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ABSTRACT: Solvents crucially alter the rates and selectivity of liquid-phase organic reactions, often 

hindering the development of new synthetic routes or, if chosen wisely, facilitating routes by 

improving rates and selectivities. To address this challenge, a systematic methodology is proposed 

that quickly identifies improved reaction solvents by combining quantum mechanical computations of 

the reaction rate constant in a few solvents with a computer-aided molecular design (CAMD) 

procedure. The approach allows the identification of a high-performance solvent within a very large 

set of possible molecules. The validity of our CAMD approach is demonstrated through application to 

a classical nucleophilic-substitution reaction for the study of solvent effects, the Menschutkin 

reaction. The results are successfully validated via in-situ kinetic experiments. A space of 1341 

solvents is explored in silico, but requiring quantum mechanical calculations of the rate constant in 

only 9 solvents, and uncovering a solvent that increases the rate constant by 40%.  

 

What is the best solvent for a given chemical reaction? Given that the rate and selectivity of chemical 

reactions can vary by several orders of magnitude in different solvents,1,2 this question has important 

ramifications for the exploration of novel reaction routes and the development of industrial processes. 

3,4  When investigating new liquid-phase reactions, it is essential to find a solvent that promotes the 

desired reaction without excessive catalyst deactivation, side-product formation, or solubility 

limitations. Indeed, a poor solvent choice can result in a missed opportunity to investigate novel 

chemistry or catalysts. At the process-development level, the problem of solvent choice is 
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compounded by the numerous safety, environmental and process constraints that must be satisfied. 

Yet, few tools exist to support this decision, especially when it affects reaction kinetics, and 

researchers are often left to choose on the basis of qualitative chemical knowledge and/or extensive 

and costly experimental investigations. 

Advances in the understanding of liquid-phase reactions remain a topic of intense academic interest5 

and practical relevance, as illustrated by identification of the development of solvent selection 

techniques as a key priority area by the ACS Green Chemistry roundtable.6 A very promising avenue 

of research in this direction is the development of Computer-Aided Molecular Design (CAMD) 

techniques. CAMD offers systematic methodologies, typically in the form of algorithms, to identify 

chemical species/molecular structures that perform a chosen function best (e.g., maximize the rate of a 

given reaction). The resulting molecular designs can be used to guide experiments in an otherwise 

huge space of possibilities. CAMD techniques have been widely applied in the context of solvent 

design for separations, and have had a significant impact on academic and industrial practice.7 In a 

batch extractive distillation for fine chemicals processing, for example, CAMD has been shown to 

identify a solvent that makes it possible to meet purity requirements, and that minimizes the time 

required for separation, with gains in throughput/productivity of at least 15%.8 The extension of 

CAMD techniques to reactions has the potential to facilitate the task of finding good solvents, and to 

uncover unexpected choices. The key objective in using such an approach is to identify choices of 

solvent molecules that offer good overall performance and meet the plethora of criteria that constrain 

solvent choice. These molecules may in some cases be novel, but the use of existing molecules makes 

the implementation of the results more straightforward. Thanks to the availability of simple predictive 

models, e.g., UNIFAC,9 many physical properties that affect reactions, such as the effect of solvent 

choice on solubility, can already be incorporated.4 However, accounting for chemical properties, such 

as the impact of solvents on reaction rate constants, remains challenging. A methodology for solvent 

design for enhanced reaction kinetics, QM-CAMD, is proposed here to address this issue. It relies on 

the integration of quantum mechanical (QM) rate-constant calculations into a CAMD framework.10,11 

The approach allows the rapid exploration of a solvent design space consisting of thousands of 
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potential molecules and leads to a shortlist of promising solvents that can then be assessed 

experimentally.  

