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In lung cancer computer-aided detection/diagnosis (CAD) systems, classi
cation of regions of interest (ROI) is o�en used
to detect/diagnose lung nodule accurately. However, problems of unbalanced datasets o�en have detrimental e�ects on the
performance of classi
cation. In this paper, both minority and majority classes are resampled to increase the generalization ability.
We propose a novel SVM classi
er combined with random undersampling (RU) and SMOTE for lung nodule recognition. 	e
combinations of the two resampling methods not only achieve a balanced training samples but also remove noise and duplicate
information in the training sample and retain useful information to improve the e�ective data utilization, hence improving
performance of SVM algorithm for pulmonary nodules classi
cation under the unbalanced data. Eight features including 2D and
3D features are extracted for training and classi
cation. Experimental results show that for di�erent sizes of training datasets our
RU-SMOTE-SVMclassi
er gets the highest classi
cation accuracy among the four kinds of classi
ers, and the average classi
cation
accuracy is more than 92.94%.

1. Introduction

Nowadays lung cancer is one of the most serious cancers
in the world. In fact, the total number of deaths caused
by lung cancer is greater than the sum of breast cancer,
prostate cancer, and colorectal cancer [1, 2]. Early detection
and treatment of lung cancer can improve the survival rate
of those in�icted with it [3]. Pulmonary nodules are early
manifestations of lung cancer. Lung nodule refers to lung
tissue abnormalities that are roughly spherical with round
opacity and a diameter of up to 30mm.

Computed tomography (CT) is an important tool for
early detection of nodules, but interpreting the large amount
of thoracic CT images is a very challenging task for radi-
ologists. Currently, nodules are mainly detected by one
or multiple expert radiologists inspecting CT images of
lung. Recent research, however, shows that there may exist
interreader variability in the detection of nodules by expert
radiologists [4]. An automated system can thus provide

initial nodule detectionwhichmay help expert radiologists in
their decision-making. Computer-aided detection/diagnosis
(CAD) is considered a promising tool to aid the radiologist
in lung nodule CT interpretation.

In lung cancer CAD systems, lung nodule detection
methods can be categorized into three main categories
[5]: template-based [6–8], segmentation-based [9–11], and
classi
cation-based [12–15]. Among the reported existing
work, the systems that included a classi
cation component
in their structure have performed better than their counter-
parts. 	ere is a host of classi
cation algorithms that could
be employed to enhance the accuracy of the lung nodule
detection. 	is work is concerned with classi
cation-based
lung nodule detection.

However, lung nodule classi
cation is a typical unbal-
anced dataset problem; that is, the number of nonnodule
samples for training is greatly more than that of nodules. For
unbalanced datasets, the number of samples in majority class
outnumbers the number of samples in the minority class.
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Rare individuals are typically harder to identify than common
objects, and most machine learning algorithms have many
di�culties in dealing with rarity; it is important to study the
classi
cation problem of unbalance dataset.

Support vectormachine (SVM) is a newmachine learning
method based on statistical learning theory [16]. It overcomes
many shortcomings such as over learning, the local extreme
points, and dimensionality disaster that the neural network
and traditional classi
ers have. SVM has strong general-
ization ability and has now become a new hotspot in the

eld of machine learning. However, in a conventional SVM
classi
er, a highly unbalanced distribution of data usually
brings about poor classi
cation accuracy for the minority
class, because the classi
er may be strongly biased toward the
majority class. SVMs tend to learn how to predict themajority
class in particular, although they can get higher predictive
accuracies without considering the minority class; this good
performance can be identi
ed as meaningless.

In recent years, the machine learning community has
addressed the issue of class imbalancemainly in two di�erent
ways [17–19]. 	e 
rst way involves modifying the classi
ers
or putting forward new algorithms to adapt to the unbalanced
datasets [20]. 	e second classi
er independent way involves
balancing the original data set, for example, oversampling [21,
22] and undersampling [23, 24]. Chawla et al. [25] proposed
the synthetic minority oversampling technique (SMOTE)
algorithm in which the minority class was oversampled by
taking each minority class sample and introducing new
synthetic examples joining any or all of the minority class
nearest neighbors. Some used a combination of undersam-
pling and oversampling, such as Estabrooks et al. [26], who
concluded that combining di�erent expressions of resam-
pling approach was an e�ective solution. Researchers then
exerted their e�orts toward developing hybrid approaches to
deal with unbalanced data, where they combined oversam-
pling and undersampling with di�erent concepts into one
approach.

