immunity: SIS. In an MSEIR-model,69 mothers may pass on 
the infection to their newborns. Different disease representations occur in great 
numbers in literature. 

4.2 PARTICLES IN A GAS 

Going back to the original SIR model, the assumption is made that people in the 
population make contact with one another in random fashion, equally likely to meet 
anyone else at any time. This is called homogeneous mixing. It can be compared to a 
gas where particles move about and collide with each other completely randomly.  
Historically, the SIR-model and other compartmental models are linked to chemical 
kinetics. In fact the term mass action is borrowed from chemistry and defines what I 
mean by particles in a gas: colliding and reacting to form new substances. The mass 
action-principle dictates the speed of the reaction and what fractions of the constituting 
                                                 
* This mysterious symbol, mentioned twice already, will soon be explained, but much later than in 
most textbooks. 
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materials are used up once equilibrium is reached - these variables and others being 
independent of the system size. The analogy to epidemics is not perfect but you can see 
how McKendrick was thinking, he himself coming from a chemical background.59 
Homogeneous mixing is a simple approximation. Due to the random and transient 
nature of each assumed person-to-person contact, the approximation is completely 
unrealistic in almost every situation.70 Nevertheless, it is surprisingly powerful. What is 
more, the wealth of tools from physics and chemistry provided for analyzing what is 
after all a very well studied phenomenon, makes the method as a first approach very 
attractive. 
Measles is one of the easiest diseases to model due to, to name but a few reasons, the 
fact that it does not require an intermediate host vector for transmission; a high 
probability of clinical recognition; a large number of recorded cases; and most 
important of all, a high rate of infection. From the perspective of the pathogen, the 
measles virus, the individuals comprising its biotope resembles very much a gas. From 
the infected it will jump to other family members with almost the same ease as the 
friend, the co-worker, the teacher or the cashier at the mall. 
Standard incidence is one development to the classic SIR-model. Some circumstances 
may require more structured contacts models to work well. A development to the basic 
assumptions is to partition the population in different ways, by age, social boundaries 
or geographical boundaries. In Paper I, we used the homogeneous mixing within the 
borders of the Swedish municipalities, a so called meta-population model. 

4.3 THE THRESHOLD CONCEPT 

The equations governing the passage of individuals through the three stages can be 
solved quite readily, yielding a simple formula for the epidemic threshold in terms of 
density of susceptibles. We will take a look at this formula to summarize some 
important concepts in epidemic models. 

Figure 4-1 SIR-model schematics 
The sketch shows the three states Susceptible, Infected and Recovered. Arrows indicate the possible 
state transitions. Beneath each state is a bar indicating the number of people in each state. The sketch 
represents a snapshot of an epidemic that is well into its lifetime but possibly even past its peak. There 
are more people in the infected state than in the recovered state. As long as there are infected left 
susceptible will continue transition to the infected state. At some point the number of susceptible will 
have diminished to a point where the rate of infection is lower than the rate of recovery. At this point 
the peak is reached and the red bar will start to shrink. The added height of all three bars must always 
correspond to the total population. 

S R I
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αβ
11−=

N
Sthreshold . (4-2) 

We'll save β for the next chapter; but α is the average infectious period γ1  above, the 
time that an infected person, on average, transmits the disease to others. In other words, 
for the solutions to Equations (4-1) where the number of susceptibles is larger or equal 
to Sthreshold , the time dependent variable I will initially grow. The longer the infectious 
period α, the larger the numerator and the smaller the right term of the equation. In 
other words, the degree of susceptibles, as a percentage of the total population, required 
for an outbreak, decreases. This makes sense since the more time you have to infect 
someone else, the more people you are likely to infect and the easier it is for an 
epidemic to initiate and sustain itself. 
As the epidemic progresses, the number or susceptibles available diminishes, the 
infectious have fewer and fewer to infect and the epidemic comes in demise. The 
mechanism is called herd immunity.  
Smallpox has been estimated to have a threshold susceptibility of 70-80 %.36 Mankind 
was able to eradicate smallpox by bringing down the level of susceptibility using 
vaccination. Polio (82-87 %) may similarly be in reach of eradication whereas measles 
at 90-95 % is likely to be impossible. 
One of the implications of modeling with a constant decay rate,γ , is that infectious 
times will be exponentially distributed meaning that while some people are infectious 
for a very long time, most will be so for unrealistically short times. The concern is the 
topic for Paper II. Depending on the analysis, a more realistic (fixed or non-skewed) 
infectious time is required.71 

4.4 CONTACT RATE 

If α is the infectious period, what then is β? If we were talking about a real particle 
system, we would be looking for something that encapsulates the willingness of the 
particles to bump and collide, determined by the thermodynamic parameters like 
temperature and pressure. We should probably abstain from taking the analogy as far as 
to say that the increased contact rate in the tropics is directly related to temperature, but 
it is true that the contact rate varies between regions and countries. β is thus the contact 
rate, the average number of sufficient contacts made per time unit. Not only does β vary 
geographically, it also differs from disease to disease, implicit in the interpretation of 
sufficient - sexual intercourse for some diseases, contaminating a door knob for others. 
The SIR-model and the homogeneous mixing assumption capture contacts in the 
simplest possible way as it dictates that everybody will have equal opportunity to bump 
into everybody else, hence the analogy with the random movement in a gas. For some 
people this may seem deeply unsatisfying. Especially if “some people” are equipped 
with modern computers, they may be inspired to develop their own models with 
particular emphasis on more realistic contact setups.  

4.5 FINALLY R0 

Another way of viewing the epidemic threshold, this time from the perspective of an 
aspiring infective agent, ready to invade a completely susceptible population, is R0. 
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Also known as the basic reproduction rate. Solving the SIR model in (1), one actually 
finds that αβ=0R . In words it is defined as:  

The average number of secondary infections caused by a typical 
infectious individual in an otherwise susceptible population.  

This is close enough to Anderson and May’s definition taken to be the gold standard, 
where the word typical is implicit.36 When R0 is above 1 an outbreak is possible. In 
other words the circumstances are right that if introduced, the infective agent may 
spread in the population. If R0 is below 1, an outbreak cannot occur. There may 
possibly be a local outbreak, but in the population for which R0 is defined, the 
circumstances - the contact rate, infectivity, what have you - are not sufficient.  
In my experience confusion often arises with R0 here in the void between model and 
reality, but to be on the safe side it is best to say that when R0 >1, and outbreak can 
occur and not the assertive, will occur. As always, the difference depends on the model. 
R0 is a quantity no paper in epidemic modeling feels complete without at least some 
mention of. In my humble opinion, the roll of R0 is an unfortunate consequence of this 
field having been dominated by mathematicians for so long. Hence, out of the four 
papers in this thesis, three ignore it. R0 is an enlightening concept fetched from 
demography and is easy to grasp for mathematicians, but leads to many misconceptions 
with both modelers and laymen. 
Often it is just a case of missing out parts of the definition. For instance, R0 is defined 
for a completely susceptible population so you cannot use vaccination to lower R0. The 
mistake is made in the abstract of this heavily cited piece by Gray et al.72 One often 
sees in literature, like Everitt’s handbook for clinicians and medical students,73 for 
example, that when R0=1 the disease is in an endemic state meaning that it neither dies 
out nor fully becomes an outbreak. While this is theoretically true, it is nevertheless a 
purely hypothetical case, a mathematical curiosity that has no correspondence to 
anything familiar in the real world, and certainly not what we know as an endemic. In 
simple models where endemic dynamics are incorporated, the infectious and 
susceptible proportions rise and fall periodically over time, in counter phase. Please 
review Hethcote69 for an example. In this case the time dependant version of R0, often 
denoted Rt or just R, oscillates around 1 in tune with the periodicity of the endemic. R0 
is as always constant, and what’s more, if we are to have an outbreak at all, larger than 
1. 
Just a note: Rt: it is often known as the replacement number. Sometimes you will see 
reproduction number (note, no “basic”) but I think this is too confusing. 
Other misinterpretations often arise from the words typical and average. R0 is an 
average value, defined in its context – population and/or geographic location – and 
there are always local variations which is often not included in models. The typical 
individual is sublimely different from the average individual, the latter having 
approximately one breast and an infinite menstrual period. The typical individual may 
exist but “it” can only be uniquely selected if everybody is indistinguishable in the 
relevant properties. Again chemistry sets the agenda. 
Calculating R0 is another matter still, as it is invariably model specific.59, 71, 74, 75 In 
mathematical models, specifying R0 with a closed formula is important. Sometimes but 
not always, this entails going to the limit of an infinite population where you can have 
one infected and still have a completely susceptible population. Infinity minus any 
finite number happens to evaluate to infinity. But if you calibrate a model to a specific 
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outbreak of a specific disease, for instance,76 then you will with certainty get different 
values for all models. In other words. R0 tells you more about the model than the 
disease and the context in which thrives. 
Almost invariably, the specific calculation of R0 relies on parameters that cannot be 
obtained, parameter values being notoriously hard to come by in IDE. Most of the time, 
proxy variables too are scarce, for instance. 77 If the parameters are too many, for 
instance,78 this might also cast doubt on the estimate, parameter values being 
notoriously uncertain in IDE. For these reasons R0 is rarely calculated from formula 
using parameter estimates. A variety of techniques are available to determine R0 from 
outbreak data.59, 79 
For computer models, following the definition may be very hard. Even in computer 
models, people are not always indistinguishable. Moreover, we cannot have an infinite 
population in a computer but have to make do with a very large one. To complicate 
matters even further, the threshold value may be larger than 1 when considering 
heterogeneity in contact patterns and stochastic models.80, 81  
All of these issues and the misconceptions make the widely popular R0 very 
problematic today. The conceptual value of the epidemic threshold, however, whether 
in terms of R0 or a critical population immunity level, Section 4.3, The threshold 
concept, cannot be underestimated. The concept implies, as well as it explains in simple 
cases, that epidemics initially grow near exponentially, gradually losing pace before a 
peak is reached and a certain fraction of the population is infected, always less than the 
whole. Then it gradually declines and dies out. In extension the threshold concept is 
integral in providing support for herd immunity i.e. the prevention of epidemics by the 
reduction of susceptibility. There is a given level of susceptibility below which an 
epidemic is not possible. Below it - in other words, if vaccination is unsuccessful - an 
epidemic is possible. This depends on the disease and of course depending on the 
disease it may even be possible for eradication, like smallpox and polio, rather than just 
containment. I will use this opportunity to stress the importance of global vaccination. 
We vaccinate to protect not only ourselves but the entire community. One less 
vaccinated may make a world of difference. 
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5 WHAT IS A MODEL? 
We have come quite far without in so many words developing what a model is. There 
are several concerns with our line of research from scientific and philosophical point of 
view. I will, if I may, attempt to put this thesis in a philosophical, epistemological and 
semantic context. 
A model is an idealized representation of a system or process. A model airplane 
perhaps would be the first thing a child thinks of and this would entirely fit the 
definition. In such general terms, a picture of a glass of water is a model, as would be 
the model our brain makes for ourselves when we see the glass of water, real or 
depicted, from the input coming from our perceptions, as electrical impulses passing 
through our nerves. The model can be reproduced merely by thinking of a glass of 
water. “Our brain runs first class simulation software”, as Richard Dawkins put it.82  
For practical purposes, in science, what we generally converge on to be a model is an 
abstraction, a description in a suitable language that makes sense of physical 
phenomena, processes or objects, that serves to convey knowledge to others and that 
enables us to make predictions of our world. We can discern three, perhaps self-
evident, worthwhile goals of a good model: explanation, understanding and prediction. 
In validating a model, it is desirable for it to be able to explain past occurrences and 
predict future ones, but if it doesn’t offer much in the way of understanding then what 
better is it than a glass of water? 
One such suitable language that has proved convenient in representing the universe is 
of course mathematics. Even in the realm of quantum physics or at speeds approaching 
the speed of light, where neither our perceptions, common sense, imagination nor the 
simulation software of our brains, have been adapted to convey what is going on, 
mathematics still does not fail us. Surely, mathematics would stand the test also where 
epidemiology is concerned? 

5.1 MODELS AND COMMUNICATION: A DISCONCERTING EXAMPLE 

There are problems with mathematical and computer modeling also concerning 
communication in the context of validity. Introducing one of my favorite models, the 
often quoted Moore’s law. Moore’s law describes the long-term trend in computer 
hardware, hypothesizing that computing power is doubled every two years*.83, 84 It was 
stated by Intel co-founder Gordon E. Moore for the density of components on computer 
chips and can be applied to memory size and megapixels in digital cameras, to name 
only two examples. Moore’s law has become industry standard so it’s rather a self 
fulfilling prophecy, which is partly why I like it.85 Originally it didn’t offer any 
understanding of the driving force behind the development, merely prediction. Now it 
is both driving force and explanation. The issue is raised of a model’s raison d’être. 
What in terms of understanding is offered from this model? 
The main point I want to make here, however, has to do with communication and the 
language of mathematics. When stated verbally, Moore’s law is easily understood and 
conveyed. What’s more, it is understood by the recipient as a rule of thumb, an 
approximate law.  
                                                 
* Originally it was stated as doubling every one year and if you factor in the increasing performance of 
transistors, the coefficient in terms of processor performance should be closer to 18 months. 



 

20 

Moore’s law can also be stated as 
atCK 2⋅=  

or even 
bteCK ⋅= 1 . 

Immediately it becomes unintelligible to the population at large and, to a great many 
others with the theoretical capacity to grasp it, not worth their while. But above all, the 
mathematical language has granted it, to put it in the words of Giesecke, “an air of 
exactitude which [it] doesn’t deserve”.31 The time coefficient b in the equation above, 
when fitted to benchmark tests over the past decades, is 0.46. Writing the equation with 
this value, as in 

bteCK ⋅= 1  for 46.0=b , 

makes the crime even more severe with Moore’s law appearing something of a law of 
nature. 
Quite often the opposite is true. Models start of with some sort of verbal, hypothetical 
reasoning. By necessity, by the time they are formalized in mathematical terms they 
have become so simplified that they hold less truth than verbal ones. Epidemic models 
are not exempt. 
The recent financial crisis has put the spotlight on modelers or “quants”, and their day-
to-day life. Financial models has a very problematic relationship to reality. In the same 
way as epidemic models they attempt to describe human behavior – that of the buyers 
and sellers on the markets. When a model has been generally adopted, however, it tends 
to affect the behavior of the very same crowd it is modeling. Taking this into account 
would require a meta-model and so on. Without any further insight into how these 
models work, it is plain to see how a self fueling chain reaction could emerge and 
topple the markets. 
The ones that commission the models are the ones that make the hard decisions. There 
is of course a communication issue when the models are so complicated that the 
decision makers can hardly be expected to understand the benefits or hazards. At the 
same time, the quants may not be directly connected to the “real world” or have a stake 
in the outcome of their work, other than their career, of course. An oversight can be 
disastrous. Contrary to what people might think, I believe that the experience and gut 
feeling of the men and women working the market is really what stabilizes it. 

