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+e early screening and diagnosis of tuberculosis plays an important role in the control and treatment of tuberculosis infections. In
this paper, an integrated computer-aided system based on deep learning is proposed for the detection of multiple categories of
tuberculosis lesions in chest radiographs. In this system, the fully convolutional neural network method is used to segment the lung
area from the entire chest radiograph for pulmonary tuberculosis detection. Different from the previous analysis of the whole chest
radiograph, we focus on the specific tuberculosis lesion areas for the analysis and propose the first multicategory tuberculosis lesion
detection method. In it, a learning scalable pyramid structure is introduced into the Faster Region-based Convolutional Network
(Faster RCNN), which effectively improves the detection of small-area lesions, mines indistinguishable samples during the training
process, and uses reinforcement learning to reduce the detection of false-positive lesions. To compare our method with the current
tuberculosis detection system, we propose a classification rule for whole chest X-rays using a multicategory tuberculosis lesion
detection model and achieve good performance on two public datasets (Montgomery: AUC� 0.977 and accuracy� 0.926; Shenzhen:
AUC� 0.941 and accuracy� 0.902). Our proposed computer-aided system is superior to current systems that can be used to assist
radiologists in diagnoses and public health providers in screening for tuberculosis in areas where tuberculosis is endemic.

1. Introduction

Tuberculosis is a communicable disease that is one of the top
10 causes of death worldwide. At least 10million people were
estimated to have contracted tuberculosis in 2018 [1].
However, with a timely diagnosis and treatment with first-
line antibiotics, most people who develop tuberculosis can
be cured, and their transmission of the infection can be
curtailed. Chest radiography [2], mycobacterium tubercu-
losis cultures [3], and sputum smear microscopy [4, 5] are
commonly used methods to diagnose tuberculosis. Since
nearly 86% percent of the tuberculosis cases in the WHO

regions were low- and middle-income countries in 2018 [1],
the chest radiography (CXR or chest X-ray) is an important
tool for tuberculosis screening and provides useful help in
diagnosing tuberculosis since it is a noninvasive, low radi-
ation dose, reduced cost, readily available procedure that can
conduct accurate detection. However, a major limitation of
chest radiography is that it requires experienced radiologists,
and few experienced radiologists are available in these
countries. +us, some computer-aided systems have been
developed in recent years that use digital techniques to
detect the physiological and pathological conditions of
various diseases, including breast cancer [6] and
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tuberculosis. Many commercial products have been devel-
oped for clinical use, including the CAD4 TB, Riverrain, and
Delft imaging systems [7]. However, due to the complexity
of chest radiographs, the automatic detection of the disease
remains unresolved, and most existing computer-aided
systems are designed to detect lung cancer. Relatively few
studies have focused on the automatic detection of other
pathologies [8], such as tuberculosis. +e current computer-
aided systems for tuberculosis use the following three re-
search methods for chest radiographies.

+e most common method estimates whether CXRs
contain tuberculosis by classifying the chest X-ray images.
Binu Joykutty et al. [9] used adaptive thresholds to segment
chest images with different illuminances, extracted the
feature information contained in the images, and used the
k-nearest neighbours classifier to classify chest images.
Ginneken et al. [10] aimed to detect signs of diffuse texture
abnormalities in chest radiographs to determine chest ra-
diograph abnormalities, which is similar to [11]. Govin-
darajan et al. [12] used Bag of Features approach with
Speeded-Up Robust Feature descriptor to classify TB CXRs.
+ese existing algorithms use well-designed morphological
features to improve screening performance, and the main
process includes image preprocessing, feature extraction,
and feature classification. However, manually denoted fea-
tures cannot guarantee the best tuberculosis classification.

+e next type of method detects and estimates whether a
certain lesion in a CXR is tuberculosis. Shen et al. [13]
adopted a hybrid knowledge-based Bayesian classification
method to automatically detect tuberculosis cavities. Xu
et al. [14] also researched the detection of cavities. Maduskar
et al. [15] proposed a method to locate ribs using the chest
wall contour as the landmark to automatically detect pleural
effusion. +ese systems use only one type of tuberculosis
lesion for target detection, and thus they cannot achieve
comprehensive tuberculosis screening. However, tubercu-
losis has multiple causes, and each cause exhibits different
symptoms of the disease.

Recently, some studies based on deep learning models
[16] have offered good alternatives to other conventional
classification methods. Lopes et al. [17] first proposed a
method that combines pretrained CNNs and a Multiple
Instance Learning algorithm to maximize the ability of
CNNs to identify different types of pathologies in CXRs.
Sivaramakrishnan et al. [18] evaluated the performance of
a CNN-based deep learning model for tuberculosis
screening using CXRs, which is similar to [19]. Hwang
et al. [20] used transfer learning to improve the TB
screening performance using convolutional neural net-
works. Mohammad et al. [21] used a deep convolution
shallow network to extract features and improve the
detection accuracy. +ese methods avoid the problem of
manually extracting features by automatically extracting
deep high-level hierarchical features for tuberculosis
classification directly from the input raw data. However,
these systems use whole chest radiographs as classifica-
tion targets. +is results in the disadvantage of low ef-
fective information density. In the feature extraction
process, it is also not easy to directly extract the most

effective features from the input information, which leads
to misclassifications due to unclear decision boundaries.