For SVM classi
er, the key issue to improve the perfor-
mance of SVM classi
cation under unbalanced dataset is
how to ensure that the data become balanced, and at the
same time, utilizing the sample information to generate more
e�ective decision-making interface.

From the above analysis, in order to improve SVM algo-
rithm’s classi
cation performance under unbalanced dataset
for lung nodules detection, we propose a SVM classi
cation
algorithm based on random undersampling and synthetic
minority oversample technique (SMOTE). 	e combination
of the two methods not only achieves balanced training
samples, but also removes noise and duplicate information
in the training sample and retains useful information to
improve the e�ectiveness of data utilization and ultimately
improves performance of SVM algorithm for pulmonary
nodules classi
cation under the unbalanced data. 	e rest
of the paper is organized as follows. Section 2 analyses
conventional SVM and e�ect of unbalanced dataset for the
performance of classi
cation, explains the architecture of
the proposed balancing approach, and presents a description
of the dataset and the experimental method used in this
research. Results and discussions are presented in Section 3.

Section 4 concludes the paper. 	e features of lung nodule
used for classi
cation are introduced in Appendix A.

2. Materials and Methods

2.1. Conventional SVM and Unbalanced Dataset Problem

2.1.1. Overview of Conventional Support Vector Machine.
SVM is a learning procedure based on the statistical learning
theory [27, 28] and it is one of the best machine learning
techniques used in data mining [29]. For solving a two-
class classi
cation problem, the main objective of SVM is to

nd an optimal separating hyperplane that correctly classi
es
data points as much as possible and separates the points of
the two classes as far as possible by minimizing the risk of
misclassifying the training samples and unseen test samples
[27].

In the problem of two class pattern recognition, suppose
that there are� sample points in the training set � = {(��, ��)},
among them �� ∈ ��, and �� ∈ {+1, −1}, � = 1, 2, . . . , �.
SVM is to 
nd the optimal solution of the following quadratic
programming problem:

min
�,�,�

1
2	
�	 + 


�
∑
�=1
��

s.t. �� (	 ⋅ Φ (��) + �) ≥ 1 − ��, � = 1, 2, . . . , �

�� ≥ 0, � = 1, 2, . . . , �,

(1)

where � is slack variable, which indicates the severity of
misclassi
ed samples; 
 is a regularization constant, namely,
penalty factor, which is used to control the degree of pun-
ishment for misclassi
ed samples. In order to derive the dual
problem from formula (1), Lagrange function is introduced
as follows:

� (	, �, �, �, �) = 1
2 ‖	‖

2 + 

�
∑
�=1
��

−
�
∑
�=1
�� (�� (	 ⋅ Φ (��) + �) − 1 + ��)

−
�
∑
�=1
����.

(2)

Among formula (2), �� and �� are Lagrange parameters. 	us
the dual problem of formula (1) can be drawn, namely, the
following convex quadratic programming problem:
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(3)
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Figure 1: Illustration of SVM classi
cation performance under di�erent datasets.

Formula (3) is the commonly used standard C-SVM
model, due to the fact that the calculation of inner product
between vectors in a high dimensional space is very di�cult
and sometimes even impossible. In formula (3), �(��, �
) =
Φ(��) ⋅ Φ(�
) is taken with a semipositive de
nite kernel,
which instead of high dimensional vector inner product
calculation, and this is kernel trick of SVM.

By solving formula (3), Lagrange parameters can be

solved as follows: �∗ = (�∗1 , �∗2 , . . . , �∗�)�, part of the
samples corresponding to ��, whose value is not zero, called
support vector. Select �� that is located in the open interval

(0, 
) to calculate �∗ = �� − (∑��=1 ���∗� �(��, �
)) and

nally construct the following decision function: �(�) =
sgn(∑��=1 �∗� ���(�, ��) + �∗) as the classi
cation rule.