5.2 WHY MODEL? 

If you stretch the definition, as I did above, modeling is an integral part of all scientific 
research after the observational stage. It is not enough to simply observe that viruses 
reproduce between cells or humans. Eventually, you will need a model to explain why, 
communicate your understanding and use it, for example, to design drugs. It can be 
stated in conversational terms or very specific and it’s usefulness in different 
applications depend on the language. In some instances modeling is our only resort for 
empirical study as conducting live experiments are impossible, perhaps due to 
inadequacies of measuring equipment, or, as in the case of epidemiology, ethical 
constraints. We cannot experiment on the population as much as we’d like and so we 
resort to models. 
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This in point of fact, why we model in infectious disease epidemiology (IDE). Usually 
all three of the following prevails: limited observational data, incidence data of poor 
quality and transmission routes cannot be inferred. Our measuring equipment is 
severely impaired. As much as we would like, we cannot introduce a new strain of a 
disease into population in order to carry out empirical studies. That would overcome 
our measurement issues, but it’s still a bad idea. Modeling is essential in IDE as 
perhaps in no other field. 
In fact, we don’t know the infectivity of most diseases. What is the chance of getting 
the flu from sitting down over coffee with an infected friend for one hour? One well 
known opportunity for hands on measurement occurred on a commercial airliner that 
was forced to remain on ground for three hours with the ventilation system 
malfunctioning. One passenger had recently been infected with influenza and the 
researchers were able to count the number of people he infected and look up where they 
were seated.86, 87 Such opportunities are extremely rare. 
The difficulty in measuring infectivity is apparent but is not only inherent of influenza. 
Measles is so infective that it is virtually impossible to determine who was infected by 
whom. It could be a family member but may as well have been someone walking by an 
open window. SARS is dormant for the moment, perhaps it does not exist anymore, 
however vital it is to study in preparation for the emergence of the next deadly 
respiratory disease. Avian flu hasn’t emerged as a disease able to spread among 
humans, so that’s anyone guess.  
Of course, once the infectivity is established, we need to converge on what exactly 
constitutes an average contact among friends, family, colleagues and people we don’t 
know. How many times a day do we engage in such contacts and how does it compare 
to the one hour coffee in time and intensity? We’ll talk more about sexually transmitted 
infections (STIs) in upcoming chapters but perhaps this is one area where the activities 
surrounding an infection event should be comparably easy to establish. However, the 
incubation time and opportune transmission window of HIV usually leads to problems 
determining the transmission route. Add to that our shallow knowledge about what 
goes on in the bedroom, the length and intensity of sexual relations and concurrent 
relationships.88 After more than a decade of research the medical community is still 
uncertain about mechanisms of the protective effects of circumcision.89, 90  
The war against infectious diseases is going to be long and it is one which can only be 
won through better understanding and communication of understanding to decision 
makers and the public. Modelers have for a long time been concerned mainly with this. 
We would use this understanding for the design of effective intervention strategies to 
stop or mitigate epidemics. If there is one area where epidemic models excel, it is when 
it comes to the design and testing of such control measures. This must be the main goal 
for epidemic modeling, to which I’d like to see this thesis as a contribution. 

5.3 ARE MODELS ANY GOOD? 

With quite simple epidemic models we have, at least conceptually, been able to 
understand the basic dynamics of disease transmission, how a few key parameters can 
drive an epidemic. Models have been extremely successful in supporting some of the 
basic hypotheses concerning epidemic spread, empowering such civilization advances 
as vaccination policies. 
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Key issues remain. We have not yet been able to explain satisfyingly why Chlamydia 
remains endemic or why AIDS does not spread like wildfire*. What’s more, of the three 
benchmarks by which we can evaluate a model, explanation, understanding and 
prediction, the last eludes most epidemic models. At the time of writing the first draft 
the novel influenza (swine-flu) was fully ablaze. Even with tens of thousands of 
infected, it was anyone’s guess what the final toll would be.19, 92-94 Operational 
scenarios in Sweden ranged from 400 000 to 5 million.19 Even though, or quite frankly, 
just because, people are active in epidemic modeling as never before, one can ask 
whether any of it is justifiable. 

5.3.1 Validation 
The example with Moore’s Law and financial models above raises the important issue 
of communication. This section, although provocatively phrased in general terms is 
about how we can validate a given model. Ignoring the fact that Moore’s Law and 
many financial models turned out to be self-fulfilling, they are easy to verify by 
comparing to reality. The law can be matched to the real development, as is the case 
with many models describing real world phenomena. Their validity seems 
unquestionable. 
The issue of validation is rather more problematic with epidemic models. We have very 
few opportunities to test epidemic models. The above mentioned flu pandemic had by 
the time of writing the second draft, proved most models inadequate, at any rate. 
I implied earlier that a model for prediction that offers no understanding is little better 
than a glass of water. An important insight into modeling can be gained however, by 
realizing that modeling depends completely by the intended function of the model. 
Most often, for practical purposes, a model for prediction is distinct from a model for 
understanding. In the end this all comes down to meta-knowledge or epistemology. 
What is meant by understand something? That’s the brain successfully building a 
model in our head. Nesterov95: 

Generally, a model is a simplified embodiment of the aggregate 
properties of the modeled object. This simplification also implies 
the subject of modeling i.e., the subjective choice of a certain 
totality of properties of the modeling study object.  

This means that there are different models of the same object. Which is the best is a 
matter of taste and preference, but primarily perspective, the research question and data. 
Is there a way to determine if a model is right or wrong? The subject is called model 
validation. The reductionist/logical positivist schools,96 including empiricism among 
others, would say that anything short of accurate comparison against empirical facts is 
to be abandoned. This would clearly disqualify the whole of epidemiology and 
sociology as well as most of medicine. The validity is always in dispute, perhaps the 
trait that IDE has most in common with non-IDE .Both fields require the widest 
definition of scientific method to thrive. The would-be data against which to validate 
model output is flawed, incomplete, complicated with factors not of interest, rendering 
them questionable in terms of empiricism.97 Subsequently, we reuse this data to deduce 

                                                 
* This might strike the reader as a peculiar statement given the millions that are infected, but the truth 
is that given what we know about the transmissibility of the disease, HIV spreads slower than 
expected.91 
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parameters for modeling. We also use it to validate the model outcome as well as 
functions within the model, what’s called internal validation,98.  
Internal validation, more common with complex computer models, may be summarized 
by the rule, “right behavior for the right reasons”. Before Lorentz and Einstein, the 
concept of the “aether” was widespread and accepted, a substance serving as a medium 
for the propagation of light and electro-magnetic waves. The model was perfectly valid 
in the domain of classical physics providing perfect predictions, at least up until the 
Michelson-Moreley experiment, and offered* both explanation and understanding. The 
equations it provided, notably Maxwell’s equations are of course still used to a large 
extent but the model as such proved internally incorrect.  

5.4 MODELING’S PLACE IN PHILOSOPHY 

What this means is that not only do we have a problem judging the correctness of our 
model but also the incorrectness of the model, what’s called falsifiability. An empiricist 
would sneer. Thankfully, the acknowledgement that logical positivism failed in being a 
useful foundation for scientific research, the post-positivist stance was born.96 The issue 
is put to the point in the following joke. Two empiricists are observing the country side 
from the window of a train. One remarks on the sheep grousing on the pasture, saying, 
“Look, the sheep have had their fleece cropped.” To this other immediately corrects, 
“Yes, on one side, at least.”  
The joke is enlightening in many ways but the core of the dilemma is hard to approach. 
Surely there must be some value to empiricism? I think the joke tells us that, though 
holding many virtues that are important for every scientist to be aware of, empiricism 
as a single guiding light will get us nowhere. No laws or axioms have ever been 
produced from the social sciences. With that in mind I find it amusing that the most 
diligent proponents of positivism are to be found in the social sciences.96 
The post-positivist philosophy of science may perhaps be a more useful one to abide 
by. But even post-positivists would feel uncomfortable with epidemic models, still 
preferring the controlled environment of a laboratory. Perhaps this is where infectious 
disease epidemiology and epidemiology comes in closest contact with each other. The 
validity of the models of either are always in dispute and both fields require the widest 
definition of scientific method to thrive. 
Fortunately we are not without philosophical support. Model validation is in fact 
strongly related with the justification of theories, and this is still an unresolved question 
of philosophy of science.98 Our line of work fits snugly in the void. Barlas and 
Carpenter99: 

No particular representation is superior to others in any absolute 
sense, although one could prove to be more effective. No model can 
claim absolute objectivity, for every model carries in it the 
modeler’s worldview. Models are not true or false, but lie on a 
continuum of usefulness.  

                                                 
* I should say “offers”. Many would reinstate the theory if only for pedagogical purposes. It has come 
to my understanding the aether-school undergoing somewhat of a revival as some concepts in 
electrodynamics are easier to understand assuming aether. Such wildcards are common in physics. As 
for explanation, the theory did well in its domain. No one would replace Newton’s classical model 
completely, after all. 
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Furthermore, House100 offers that the object of science is to attempt to explain even 
though we fail to predict.  
With the support of these arguments, the modeler would deviate from the demands of 
right/wrong and venture into the more lenient requirements of usefulness. This does not 
preclude modelers from their responsibility of validity, it just means that it’s not 
entirely clear cut. The process of validation requires testing, interpretation and, not 
least, communication until enough confidence in the model is achieved. 
For an in depth discussion about modeling in conjunction with the philosophy of 
science I recommend Barlas and Carpenter: Philosophical roots of model validation: 
Two paradigms.99 
The question of correctness and validation pertains to one of the themes of this thesis of 
complexity versus simplicity, and to the upcoming section about sensitivity analysis, 
see Section 6.4. One way of overcoming the demand of giving a correct answer is by 
covering the range of uncertainty with answers, in a sense, spraying the target with fist 
full of pebbles. 

5.5 SIMPLIFICATION AND COMPLEXITY 

Any computer simulation is doomed to succeed.101  

This is a popular quote attributed to Rodney Brooks, constantly reiterated amongst 
modelers. A modeler needs constant reminder that he is precisely as good as his tools, 
always running the risk of ending up with a model that is “better” than reality. 
You should strive for simplicity. Obviously if you can make accurate predictions with a 
simple model, this is to be preferred. At heart we believe that the occurrences around us 
are based on simple mechanisms, and although humans are complicated beings, social 
research starts from this view point.100 From this line of thought springs the term 
parsimony aka Ockham’s razor. All things equal, choose the model that is most 
parsimonial.102 Something of a philosophical axiom. 
Simplification and idealization is a foundation for understanding. So even if what is 
being modeled is through and through very complex, if a particular aspect with some 
accuracy is captured by the simple model, this is to be preferred, according to 
Ockham’s razor, since the possibility to analyze and in extension, understand, makes it 
warranted. Perhaps different models are required to capture different aspects, each one 
inadequate to completely describe the system. Einstein’s laws of motion are more 
accurate than those of Newton, but at low speeds the latter’s are sufficient and certainly 
offer more in the way of understanding. Ask any high school student. 
Modeling in epidemiology is perhaps harder than in most fields. The problem is, as I 
have mentioned, that the validation, both internal and external, is difficult due to the 
scarcity of data, and the quality of it, where it exists. When discussing simplicity, it is 
often expressed as a balance between simplicity and validity. Sometimes even between 
accuracy and complexity .103 If anything, both are equally weighed and in my 
experience, the situations where you actually realize this balance are rare.  
One difference between mathematical modelers and computer modelers, is that 
mathematics semantically imposes restraints on the complexity. Computers let the 
modeler get quite carried away if he or she is so inclined.  
Computer or mathematics aside, the simplicicist side boasts few assumptions and 
interpretable results which serve to underpin hypotheses about the real world but fall 
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short whenever prediction is discussed. The complexicist side claims, in theory, 
limitless adaptation to the real world, but relies heavily on a mass of assumptions which 
cannot be verified.  
So what does all this mean in practice? Achieving simplicity, parsimony or 
idealizations means making assumptions about the environment. So the simpler model, 
the more severe and numerous the assumptions. Making assumptions is really the core 
of modeling. We can hypothesize simple rules for human behavior, in particular contact 
behavior. We then say, “Under the assumption X we predict Y”  
One common assumption we have already covered can profitably replace X above, 
namely, homogeneous mixing. We claim to be supported the “law of many” i.e. 
statistical properties of the population. If on average people behave a certain way, it 
doesn’t matter much if one or other deviated. Again an assumption. In many cases, the 
oddballs are what really matters, certain people with very high rates of contact, for 
example. 
Barlas and Carpenter ask a valid question99 which, although pertaining to system 
dynamics, is valid also in a more general scope. Are models scientific? The answer is: 
It depends on your definition of science. If anyone thought that science was absolute, at 
least it’s open to debate. The relativistic view of science allows for it.  
However, there is a crucial point I cannot find in Barlas and Carpenter or anywhere 
else: the issue of repeatability. The increasing complexity and the wealth of 
assumptions that can be crammed into a computer model, means that a bird’s-eye view 
of your work is dispensable. At best you have an intuitive feel. The next scientist will 
not share that intuitive feel - at best have his/her own.  
Epidemic models of today are hardly repeatable. They are vastly complex with 
thousands of lines of code that are difficult to test and validate internally, let alone 
externally. With anything less than copying the code, your fellow scientist cannot 
duplicate experiments. To be able to duplicate an experiment this is one of the 
foundations of peer-reviewed science and is even considered a definition of science on 
some level. This is a question worthy of a response but I haven’t found one. Meanwhile 
I urge all modelers to seriously consider this issue and strive to make their experiments 
repeatable and their papers descriptive. You should be able to rebuild the model from 
the description in the paper. 
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6 MORE CONCEPTS IN EPIDEMIC MODELING 
This section contains some further considerations and queries in epidemic modeling. 
Some pertain especially to the contributing papers and serve as a further introduction 
before the actual papers are described in the following chapters. 

6.1 STOCHASTIC MODELS 

The randomness human behavior, the society we have built around us as well as 
completely haphazard natural occurrences, make exact predictions a largely 
meaningless activity. A cashier at IKEA may have been infected with a new strain of 
measles but just as he fell ill had decided to seclude himself in the archipelago instead 
of going to work. Chance occurrences have a terrifyingly large effect on epidemics.  
Stochastic means random. The opposite, deterministic, means predetermined. This can 
be understood in the context of the definition for R0 in previous chapters, see Section 
4.5, Finally R0. We noted that an R0 above 1 means that can occur. The stochastic 
modeler will calculate the probability of an outbreak given an R0 and a set of initial 
conditions. For a deterministic modeler the can is replaced with a will.  
A model that is stochastic by design, will give a distribution of possible outcomes, e.g. 
Colizza104 and indeed Paper I and II of this thesis.105 This in contrast to a purely 
deterministic model, e.g. Rvachev and Longini.106 If the model is computer simulated, 
as are papers I and II, then many runs must be carried out in order to get an idea of the 
range. Calculating any type of statistic with acceptable precision usually requires an 
order further of simulations. In Paper I the main scenarios are run 1000 times each.  

6.1.1 Some misunderstandings 
As a point of order, I should like to be clear about a few concepts. A deterministic 
model always produces the same result from a given set of initial conditions. In stark 
contrast, a stochastic model lets chance influence the result. In practice deterministic 
means formulating a set of differential equations and solving them analytically. 
Stochastic modeling entails a stochastic process, in which a series of events follow one 
another based a rulebook of probabilities, usually branching, i.e. one event triggering 
several to follow.  
Between the two types of modeling, the latter is comparably young. The stochastic 
process can, with benefit, be simulated with a computer. In simpler cases it can be 
translated into a system of differential equations - same art, different genre - for the 
analytical solving of the so inclined mathematician. The possibility to do so means that 
the science can be advanced and firmly based on solid, stringent mathematics.  
The analytical solving of differential equations from either source can with benefit be 
done with a symbolic mathematics package on a computer. As if this wasn’t confusing 
enough, we can add the fact that differential equations can also be solved numerically 
with a computer, when the analytical method is too burdensome or impossible. Or by 
hand, of course. Numerical analysis preceded computers by about 2000 years and 
forebode them by 400. Anything done by computer can theoretically be done by hand, 
although the size of feasible problems may be limited. 
Numerical solving is not the same thing as simulating the actual process but should of 
course lead to the same conclusions. The word simulating precedes the computer and 
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simply means realizing the probabilities involved, as a throw of a dice is to simulate the 
discrete uniform distribution of numbers one to six. 
I bring this up because of misconceptions I often come across: that stochastic 
necessarily implies a computer and even that deterministic would necessarily imply pen 
and paper. Both have clearly developed alongside computer processing power. Most 
mathematical modeling of epidemics today is by means of stochastic modeling and 
thoroughly analyzing them can be done with different techniques that do not 
necessarily rely on the use of computers.  
Stochastic models, in a way that deterministic models can’t, offer a richness in the 
distribution of results. The stochasticity means that many random events can occur that 
determine the outcome. In epidemic modeling that means that we can set R0 to 5 and 
with a stochastic model still find that certain runs dying out quickly. This is to be 
expected, as, recall, R0 above 1 indicates  that an outbreak is possible. A deterministic 
model, such as the classic SIR-model does not give you this information. An R0 above 
1 invariably produces an outbreak. The distinction is of course also a cause for further 
misconceptions regarding R0 itself. 
The model in Paper I and II is a stochastic model, “solved” by simulation. As I said 
above, that does not mean the model definition is void of differential equations. And 
the fact that I use a computer to get results does not mean it is impossible to analyze it 
with a pen and paper. In fact, as is done in Paper I, the equations give you the 
probability of extinction in a simple case of the model.  
Since differential equations may be hard not only to solve but also to actually state, 
stochastic models also do not, in the same way, restrain the creativity of the modeler in 
producing ever more complex models. As should have become clear by now, this is 
both a blessing and a curse. 