Initial attempts to develop systematic approaches for the identification of the best reaction solvents 

were based on chemometrics,12 and multivariate analysis.13-18 The use of these techniques is however 

limited by the need for large amounts of data to ensure statistical significance, and the fact that the 

information obtained for one reaction cannot be transferred reliably to another reaction, even within 

the same class.19 Some promising CAMD alternatives have recently been put forward.4,20 However, 

solvent effects on the kinetics of the reaction (via changes in the activation energy barrier) are either 

neglected or treated empirically within these approaches. An approach which incorporates kinetics as 

a final step of solvent design has also been proposed,21 but it requires the reaction rate to be computed 

quantum mechanically for every solvent that meets basic physical properties. Here, we fully integrate 

kinetics with other design considerations and we reduce the computational cost by using a less 

expensive “surrogate” (approximate) model that replaces the quantum mechanical calculations. This 

surrogate model is improved iteratively. As a result, only a small number of QM calculations are 

performed during the course of the QM-CAMD algorithm, although more than one thousand 

candidate solvents are considered. 

Results  

Systematic approach to solvent design. The overall QM-CAMD methodology is illustrated in 

Figure 1 and is presented here in the context of the identification of kinetic-enhancing solvents for a 

Menschutkin reaction.22 This class of SN2 reaction has been studied extensively experimentally 

e.g.23,24 and computationally, e.g.,25-28 as the rate constant depends strongly on the solvent used. It 

provides an excellent test of a new methodology for solvent design, because there is sufficient 

knowledge available to test that the results generated by the computational design approach are 

physically and chemically meaningful. The specific reaction studied, shown in Figure 1, is that of 

phenacyl bromide 1 with pyridine 2 to form the phenacyl pyridinium bromide salt 3. Its kinetics, 

which are second-order, have been investigated by a number of authors, e.g.,29-33. 

Before describing the methodology and its application, we verify experimentally the validity of the 

computational approach used in Step 2 to obtain liquid-phase reaction rate constants, based on 
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conventional transition state theory (CTST)34,35 and a continuum solvation model, as accurate 

calculations remain challenging.36 The SMD continuum solvation model37 is known to predict 

energies of solvation well, although larger deviations can be noted for alcohols. Here we compute 

reaction rate constants using SMD and QM density functional theory (DFT), using B3LYP/6-

31+G(d), and compare them to values obtained using 1H NMR in situ kinetic experiments in five 

aprotic solvents (toluene, chloroform, tetrahydrofuran (THF), acetone and acetonitrile), as well as 

from conductance experiments.32,33 The measured and predicted rate constants (Figure 2) were found 

to be within one order of magnitude of each other. Perhaps more importantly, the trend (the ranking of 

solvents in order of increasing rate constant) is predicted well by the computational method, despite 

the quantitative differences. This indicates that the DFT+SMD approach chosen is appropriate to 

identify solvents which promote the rate of the selected reaction. Although other models can yield 

better agreement with experiments (e.g., M05-2X/6-31G(d), see SI), the QM-CAMD approach does 

not require high accuracy to generate useful results, provided that qualitative trends are reliable. The 

effect of model uncertainty was studied extensively11 on a precursor of the approach based on 

experimental rate constants10 and showed that consistent solvent choices can be obtained for different 

values of the uncertain model parameters.  

Given the suitability of DFT calculations, the challenge that remains to be addressed with the QM-

CAMD methodology is the use of this technique to explore a large space of possible solvents without 

explicitly carrying out thousands of expensive DFT calculations. In the QM-CAMD approach, as in 

many CAMD methods, a “solvent” is defined by its molecular composition in terms of atom groups of 

varying size such as CH3, CH2, OH, or CH2NO2. Although this is a coarse description of molecular 

structure, there exists a broad class of well-established predictive techniques, known as group-

contribution (GC) methods, which can predict with good accuracy the bulk properties of thousands of 

molecules from knowledge of the properties of a much smaller number of groups.38 By building on 

this and using the continuum solvation concept, we ensure that no experimental input is needed during 

the course of the QM-CAMD algorithm. Furthermore, by using GC methods, we include existing as 

well as entirely novel solvent molecules in the design space, allowing truly innovative solutions to 
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emerge. The chosen atom groups and physicochemical constraints, such as valency and physical 

property ranges, are the only limits on the design space.     

 

In Step 1 of the QM-CAMD algorithm (cf. Figure 1), the design objective and constraints are stated. 