2.1.2. E�ect of Unbalanced Data to the Classi	cation Perfor-
mance of SVM. When the sample sizes of di�erent classes are
equivalent or even the same in the dataset, the classi
cation
boundary of the SVM classi
er is desirable. While, when the
sample sizes are di�erent greatly between the two classes,
SVMs will run into di�culties [29, 30]. It can be shown
from formula (1) that minimizing the 
rst term (1/2)	�	 is
equivalent to maximizing the margin, while minimizing the
second term∑��meansminimizing the associated error.	e
constant parameter 
 is the trade-o� between maximizing
the margin and minimizing the error. If 
 is not very large,
SVM simply learns to classify everything as negative because
thatmakes themargin the largest, with zero cumulative errors
on the abundant negative examples [26]. 	e corresponding
trade-o� is only the small amount of cumulative error on
the positive examples, which do not count for much. 	us,
SVM fails in situations with a high degree of unbalance.
Besides, SVM tends to produce an insigni
cant model by
almost predicting the majority class; thus the classi
cation
result is obviously not desired.

So the unbalanced dataset will impact the classi
cation
performance of SVM. We use an illustration to show the
misclassi
cation in Figure 1.

In Figure 1, “circle” indicates minority class sample,
and “pentagon” indicates majority class sample. When the

number of two class samples is equivalent or balanced as
Figure 1(a), “blue pentagons” determine the support vector
�1 of majority class, and “red circles” determine the minority
class hyperplane �2, and the optimal classi
cation hyper-
plane� can be calculated correctly.When the number of two
class samples is unbalanced as Figure 1(b), due to the fact
that the samples of minority class are rare, some minority
class samples which should determine the hyperplane �2
did not present, such as “gray circles” on dotted line �2.
If the Boundary Samples were provided, the calculated
classi
cation hyperplanes should be�,�2, and�1, but now
the results are �, �2, and �1; they are apparently di�erent
from the truth, so the deviation appears. Actually, the more
minority class samples are, the more the calculated results
will be close to the truth classi
cation hyperplanes because
of the unbalanced samples, which make the majority class
hyperplane “push” towards the minority class direction, thus
a�ecting the accuracy of the calculation.

2.1.3. Biased-SVM Model for Unbalanced Samples. As anal-
ysed above, for a standard C-SVMmodel, unbalanced dataset
may cause de�ective classi
cation results. An e�ective way to
solve the problem is selecting di�erent penalty parameters
on two kinds of samples in the SVM model, using larger
value of 
 representing more importance for the minority
class samples, and taking more strict classi
cation error
punishment, which is the basic idea of biased-SVM [31].

In biased-SVM model [31], select di�erent penalty
parameters 
+ and 
− for the two class samples, respectively,
so the model can be expressed as:

min
�,�,�

1
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�	 + 
+

�
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�
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{�|��=−1}
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s.t. �� (	 ⋅ Φ (��) + �) ≥ 1 − ��, � = 1, 2, . . . , �

�� ≥ 0, � = 1, 2, . . . , �.

(4)

To solve the quadratic programming problem of formula
(4), the dual problem is derived by introducing Lagrange
factors, and kernel function is also used to avoid high
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dimension vector dot product. So the model of biased-SVM
can be deduced as

min	
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���
�(��, �
) −

�
∑
�=1
��

s.t.
�
∑
�=1
���� = 0

0 ≤ �� ≤ 
+, �� = +1

0 ≤ �� ≤ 
−, �� = −1.

(5)

2.2. Proposed Approach. 	e intuition of our approach is
to balance the samples from two aspects. For the minority
class, we apply SMOTE algorithm to create new synthetic
examples, without adding too much noise into the dataset;
the minority samples will be oversampled. On the other
hand, we decrease the redundancy samples of majority class
with the remaining of its cluster. 	erefore, we combine two
resampling techniques of upsampling of minority class and
undersampling majority class.

2.2.1. Using SMOTE Algorithm on the Samples of Minor-
ity Class. 	e synthetic minority oversample technique
(SMOTE) algorithm proposed by Farquad and Bose [28]
is a powerful method for upsampling technique, and it
has a very successful performance in di�erent application
areas. SMOTE oversampling technology is di�erent from
traditional oversampling methods by simple sample-copy. It
uses samples of minority class to control the generation and
distribution of arti
cial samples to achieve the purpose of
balancing datasets, and it can e�ectively solve the over
tting
problem leading by a narrow decision-making range.