6.2 MEAN RESULTS 

The mean outcome is a useful quantity when analyzing the data from 1000 simulations 
of a stochastic model. It is the expected outcome of the model but that doesn’t mean it 
will ever occur, even in theory. The expected value of a dice throw is 3.5. It means that 
averaged over many runs, this is the mean outcome. Incidentally the expected outcome 
is precisely what a corresponding deterministic model will give you. 
Some time after the model is proposed, published, with a prediction in expected size 
and an R0, perhaps an outbreak really occurs. Our epidemic model will have, at best, 
been able to predict the probability of roughly that size of an outbreak occurring. 
“Hopefully” the outbreak falls within a range of possible outcomes predicted by the 
model, more or less likely, and not disqualify the model, not precluding false negatives. 
There may be certain ways in which we can calculate the likelihood107 of the model 
producing this outcome, as a form of validation, see Section 5.3.1. The closer the real 
final size to the projected mean outcome, the higher the likelihood, but really, one 
occurrence is not enough data to make such a calculation meaningful. 
There has also been devised methods in which the predictability of models might be 
assessed and hence under what circumstances variables are most accurately predicted. 
Colizza et al. introduced more statistical mechanics into IDE, using a measure of 
entropy to account for heterogeneity in prevalence over the world over time and 
suggested that the network structure be responsible for most of it. They also suggested 
a measure of variability between runs and in extension predictability of simulations as a 
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whole, a welcome contribution. It is one thing to account for uncertainty, another to 
quantify it. 
The featured object of enquiry, that of prediction, does not have to be abandoned 
completely in favor of understanding and explaining, for there are other measurements 
that might be made on an epidemic that could make the likelihood more reliable and 
hence the model more useful. We might use the daily incidence. In fact every 
transmission event from one person to another can be used as parameter input in an 
epidemic model, if it can be accurately measured. Failing that, an educated guess about 
the probability person A being the one who infected person B, known as contact 
tracing, see Section 3.2 page 10. 
Using contact tracing and directly feeding the results in this way to the model is what 
real time modeling is all about.79 We could use such a model as the epidemic is 
underway and this might give us invaluable information about the optimal course of 
action in order to impede the process. 
Modelers are currently developing tools for use in an epidemic situation to predict 
events weeks in advance, possibly only days. The emergence of the novel flu 
pandemic108 demonstrated that this type of resource is being assembled everywhere 
around the world. In a matter of weeks results were produced for use in speedy policy 
making.19, 92-94 Dishearteningly, I have information that the usefulness of these attempts 
are questionable.109 
The product resembles weather forecasting. Our models may be sufficiently accurate to 
make good predictions provided we have 90 % of the info: the infectivity, the number 
of people already infected, where they are. As is discussed in Paper II, the initial phase 
of the epidemic, the very first few infected in an area, largely determine the outcome of 
the epidemic.105, 110 This is true of simple and complex models alike, as well as of the 
real world. Once the initial phase has been passed, we have made the transition from a 
stochastic domain to a deterministic (statistical) domain where deviances are 
insignificant in comparison with the underlying trend.  

6.3 ASSUMPTIONS REVISITED 

When we talk about assumptions in epidemic models, we are usually referring to 
assumptions of human mobility and heterogeneous contact patterns. Increasing the 
complexity of the models we may add age dependencies111; structures such as families 
and workplaces on the lower levels; regions and countries on the higher levels.6 
Halloran and Longini112 assumes 2000 individuals divided into only two communities. 
In Paper I we model 9 million Swedes into their natural division of their 300 
municipalities. 
Another approach may be to assume that human interaction takes place on social 
networks. We define people as nodes or vertices and connect them with links or edges. 
We may model the network explicitly and simulate113 or use the statistical properties 
measured for social networks and other mathematical results to directly calculate 
variables of interest.114 Networks may be artificially generated to mimic the contact 
structure of a population and indeed the growth of such structures. In this way much 
has been learnt about epidemic spread in general. 
The network approach is especially appropriate for sexually transmitted diseases. In 
Paper IV we use survey data to deduce certain values from an implicit network 
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structure. We also explicitly build networks in a computer to simulate disease spread 
on. I will therefore discuss networks in some detail in conjunction with Paper IV. 
As these assumptions and the models become more complex, mathematicians will lose 
their motivation to solve the problems. While equations are always important 
describing all of the model or certain components within, it is no longer possible or 
even desirable to find closed-form solutions. A computer is nowadays an essential tool 
for the epidemic modeler. Today, micro-models, or individual based models, where 
each individual has its own explicit representation in the computer, have been accepted 
into the modeling flora.103, 115 Contacts are made according to arbitrarily complex 
heuristics and day-to-day movement alike.  
The wealth of parameters that are available in describing human behavior, contact 
structure, the disease in question and all the topics discussed previously, even leaving 
out the subtleties that cannot be quantified even poorly; all this leads to a very tricky 
question. Should we keep the model simple, simple to understand and to analyze, or 
should we try to capture as many aspects of the epidemic and its playing field as 
possible? Simple versus complex. In epidemic modeling, there are really no bounds to 
how far we can go in our assumptions.  

6.3.1 Sensitivity analysis 
“Rubbish in and rubbish out”, is another popular quote from modeling. This tells us 
what goes without saying, that for every assumption you make you have to be pretty 
sure that it holds up. If there is an uncertainty parameter value involved, for instance 
contact rate, this will propagate and probably amplify to the result. If there is a high 
uncertainty, what you can do is to vary the parameter through the parameter range. This 
is called sensitivity analysis since it determines how the outcome is dependent on what 
we know of the parameter. In conjunction with micro-modeling, an appropriate term in 
the context, exploratory modeling, is sometimes used.116  
With more parameters, it may not be enough to explore the range of parameters one at a 
time. It may be advised to perform sensitivity analysis on several or all simultaneously, 
that is, for each possible combination of values of each parameter. The parameter 
space will quickly become impossibly large. To add to the problem, complex computer 
models usually have a longer running time and are usually stochastic, in other words, 
requiring the combined outcomes of several runs. There are advanced methods to 
address this117, 118 that can treat, if not cure. 
Simple models will always face dissatisfaction about aspects of biology or sociology 
not being covered. Complex models on the other hand inevitably face the objections of 
large uncertainty and insufficient sensitivity analysis. Faced with unanswerable 
questions about the validity of a model, many find the simplistic approach appealing, 
offering at least some level of transparency. 

6.3.2 Further assumptions 
Further assumptions to be made are infinite populations, a sometimes acceptable 
assumption, providing many tools for solving equations. Meltzer119 rather peculiarly 
introduces into computer simulations a queue of individuals ready to be infected at the 
rate determined. There is not even a theoretical depletion of susceptibles throughout the 
epidemic. The discrete nature of real populations has implications.71 Exponential, fixed 
or other distributions of latency/infectious periods: exponential infectious times leads to 
an underestimation of R0 and ultimately epidemic impact.71, 120 Lloyd121, 122 
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demonstrated that realistic sojourn times introduce instabilities in oscillating endemic 
models.  
We could spend pages on different assumptions that can be made, really each model 
and each paper has their own, although there are some common classes, most of them 
outlined here. The message is this: For the mathematician the goal provided by 
assumptions i.e. simplification, is mathematical tractability; for the computer modeler 
finite computing time; and for them both, understanding and explanation. These goals 
should always be weighed against the validity of the model and that is a very intricate 
handicraft not to be put down. 

6.4 UNCERTAINTY AND COMPARATIVE RESULTS 

Thank you for bearing with me through this dismal chapter. We have finally some light 
in the tunnel. There is vital information we can gain from epidemic models, in addition 
to just better understanding. We can now assemble the supports we need for Paper I. 
Say a car manufacturer has to decide which of several competing materials for brake 
discs to continue development on. They might try to model the brake system, including 
the tire and road, and do simulations on a computer. They can test different parameters, 
different conditions like precipitation and temperature, not to mention speed. The 
impact of many factors will be uncertain or just guesses and this places the reliability of 
the results under some skepticism. The absolute results of these simulations, therefore, 
in terms of breaking distance, operating temperature etc. are not to be taken at face 
value. But we can compare the results. If one of the materials consistently performs 
better than the other then the manufacturer might be inclined to go ahead with that one. 
The process is analogous to comparing distances with faulty ruler or time periods with 
a watch that is slow or off by a few seconds. Such a watch could tell you which of two 
was the fastest runner, but not whether any of them beat any records. This type of error 
is called systematic error. The prerequisite for a successful comparative result is not so 
much a low systematic error, rather a low random error, corresponding to a high 
precision in your measurements. Modeling can be a substitute for measuring and the 
same principles apply. Computer models happen to be very good at avoiding random 
error. 
Needless to say, either error must not be dependent on the object of measurement. That 
would be dependent error or bias. Using different watches for different runners is ill 
advised. Computer models happen to be very good at avoiding measurement bias as 
well. 
The same reasoning is used to justify very complicated models of epidemics under very 
uncertain circumstances with heavy assumptions. Usually, most variables and our 
assumptions come from experience or are just guessing work.115 We think of our 
assumptions as baseline conditions that cancel out when we compare our results.  
Whenever possible, we try to test the full range of possible or plausible values for 
uncertain variables to see the affect on the results. We may also make minor 
modifications of our model to see if we get the same results. This is known as 
sensitivity analysis, outlined in Section 6.3.1.  
We are of course very interested in the possible final size of a future epidemic to 
appropriately dimension facilities and vaccination stock. But take for example 
pandemic influenza. Nobody can say for certain what such a virus will look like and 
how dangerous it will be. The infectiousness that will determine how many will be 
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infected, is anyone’s guess. The absolute results from epidemic models may only be 
reliable under very specific circumstances for instance if we have calibrated it to data 
from previous outbreaks of the same disease i.e. not very reliable at all. 
However, decision makers may rely on the fact that comparative results can be used. 
This enables them to draw conclusions about something potentially more important 
namely the best course of action to halt or impede an ongoing outbreak. We may, for 
example, provide some enlightenment evaluating different strategies for vaccination. Is 
it responsible to vaccinate everybody, given side effects? Will vaccination of cases and 
their families be enough to contain the outbreak? Can we vaccinate workplaces, only 
women or a certain age span? A perspective on the last question is found in the current 
recommendation in Sweden for HPV-vaccination (Human Papiloma Virus): girls aged 
10-12. 
To illustrate, as a premonition of the forthcoming chapter, in Paper I we modeled a 
fictive “moderately contagious disease”, our ill concealed inspiration collected from the 
recent outbreaks of SARS (Severe Acute Respiratory Syndrome). Since we didn’t have 
enough data on SARS in Sweden – it never reached our country – we could not in good 
conscience mention SARS in the paper. In a sense, what we modeled was an altogether 
fictive disease. But we did simulate scenarios of varying infectivity such that we were 
confident that the parameters of a SARS outbreak in Sweden would lie somewhere in 
between the values we tested. 
Our angle of approach was whether and how a certain type of travel restriction strategy 
would be effective in delaying the spread. In all our tested scenarios we showed that 
there was a significant reduction in the speed at which the disease dispersed in the 
population. 
As far as sensitivity analysis goes, this is a concept almost entirely developed for 
complex models, implicitly computer modeling. I’d like to point out that comparative 
results and sensitivity analysis should not only be seen as methods to overcome the 
weaknesses of computer modeling compared to pure mathematical modeling, but as 
strengths. Though purely mathematical models provide specific answers, sometimes in 
distributions of probable outcomes, the range of possible events is never so clear and 
rich as when simulated thousands of times using random initial conditions.  

6.4.1 Intervention and control 
Given what we’ve learnt so far about mean results, comparative results and 
assumptions, the question posed in Section 5.2, Why model?, may be answered. As far 
as epidemic models are concerned, in practical use, epidemic models are at their best 
when evaluating intervention strategies. As seen in the previous section, this is possibly 
the only time we can claim with any persuasiveness that our results hold water. When 
comparing different scenarios, uncertainties to first approximation cancel out, leaving 
us with the difference between what would happen with an intervention and what 
would happen without. All the issues of validity and internal validity remain, of course. 
Decision makers and the general public are more interested in how we are to control an 
epidemic - stop, contain or impede - than a hypothetical mean value of the number of 
infected or deceased. In my view the most important contribution of epidemic models 
have been to convince the world of the benefits of national and global vaccination 
programs. Even the simplest models show the imperativeness for parents to vaccinate 
their children against measles, despite probable or hypothetical adverse effects and 
despite that “everyone else is already vaccinated”.123 
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Besides vaccination, many other types of interventions can be considered and modeled 
such as quarantine/isolation, screening/treatment, closure of work, schools and temples, 
facemasks, hygienic measures, environmental control (humidity, temperature and air 
quality) and, not least, travel restrictions.124, 125 The last of these is of course is the 
subject of Paper I. Studies may differ in views of which is the best coarse of action, but 
all of them126-128 underline the critical need for preparedness and speedy response, 
mandating a substantial crisis preparedness body. 
Table 6-1 gives a more extensive list and some references for further reading.  
Of all interventions, vaccination is the queen, royalty merited by history. When 
modeling is concerned, vaccination actually changes the initial state of the model by 
moving a portion from the susceptible class to the recovered (immune) class, leaving R0 
unchanged. Most interventions mentioned are designed to reduce the contact rate and 
thereby affecting R0. Table 6-1 also lists the mechanisms through which the 
interventions act. 

Table 6-1 Intervention strategies and their mechanisms 

Furthermore there are many ways to vaccinate a population with varying applicability 
considering circumstances such as before or during the epidemic, for treatment or 
protection, time constraints and other resources, effectiveness of the drug, availability, 
cost and side-effects. To prevent or decrease the risk of an epidemic you may vaccinate 
the entire population or only those at high risk of infection and death.  
During an epidemic the best option may be to spend resources on contact tracing and 
vaccinating those in contact with the index case.132 Even though they may have been 
infected already, a timely shot could cure the subject before symptoms erupt or relieve 
symptoms after they erupt and in that case hopefully also stop/lessen infectiousness. 

                                                 
* Failing providing complete immunity, vaccines often provide partial immunity and/or reduced 
infectivity. Reduced infectivity can be accomplished administering the vaccine before or after the 
infection event.129 

Intervention Mechanism References 
Vaccination/prophylax Herd immunity 

(Infectivity, Infectiusness time, 
Susceptibility*) 

112, 113, 129-135 

Quarantine/isolation/seclusion Contact rate 77, 113, 136, 137  
School/workplace/church 
closing 

Contact rate 93, 138 

Environmental actions Contact rate (adequacy of 
contacts) 

40, 139 

Travel restrictions Contact rate/pattern 2, 104, 140 
Treatment Infectivity/infectiousness time 126, 128, 132, 133, 

141 
Facemasks Infectivity (susceptibility) 113, 142 
Hygien/disinfection Susceptibility 142 
Treatment/destruction of 
vectors/reservoirs 

Infectivity 61, 143 

Fighting poverty* Infectivity/susceptibility/contact 
rate, emerging infections 

36, 37, 39 
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This is called ring vaccination or culling144 and is in effect optimized mass vaccination, 
realizing that a dose is only effective or necessary when the subject is at risk of being 
infected. If the contacts of an infected are speedily traced and vaccinated this will 
hopefully break enough links before they are exploited by the epidemic, hinging it back 
into extinction. 
Considering only the cost of vaccine, this is obviously much more effective since only 
a fraction of the population is vaccinated.115 Also consider that a full scale mass-
vaccination is time consuming and places heavy requirements on logistics. Ring 
vaccination may be a quicker response depending on the distribution systems available.  
Considering the profound effects that travel has in modern epidemics, restricting travel 
seems like a sensible approach.2, 7, 104, 140, 141, 145, 146 A disease can not spread if people 
stay at home. Travel is probably a fundamental for diseases emerging in the first 
place.147, 148 Sanctioning travel only when absolutely necessary, may be all it takes to 
quench an outbreak.  
I can’t help but to finish off this section with a most important message. If vaccination 
is the queen intervention, fighting poverty is the king. Although this is not an 
immediate option when outbreak threatens, there can be no doubt that it is the most 
effective policy in the long run.36, 37, 39 There is a mutual association between disease 
and poverty. Therefore all efforts to eliminate poverty in the developing world will 
undeniably benefit not only those areas, but in extension the wealthy parts of the world 
as well; and not only the disease prevalence and risk, but also the risk for new emerging 
diseases and strains. 
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7 AIMS 

The goal of the contributing studies were to: 

• Assess the validity for the model of Hufnagel et al.7 in Sweden. 