Here, the objective is to maximize the reaction rate constant k at 298 K, and the only design constraint 

is that the solvent designed should be liquid at this temperature. This is achieved by setting bounds on 

its normal boiling and melting points, as predicted by group contribution techniques.39 An initial set of 

six diverse solvents, with varying polarity and functional groups, is also required. Here, we use the 

first six solvents listed in Table 1 in order of increasing dielectric constant.40 

In Step 2, the reaction rate constants at 298 K in specific solvents are computed based on CTST using 

DFT+SMD. The bulk solvent properties required as input to the SMD model, namely the Abraham 

acidity, basicity and polarity descriptors, the macroscopic surface tension and the dielectric constant, 

are predicted using the group contribution concept.41 

In Step 3, a surrogate model is derived from the QM rate constants, kQM. A surrogate model is a 

simplified model that must have two key properties: (i) it must be applicable to a very large number of 

solvents; (ii) it must be inexpensive to evaluate, thereby alleviating the computational cost of 

embedding QM calculations directly in the solvent design algorithm.42 Here, we use the 

solvatochromic equation,43,44 a well-recognized and widely used linear free energy relationship that 

can be applied to a range of properties, including reaction rate constants. The solvatochromic equation 

used relates the logarithm of the rate constant k to five properties of the solvent via six coefficients 

that are characteristic of the reaction being investigated: 

log k = c0 + cA A + cB B + cS S + cδ δ + cH 
2
Hδ , 

where A, B, S, δ and 2
Hδ  are solvent properties. A, B and S are the Abraham descriptors (hydrogen bond 

acidity, hydrogen bond basicity and polarizability/dipolarity, respectively)45-47, δ is a chemical class 

indicator, specifying the presence of aromatic or halogen atoms and ߜுଶ  is the cohesive energy density 

of the solvent (the square of its Hildebrand solubility parameter).44 The five solvent properties are 

computed using predictive GC techniques.10,39,41 The GC techniques used here are simple equations 
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that have been developed on the basis of extensive experimental data sets and that allow the 

prediction of the five relevant properties for solvents for which no data are available. The average 

absolute errors in the GC methods are low, with values 0.017 for A, and 0.043 for B, 0.065 for S (A, B, 

S range from 0 to 1.2) and a value of 1.13 MPa0.5 for δH, which ranges from 10 to 50 MPa0.5 for a wide 

range of potential solvents.  The GC method for calculating δ is exact. The reaction-specific 

coefficients ci, i=0, A, B, S, δ, H, are obtained by linear regression. This can be based on 

experimentally-determined rate constants in a few solvents e.g.10,11 or, as is done here, based on a set 

of calculated kQM values.  

Every time the algorithm passes through Step 3, the reaction-specific coefficients, ci, are re-estimated 

using all known kQM values at that point. At the first iteration only 6 values are available, and one 

value is added at each subsequent iteration, corresponding to the latest new solvent identified. Thus, 

the number of data points used in the regression of the coefficients grows as the algorithm progresses 

and leads to an increasingly accurate surrogate model.  

In Step 4, the solvent design problem is posed as a mathematical optimization problem in which the 

molecular structure of the solvent that maximizes the reaction rate constant is sought. The problem 

formulation follows the standard structure of optimization-based CAMD problems.7 The solvent’s 

molecular structure, as defined by the atom groups it contains, is represented by integer variables 

denoting the number of functional groups of different types (e.g., CH3, CH2, OH). A set of chemical 

feasibility and complexity constraints is imposed to ensure that only chemically permissible 

combinations of the functional groups are generated when solving the optimization problem. In 

addition, a set of constraints linking molecular structure to physical properties is included. This 

consists of the GC techniques for the relevant solvent properties (A, B, S, δ, ߜுଶ , melting and boiling 

points)10,39,41 and the solvatochromic equation for the reaction rate constant. The problem solved here 

is linear and contains both continuous and binary (0-1) variables, making it a mixed-integer linear 

problem (MILP) that can readily be solved with standard solvers. Due to the use of the 

solvatochromic equation, the MILP is an approximation of the full, nonlinear, design problem, which 

may have multiple local solutions; the QM-CAMD approach can thus identify a high-performance 
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solvent but this solution cannot be guaranteed to be the very best one. The likelihood of finding the 

very best solution can be increased by using different sets of initial solvents.  