SMOTE algorithm utilizes the similarity of the feature
space in the existing samples of the minority class to establish
new data. For a subset �min ⊂ �, its each sample �� ∈ �min

uses�-nearest neighbor algorithm;� is an appointed integer.
Here �-nearest neighbors are de
ned as � elements whose
Euclidean distance to �� in !-dimensional feature space "
is the minimum values. In order to construct a synthetic
sample, 
rst randomly select a�-neighbor and thenmultiply
it by the di�erence with the corresponding eigenvectors and
random number among [0, 1].	us any synthetic instance ��
is given by

�� = �� + # ⋅ (�(�)� − ��) , (6)

where �� denotes one synthetic instance; �(�)� is the $th nearest
neighbors of �� in the positive (minority) class, and # ∈ [0, 1]
is a random number. 	e procedure is repeated for all the
minority data points.

Figure 2 shows an example of the process of SMOTE,
in which there is a typical unbalanced data distribution,
and among them circles and pentagons denote samples of
minority class and majority class, respectively. In the �-
nearest neighbors� = 6. Figure 1 shows the constructed new
sample along the connection-line of �� and �(�)� , the newly

x(t)i
New sample

xi

f1

f2

Figure 2: Sample ��, its �-nearest neighbors (� = 6), and the new
synthetic sample by SMOTE.

generated sample using a red solid circle to indicate it clearly.
SMOTE algorithm is based on the assumption that a sample
constructed between the nearby samples in theminority class
is still a sample of minority class. 	e basic idea of SMOTE
algorithm is to get synthetic samples of minority class by
oversampling at the connection between the current samples
of minority class. For each sample in the minority class,
look for the �-nearest neighbors at its similar samples and
then randomly select one of the �-nearest neighbors and
construct a new arti
cial minority class sample between the
two samples by linear interpolation method. A�er SMOTE
processing, the number of minority class will increase �
times. If more arti
cial minority class samples are needed,
repeat the above interpolation process to achieve a balance in
the new generated training samples and 
nally use the new
sample dataset for training the classi
er.

	ese synthetic samples help to break the drawback of
simple upsampling; the increasing of the original dataset
in this way can make the learning capacity of the classi
er
improve signi
cantly.

2.2.2. Random Undersampling (RU) Algorithm. Unbalanced
dataset due to the much more number of majority class
samples than that of minority class, as analysed in Sec-
tion 2.1.2, will seriously a�ect the performance of SVM. To get
a balanced dataset between the two classes, we adopt random
undersampling (RU) algorithm to decrease samples of the
majority class.

Before random undersampling, suspected noise samples
on the boundary of majority class are detected and removed
in our method. As shown in Figure 1, the support vector
machines and classi
cation hyperplane are mainly deter-
mined by those junction samples between two classes, so
boundary noise samples of majority class will make the
classi
cation hyperplane “invasion” to the minority class
direction; thus the classi
cation performance will apparently
get worse. In this paper, boundary noise samples of majority
class are identi
ed and removed to make the classi
cation
more accurate.
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Figure 3: Illustration of boundary noise of majority class sample.

Set �maj, �min indicates coordinates of majority class and
minority class sample, respectively; !maj, !min are number
of majority class and minority class samples; �center maj,
�center min are centers of the two class samples; %ave maj, %ave min

are average radius of the two class samples, and they can be
calculated as follows:

�center maj =
∑�maj

�maj

!maj

, �center min =
∑�min

�min

!min

,

%ave maj =
∑�maj

&&&&&�maj − �center maj

&&&&&
!maj

,

%ave min =
∑�min

&&&&�min − �center min

&&&&
!min

.

(7)

Let 'maj = ‖�maj − �center maj‖ indicate distance between a
majority class sample and the center; sort 'maj of all majority
class samples in an order of big to small, and take samples
whose 'maj is the top 5% maximum as Boundary Samples.
Calculate distance from Boundary Sample to the center of
minority class as follows: 'maj min = ‖�maj − �center min‖; if
'maj min < %ave min, the Boundary Sample is taken as noise
which may cause the classi
cation hyperplane move into the
minority class, and they are deleted from the majority class
samples. 	e process is illustrated in Figure 3; among them
circles and pentagons denote samples of minority class and
majority class, respectively, and the red solid pentagon is a
detected noise sample.