• Assess the feasibility of travel restrictions as a way to delay epidemic. 

• Contribute to computer modeling methodology. 

• Contribute to communication of epidemic modeling results. 

• Demonstrate the existence of a giant component in the Swedish sexual network. 
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8 PAPER I - TRAVEL RESTRICTIONS AS A WAY TO 
SLOW THE SPREAD OF SARS  

A disease would spread very slowly or not emerge at all if people didn't move about.7, 

37, 140, 145-148 In the days of the plague, disease spread like ripples on a pond. Towns were 
hit roughly in the order of their distance from the original source. Today you can make 
it across the globe in a day. The more people travel, the more quickly the disease will 
spread. Travelling can in fact in itself be the tipping point that transforms a minor 
outbreak, one that perhaps wouldn’t even erupt on a local scale, into one of pandemic 
proportions. Medium and large scale models will need to address this in some way, 
either by randomly dispersing the disease across an area or taking into account the full 
network of different types of transport. 
Whether or not travel restrictions are effective in preventing or delay the spread of 
infectious disease has been a matter of some debate. In Paper I we present a model, the 
results of which indicate a reduction in the speed of transmission if a certain type of 
travel restrictions is applied. But to stop it in its tracks seems impossible.1, 2  
In theory it is simple. As long as a population is contained, transmission will not spread 
beyond. Travelers may be infected and infect other populations beyond the confines of 
the initial population. The more frequent and distant travelling that is admitted, the 
more probable the event of transmission and large scale epidemic. R0 is raised and 
homogenized on a global scale. Many models have indicated what seems entirely self-
evident.106, 145, 149, 150 Some have discussed the possibility that many recently emerged 
diseases would not have existed were it not for human kind’s increased rate of 
travelling.37, 147, 148 
This text on the models in Paper I and II builds on what has previously been said about 
modeling in general and epidemic modeling in particular. All the concepts and methods 
introduced carry over to this work and I will explain how in detail in this chapter. In 
fact, the travel restrictions model is very near to a simple classic SIR-model. The only 
modification we have made is to divide the population into municipalities and simulate 
them separately and concurrently, adding means of disease propagation between the 
municipalities, simulating travel. We simulate this in a computer stochastically. The 
homogeneous mixing assumption is applied within the confines of the municipalities: 
everybody has equal opportunity to be infected as the next fellow municipal resident. 

8.1 A SHORT REVIEW OF TRAVELING IN EPIDEMIC MODELS 

Sattenspiel and Deitz151 modeled mobility among regions, tying together everything 
from complete isolation to mass migration in a neat mathematical framework versatile 
enough to act as a foundation for epidemic modeling. They demonstrated its use by 
verifying it against a measles outbreak in Dominica, though as a practical model the 
data required to satisfy it is quite specific.  
Going global and perhaps overreaching in terms of picking a tough disease to model, 
Rvachev and Longini ignited the travel models-era with their ubiquitous A 
mathematical model for the global spread of influenza, perhaps the most cited paper in 
the genre. I think they had more modest ambitions for the paper. They skimmed airline 
data that had become available and extended the classic SIR-model to a global context 
by submitting the MPU (minimum publishable unit). The paper illustrated the spread of 
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influenza in separate epidemic curves in cities all over the world, all being fed by one 
another. 
The model is still hailed as a milestone in computer modeling but for me it has little to 
do with computer modeling. It took a computer - today, an iPhone would have sufficed 
- to solve the equations but it’s a completely deterministic model that doesn’t exploit 
any possibilities of computer modeling. It gives the exact date for the arrival of 
influenza in your city without any margin of error. More than demonstrating what 
could be done with computers, it demonstrated what could be done with travel data if 
only scientists put a little effort into finding it. As such it has deserved merit. An 
epidemic modeler is not an epidemiologist until he/she starts searching for and 
processing real data. 
As for exploiting the possibilities of computer modeling Longini’s more recent paper, 
Longini et al.,126 in the commotion of the avian flu, has a lot more to offer. While we 
expressed concern about the simplicity of the Rvachev/Longini-model, now we are 
allowed to crack down on the far reaching assumptions in the Longini et al.-model. The 
paper was published in Science the same day as Ferguson et al. targeted the exact same 
issue in Nature. The battle was furious. In my view Longini et al. came out on top but 
the comparison was a vain exercise in weighing assumptions and hypothesis. The 
H5N1-avian flu pandemic thankfully hasn’t occurred yet. 
This was a parenthesis because neither Longini nor Ferguson neither had computer 
power nor data to support a global simulation. Going back to Rvachev and Longini, 
they had a few followers like Grais et al.,145 for example, advancing the paper with 
better and more up to date data. Flahault et al.152 just copied the whole thing, used 
another dataset specific to Europe and solved a subset of the global problem already 
published by Rvachev and Longini. As for Flahault et al.’s case for airline travel and 
HIV149, it’s just too far fetched.  
Brownstein et al.1 made the uncontroversial claim that airline travel had anything to do 
with the inter-regional spread of influenza in the U.S., using time-series analysis. A 
three page critique of the paper is available on demand from yours truly. Still time 
series analysis is a welcome approach. 
As this thesis suggests, don’t forget mathematics. Going back to fundamentals in 
metapopulation systems, and the math introduced by Rvachev/Longini and also of 
Ball153, Colizza, Vespignani et al.6, 154 explore the subject in depth. The mathematics of 
either of these is way beyond my capacity to comprehend, though. I do however 
recommend reading Colizza, Vespignani et al.140, summarized on page 27, for those not 
disheartened by just a little bit of math. And, of course, Hufnagel et al.7, to be detailed 
shortly. 

8.1.1 Travel restrictions 
Now that we know about the effects of travel and in particular airline travel, what do 
we do about it? The papers reviewed so far all suggest that given the impact of travel in 
general and airline travel in particular, on the global and local spread of disease, 
restricting travel ought to be very fruitful in endeavoring to control the spread.  
The paper which inspired Paper I, Hufnagel et al. 7, did venture into a complicated 
control application, although I mainly used the basic modeling part. How to or even 
whether or not it was possible, to control an epidemic with travel restrictions was not 
established when I started off. One year into my research, Cooper et al.2 said it was not. 
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8.2 THE HUFNAGEL-MODEL 

The model builds on the paper by Hufnagel et al. 7 in so far as the dispersion equations 
found in the paper, the method of estimating the so called travel matrix and some of the 
parameters used. A travel matrix can be pictured as a distance table one sometimes sees 
in atlases, featuring a daily bulk load of people traveling between origin and destination 
in place of distances. While Hufnagel et al.’s model spanned the globe, we limited 
ourselves to Sweden where we had detailed travel data. 
Hufnagel et al. simulated a SARS outbreak using a simple SEIR-model* in the 
catchment areas of international airports worldwide corresponding to our 
municipalities. In a SEIR model every individual can be in one of the following states: 
susceptible (S), latent (E), infectious (I), and recovered (R). These local processes were 
linked together by the international aviation network, which enabled the disease to be 
transmitted along flight routes.  
The main interest of Hufnagel et al.was to validate their model approach. It was fitted 
to the real SARS outbreak of 2002-03 by tweaking a single parameter γ. All that was 
needed to run the model was a point of origin, current aviation data and the value of γ 
in order to capture the infectivity of the disease in question. The latter was estimated by 
very simple means, simply as the quote of infected in Hong Kong and those outside. To 
me, for all its apparent complexity, it is beautifully simple. The startling accuracy to 
which it fit the actual outbreak is impressive, though probably a fluke. Of all countries 
that were suggested to be afflicted only Japan was a false positives. The frequently 
mentioned Colizza, Vespignani et al.140 offers an explanation for their accuracy by 
analyzing the predictability in a nice way.  
Earlier we mentioned real time models that are used during the actual outbreak to aid in 
putting into force precise preventative measures. New information is continuously 
entered and the model is rerun for up to date predictions. Hufnagel et al.’s model in my 
opinion has proved its worthiness in this application in the event of a similar outbreak 
of respiratory disease in the future. 

8.3 RESTRICTING DISTANCE 

The goal with our version of the model was simply to assess the feasibility of the model 
in Sweden given the traffic data we had access to; then to find what it would take to 
inhibit the spread. Already at the outset, aviation data was considered insufficient in 
resolution to capture the complete picture of travelling going on within our borders. 
Also the catchment areas of our very few airports are quite large and hard to estimate.  
Our travel data covered Sweden and was very detailed, giving us the required 
resolution at municipal level. It also enabled us to suggest a slightly modified version of 
travel restrictions than is commonly found, namely, restricting distance. If we removed 
all the daily trips over a certain distance, how would that affect the transmission 
dynamics? 
As for the parameter γ, SARS never reached Sweden and so this value could not be 
estimated a posteriori. This in addition to the fact that the type of travelling introduced - 
car, bike, foot etc. - would have affected this value. In other words we had to be careful 
to test a range of possible values to support our claims, pertaining to our discussion 
about sensitivity analysis. Incidentally this is the reason we make no mention of SARS 
                                                 
* In Hufnagel et al.’s paper as well as in mine, the equivalent term SLIR is used. 
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in the paper. With the best of intentions we could not claim that we were modeling 
SARS, a hype-word in those days. Its mention would have certainly added citations to 
our paper. In my thesis I have no inhibitions against speaking freely about the ill 
concealed original intent. 
Hence, the working title featuring “SARS” was changed to “SARS-like” and finally 
“moderately contagious disease”. On a note of interest, “contagious disease” is an 
obsolete term, according to my supervisor, Johan Giesecke,31 superseded by the more 
correct “infectious disease”. According to his book the contagious suggests an 
infectiousness somewhere between moderate and high. The contradictory anachronism 
which was the title, underwent several revisions without him intervening, however. The 
final revision, from highly to moderately contagious, was on suggestion by a reviewer. 
By that time the prevailing view in the infectious disease community had shifted. 
Although the SARS-outbreak was very swift, it was understood that a comparatively 
high dose was required for infection.  

8.4 A STOCHASTIC MODEL 

The SARS-model is a stochastic model, see Section 6.1, Stochastic models. The 
number of infected may differ from one simulation to the next, as may the geographic 
distribution of the infected, even though we’re using the same model and the same 
initial configuration. The only thing that changes from one run to the next is the random 
numbers used to generate the events. This means, in full agreement with IDE theory, 
there is also always a chance that the outbreak doesn’t pick up enough momentum to 
become a full scale epidemic. The disease instead meets early. 
The randomness comes into play in the simulation when deciding who gets infected 
and who does not. Given a certain number of infected in each municipality, we can 
calculate a probability for one remaining susceptible becoming infected. This 
probability is determined by the model and the disease parameters, including the travel 
matrix. In principle, we throw a minutely faceted dice for each susceptible and check 
the result against the probability. This is the basic difference between a stochastic and 
deterministic model. If it were a deterministic model we would be satisfied with the 
expected - or mean - outcome. Indeed, if we perform a large number of simulations, the 
average outcome should compare to the outcome of the corresponding deterministic 
model. 
In practice, the outcome is determined quite early in the model. Whether the run will 
peak at 50 days and or at 120 days is determined in the first few days. The importance 
of the initial phase is logical if you think about it. Once you have several thousand 
individuals infected you will have a high probability of infection. For each individual 
you throw the dice. If the outcome is well defined, if we’re expecting 100 additional 
infected, the result may turn out to be 99 or 101. The difference will be of little 
consequence for the production of further infected generations.  
At the start of the simulation, however, the number of infected are few and the 
probability very low. Of the millions of dice throws we perform, say we expect 2,5 
additional infected. Realized, 2 or 3 infected seems approximately equally likely with 1 
and 4 not far behind. For the course of epidemic the difference between one and four 
infected is enormous, however. 
Thus, in principle, most of everything is determined in the initial phase of the 
simulation. That being as it may, since we simultaneously simulate the model in some 
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300 municipalities, there are many initial phases happening over the course of the 
simulation, contributing to the erratic geographic behavior exhibited. Outbreaks may 
die out within the confines of municipality only to fire up again due to infection from a 
traveler from a municipality where the epidemic is well under way. In Paper II we see 
why this is of particular importance.  
The compliance level was introduced to determine how robust the results are to people 
ignoring the ban. In conjunction with this discussion we can add a mention about a fear 
factor, on par with the one used in Paper III. In the event of a wide scale epidemic of a 
life threatening disease it is not far fetched to conceive of a spontaneous decrease in 
travel, the official recommendation notwithstanding. 

8.5 DATA 

The travel data we used was from a survey executed over three years, from 1999-
2001.20 The dataset is comprised of the collected responses of a detailed questionnaire 
completed by 17 000 respondents together with interviewers. The response rate was 
73 %. The respondents were divided equally over the survey period and asked to record 
their travel activities of their assigned day. All mediums of travel were covered, from 
airplanes to boots, for whatever purpose. Having disability service, the cost of the trip 
and the number of members in your household were some of the variables recorded, 
giving you an idea of the detail of this survey. Most importantly for us, the origin and 
destination was recorded.  

SIM SIM50 SIM20
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  100
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10000

Prior to the assigned date, the respondents were asked to log long distance travelling 
over 60 days, with somewhat less detail. This measure was taken to attain a proper 
sample of long distance travelling which was poorly represented in the daily travel log.  
We actually used only the long distance data in our paper. Even so we had to be 
careful. Even though the number of respondents is appreciable, as is the 35 000 trips 
they amassed, it is low compared to the possible travel routes between Swedish 

Figure 8-1 Travel matrix plots 
The full travel matrix compared to the restricted matrices, with trips over 50 and 20 km respectively, 
curbed. The travel intensity is on a logarithmic colored scale. 

Unrestricted <50 km <20 km 
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municipalities, 289·289=83 521. Less travelled routes may not show up in our data, but 
the real problem is when they do. Due to the weighting, a sporadic travel between two 
unlikely destinations will over represent the actual travelling going on. We considered 
all single trips like this to be outliers, removed them and compensated by weighting up 
more populous routes. Thereby we lose those routes where the single trip really 
represents actual but rare travelling, ultimately under estimating the disease spread by 
travelling. Considering our goal, to show the consequences of travel restrictions, we felt 
it was better to be on the low side. Also, there is the matter of the parameter γ, which in 
the high end of its range will compensate, at least globally.  

8.5.1 Further ideas 
In a subsequent project we subjected the data to further analysis, smoothing and careful 
cleaning, however using a courser geographic division of 81 workforce uptake areas. 
We were also able to make use of the daily log by marking sporadic and common trips, 
effectively doubling the number of data points. Using the daily logs, a few common 
routes that were just under the threshold distance for the long range data was found to 
have been underestimated previously. We also included such data as travelling with 
family, age distributions, duration and purpose of travel. 
The basic assumption behind marking sporadic trips is that we consider a route between 
two regions that shows up once in our data as an equally likely route of equal distance 
that does not show up. From this assumption we model sporadic trips occurring 
randomly over the whole country based on distance. Finally sporadic and common trips 
are weighed together.  
The consequence of including sporadic travel is that infection may pop up in 
unexpected places, creating local epidemics which ultimately contributes to the nation 
wide epidemic. This may contribute to the final size and also serve to lengthen the 
epidemic. It may also provide data for vaccination planning. 
We used this travel model in an agent-based flu simulation model, Mikrosim.19 During 
an influenza pandemic we may expect both visits to relatives and work related visits to 
decrease.