For this work, we use a set of 38 functional groups, listed in Supplementary Table 1. This set includes 

a wide range of functional groups, enabling the design of non-polar, polar aprotic and protic solvents. 

It yields a design space consisting of 1341 possible combinations of the atom groups, within the limits 

imposed on molecular complexity (e.g., maximum number of atom groups in the solvent, maximum 

number of certain functional groups). Some of the possible group combinations represent more than 

one solvent molecule, but differences in the physical properties of the isomeric solvents are not taken 

into account in the computations and can be investigated in the post-design phase of the approach. A 

candidate solvent, i.e., the molecular structure of the best solvent in the design space, for the current 

solvatochromic equation, is found by the MILP algorithm.  

In Step 5, a convergence criterion is applied. If the candidate solvent from Step 4 has not previously 

been identified, the algorithm returns to Step 2, where the reaction rate constant for the best solvent 

found in Step 4 is computed with the DFT+SMD approach and added to the list of kQM values.  This 

additional information is to be used to regress new coefficients for the solvatochromic equation. As 

iterations proceed, the statistical significance of the coefficients increases and the solvatochromic 

equation becomes increasingly reliable. If the termination criterion is met, the algorithm proceeds to 

Step 6. 

In Step 6, the solvent with the largest value of kQM among the values computed is checked against any 

criteria not explicitly included in the design problem formulation (e.g., chemical stability or 

reactivity). If it meets these criteria it is reported as a high-performance solvent and the results are 

verified via in-situ kinetic experiments. Otherwise, the next best solvent among those identified 

during the course of the algorithm, and which meets any additional criteria, is reported.  

Application to a bimolecular reaction. To apply the proposed QM-CAMD methodology to the 

reaction scheme in Figure 1, the initial set of six solvents used in Step 2 consists of toluene, 

chlorobenzene, ethyl acetate, THF, acetone and acetonitrile. The computed rate constants and the 

solvent dielectric constants are shown in Table 1. The final iteration of the algorithm is also shown in 

the Table. At every iteration, the solvatochromic equation is updated in Step 3 (cf. Supplementary 
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Information for details of each iteration). As additional kQM values are included in the regression, the 

rate constant values predicted by the solvatochromic equation become increasingly reliable and the 

algorithm converges after five iterations, with nitromethane reported as the best solvent. This implies 

that a solvent space of over 1341 molecules has been explored with only nine kQM calculations (six in 

iteration 1, one in iterations 2, 3 and 4, respectively, and none in the final iteration). Given that each 

kQM calculation requires the optimization of the structure and free energies of the two reactants and of 

the transition state, and that the CAMD problem of Step 4 with the use of the solvatochromic equation 

is solved in less than 1 CPU second on an Intel Xeon 1.60 GHz CPU, the proposed approach allows a 

very efficient exploration of the design space, identifying a high-performance solvent in a matter of 

hours. 

The best solvent identified by the algorithm is nitromethane. The same experimental procedure as 

previously is carried out to determine the reaction rate constant in deuterated nitromethane; it is found 

to be 3.4 10-3 dm3 mol-1 s-1 at 298 K. This is an improvement of 40% over the measured rate constant 

for acetonitrile, the best initial solvent. Although nitromethane is an established solvent, it is unlikely 

to be prioritised over more common dipolar aprotic solvents for inclusion in experimental screening. 

Given that nitromethane and acetonitrile have very similar dielectric constant (Table 1), the QM-

CAMD approach has played a crucial role in recognising the superior performance of nitromethane. 

The benefit of using nitromethane instead of one of the initial solvents in a batch reactor is illustrated 

in Figure 3, in terms of product concentration, for an initial concentration of 0.4 mol dm-3 for 1 and of 

0.8 mol dm-3 for 2.   