A�er removing boundary noise of majority class samples,
randomundersampling processingwill be executed.Our ran-
dom undersampling just like dual-drawn-out in image com-
pressing, drawing out one sample from every two-adjacent-
sample, can ensure keeping the original sample distribution
a�er undersampling and remove replicate information as
well. A�er one time random undersampling processing, the
number of majority classes will decrease a half; that is, the
rate of undersampling RU = 2, and a�er ! times random

undersampling processing, the rate of undersampling will
become RU = 2�, where ! should be selected according to
the number ratio between the two class samples.

2.2.3. RU-SMOTE-SVM Classi	er. Although both oversam-
pling and undersampling algorithms can achieve the purpose
of balance samples, the reserved or generated samples are not
necessarily valid on the generation of decision-making inter-
face; therefore the simple combination by one of them with
SVMdoes not fundamentally improve the SVM classi
cation
performance for minority class.

In this research, we combine these two sampling meth-
ods for data balance and propose a SVM classi
cation
algorithm based on random undersampling and synthetic
minority oversample technique (RU-SMOTE-SVM). Sup-
pose the number ratio of the two classes samples is �ratio =
!maj/!min; it needs to set the parameters � for synthetic new
minority class sample using SMOTE method, and RU of
downsampling for the majority class samples; the goal is to
adjust the number of the two classes samples close to each
other. In the premise of RU ≥ 2 and the range of * = 3∼6,
the two parameters of � and RU should be equivalent as
far as possible to avoid excessive adjusting of one side. Take
some examples for setting of � and RU. When�ratio = 6, set
RU = 2 and � = 3; when�ratio = 10, set RU = 2 and � = 5;
when�ratio = 20, set RU = 22 = 4 and� = 5.

	e algorithm can remove noise and duplicate informa-
tion of the majority of samples to improve utilization of data;
in the meanwhile, it can increase the e�ective location of
sample information in the minority class. With reserving the
useful information of majority samples and making full use
of minority samples, the two class samples are balanced.

	e main process of our algorithm is as follows. Firstly,
calculate the di�erence between the number of majority
class and minority class samples in the training data and
determine the number of removing and increasing samples,
respectively. 	en, reduce the majority class samples and
increase the minority class samples by RU and SMOTE
algorithms according to the predetermined values, respec-
tively. Set an original value of �, train SVM with the new
training samples, and calculate the classi
cation parameters.
Finally, adjust � value to get the optimum classi
cation
performance to make the classi
er have better generalization
ability on the unbalanced data. 	e training process is to
solve the objective function iteratively to obtain the optimal
classi
cation hyperplane, and the ultima � determines the
discriminate function and the rule of classi
cation. 	e �ow
chart of our algorithm is illustrated in Figure 4.

3. Results and Discussions

3.1. Dataset. 	e experimental data used are low-dose CT
lung images from ShengJing Hospital a�liated to Chinese
Medical University, Beijing Xuanwu Hospital, and the U.S.
National Cancer Institute (NCI) issued by the Lung Image
Data Union (Lung Image Database Consortium, LIDC) [32].
Each scan contains a varying number of image slices. 	e
images were captured by di�erent CT scanners including
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Figure 4: Flow chart of algorithm of RU-SMOTE-SVM classi
cation.

Siemens, Toshiba, Philips, and General Electric. All images
were of the size 512 × 512 pixels. 	e pixel size varied from
0.488mm to 0.762mm, and the slice thickness ranged from
1.25mm to 3.0mm.

We choose 120 thoracic CT scans for the experiments. To
set the dataset, we extracted nodule and nonnodule regions
from the lung images, and they are all examined by expert
radiologists. We created the nodule and nonnodule regions
in forms of volume data, that is, � pixels × � pixels × 7 layers;
�, �, and 7 stand for size of the nodule or nonnodule in �, �
and, 8 direction, respectively, the range of � and � is 10∼50
pixels, and the range of 7 is 5∼13. We create 150 nodules and
908 nonnodules for the dataset. Figure 5 shows 6 nodule and
6 nonnodule sequent images of the dataset, and groups (a)
and (b) show nodule and nonnodule images, respectively.

	emethod includes training and test stages.We adopted
9×2 Cross Validation method.	at is the original dataset is
randomly divided into two parts: one including 75 nodules
and 454 nonnodules was used as training samples, and the
other included 75 nodules and 454 nonnodules for testing.
	e process is repeated 5 times; that is9 = 5.