8.6 RESULTS 

It turns out travel restriction does have an effect on delaying an outbreak, according to 
our study. We showed a drop in the number of people so far infected after 60 days 
simulation in all scenarios, the cumulative incidence; this even when we simulated a 
reduction in compliance level. With compliance as low as 70 % there was still an 
appreciable reduction in incidence. 
The main mechanism behind this can be seen clearly in the plots. They show that the 
epidemic, which starts off in Stockholm, does not manage to spread very far 
geographically with imposed travel restrictions. This has local consequences also, as 
blossoming epidemics in other municipalities will normally spread back to Stockholm 
via traveling, thereby sustaining and strengthening a progressing epidemic. This 
reciprocal maintaining effect is curbed with travel restrictions. In numbers, the 18 000 
that are infected in Stockholm on the 60th day without restrictions, are reduced by a 
third with 50 km-restrictions and by another third with 20 km-restrictions. 
In the paper the term simulation intervals (SI) is used. These ranges can be thought of 
as 95 % confidence intervals but strictly speaking they are not. Real confidence 
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intervals based on a sample population by definition reflect the confidence in an 
estimate in relation to the “true” value, the most likely event in the real world. The 
notion of a true value in an epidemic model is rather misplaced. What the simulation 
intervals really hope to capture is the “true” mean value of an infinite number of runs. 
They answer the question if the results of two scenarios are to be interpreted as 
genuinely different or not. For practical purposes, one can consider the interval to be a 
measure of the variance. In Paper II the reviewers requested that the simulation 
intervals be replaced with a max-min range, in our opinion a poor alternative, since 
these values are so random that they may deserve confidence intervals of their own. In 
the end we complied. 

8.7 A COMMUNICATION ISSUE 

Paper I is published in a medical journal, directed to the public health community and 
written in such a way that any medical professional is able to assess the contents. 
Indeed it was first submitted to a daughter journal of the same publisher specialized in 
public health issues. At the decision maker level the intended message may be vague. 
The suggestion that restricting travel is a viable option is put forward with as much 
political correctness as we could muster. What is passed on is additional knowledge 
about the mechanisms of disease threatening our society.  
There is a story behind the policy implications of the study. The idea and results so far 
produced was presented by my supervisor and co-author at a meeting at a government 
agency in Sweden. The presentation was reproached by a very severe remark from one 
of the assembled, in essence, “It is unconstitutional to impede the movement of our 
citizens, hence such action need not be researched”, implying that our research was not 
only irrelevant, but unjustified. 
This story vividly illustrates that the gap between the research and the executive 
community is deeper than just breadth and communication. It’s a whole different mind 
set. Perhaps this is as it should be, but the story underlines that all effort to mediate 
effective communication is to be fervently applauded. In this particular case, a 
compromise would have been most inadvisable.  
The gist of the suggestion was that besides legal and ethical considerations of the 
research itself, only research of which the implications of the results is not expected to 
trespass beyond the confines of the law, should be permitted. The absurdity of this 
principal is of course only matched in the actual realization where it has been allowed 
to enter the code of law it references, constituting a delightful idiosyncrasy. I’m 
referring of course to the “prohibition of thought”, which effectively prevented research 
into nuclear fission in Sweden for a quarter of a century. The law was lifted in 
parliament only four years ago. I shudder when I think about the insult to the science 
community and the harm done to Sweden as a whole. 
The direct consequence of the comment for Paper I was the inclusion of the compliance 
scenarios, in itself softening the potential interpretation and impact of the results. It 
could be pictured that a government would recommend citizens to refrain from moving 
more than a specified distance. The population would of course not be expected to 
follow the recommendation to the full extent. Even so the delay in spread would be 
sustained, despite compliance rates as low as 70%. 
Academia can learn something from the converse of this story. There is sometimes a 
zeal to get involved in the practicalities and the details occupying the mind of decision 
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makers, at least considering them, even though they will be subject to simplification as 
any other part of modeling. The simplicicist is of course quick to prune any assumption 
deemed unnecessary. The complexicists relishes in the opportunity to include yet 
another variable, introducing a multitude of provisions and subcases. In all modesty I 
propose my Paper III as a good realization of this balance, a very simple model with 
pedagogical benefits, at same time dealing with the important applications of the 
decision making level. 
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9 PAPER II -- THE DISTRIBUTION OF 
INFECTIOUSNESS AND LATENCY TIMES AND 
THEIR USE IN EPIDEMIC MODELS 

In Paper II we turn our attention to a flaw in the model described in the first paper. 
Depending on the purpose of the model, the flaw would be serious and invalidate our 
results. In the context of Paper I, this is one of those acceptable simplifications that 
modelers make, above all because the results were comparative, see Section 6.4. We 
were trying to demonstrate the effect of travel restrictions in a hypothetical disease 
scenario. In many cases, however, this simplification is not acceptable.  
The flaw has to do with our assumption of exponentially distributed latency and 
infectiousness time periods. The time an infected individual spends in the latent or 
infectious state was not fixed in out model, but picked from a distribution, with a mean, 
in our reference scenario, about 4.8 days for latency and 5.3 days for infectiousness. 
 

Figure 9-1 The Gamma distribution 
Plots of the probability density of a few example Gamma distributions, of which the Exponential 
distribution (circles) is a special case. 

A probability distribution, or just distribution, can be seen as a bucket from which to 
pick random values. In this case the values represent a stretch of time - time as in 
incubation time and as in time that a person is infectious. Usually when one thinks of 
random numbers, one thinks of a uniform probability distribution where a certain 
number in a certain range is as likely to be picked as any other. Without any deliberate 
design, the SIR-model is inherently based on a distribution that is not uniform but one 
where low values are favored to high values. The distribution is the Exponential 
distribution, shown with empty circles in Figure 9-1. 
Depending on the modeling issue at hand, this may be perfectly in order, since the 
mean time will always be respected. For calculating the total number of infected people 
at the end of an outbreak, for instance, the simplification works.  
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If the distributions for latency and infectious time periods were, say, Gamma 
distributions instead of Exponential distributions* - the choice is not coincidental and 
the reason will established in a moment - with a form perhaps as the curve with dark 
triangles in Figure 9-1, then nobody would raise an eyebrow. Values chosen from this 
distribution will be around 4.8 days on average with a reasonable variance of both 
higher and lower times. We do not expect latencies much shorter than or much larger 
than this, a few days at the most.  
Exponentially distributed time periods is not a reasonable assumption in any case where 
the variance cannot be disregarded, where the results are absolutely dependent on these 
times. One is entitled to ask, what property of an epidemic is not dependant on time? 
Theoretically, at least, there will be no consequences for the final size - traditionally of 
particular interest among mathematicians - and very little for comparative results like 
vaccination policies or travel restrictions, regardless of the model.155 
But there will be a problem with results that concerns speed, time and anything that is 
not a special case of the equations – e.g. when the peak will be reached or when the last 
person will be infected. Lloyd, 156 for instance, demonstrated that the dynamics and 
disease persistence was affected when using realistic sojourn times. Additionally, the 
problem is larger for stochastic models for which the outcomes are highly dependent on 
the initial random phase of the outbreak.64, 157-159 The first few infected will have 
infectiousness times and latency times that do not average as designed until they have 
reached a certain number. In effect it’s like changing the parameters randomly for each 
round of simulation and this is after all the root and reason for stochastic epidemic 
modeling. After the influential initial phase the times periods will average out and the 
epidemic proceed in an almost deterministic fashion and the distribution of time periods 
less important. 
Even though the ultimate results in Paper I are comparative and do not heavily depend 
on the variance, why not just avoid the issue, just to be on the safe side? As mentioned, 
the choice of Exponential distributions was not deliberate, not really a choice at all. 
They are an inherent consequence of the particular design, explained in the next 
section. We decided to write Paper II because it turns out that this is something that is 
commonly overlooked despite being well known. Paper II shows the consequences for 
a complex spatial model intractable by regular stochastic methods, made feasible in the 
PC era. 

9.1 THE EXPONENTIAL DISTRIBUTION 

The curve with empty circles in Figure 9-1 shows a plot of the probability density 
function of the Exponential distribution as a special case of the Gamma distribution, the 
circumstances of this relationship to be explained later. The Exponential distribution 
has a single parameter equal to the expectation value (the mean). It is highly skewed, 
with high densities for short times and a long tail. 
Since the median is lower than the expectation value, most time periods sampled from 
an Exponential distribution will be shorter than the mean. With an expectation value of 

                                                 
* This is inconsistent language on my part, since the Exponential distribution is a Gamma distribution. 
I hope what I mean to say is clear, when I put the two in opposition: Gamma distributions means the 
set of all Gamma distributions excluding all Exponential distributions, that is to say, all Gamma 
distributions with form parameter κ>1. 
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the latency time of 5 days, 18 % of the sampled time periods will be shorter than 1 day. 
Such short latency times can safely be considered unrealistic. 
There are many reasons for the widespread use of Exponential distributions. Above all 
it is a simplification issue. The Exponential distribution is one of the most fundamental, 
occurring frequently in nature and the universe and is easily manipulated 
mathematically. For the computer modeler, exponentially distributed values can be 
generated from uniform random values transformed with a simple formula, whereas 
other distributions often require an iterative algorithm that is harder to program and 
comes with increased run time.  
The mathematical modeler appreciates the easy manipulation of the Exponential 
distribution which, depending on the model, makes certain parameters of interest drop 
out in closed form. Using other distributions, the same parameters might be intractable 
and require a computer to crack. As mentioned, mathematicians generally use pen and 
paper as far as possible at the expense of sometimes oversimplifying the model. To 
their credit they are mostly aware of the consequences of their simplifications and the 
applicability of their results. Many computer modelers are not.  
Final size for instance, is a parameter that can be trusted despite this simplification, 
again depending on the model. Our simulations show that if we wanted to accurately 
predict the incidence at a certain point in time then we would overestimate the value 
due to this simplification. 
The Exponential distribution is inherently "memory-less." This means that predictions 
of the future state of the epidemic in terms of number of latent and infectious 
individuals, etc., is based solely on the current state and not on any prior history. Thus, 
a model with exponentially distributed time periods makes it possible to base the 
analysis of the model on Markovian160 properties, which will greatly simplify both 
simulations and analytic derivations. 
Turn your attention to the classic SIR model. People move from one compartment to 
the next, driven by a rate. It’s entirely natural to think in terms of rate. Assume X 
persons per day move from infectiousness to recovered. If the number of infectious is 
doubled, so is the rate X. On average everybody is infectious Y days, regardless of the 
number of infectious. The proof that this assumption leads to exponentially distributed 
times can be found in any text book on queue theory and/or Markov chains, e.g. 
Norris.160 
The fallacy of the assumption can be seen when you realize that this is equivalent to 
saying that at every point in time there is a constant chance of recovering. No, there 
isn’t! The probability depends on when you are infected, of course. If you were just 
infected, there is a zero chance of me recovering straight away. If you think about it, the 
fallacy originates from the homogeneous mixing principle, or at least, the line of 
thought associated with viewing each and every one as an indistinguishable particle. If 
they were, it wouldn’t matter which individual you picked out to recover as we would 
have no way of telling when that individual was infected. 
And in case you were wondering, yes, if elementary particles were distinguishable, the 
universe would collapse. 

9.2 IMPLEMENTING THE GAMMA DISTRIBUTION 

A few authors have proposed that the Gamma distribution be used instead.64, 161, 162 
Using this or another less skewed distribution will prevent the predominance of short 
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time periods characterizing the Exponential distribution. The effect will be fewer 
people in the infectious and latent stages in the initial phase of the epidemic, in turn 
affecting results where the initial phase is of consequence.  
The Gamma distribution, denoted ( )θκ ,Γ , has two parameters, a shape parameter κ 
and a scale parameter θ. For κ =1 the Gamma distribution is in fact identical to the 
Exponential distribution. Keeping the expectation value constant, with increasing κ, the 
Gamma distribution becomes increasingly symmetric, or equivalently, less skewed. For 
a suitable choice of κ the density function can be made to resemble latency/infectious 
time distributions of empirical studies.  
The Gamma distribution can actually be realized with an uncomplicated extension of a 
SIR-model and it works well with a more complex model, as in Paper I. It can easily be 
shown that the sum of several exponentially distributed values is in fact Gamma 
distributed. The trick is the to let each infected pass through not only one latency stage 
but several, the number of stages depending on the desired shape of the distribution and 
the appropriate variance and skewness. The parameter κ will namely be the integer you 
choose. The same applies for infectiousness time, using several infectiousness stages 
before the unfortunate infected finally recovers. The idea is seen in Figure 9-2.  

 
Figure 9-2 Adjusting the distribution shapes by adding model stages 
Instead of only latency stage, the simulated people must here pass through three and the same for the 
infectious stage. Both κ and λ will be three in this case, already an improvement, see Figure 9-1. 

The method is not new, it was proposed by Bailey163 in 1964 and thoroughly analyzed 
by Anderson and Watson.64 The added stages are is artificial construct. They have no 
epidemiological significance and serve only to change the appearance of the time 
distribution. We can achieve an arbitrarily symmetric time distribution with a minimal 
alteration to our SLIR-model.  
What’s going on behind the scenes is that the individuals (or particles) in the model are 
made just a little bit more distinguishable. You can get just a tad more information 
about how long someone’s been infectious by the stage they’re in, and presto, the 
resulting time distribution loses its memory magic. 

9.3 RESULTS 

The setup was almost the same as in Paper I, simulating for 60 days, but we limited our 
self to the base value of parameter γ, and arbitrarily rounding of some of the 
parameters, just to idealize the situation. First off we used only one stage for both 
latency and infectiousness, thereby in principle reproducing the simulations from 
Paper I. Then we increased the number of latency and infectious stages in turn to 3. 
Finally we set them both to three. 

S L L L I I I R

 κ × λ ×
S L I R
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For comparison with previous theoretical results, we made experiments with only one 
municipality and no travel. We compared the number of extinction runs, in effect the 
probability of extinction, with Anderson and Watson64 and found them matching. 
By comparing the outcome for different κ for both latency times and infectious times in 
the full scale runs, we can show that ignoring the shape of the time distribution 
devalues the results. Increasing the number of stages of latency (more realistic) has a 
strong negative effect on the number of infected and the geographical reach produced 
after 60 days indicating that the epidemic is delayed. Increasing the number of stages in 
the infectiousness stage has the opposite effect, increasing the incidence. 
Comparing the runs from the one-municipality run to the full run indicates that the 
added complexity emphasizes the expected effect. 
To see why the realistic distributions have this effect, remember that events early on in 
the epidemic to a very disproportionate degree determine the outcome of the epidemic. 
Consider first latency. On average everybody is latent five days, but they only support 
the background trend. It is the ones that are latent 3 days, or even 1 day that make a 
difference because they are the ones that quickly become infectious and are able to 
make their mark early on in the epidemic. As mentioned earlier, the 1-day-latent people 
make up an unrealistic fraction of 18 % of the total number falling ill, if the time 
periods are exponentially distributed. If they are Gamma distributed, on the other hand, 
with a form parameter κ = 3, 1-day-latent people are much more uncommon, 
amounting to only about 2 %.  
It will be as if you boosted the epidemic with hundreds of ill people from day one 
instead of just the single one in Stockholm. Once the epidemic is underway the distri-
bution will not make much of a difference since, after all, the mean is the mean and 
provides the expected. But the damage is already done. To compensate for the short 
latency people, a significant amount of people will have unrealistically long latency 
times, but these will only become infectious once the short latency people have already 
brought the epidemic from the unruly initial phase into the more smooth and well-
defined deterministic phase. Many of them stay latent right till the end of the simulation. 

Figure 9-3 A “tunnel perspective” of exponential and Gamma-distributed time periods 
Consider the latency stage as tunnels, Gamma- (realistic) tunnel (top), exponential (unrealistic) tunnel 
(below). An equal number of people both tunnels every day. How long each person spends in the tunnel 
corresponds to his/her latency times. This is 5 days on average. Some are fast and some are slow, but they 
are all smudged out in the tunnel, as is shown left. But this is 20 days into the simulation. Look what’s 
happing on day 2 (right) when the first hundred or so have entered the tunnel. While the exponential 
people are more spread out in the tunnel, the Gamma people are still crowding the entrance. Exponential 
people with unrealistically short latency times are starting to exit the tunnel and they will ignite the 
epidemic to come, more forcibly and a lot earlier than in the Gamma people. 