Discussion 

The QM-CAMD methodology presented here leads to the rapid identification of a solvent that 

accelerates the reaction kinetics. Its application to a classic reaction for the study of solvent effects, 

the Menschutkin reaction, has shown that it is indeed able to achieve the objective of finding a solvent 

that increases the reaction rate constant, among a large design space of over 1300 solvents. Only nine 

quantum mechanical evaluations are required, hence making the methodology computationally 

affordable. The enhancement predicted in terms of the new solvent has been confirmed 

experimentally via detailed in-situ 1H NMR kinetic experiments. The proposed computational 
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approach can help to place solvent selection on a more systematic footing, reducing the amount of 

experimental work required and allowing a quantitative evaluation of rates in different solvents, 

allowing solvents with identical dielectric constants, such as acetonitrile and nitromethane, to be 

assessed. The optimization framework at the core of the approach is ideally suited to tackle more 

complex cases, including solvent effects on selectivity and the inclusion of other important factors in 

reactor design such as solubility and toxicity, which make the identification of reaction solvents more 

challenging.4,48,49 This promising QM-CAMD methodology can be further refined, e.g., by 

introducing an improved surrogate model, and applied to challenging problems in organic chemistry. 

One particularly promising application area is for reaction systems with competing, yet similar, 

reactions.2 In such cases, an understanding of the reaction mechanism is not sufficient to identify 

solvents in which the reaction of interest is fast, but where the side reactions proceed at a slow or 

negligible rate. Instead, existing mechanistic knowledge could readily be used within the proposed 

QM-CAMD approach to identify solvents that promote the desired reaction pathway and increase 

selectivity.  

Methods 

Experimental methods. To determine the reaction rate constants, four experiments at 298 K with 

different initial concentrations were carried out for each deuterated solvent, using trimethoxybenzene 

as an internal standard. NMR spectra were recorded on a Bruker AV500 (1H 500 MHz). To ensure 

that the data collected was quantitative, T1-relaxation times were determined and the time between rf 

pulses was set to be greater than five times the longest T1 value.  The use of four runs ensures that the 

values obtained for the measured rate constants are statistically significant and leads to very tight 

confidence intervals on the regressed rate constants (two to three orders of magnitude smaller than the 

rate constants). In each experiment, sufficient time was allowed to reach a conversion of at least 50%. 

As many peaks as available from the 1H NMR spectra were used to extract the experimental rate 

constant. In all cases this included at least two of the 4 phenacyl bromide peaks (3 aromatic peaks and 

1 CH2 peak), at least one of the 3 pyridine peaks and as many of the 7 product peaks available as 

possible (except in THF and toluene where the product was insoluble and thus could not be followed 

by liquid-state NMR).  Molar concentrations for the two reactants and, when feasible, for the product 
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were obtained from the measured peaks and internal standard concentrations. The molar 

concentrations were then used to determine the rate constants, based on second-order kinetics, i.e., ݀ሾ૚ሿ݀ݐ = −݇ሾ૚ሿሾ૛ሿ,		 ݀ሾ૛ሿ݀ݐ = −݇ሾ૚ሿሾ૛ሿ,		 ݀ሾ૜ሿ݀ݐ = ݇ሾ૚ሿሾ૛ሿ,		 
where t is time, k is the rate constant in dm3 mol-1 s-1, [i] denotes the concentration of species i 

(understood as a function of time). As an example, the initial concentrations used for 1 and 2 for the 

reaction in nitromethane-d3 are shown in Supplementary Table 2. The initial product concentration is 

always set to 0. The estimates of the rate constant were obtained by applying nonlinear least squares 

parameter estimation within the gPROMS software (http://www.psenterprise.com). A high quality of 

fit was achieved in all cases, as illustrated in Supplementary Figs 1 to 3. 

Computational methods. The overall approach to computing reaction rate constants in liquid phase 

from a basic description of the solvent in terms of its composition in atom groups is illustrated in 

Supplementary Fig 4. The rate constant kQM, is computed using transition state theory, according to 

the following equation, which applies to the second-order Menschutkin reaction: 

݇ொெ =  ௞ಳ்௛ ଵ௖೚,ಽ ቆ ௤(ಲಳ)	‡೚,಺ಸ௤ಲ	೚,಺ಸ௤ಳ	೚,಺ಸቇ exp ቀି∆‡ா೐೗ோ் ቁ exp ቀି∆‡∆ீ೚,ೞ೚೗ೡோ் ቁ, 

where κ is the transmission coefficient, calculated according to the Wigner tunnelling correction 

factor, kB is the Boltzmann constant, T is the temperature, h is the Planck constant, 
Loc ,

 is the 

standard state liquid phase concentration (here, 1 mol dm-3), IGo
iq ,  is the ideal gas partition function, 