For each sample, 8 features are extracted for training
and classi
cation, including four 2D features (circularity,
elongation, compactness, and moment) and four 3D features
(surface-area, volume, sphericity, and centroid-o�set); the
de
nitions and equations of the features are explained in
Appendix A.

3.2. Training Data Balanced by RU-SMOTE Method. For
every training data of 75 nodules and 454 nonnodules with 8
features, we use RU-SMOTE method described in Section 2
to balance the samples. A�er the data balance, the nodule
number is 225 and the nonnodule number is 227. Figures 6
and 7 give an example of the data distributions of original
features and a�er balance, respectively.

3.3. Quantity Evaluation of Classi	cation. In the classi
cation
of pulmonary nodule ROI, if nodules are judged as nonnod-
ules and are removed directly, the nodules are not prompted
by the doctor, and this will cause overlooking and misdiag-
nosis of nodules. Under these cases, patients tend to miss
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(a) Nodule images (b) Nonnodule images

Figure 5: Nodule and nonnodule sequent images.

Table 1: Confusion matrix for two classes.

Confusion matrix
Forecasting positive

by classi
er
Forecasting negative

by classi
er

Judging positive by
experts

TP FN

Judging negative by
experts

FP TN

or delay the best time of treatment. However, misdiagnosis
of nonnodules only increases the number of suspected cases
to the doctor, and a new judgment and assessment may be
given before themedical diagnosis, resulting in smaller losses.
	erefore, the loss of nodules misclassi
cation is far greater
than that of nonnodules.

In view of the accuracy of rare class recognition rate
which is far more important than that of the major samples,
we should try to improve the recognition rate of the minority
class. But the e�ect of majority class to accuracy standard
is o�en greater than the minority class, resulting in the
recognition rate of minority class being di�cult to rise; then
for unbalanced data, we need to take more attention to the
minority class performance of the evaluation criteria of new
classi
er.

In this paper, only two classes of classi
cation problem
are taken into account, the minority is de
ned as positive
class, and the majority is de
ned as negative class. Here
the evaluation of confusion matrix in machine learning is
introduced (as shown in Table 1).

In the confusion matrix of a two-class system, when the
judgement by experts and the prediction by classi
er are
both positive, the result is True Positive, that is, TP; when
the judgement by experts is positive, while the prediction

by classi
er is negative, the result is False Negative, that is,
FN; when the judgement by experts is negative, while the
prediction by classi
er is positive, the result is False Positive,
that is, FP; when the judgement by experts and the prediction
by classi
er are bothNegative, the result is TrueNegative, that
is, TN.

Quantitative evaluation indexes for classi
er can be
de
ned by confusion matrix as follows.

	e overall classi
cation accuracy rate is

Accuracy = (TP + TN)
(TP + TN + FP + FN) . (8)

Probability of TP is

TPR = TP

(TP + FN) . (9)

Probability of FP is

FPR = FP

(FP + TN) . (10)

Classi
cation accuracy rate of positive class is

acc+ = TP

(TP + FN) . (11)

Classi
cation accuracy rate of negative class is

acc− = TN

(TN + FP) . (12)

A commonly used dataset of unbalanced data classi
ca-
tion performance evaluation criteria is geometric mean of:-
mean, which is widely used in the performance evaluation of
the unbalanced data set. :-mean is de
ned as

:-mean = √acc+ × acc−. (13)
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Figure 6: Original data distributions of 2D and 3D features. (a) Original data distribution of 2D features of circularity and elongation. (b)
Original data distribution of 2D features of compactness andmoment. (c) Original data distribution of 3D features of surface-area and volume.
(d) Original data distribution of 3D features of sphericity and centroid-o�set.

:-mean maintains a balance between classi
cation accura-
cies of the two classes.

For the evaluation of support vector machines, a function
of>-measure is a way of evaluation of accuracy and sensitivity
of the classi
cation results for positive class. Here the accurate
rate of classi
cation of positive class is de
ned as

? = TP

(TP + FP) . (14)

Sensitivity of the classi
cation of positive class is

� = TP

(TP + FN) . (15)

	e evaluation function of >-measure can be gotten as
follows:

>-measure = 2 × ? × �
? + � . (16)

Obviously, the optimum of classi
cation is that >-
measure gets the maximum value 1.