Day 20 Day 2
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Another model for explanation is provided in Figure 9-3. 
The opposite effect for the infectiousness times can be grasped in the same way. In the 
early stages of the epidemic, with exponentially distributed time periods, an unrealistic 
fraction of 18 % will attempt infection of their peers for only one day. In contrast, the 
people who have more ample time to cause havoc in the early phase of the epidemic 
when it counts the most, are more numerous if the time periods are Gamma distributed. 
The conclusion is, the increased complexity of the meta-population model and the 
geographical and travel components do not topple the paradigm previous authors have 
shown. The lowered predictability offered by computer happily does nothing to change 
matters. The conclusion is: old rules still apply. 
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10 PAPER III – STATFLU – A DECISION MAKING TOOL 
FOR PANDEMIC INFLUENZA PREPAREDNESS 

As notes Becker,164 very few published works reference empirical observations. 
Epidemic modeling is a playground for people whose interests are directed at finding 
results about the models themselves. But as long as no data is available, the model 
cannot be validated and what interest is left is purely theoretical. Hard-line 
mathematicians usually have no objection to this, seeing applied mathematics as a 
branch of engineering, not mathematics. Too many chances are missed to bridge the 
gap to policy makers. The work in Paper III, from start to finish, has this in mind. 

10.1 COMPLEXICISTS VERSUS SIMPLICICISTS 

Mathematicians and physicists often prefer simple, parsimonious models due to the 
tractability of certain results. Often the model is adapted or a special case is invoked so 
that a particularly simple expression falls out. More complex models evolve slowly 
under these constraints. 
The accessibility of computers means that the model can be adapted to empirical data 
almost arbitrarily without attention to the feasibility of analytical solutions. Paper II 
describes one pot hole of this development. The discussion over complex versus 
simple, now more than ever, is about validity and applicability. Whether empirical data 
exists or not may be a secondary issue to some, but at least now there is more 
opportunity to adapt the model to better fit to data, for validity, both external and 
internal.  
This is not a discussion taken in literature as far as I’ve seen, but there seems to be a 
consensus that there is a risk of things getting out of hand. Models overflow with 
assumptions on behavior. There may be too much reliance in models, and since 
validation is so difficult, for reasons already discussed, models are often left untested. 
Given that you are a responsible modeler with a keen eye towards validation, where to 
place yourself on this balance is as much a choice of personal preference as anything 
else. It may be satisfying to opt for as much simplicity as possible, and certainly, for 
purposes of understanding and explanation, simple mechanisms are what scientists seek 
to find. Even so, special cases abound and you may be lured to a complex model.  

10.1.1 Dynamic versus static 
StatFlu was designed with these considerations in mind. It is very satisfying to distance 
yourself from dynamic modeling altogether. The term dynamic modeling may be my 
own, invented to contrast them from static models, also possibly my own term.165 I am 
not implying system dynamics as in Balci166, as this term is associated with a very 
specific design of models in computer science. In a dynamic model, whether 
deterministic or stochastic, there is a path to be trod from initial state to the final result. 
In a static model, the results are already available; we just have to project them onto the 
desired frame. The static model is data centered and not model centered.  
Exemplifying by dice roll, a dynamic model would consist of a series of experiments to 
find how often a 1 is expected to show up when rolling an 8-sided dice. A static model 
would apply what we know about 6-sided die and extend it to make predictions about 
8-sided die.  
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The models in Paper I and II are dynamic in the sense that changes in the circumstances 
of the spread may change the outcome in a non-linear way. In particular, adding one 
extra initially infected person may increase the size and speed of the outbreak 
drastically.  
Static models, in contrast, merely convert data, rather like a fiscal report converts and 
summarizes data from the invoice system. The benefit is decreased complexity. The 
model proposed takes historical data on past flu pandemics and epidemics and transfer 
them to settings of today. The possibility of doing so is associated with a great deal of 
uncertainty and this is intrinsically inserted into the model.  
In StatFlu and other like models, historic data about influenza epidemics and 
pandemics is used and transferred to current settings. Most of the guessing work - 
assumptions about the proportion of infected in the population, i.e. the attack rate, and 
so on - is left to the user in StatFlu. This will allow for experimentation and a deeper 
understanding of the issues and parameters involved. StatFlu will display, as a function 
over time, the number of currently occupied hospital beds as well as the number of 
excess visits to the primary care system. 
Depending on the case and audience, dynamic models are sometimes more convincing 
than static, sometimes the other way around. This for the same reason that a simple 
model may be more convincing than a complex one and vice versa. Whatever your 
position in the matter, after working with dynamic models for a time the transparency 
of static models is extremely refreshing.  

10.2 COMMUNICATION ISSUES 

A large portion of research is funded by government. In Sweden of 2009 this 
percentage was 26 %.167 There is no need for a justification of why researchers and 
politicians should communicate. It is simply a question of society getting its money’s 
worth.  
The more important question is how. The organization Science & Public works to find 
ways to bridge the gap. In a survey they have carried out they found  that 94% of 
Swedish politicians have a large or very large trust in academic researchers.168 Of the 
articles with scientific content (16 %) in the party associated periodicals, only 18 % 
cited scientific articles. Only 20 % of the Danish MPs read journal articles in the 
natural science field.169  
At the same time it must be said that it is not productive to put forward any kind of 
suggestion without discrimination. Researchers must retain some sort of credibility, 
even though they are allowed a substantial freedom in their pursuits. The line should be 
drawn somewhere on the near side of suggesting that slaughtering all domestic poultry 
in South-East Asia is a beneficial option for controlling of the bird-flu situation. Were it 
only for the infeasibility of this operation I would consider effort spent on this 
modeling question worthwhile. The answer, however, is quite obvious to start with. 
Yes it would. What gains could be achieved by expunging only a proportion of the 
stock is perhaps interesting, but all the more obvious is that whatever the gain, the 
damage would exceed. For either reason, as researchers we should concern ourselves 
with questions and answers that either are or are foreseeable to be, in demand by the 
decision makers and the public.  
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Mostly, anyway. The Ig® Nobel Prizes170 are awarded to contradict this statement and 
to highlight that research for gains that are not immediately apparent, is also immensely 
important. 
StatFlu was designed for and funded by The Swedish Board of Health and Welfare to 
predict hospital and primary care load in Sweden in the event of a flu pandemic, as part 
of the pandemic preparedness plan. In other words, the target audience of this work is 
decision makers in a very direct sense. This kind of model has been produced 
before.171-173 Some are freely available as computer applications. A more detailed 
report has been published on these models, see Camitz: Översikt över statiska 
influensamodeller för pandemiberedskap.174 
The data centered view point lends transparency to the model. It is immediately clear 
what data is used, what could be used to validate the model internally and how to 
validate the model when, heaven forbid, the results come in from a real pandemic. This 
is of course appealing to decision makers. 
Since results are produced by those who use the software and not me, the scientist, 
careful consideration had to be taken, particularly regarding how the results are 
interpreted. Ideally, one would like to test the application on a panel of test users, in 
software development so called end user testing. In StatFlu, attention has been put into 
displaying the uncertainty in the results to the user, resulting in new developments in 
the graph output. The danger is focusing too much on the mean outcome, in our case, in 
terms of hospital load. The mean outcome is only interesting for comparing scenarios. 
The mean outcome of a dice throw is 3.5, but don’t place any bets on it. The mean 
outcome and the most likely event are distinct in general. At the casino, you should 
prepare yourself of the possibility of getting both ones and sixes with equal probability. 
The graphs produced by StatFlu, an example seen in Figure 10-1, shows that the 
extreme values are improbable, so the dangers associated with interpretation and 
focusing too much on the light parts of the graph is still an issue. For pandemic 
preparedness it is of course crucial to design for the worst case scenario or at least be 
prepared for the possibility. 

Figure 10-1 Output from statflu for hospital load  
The plot is for the whole country using Swedish risk group estimates. We set the attack rate to 25 %, the 
duration to 90 days and the average duration of stay to 10 days. At its peak 28 days in, the epidemic will 
likely produce somewhere between 7500 and 10 000 simultaneously occupied hospital beds. 
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10.3 BACKGROUND 

The earliest example of a static model in use in the service of pandemic flu planning as 
far as I am aware is Meltzer et al. 172, 175, a study to evaluate the economic impact of a 
pandemic flu outbreak in the United States. To this project there has apparently been an 
update, 176 published after Paper IV. Essential parameters for age group specific attack 
rates were collected from various studies of outbreaks of seasonal and pandemic flu. 
What’s interesting is that these parameters were not seen as fixed. Rather, each was 
associated with a range of possible values, the centre value being the most likely. This 
is to account for the uncertainty inherent in the values and the uncertainty that results 
from applying them to a different context. When calculating the results, the 
distributions were sampled thousands of times producing an uncertainty range for the 
output as well.  
This is known as Monte Carlo-sampling,177, 178 akin to scenario analysis where you 
would typically set up a number of scenarios for comparison with each other along with 
some kind of estimate of the probability of the occurrence of each. Instead you set up 
thousands of scenarios, weighing your choices with the associated probability and 
analyzing everything in batch. 
Meltzer et al. calculated mean economic impact based on mean hospital admittance and 
mortality, each with 90 % confidence bounds. They also compared results with and 
without the use of vaccination. 
A notable and widely used implementation of a static modeling approach available on 
the web is FluSurge,179 released from the U.S. CDC, to which Meltzer is associated. 
FluSurge is used to project the total hospital load over the duration of the pandemic. 
This software, its forerunner without time projection FluAid,180 as well as slightly 
adapted versions thereof, have been used by authors in published articles predicting 
hospital load in several regions and countries.181-187  
A similar setup as in Meltzer et al. was made in France using by Doyle et al.171, having 
slightly different background variables and with a focus on hospital admittance and 
mortality. Many parameters were taken directly from Meltzer et al's study, as also I 
have done. Also in this study the authors compared scenarios with and without the use 
of intervention programs, in this case vaccination and anti-viral pharmaceuticals. 
Van Genugten et al.165, 188 used detailed national data collected from seasonal 
influenzas. Their approach slightly different from the former two’s use of Monte Carlo 
simulation, opting instead for scenario analysis i.e. a handful scenarios are presented 
and analyzed separately.  
It should also be noted at this point that static models' contribution to understanding the 
effect of vaccination and anti-viral pharmaceuticals is questionable. Usually, the 
effectiveness of the drug is quoted and used simply as a reduction of the final 
outcome.171-173 As with any intervention strategy, they have the potential of completely 
knocking out the disease as well as failing miserably. This is in part due to chance, but 
more specifically, a prevented due to the targeted mechanism: a vaccinated case will 
not spread the disease further. Therefore the effect of one dose in the transmission chain 
is potentially much greater than one saved case. This is discussed more in depth in 
Chapter 3, Infectious disease epidemiology. 
Not taking into account the full dynamics in disease spread when considering 
pharmacotherapeutical effects is not permissible in my view, so static models are not 
well equipped to deal with these issues. Both Meltzer et al. and Doyle et al. provide 
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estimates of incidence reduction following either vaccination or anti-viral drugs, though 
Wallinga et al. are safe from incrimination by combining the static model of van 
Genugten et al. with a dynamic simulation built on top of the original.188, 189 
The StatFlu project was initiated to build on these previous examples. I developed a 
stand alone application that can be used as a prediction tool and a pedagogical tool for 
decision makers at all levels. The system is now in use in Sweden but is readily 
adaptable to other regions or countries. It’s free to use and available from the project 
homepage.190  
The static part is the model’s use of historic data and applying it to the selected 
country’s demographics. The data describes simply how likely it is to be hospitalized 
given infection with flu. Then we can estimate, given a certain number of infected, how 
many hospital beds will simultaneously be occupied. Complications arise when 
stratifying for age-groups and persons who are at higher risk of hospitalizations due to 
chronic illnesses, for example. Most of the data used is the same as in Meltzer et al.172, 
mostly originating from studies of the Hong Kong flu in Oregon. Some data from 
Working Group on Influenza Pandemic Preparedness and 
Emergency Response has not been published and was used taken directly from Meltzer 
et al. Where possible Swedish data was used, particularly for the estimation of primary 
care load, which is very specific to the target country. 

10.4 TIME 

StatFlu estimated the number of simultaneously occupied hospital beds. That is the 
variable of interest. The total number of occupied beds is emphatically not equal to the 
number of afflicted patients seeking care which cannot directly be used to dimension 
care capacity. A longer average stay means the turnaround is lower, also making the 
load heavier. In the extreme case where the required hospitalization time is very short, 
then the number of occupied beds at every point in time will approach the distribution 
of admissions.  
Either way, we have established that time is a factor. It should and does have a role to 
play in the StatFlu-model. This is one of the major enhancements of this model 
compared to others. Ignoring the element of time is bordering on deceptive.171, 172  
Those requiring hospital care during an outbreak will not storm the hospital all at once. 
There will be a distribution of admissions over time and the heaviest burden will be at 
the peek of the epidemic. At every point in time the number depends on two additional 
variables, the duration of the outbreak and the average length of hospital treatment. A 
short outbreak will concentrate the load, making the peak higher.  
Reasonable adjustments were made to add a time dimension to some of the models 
described earlier. Bonmarin et al.191 published a follow-up calculation to the French 
study, assuming the shape of the time function would be similar to that of previous 
seasonal influenza outbreaks as gathered from French sentinel data. Van Genugten et 
al. included a time plot in the original study where the estimated attack rate was 
distributed over a Gaussian (normal) curve. The software FluSurge also plots the output 
on a time axis though it is not clear what the rational behind their choice of algorithm 
is. 
Though perhaps less than ideal, Van Genugten et al.’s selection of the Normal 
distribution is the direct reason for my choice of the same distribution. 
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22, 192, 172, 193, 194, 195, 196, 197, 23 

Table 10-1 Parameters in StatFlu and their implementation 
Variable Description Source Uncertainty Implementation/

treatment 
Gross attack rate Fraction of 

population infected
User-specified Hypothetical User-specified 5-

50% 
Duration of epidemic From first infected 

to last 
User-specified Hypothetical User-specified 

10-150 days 
Population Population in age 

groups 0-19, 20-64, 
>64, by region 

Population 
register22 

High 
certainty 

Fixed, specified 
in text file 

Duration of hospital visit  Average length of 
treatment at 
hospital 

User-specified Attainable, 
partly 
hypothetical 

User-specified 
for all ages 1-14 
days 

Age group-dependent relative 
risk of infection 

 User-specified Hypothetical Specified for age 
group relative to 
the other age 
groups 

Size of risk group  Fraction of age 
group at elevated 
risk for 
complications 

Provided by 
[192] 

Definition-
dependent, 
attainable in 
theory 

ca. 2% for the 
whole 
population; 
specified in text 
file 

Risk of hospitalization  Risk per age and 
risk group of 
hospitalization 
given infection 

Provided by 
[172,193-195] 
and expert 
opinion, see 
Table 3 in [172] 

Uncertain, 
dependent on 
risk group 
definition 

Sampled from 
beta-distribution; 
hard-coded 

For primary care load only 
Primary care visits Yearly primary 

care visits per 
region under 
normal 
circumstances 

Provided by 
[196] 

High 
certainty 

Fixed, editable in 
text file 

Hospitalizations associated with 
influenza-like illness 

Hospital patients 
coded with 
influenza 

Provided by 
[192] 

Highly 
uncertain, 
coding-
dependent 

Fixed, editable in 
text file 

Risk of primary care visit Risk per age and 
risk group of 
hospitalization 
given infection 

Provided by 
[193,197,23] 
and expert 
opinion, see 
Table 3 in [172]

Uncertain, 
dependent on 
risk group 
definition 

Sampled from 
beta-distribution, 
hard-coded 

Fear factor Deterrence from 
primary care due to 
pandemic 

User-specified Hypothetical User-specified 0-
40% 
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10.5 DATA CONSIDERATIONS 