(excluding the electronic energy as is standard practice) for component i, where i = A (reactant A), B 

(reactant B) or (AB)‡ (transition state), R is the gas constant, Eel is the gas phase electronic energy,

solvoG ,Δ  is the standard state free energy of solvation and ∆‡ indicates that an activation energy 

barrier is being calculated, i.e.,  ∆‡ܧ௘௟ = ௘௟‡(஺஻)ܧ − ஺௘௟ܧ − ஻௘௟ܧ , 
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௢,௦௢௟௩ܩ∆‡∆ = ௢,௦௢௟௩‡(஺஻)ܩ∆ − ஺௢,௦௢௟௩ܩ∆ −  .஻௢,௦௢௟௩ܩ∆

The gas phase minimum energy structures for the reactants, the gas phase transition state structures 

and the gas phase partition functions are computed with Gaussian 09,50 using the B3LYP/6-31+G(d) 

functional. For the calculation of the free energies of solvation, the structures are re-optimized using 

the same functional, the SMD continuum solvation model37 and intrinsic Coulomb radii. Gas phase 

vibrational frequencies are used. The bulk solvent properties required in the SMD model are obtained 

using group contribution methods.41 All structures obtained are reported in the Supplementary 

Information, together with further details of the computational methodology and justification of the 

choices made.  

The MILPs are solved by the CPLEX solver, accessed via the GAMS software 

(http://www.gams.com).  
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List of figures 

Figure 1 – Computer-aided molecular design algorithm, illustrated for a Menschutkin reaction. a, The reaction 

studied, combining phenacyl bromide (1) and pyridine (2) to produce phenacyl pyridinium bromide (3). b, The 

QM-CAMD solvent design algorithm. c, The free energy curve illustrates the calculation of the rate constant in 

Step 2, with the transition state structure corresponding to the top of the curve. d, The concentration vs time plot 

shows experimental data obtained via 1H NMR in-situ monitoring of the Menschutkin reaction in nitromethane: 

green triangles: pyridine; red squares: phenacyl bromide; purple crosses: phenacyl pyridinium bromide; blue 

diamonds: mole balance (sum of phenacyl bromide and phenacyl pyridinium bromide concentrations).  

Figure 2 - Comparison of QM-calculated and experimental rate constants in several solvents. The calculations 

and measurements show good qualitative agreement, making the rate prediction method suitable as a basis for 

solvent design. The QM calculations (first bar, dark blue) are performed using B3LYP/6-31+G(d) and SMD. 

The experimental rate constants determined in this work (second bar, red) are obtained from 1H NMR in situ 

experiments. The calculated confidence intervals for these data are two to three orders of magnitude smaller 

than the measured rate constants. Rate constants determined by conductance measurements in other work (third 

bar, light blue. Acetone32; Acetonitrile33) are also reported for comparison, highlighting the difficulty in 

obtaining reliable kinetic data in solution. All values are obtained at 298 K. 

Figure 3 – Time evolution of product concentration in different solvents. The calculated concentration of the 

product, 3, is plotted as a function of time in a batch reactor for different solvents at 298 K, based on 

experimental rate constants and initial concentration of 1 of 0.4 mol dm-3 and of 2 of 0.8 mol dm-3. 
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Tables 

Table 1. Key properties for the six initial solvents and the best solvent identified, nitromethane. 

Solvent Dielectric 
constant*  

Rate constant 
kQM **

 

(dm3 mol-1 s-1) 

Toluene 2.38 1.61 10-6 

Chlorobenzene 5.70 3.94 10-5 

Ethyl acetate 5.99 4.88 10-5 

THF 7.43 8.70 10-5 

Acetone 20.49 2.86 10-4 

Acetonitrile 35.69 4.70 10-4 

Nitromethane 36.56 6.09 10-4 
* Experimental dielectric constant at 298 K40 
** Rate constants calculated by QM (B3LYP/6-31+G(d)) at 298 K 

 

 

 

 