As described in Section 3.1, the dataset includes 150
nodule and 908 nonnodule images, and half of the original
nodule and nonnodule data are randomly used for training
and testing, respectively. For comparing, the training data
are balanced by our RU-SMOTE method and SMOTE,
respectively, so the data distribution of training and testing
is as Table 2.
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Figure 7: New data a�er balance distributions of 2D and 3D features. (a) New data distribution of 2D features of circularity and elongation.
(b) New data distribution of 2D features of compactness andmoment. (c) New data distribution of 3D features of surface-area and volume. (d)
New data distribution of 3D features of sphericity and centroid-o�set.

Table 2: Distribution list of ROI sample datasets.

ROI dataset Number of nodules
Number of
nonnodules

Original training
samples

75 454

Balanced training
samples by SMOTE
method

375 454

Balanced training
samples by RU-SMOTE
method

225 227

Testing data 75 454

Classi
cation experiments are implemented by SVM
methods using the datasets as in Table 2. 	ere are four

classi
ers constructed for the experiments; SVM classi
er
and biased-SVM classi
er [23] use original training datasets;
SMOTE-SVM classi
er is constructed by training samples
balanced by SMOTE method and SVM; RU-SMOTE-SVM
classi
er is constructed by training samples balanced by RU-
SMOTE method and SVM. All the four classi
ers use the
same testing samples datasets. 	e parameters of the four
classi
ers are set as follows:

(1) SVM classi
er: kernel function is RBF; set 
 = 10;
(2) Biased-SVM classi
er: kernel function is RBF, as

�ratio = 454 : 75 ≈ 6, so set 
+ = 10, 
− =
round(
+/6) = 2;

(3) SMOTE-SVM classi
er: kernel function and param-
eters are set as the SVM classi
er, in the SMOTE
algorithm; set� = 5, � = 5;
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Table 3: 	e average results of the four classi
ers.

Evaluation index
classi
er

TP FN FP TN Accuracy :-mean >-measure

SVM classi
er 26 49 5 449 0.8979 0.5855 0.4906

Biased-SVM classi
er 46 29 24 430 0.8998 0.7622 0.6344

SMOTE-SVM classi
er 51 24 17 437 0.9225 0.8090 0.7133

RU-SMOTE-SVM classi
er 58 17 16 438 0.9376 0.8638 0.7785

Table 4: Distribution list of new datasets.

Datasets Number of nodules Number of nonnodules �ratio

New training dataset

Number 1 25 454 20

Number 2 45 454 10

Number 3 75 150 2

Number 4 75 300 4

Testing dataset 75 454 6

(4) RU-SMOTE-SVM classi
er: kernel function and
parameters are set as the above SVM classi
er, set the
rate of random undersampling RU = 2, and set the
SMOTE parameter� = 3, � = 3.

Training and testing experiments have been done for 5
times using datasets as described in Section 3.1; the average
results of the four classi
ers are given in Table 3.

From Table 3, we can see that, for the same testing
datasets, RU-SMOTE-SVM classi
er gets the most number
of TP, the highest accuracy rate, :-mean, and >-measure
among the four classi
ers. For ROI classi
cation, the loss of
misjudgment of nodule to nonnodule is greater than that of
misjudgment of nonnodule to nodule, so the value of TP is
more important than the value of FP. 	e higher the value
of the TP is, the better the classi
er is. So, RU-SMOTE-SVM
classi
er is with the best performance for ROI classi
cation
among the four classi
ers.

3.4. Discussions. More experiments are carried out under
di�erent ratio between majority and minority samples in
training dataset, and the in�uences to nodule classi
cation
performances are examined. New training datasets with
di�erent�ratio were constructed; the distributions of datasets
are shown in Table 4.