The use of data in StatFlu has been carefully balanced, objectively but arbitrarily, by 
me. Perhaps less uncertainty and more intuitiveness and certainly more objectivity 
could be gained by simply allowing experts to guess the settings, rather than going to 
exaggerated lengths to use real data. 
When designing StatFlu the approach was to use as much real data as was available. 
The following priority order was used: 

1. Swedish empirical data 

2. Empirical data 

3. Data provided by expert panel 

4. User input/educated guess 

Table 10-1 accounts for all the parameters StatFlu, their origin and how they are treated 
and applied in the model. There is of course no consensus on how these parameters 
should be treated and which source to be used. Which parameters are varied with 
sensitivity analysis and scenario analysis differed between Doyle et al. and Meltzer et 
al.  
Many times the data used in Meltzer et al. is based on expert opinion. This is standard 
practice in pharmacoeconomics198 a field no more blessed by an abundance of real data 
than any other. There are many ways of employing the educated guesses of parameters 
from a panel. StatFlu is designed with some of those methods in mind, in particular 
Bayesian methods described in Dittus, Roberts et al.199, Clark200; and Cooper, Sutton et 
al.201 In particular, these considerations affected the distributions used internally in the 
model. 
Needless to say, research using expert opinion is sensitive to the choice of participants 
and particularly vulnerable when real data becomes available to verify model input.202 
Bayesian procedures are designed particularly to approach this problem. On this note, 
the use of your own parameters in StatFlu exploits the opinion of the expert in you, if 
you consider yourself such. Indeed, as mentioned, studies have been published based 
on FluSurge and the input of experts. 
For the case of StatFlu and other static models, the contrary point might be argued. 
Rather than using the Oregon data for hospitalization risk, given the presumably large 
discrepancies in both time and setting, mightn’t it be better to use an expert panel all the 
way, filtering the Oregon data by common sense and experience? This objection is 
equally valid directed at Meltzer et al’s original use of the same data. The U.S. is not 
Oregon and the 90s are not the 60s, see Chapter 8 on traveling. Equally, given our very 
low estimate for risk group size, would not anyone’s opinion be better? A weighed 
average of cited values used in other countries may be an alternative. The StatFlu 
response to these thoughts is to include these parameters as user settings in the 
application, as well.  
The choice between the third and fourth point in the numbered list above, was made, as 
has already been observed, by evaluating the “type” of uncertainty. Attack rate is 
uncertain, essentially a guess. The number of models that provide this number on the 
output side has not changed this fact and in StatFlu this value is provided by the user.  
Perhaps more of the uncertain parameter values should be user specified, or at the very 
least, the source of them should be easily shifted. Risk group size, for instance. As is 
described in the discussion of Paper III, the risk group size was determined from the 
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Swedish Discharge Register203 but this source turned out a comparatively low value. 
The analysis and the very definition of risk groups is subjective, as is seen by 
comparing the aforementioned paper. Ultimately the risk should pertain to having to 
seek hospital care when sick. Also, there is the ICD-code204  problem, the international 
classification of diseases and symptoms using which the source data is coded. There are 
misclassifications and physicians may use different codes for the same disease. 
Influenza especially is hard to classify using the ICD-code book. 
Fortunately, the risk group size can be changed by modifying the contents of a text file 
and this is the intended m.o. if StatFlu is used in other countries besides Sweden. 
Recompilation of the software is not needed, but it still might not be an on-the-fly 
operation. 
Another suggestion brought forward by a reviewer was the possibility of having a 
“negative” fear factor. There might of course be an increase load to primary care 
facilities if medication is distributed there. This will be included in future versions of 
the model. 
There is also the matter of hospital length stay. Although theoretically attainable, I can 
find no data to support it. In part, this is dependent on the severity of the disease. 
Mortality should also be factored in. High mortality due to a severe infection would 
perhaps shorten the average treatment time, all things equal. This is not explicitly 
handled in the model. 
Of importance is also what kind of care and resources is required and this has been left 
out of the model, but it can be specified indirectly though the length of the hospital 
visit. This is of more importance in estimating the economic cost and should after all be 
a simple algebraic operation. 

10.6 AN ENGINEERING PAPER 

Paper III may be seen as engineering paper, describing, as it does, a software tool, even 
though it was submitted for reading by the European infectious disease epidemiological 
community in Euro Surveillance. This is a journal published by the European Centre 
for Disease Prevention and Control (ECDC). Where readers may be accustomed to 
finding results in an article, instead they will find a comparison with StatFlu and 
FluSurge over which StatFlu claims superiority. Essentially, the result of the project is 
the software itself, along with a review of the research in the field. The review in brief 
form can be read in the paper and a more in-depth version can be found in the 
aforementioned report.174  
It is worthwhile in the context of a thesis to include the software requirements 
specification, assembled with the participation of the product users and the design work 
of the application, which is based on the review. 174 A framework for systematically 
defining the requirements is the technique trade-off method.205 This method has 
previously been used to evaluate a dynamic transmission model.206 Usually the end-
user and/or an expert panel is consulted to evaluate the various design issues. Due to 
resource constraints the panel in this case was limited to one person which is less than 
optimal. A summary follows. Perhaps a full end-user evaluation, acceptance testing, of 
the software will be performed in the near future. 
It was decided early on a static model approach with the already mentioned benefits, so 
this consideration was never included in the specification process and only static 
models were included in the review. The trade-offs have also been mentioned. The 
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static model approach disregards the dynamics of the epidemic and consequently 
cannot evaluate the effect of therapeutic pharmaceuticals and other interventions. Such 
interventions must be implicit in the attack rate assumption. 

Functional requirements  
Input parameter specification 
The input parameters vary in uncertainty, due both to origin and applicability. If possible, 
real data should be used. If unavailable, a distribution reflecting the views of an expert 
panel may be used and considerations in the model for this approach is to be 
researched. For purely hypothetical parameters, the user should determine the values in 
order to fully appreciate the uncertainty. 
The trade-off is partly between usability and control. Advanced users may wish for 
control over certain inputs e.g. risk group size, while others may be intimidated by a 
cluttered workspace. This could be addressed via an advanced settings dialog, but the 
cost may be high. Advanced inputs should be modifiable at least by altering the contents 
of a text file. An advanced user can then set values that are acceptable to colleagues 
throughout his/her department. 

Application interface 
The interface must be intuitive and self-descriptive with a “wizard” style work flow. The 
graphic output should be fast and provide the desired output in graph form clearly 
visualizing the uncertainty. 

A use-case (adapted) 
The primary actor is a regional government employee wishing to get a grip on the 
hospital load under pandemic circumstances. The user starts up the application, 
chooses his region and clicks Next. She enters an attack rate of 25 %, a duration 
of 90 days, 5 days as the mean length of a hospital stay and clicks Next. She then 
decides on the relative risk between age groups. She chooses from a list of 
presets, Meltzer A, with which she is familiar, but modifies it slightly, believing that 
the elder population group will have only half the risk of infection as the adult 
group. She clicks next and sets the fear factor to 10 % before displaying the graph 
output for hospital occupancy and primary care visits. The graph is displayed in a 
new window. Without closing it she returns to the main window and adjusts the 
length of stay to 10 days, then opens a new output window. She compares both 
outputs side by side. She clicks Tabular format and is provided with more 
information in figures. The user exits the application. 

Mathematical model 
The mathematical model should be sufficiently versatile to handle total hospital 
admittance, duration, hospital visit length in a closed form time dependent equation. Age 
differences, differences in risk groups and other parameters should lead to a grouping of 
intermediate results. Preferably, all equations should be analytically solvable, if not, 
numerically with computing time on the seconds-scale. 
The trade-off of a complex model is transparency. At a minimum it must be possible to 
describe the way input variables are treated by the model so that users are not surprised 
by the results of their actions. The model should be deterministic. The sensitivity analysis 
should be the only source of stochasticity. 

Numerical model 
Numerical calculations must be optimized to allow for near real time usage. Caching or 
pre-calculation of intermediate values and distributions should be employed. 

Uncertainty model 
The sensitivity analysis should be based on 1 000 to 10 000 input scenarios with 
parameters varied over the parameter distribution, resulting in a distribution of hospital 
admittances. Final results may be binned before the solution of the mathematical model. 
The frequency of each bin should be reflected in color of the epidemic curve output. The 
distribution suggested is a beta-distribution to exploit subjective opinions. 
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There is no trade-off using the Beta distribution as it can be manipulated to resemble 
arbitrary distributions. 
In conjunction with the Monte Carlo based sensitivity analysis, a scenario analysis is 
provided for those parameters that the user specifies. Scenarios should be compared 
with ease, side-by-side in the workspace. 
There is a risk of the user interpreting the mean outcome as the result without 
considering the full range of outcomes, particularly the extremes, despite the model 
being specifically designed to target this problem.  
A trade-off of showing the full range and a probability distribution is that not enough 
emphasis is given to the extremes. At the same time the extremes are more dependent 
on the number of simulation which is unreasonable. 

Age group risk 
Our users may be familiar to the work of previous authors and/or accustomed to 
FluSurge. The risk of being infected depending on age groups should be available to the 
users as predefined presets alongside the ability to set their own arbitrary values. These 
should be in a population independent form for transferability to other countries and 
regions. This means that the risks between age groups can only be shown/specified as 
relative to each other. 
A trade-off is to ease of use. For the user it is simpler to think in terms of absolute risks. 

Non-functional prototyping 
All aspects of the internal functionality and validity of the model as well as the graphical 
output must be thoroughly tested in several prototyping levels. Optimized numerical 
solutions must be tested for accuracy against robust methods in Matlab under a full 
range of parameter scenarios. 

Figure 10-2 Yours truly, demonstrating StatFlu in Swedish news show Aktuellt. 
In the upheaval during the Novel Flu in 2009, I was interviewed on TV. I had an idea that combining 
thesis, dissertation and TV appearance would be a big boost to my ego. Unfortunately, the copyright 
charge to reproduce a snapshot would have been 800 kr, which I found to be too steep. So instead I 
placed this test image from Wikipedia, published as Public Domain. 
The snapshot intended I recorded and captured myself, very lo-res. The report itself is paid for by 
taxpayers, licensees and of course my time. Two of these sources incidentally funded the work portrayed. 
Many individuals, profit and non-profit organizations have contributed to this thesis, free of charge. Paper 
I is published Open Access meaning that anyone can freely reprint, resell or rework it. I have also used 
images under the Creative Commons license. But not everybody thinks alike. 
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11 PAPER IV – THE GIANT SEXUAL COMPONENT  
Modeling sexually transmitted infections, STIs, requires special considerations. 
Perhaps most importantly, homogenous mixing, always the default approach among 
epidemic modelers, does not work well.36, 51, 207, 208 Homogeneous mixing models, i.e. 
the particles-in-a-gas concept detailed in previous chapters, have been unable to explain 
the slower than expected spread in the beginning of the HIV epidemic or why 
Chlamydia is endemic. The failure of the homogenous mixing assumption is entirely 
reasonable, especially if you already harbored doubt about its applicability even when it 
came to describing measles outbreaks. For one thing, most humans have a preference 
towards either of the sexes, so equal likelihood of transmission regardless of whom we 
bump into is conceivable to be a flawed model. To put it short, more than any type of 
contact between humans, sexual contact is structured.  
Having said that, homogeneous mixing was never designed to fully capture human 
interaction. It is after all only a model, an idealization of human mass-behavior that has 
proved itself useful. It may not be entirely clear why such models, which hold up to 
prediction in other cases, do not work when put up to the test of STIs.5, 36, 209 
By understanding networks we hope to gain understanding of the dynamics of network 
based epidemic models, and by understanding that we might gain insight into what 
drives STIs and keep them endemic in the world population today.3, 114  
Paper IV explores a special entity borrowed from graph theory, the giant component.210 
Essentially the work hopes to contribute to understanding STIs by establishing firmly 
that a majority of the population is connected - sexually. This is something that is 
intuitive for most people who have a certain grasp of percolation. Thankfully, this is 
true of many of those who have read Malcolm Gladwell’s bestseller The Tipping 
Point.63 Network physicists and Gladwell’s readers notwithstanding, it is a good thing 
to try and prove the apparent in order gain support for a message sent to the public 
health community, and in extension, the general public. The ideal would be to get such 
an “appealing” message across that it would be spread by word of mouth. What an 
enticing thought: to exploit the social networks that sustain epidemics for spreading 
information that counters the very same epidemics. 

11.1 WHAT IS A NETWORK? 

A network is a structure of entities referred to as nodes, aka vertices, connected to each 
other by links, aka edges. Today’s computer savvy people will benefit from embarking 
from the notion of the internet in order to grasp the general concept of a network. 
Understand a computer or physical piece of hardware to be a node, and the conduits 
between them as edges. The structure makes up a network. On top of this physical 
network a number of abstract layers have been added, the World Wide Web being the 
most familiar. It is a network of web pages connected by hyperlinks. As a 
representation of your social self you have your Facebook profile and from it you are 
connected to your friends, in turn connected to their friends, some of which are 
connected back to you. There is even a Facebook app that plots the immediate 
neighborhood as a network on your profile. 
The Facebook network is according to all definitions, a social network, spanning the 
globe as indeed all social networks have been found to do. As a matter of fact, quite a 
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number of network papers have sprung from the analysis of online communities such as 
Facebook.211-213 
The above are just a few of the networks that are found all around us and that have been 
extensively studied, from metabolic and genetic networks to trade and aviation 
networks.214-217 One example of a travel network can be found in Paper I and II.  
It is not surprising that network science has received so much attention from scientists 
of all fields. What captures most scientists’ interest is the statistical properties of very 
large networks of thousands or millions of nodes. The theoretical bulk of knowledge is 
now quite large, but in many aspects network science is still a young science. 

11.2 A FEW NETWORK CONCEPTS 
To understand networks we need to have some concept of the emergence and growth of 
networks. Under what conditions does one node connect to another and how do those 
conditions influence the topology of the network? The search for a universal law of 
network structure and emergence has only just started.   
Scientists try to answer the question by studying random network models. From 1959 
over next three years, Hungarians Erdős and Rényi published a series of papers 
describing the properties of a simple network generated by assigning a probability, p, 
whereby a fixed set of nodes would connect to each other.218-220 If this probability is 
100 % , then all of the possible links between the nodes are present. For a network with 
10 nodes, 10·9/2=45, edges are possible, an edge from each node to all the others, 
counted only once in the case of an undirected network.  
Although perhaps not prominent in the real world, the statistical properties of this type 
of network have served as a starting point for further exploration. Again the reality is 
adapted to suit the map, pertaining to our ongoing discussion about simplicity versus 
complexity, and as always, there is great insight to be gained from starting small. As we 
shall shortly see, the particular assumption generating the Erdős-Rényi-random 
network, has a tie to one that has already been discussed. 
Strange things happen when p is varied. When p is low, so is the propensity of forming 
a connected network. Nodes will be isolated. Only small connected components of a 
few nodes will emerge. As the probability to form links is increased, the components 
interconnect to form larger components. For large p, almost all the nodes are connected 
forming a single dominating component, a so-called giant component. Only very few 
islands remain separate from the giant component and these are orders in magnitude 
smaller. The strange thing is that there is no gradual emergence of this giant 
component, of which there is only, equally strange, one. p is a threshold parameter, a 
critical value. When np /1> , n being the number of nodes, there is a giant component. 
Below the threshold value, there is not.  
The forming of the giant component can be seen in the mathematics and very readily by 
simple computer simulations. The process is rather like when a fluid freezes and has 
borrowed the name percolation. 
Seen from an epidemiological standpoint the existence of a giant component is of 
course detrimental to our health. Viewing the global community as a random network 
leads to many conclusions about the spread of diseases – how a high probability to 
interconnect implies a high chance of an outbreak; how the evolution of travel and 
aviation has shortened the path length between individual nodes and reshaped the 
epidemiological landscape.  
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The attentive reader will recall the discussion of another threshold value, namely R0 
which determined the epidemic potential of a pathogen. The relationship is of course 
not incidental as the random network is the network equivalent of homogenous mixing. 
Recall that homogenous mixing implies that everyone has equal chance of contacting 
everyone else. In network terms, each node has the same probability of connecting to 
all others. And in the same way that homogeneous mixing is an oversimplification in 
some cases, so of course is the Erdős-Rényi random graphs. The story is rather more 
complicated. 

11.2.1 Small world 
We cannot write about networks and skip the small world effect. We have all heard 
either of Bacon numbers221 which gives the shortest collaborative path from any actor 
to Kevin Bacon –in a relaxed version from everyone in the world; or Milgram’s famous 
experiment in which packages were distributed with the instructions to send them back 
to the lab via your personal network of social contacts.222 Initially we are surprised that 
the shortest social contact path between any two people in the USA is around 6, on 
average. How could infectious diseases not thrive under such beneficial conditions? A 
hypothetical disease with 100 % infectiousness would cover the US in only 6 
generations.  
Watts and Strogatz223 later made history when they proposed a network growth model 
that exhibited a small-world effect. Small-world networks exhibit a high degree of 
clustering of nodes i.e. heterogeneity in contacts: you are likely to be connected to your 
contacts’ contacts. This alone does not account for the patterns of spread we expect 
from epidemics today. More on this in Section 11.4.1. 

11.2.2 Scale-free networks 
A great number of papers emerged at the turn of the century showing that a number of 
networks found in nature and society were fat-tailed indicating that they own a property 
of networks known as being scale-free.224, 225 What is indicated by this term is a special 
property of the degree distribution. The degree of a node is simply the number of links 

Figure 11-1 The Poisson distribution 
The plot shows a few versions of the Poisson distribution with different expectation (read mean) values λ. 
Random graphs have Poisson distributed degrees meaning that the mean degree is also the most common 
degree – together with the mean degree less one. Most nodes tend to have degrees around the mean, 
ensuring an uneventful network. Extremes are rare. 
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it hosts. The mean degree in a random graph is ( )1−= npz , where n is the number of 
nodes in the network. Distributions are discussed in Chapter 9. The distribution of 
degrees in a random network is a Poisson distribution which has its peak around the 
mean value, see Figure 11-1. 
What is commonly seen in the real world, however, is a power-law degree distribution 
as in Figure 11-2, essentially describing the case when a few nodes have a 
comparatively high degree, but the vast majority of nodes have a moderate degree. The 
mean degree in this case becomes rather uninteresting. The shape of the distribution 
does not depend of the size of the network, hence scale-free. 
The World Wide Web, for instance, appears to be scale free. We know that a few sites 
are extremely well connected. Wikipedia, as is common these days, will be the link-
beneficiary once this thesis is published online. There is a large amount of moderately 
connected sites from newspapers down to popular blogs, while the vast majority of sites 
remain poorly connected, my own blog being a good example. The vast number of 
poorly connected nodes is referred to as the fat tail or the long tail, the latter expression 
recently kidnapped by Anderson226 in describing how companies these days must adapt 
to selling many diverse products, each which few consumers. There is only room for so 
many iPhones on the market.  

11.3 NETWORKS IN EPIDEMIOLOGY 

Epidemics simulated on small-world networks spread homogeneously in a wavelike 
pattern such as is recorded from the bubonic plague and diseases in the animal 
kingdom, like tularemia7, and seen on Hollywood blockbusters. These tendencies were 
seen also with the Spanish flu in 1918-19 although local pockets soon emerged creating 
new centers of transmission.47 Traveling disrupts the wave pattern, connecting 
geographically distant territories, probably making the world more scale-free. The 
dichotomy between small world and scale free manifests itself in IDE as the bubonic 
plague contra SARS. 
One property of networks of particular interest is the resilience against random 

Figure 11-2 Power law distribution plotted on a log-log scale 
Note the scale: this is not a linear association. A value of 13 is ten times more likely as 22 and 100 times 
more likely than 40. Values of over 100 are very uncommon. If the plot depicted the degree distribution 
of a network we would say of it: typical small world, lower degree always the more common and a few 
really high degree nodes. Although the mean degree can be calculated, the interpretation is not really 
well-defined. 
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attacks.227, 228 The internet thrives perfectly well even though random hardware 
equipment constantly goes out of order.229 The traffic is simply diverted with hardly 
any loss of efficiency. On the other hand, if routers and servers were attacked 
intelligently, targeting the hubs of the network, the disruption would be very severe.230 
The internet is very susceptible to targeted attacks due precisely to its scale-free nature. 
This fact carries over to infectious disease epidemiology in an analogous way. The 
vaccination of a few highly connected individuals – scientists use the word hubs also 
here – will benefit in combating, more so than a comparably large vaccination 
campaign of the random public. Put in the language of R0, even though the true R0 may 
be low, the unfortunate infection of a hub may lead to a fast and severe outbreak. As 
recalled, R0 has everything to do with contact degree, though the calculation of R0 in a 
network setting is very different than the simple formula using the mean contact rate, 
given in previous section, applicable only under the assumption of homogenous 
mixing. 
Work with networks and epidemics in particular and resilience in general has been 
done by others.3, 113, 114, 231 Liljeros, in an unpublished paper,232 performed a test on the 
network of Swedish companies hoping to find that closing down a few major 
workplaces might lead to a more sparsely connected network not able to sustain 
epidemic growth. The trend of research, however, seems to be downplaying the role of 
hubs and super-spreaders233.  

11.3.1 Sexual networks 
Sexual networks have also been studied in IDE with pertinence to STIs.234, 235 There are 
many questions that remain unanswered about STIs, for instance, how Chlamydia 
persists in the population with such a stable prevalence. Could the answer lie in as yet 
undiscovered properties of networks? Largely due to a new strain and recent higher risk 
behavior, Chlamydia is once again on the rise in Sweden.236 The fact that Chlamydia 
Tracheomatis can be subclinical (see Section 3.2.2, page 12) and remain undiscovered 
by many carriers is one reason.   
Common for all STIs, is that they spread very slowly. This is of course due to the low 
contact rate, on a time scale longer than for diseases like influenza or measles. Contact 
rate corresponds to node degree in sexual networks and is of course important, but 
perhaps not in the linear way explained by simple SIR-models.237 Recalling Section4, 
Epidemic modeling and its history, readers will know that for an outbreak to be 
sustained the infectiousness time must be longer to compensate. Still, researchers find it 
baffling that limiting the spread of STIs has turned out so very difficult, despite 
effective protection being readily and cheaply available and easy to administer.90, 161 
Analyzing the contact patterns seems to be a necessary and beneficial approach. For 
example, Morris and Kretzschmar,88 demonstrated the importance of concurrent 
relationships when comparing the HIV epidemic in Africa and South East Asia  using 
simulated networks that evolved over a five year period. Pastor-Satorras and 
Vespignani,3, 4 showed the negative impact of preferential attachment in sexual contact 
networks, that is, the tendency for highly connected individuals to seek new partners 
among other highly connected individuals.  
The latter phenomenon will lead to the emergence of so-called core groups,52 long 
since identified of vital importance by public health professionals. Core groups are 
groups of high degree nodes connected to each other. If you think about a celebrity 
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cocktail party, you know where to look to find a core group*. According to the core 
group theory, an infection released randomly will soon find its way to a core group, 
where it may remain endemic due to a locally favorable environment – multiple and 
intense contacts - even though in the population as a whole, R0 is lower than the 
threshold value 1.238, 239

 

11.3.2 The giant sexual component 
Though the core-group theory is à la mode with public health workers, it is not a 
powerful message to send to the youths of today, frequently neglecting to protect 
themselves.240 The core groups exhibiting high risk behavior, after all, are very few. 
Most people have a modestly promiscuous lifestyle.  
The fact that your partner probably has more contacts than you do may cause some 
concern however. What we try to show in Paper IV is that everybody, very permanent 
singles and monogamous couples excluded, are linked together in a giant component of 
the sexual contact network. Given what we know about the small-world effect, this 
might be a sufficiently strong motivation for safe sex. An STI can span the network in 
only a few generations, and you don’t want to be part of the chain. 
Under what circumstances will a giant component be present in the sexual network? 
Remember the sexual network is not a random network and there is no p to be varied. If 
anyone were to suggest an acceptable model for the forming and evolution of sexual 
networks, it is guaranteed to be more complicated than that.  

11.4 THE PAPER 

What can we know about the real sexual network based on degree distribution? Would 
it be possible to construct a reasonably accurate network with only information about 
the degree distribution?  
Alas, in Paper IV, we do not offer a network model to withstand the heavier kind of 
scrutiny. We offer a model and we do it to support an argument about the giant 
component based on node degree alone. This is the main theme of the paper. In random 
networks a giant component either exists or it does not. Intuitively, this is probably true 
also of sexual networks and if so, then our argument is strong. 
A rather large complication of our simple argument is the temporal aspect. 
Relationships have duration and sequence. So unlike networks most thoroughly studied 
in network science, perhaps our network should not conform to conventional 
assumptions. Our network is temporal (or dynamic) rather than static, as in Figure 11-3. 
Adhering to protocol, I offer here a summary of the methods and results. I do however 
recommend reading the Paper I instead. It is the most recent paper of the four and not 
much can be added. Since it hasn’t been submitted yet I certainly haven’t had any 
feedback to share. It is written in a, for a thesis, suitably leisurely style which I can only 
plagiarize here. 

11.4.1 Methods and results 
As always, we are held back by our data. There is an abundance of enquiries of sexual 
behavior, habits and experience. This appears to tickle our curiosity to the utmost. Most 
enquiries include questions about the number of sexual contacts per individual, or 

                                                 
* No intended sexual connotations to cocktail parties. 
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degree, if network jargon is used. But surprisingly few probe the rate of contacts, the 
intensity, or the concurrency. We would do much better if these parameters were 
known. 
The fact of the matter is, whenever you are dealing with networks the data requirements 
are very high and hence the quality of data available almost always insufficient. To get 
public opinion about a political party or to assess the prevalence of smoking related 
disease it is enough to sample a few thousand of the population. But it is easy to see 
that people in a random sample are unlikely to be in contact with each other. To 
construct a network that properly reflects the real situation, you pretty much need data 
on every node in it and the responses must be accurate and true to definition.241 To 
estimate statistical properties requires a significant portion of the network to be known. 
Usually this entails a more refined sampling technique, dependant on what you are 
after.242 
At the very least, the degree distribution will tell you how many partners your partners 
have, taken on average. Following a counterintuitive argument known as the ripple 
effect, this number is likely to be higher than your own.243 That means to say, your 
partners have more partners than you do. Expanding on this argument to an arbitrary 
number of steps, plus taking into account the dichotomous nature of the heterosexual 
network, as well as a property known as mutuality, we demonstrate that a network 
would have a giant component provided that the mutuality is sufficiently high. 
Mutuality expresses in a number how likely it is for two or more of your partners to 
share a common partner – other than yourself, of course. A high mutuality means that 
the network is tightly bound, clustered. Despite a high average degree, the components 
of the network do not spread out to include as many as they potentially could. Hence a 
high mutuality works against the forming of a giant component.  
A low mutuality, on the other hand instead means the network is tree like, branching 
out in all directions. When a new link is formed from a component, it is likely that it 
will be with a node not already in the component. The components will seek to 
interconnect. Hence a low mutuality will work in favor of giant component formation. 
Our data suggests that a low mutuality is probable and a high mutuality, conversely, is 
improbable. We have data from two sets from the same population. The first set reflects 
the number of partners over one year. The second, over a whole lifetime. Both data sets 
seem to favor giant components. 

Figure 11-3 A temporal network 
A hypothetical temporal heterosexual network and the spread of an STI starting from the centre node in 
January. The shades represent sex and the bold ring signifies infected. The relationships in this example 
are dated i.e. only exist the indicated month. The disease propagation therefore is limited by progression 
of time. Some of the nodes cannot be infected since their link to an infected node does not exist at the 
time of the attempted transmission. 
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11.4.2 Simulated networks 
Another caveat is the core-group theory, discussed earlier. The analytical approach 
assumed that connections are random. If there is a tendency for heavily linked 
individuals to attach only to other heavily linked individuals, then this also would 
undermine our argument. As much as we would like to expand our mathematical model 
to consume this new variable, we realized the limits of our abilities and, thematic to this 
thesis, resorted to computers where no bounds of intractable equations obstruct. 
We ran into a lot of complications when building our networks but the principle is easy 
to explain. Start with a set of male nodes and a set of female nodes. Assign degrees to 
each according to a known distribution. Then attempt to connect them, constrained by 
the assigned degrees. When no more links can be added, check that there are no, or at 
least acceptably few, nodes with connections “left over”.  
Further more, we could apply dates to our links so that when one relationship ceases, 
another begins. If this is done carefully, a realistic temporal network can be achieved, 
meaning, minimizing the time a node is not connected to anybody. This means that, 
necessarily, some relationships are long, some are short. 
When a node attempts to connect to another, this is choice can be uniformly random or 
it the randomness can be affected by a variable of choice e.g. node degree. This would 
result in increasing assortativity, if we made it increasingly likely for high degree nodes 
to favor other high degree nodes when connecting. 
Programming this scheme into the computer, we generated thousands of networks with 
varying sizes and assortativity. We measured mutuality, but more to the point, we 
looked for and recorded the size of the giant component. 
Our conclusion from this enquiry was that the giant component quickly emerges at 
around 12-months of sampling. If the data collection period were more than twelve 
months, then we feel that a significant giant component would exist regardless of the 
parameters defining the network. 12 months is after all, from a Chlamydia perspective, 
a rather short period of time. This is a disease which can be latent for many years. 

11.5 FUTURE RESEARCH 

One consideration that did not make it into the Paper I is concurrency. Using the 
assumptions from Morris and Kretzschmar,88 that a varying proportions of the 
population engage in concurrent relationships, we could have made things very easy for 
ourselves, certainly producing a giant component in all runs. Keep this in mind when 
reading the paper. Concurrency is very widespread, not only in sub-saharan Africa, but 
in the western world as well, particularly among the young. Concurrency is probably a 
key variable in the chaotic incidence curves of STIs.244 
Ideally we wouldn’t have to think about issues as concurrency and assortativity. This is 
information that is available by asking people. The trick is measuring it. It may require 
something more than simple multiple choice enquiries. One way to go about it is to use 
a timeline. Respondents would register the sexual partners over a period of time using 
X’s indicating a single encounter or a bar for a lengthier relationship. It is perceivable 
that using a timeline would minimize recollection bias in the number of relationships, 
the timings of them and any other variables simultaneously collected. It is known that 
in sex surveys, men exaggerate the number of contacts. When using the timeline, this 
discrepancy between the sexes, it seams, is eliminated.24 
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Yes, the timeline has been used and the results published, almost 20 years ago. The 
original timeline was a part of a survey with about 1000 youths in the county of 
Gotland, in Sweden. The respondents jotted X:s and bars with pencil. 
Work has recently been complete to bring the timeline into the 21st century for the 
benefit of today’s internet savvy youths. The timeline is fully interactive and can be 
inserted into any website, for instance, an internet survey. 
I hope to see the timeline fully tested soon to see differences in variables compared 
with other surveys. Ultimately, I’d like to see it used continuously in full scale surveys 
in all sorts of communities. When this happens, we must remember to sample longer 
than 12 months, as was suggested in Paper IV – perhaps 18 or 24. Data from the 
timeline would certainly make building networks of the kind we did in Paper IV, a 
breeze. 

 
 

Figure 11-4 The Timeline control as seen on an internet survey 
The respondent has specified two sexual partners over the time period with some concurrency. There was 
an encounter with Johan around New Year and end of April. The last occurred during the relationship 
with Patrik which lasted from the middle of February through June. The end of the relationship with 
Patrik overlapped the intensified relationship with Johan. 
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Figure 9-2 Adjusting the distribution shapes by adding model stages 
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Figure 10-1 Output from statflu for hospital load 

Figure 10-2 Yours truly, demonstrating StatFlu in Swedish news show 
Aktuellt. 
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Figure 11-1 The Poisson distribution 

Figure 11-2 Power law distribution plotted on a log-log scale 
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Figure 11-3 A temporal network 

Figure 11-4 The Timeline control as seen on an internet survey 

Front cover: Travel matrix detail 
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