To compare the performance of the four classi
ers under
the new training datasets, the same testing dataset was used
in the experiments. Figure 8 gives the compare of accuracy
for the four classi
ers under the four new training datasets.
We can see that RU-SMOTE-SVM classi
er gets the highest
classi
cation accuracy under all the four training datasets.

	e average classi
cation accuracy of the four classi
ers
under di�erent training datasets is 81.57%, 84.82%, 89.33%,
and 92.94%, respectively. Di�erent ratio between two class
samples of training dataset brings the least e�ects upon the
classi
cation performance toRU-SMOTE-SVMclassi
er.On
the contrary, SVM classi
er and biased-SVM classi
er su�er
the e�ects of sample ratio of training dataset obviously.
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Figure 8: Compare of classi
cation accuracy under new training
datasets.

4. Conclusions

In this paper, for the problem of unbalanced data for pul-
monary ROI classi
cation, we propose a novel SVM classi
er
combined with RU and SMOTE resampling technique for
lung nodule detection. 	e combinations of the two resam-
pling methods not only achieve balanced training samples,
but also remove noise and duplicate information in the
training sample and retain useful information to improve
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Figure 9: Illustration of %
min

and %
max

.

the e�ective of data utilization, so they improve performance
of SVM algorithm for pulmonary nodules classi
cation
under the unbalanced data. Eight features including 2D
and 3D features are extracted for training and classi
cation.
Experimental results show that, for di�erent sizes of datasets,
our RU-SMOTE-SVM classi
er gets the highest classi
cation
accuracy among the four kinds of classi
ers; the average
classi
cation accuracy is more than 92.94%. It is suitable for
the application in clinical lung cancer CAD system.

Appendix

A. Features Used in This Study

A.1. 2D Features. 	e ROI samples are either nodule or
nonnodule image sequence; they are in forms of volume data
of � pixels × � pixels × 7 layers. Here 2D features are 
rst
extracted from each layer of ROI sample. 	en calculate the
average of all layers.

A.1.1. Circularity. Circularity re�ects the similar degree of
ROI region to a circle as follows:

Circularity = 4CArea�2 .
(A.1)

Here, ? is the perimeter of ROI.

A.1.2. Elongation. Elongation measures the elongation or
asymmetry degree of an object. It is calculated through (A.2),
where %min is the measurement from the centroid to the
nearest point on the boundary, while %max is themeasurement
from the centroid to the farthest point on the boundary, as
illustrated in Figure 9. One has

Elongation = %min

%max

. (A.2)

From (A.2), the range of elongation is 0∼1, and the smaller
the value is, the more asymmetric the ROI is.

A.1.3. Compactness. Compactness of ROI is de
ned as

Compactness = �inside

�outside

. (A.3)

ROI region

Circumscribed

circle

Inscribed circle

Routside
Rinside

Figure 10: Illustration of the inscribed circle and circumscribed
circle of ROI.

�inside is the radius of inscribed circle of ROI, and �outside is
the radius of circumscribed circle of ROI, as illustrated in
Figure 10. 	e range of compactness is 0∼1. If the value of
compactness approximates to 1, ROI is compact and closed
to a circle.

A.1.4. Moment. Moment of ROI is de
ned as

moment =
�−1
∑
�=0

�−1
∑

=0

(� (�, D))2

1 + EEEE� − D
EEEE
. (A.4)

�(�, D) is normalized gray-value of pixels of ROI; ? and F are
the number of row and column, respectively.

A.2. 3D Features

A.2.1. Surface-Area. One has

G = ∑
(�,�)⊂��

? (�, �) , (A.5)

where ?(�, �) is perimeter of ROI, which is pixel number of
ROI boundary, and �� is the �th layer of ROI.

A.2.2. Volume. One has

H = �. (A.6)

Here � is sum of numbers of pixels whose gray scale is
nonzero in all the ROI layers, and it is de
ned as the volume
of three-dimensional ROI.

A.2.3. Sphericity. One has

sphericity = 6√CH
G3/2 ,

(A.7)

where H is the volume and G is the surface-area of the ROI
region. Sphericitymeasures howmuch the shape of the object
approximates to a spherical shape.

A.2.4. Centroid-O�set. Consider

centroid-o�set =
�
∑
�=1
(EEEE�� − �

EEEE +
EEEE�� − �

EEEE) , (A.8)
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i + 1

i − 1

(xi, yi)
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Figure 11: Illustration of 3D feature centroid-o�set.

where� is the number of ROI layers, (��, ��) is the coordinate
of the centroid of the �th layer, and (�, �) is the average
coordinate of all the ROI layers. It is illustrated in Figure 11.
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