+ese studies are indispensable explorations for the
establishment of X-ray-based tuberculosis computer-aided
systems, but there is space for improvement in practical
applications. We provided a tuberculosis dataset labelled by
two professional radiologists, which covered almost all types
of tuberculosis lesions, including exudation, nodules, cal-
cification, miliary tuberculosis, encapsulated pleural effu-
sion, and free pleural effusion. As shown in Figure 1, we
analyze the distributions and sizes of these six lesions and
find that the lesion areas cover a wide range. Among them,
the lesion area of miliary tuberculosis is generally dispersed
over the whole lung, and lung nodules occupy only a small
area in the lung. +ese lesions have different sizes and
positions in chest radiography. In particular, small lesions
account for most of the legions in the entire lesion detection
task. As shown in Figure 2, we plot the probability distri-
bution map corresponding to each grey-scale level of the
image of the lesion area for analysis and analyze the sig-
nificant differences between the lesions. We find that some
lesions have similar characteristics and are difficult to dis-
tinguish. +ese problems pose challenges for detecting the
multiple categories of tuberculosis lesions.

+erefore, this paper is different from the previous
pulmonary tuberculosis analysis methods. Instead of using
the whole image as a classification target, we focus on the
specific tuberculosis area for analysis. We apply an effective
lesion detection method to the image, which reduces the
amount of calculations and also allows us to obtain more
accurate analysis results. Meanwhile, in order to avoid the
problem of manually extracting image features, a computer-
aided system based on deep learning is proposed for the
detection of multiple categories of tuberculosis lesions in
radiographs. Our proposed system can effectively solve these
challenges, and it includes a two-stage process for the ac-
curate detection of tuberculosis.

+e first stage in the design of the chest radiographic
computer-aided system is the correct segmentation of the lung
region from a CXR [22]. In computer-aided system, the de-
tection and segmentation of lesions are very important [23]. So,
in the proposed system, we consider the problem that patients
with lung diseases have reduced contrast between their lung
fields and boundaries [24], which poses a challenge to the
segmentation task. U-net [25] was used to perform lung seg-
mentation for CXR images since it can perform end-to-end
training using very few images and handle complex shape
changes and the surrounding tissue.+e segmentation stage has
achieved good results on two public datasets [26] and out-
performs the previous segmentation methods using different
convolutional neural network structures [27–31]. +e seg-
mentation of lung fields is a prerequisite step to precisely define
a region-of-interest and is subsequently used in the detection
stage of the computer-aided system.

In the second stage, this paper proposes a multicategory
tuberculosis lesion detection scheme for the first time, which
is different from the methods that classify the whole CXR
image and the previous single-category symptom detection
methods. Various object detection methods using deep
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learning have been reported in the computer vision litera-
ture [32–34]. +e region-based convolutional network
(RCNN) aims to obtain the bounding boxes of the targets
using location and size information. Unfortunately, the
RCNN is computationally expensive and extremely slow.
+erefore, by using the Faster RCNN network [32] as the
main framework of our multicategory tuberculosis lesion
detection network, we can increase the object detection
sensitivity and speed. For the problem that the areas of some
lesions in the CXR image are too small to be detected, we
introduced a new feature pyramid architecture in the Faster
RCNN. +e experimental results proved that the proposed
method greatly improved the detection accuracy of nodules
or calcifications with small areas. Furthermore, the training

of the lesion detection models is optimized to reduce the
number of false positives.

Finally, in order to further illustrate the effectiveness
of the proposed system, we propose a classification rule
based on the tuberculosis lesion detection model. We
compare the performance of the existing tuberculosis
classification methods based on a convolutional neural
network in a computer-aided system. We have achieved
good performance on two public datasets [26], which
exceeds the performances of existing methods. +e pro-
posed system can effectively improve the diagnostic ef-
ficiency of radiologists for tuberculosis and can be
used to effectively screen tuberculosis by public health
organizations.
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Figure 1: +e distributions and sizes of the six tuberculosis lesions, with the width as the abscissa and the height as the ordinate.
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2. Materials and Methods

In this study, we propose a computer-aided system based on
deep learning for detecting multiple categories of tubercu-
losis lesions in radiographs. A schematic diagram of the
proposed computer-aided system is illustrated in Figure 3. A
fully convolutional neural network is used for the automatic
lung segmentation from Chest X-rays. +en, the segmented
chest X-ray images with multilabel lesions are used to train
the object detection network with the Faster RCNN that
introduces the learning scalable feature pyramid architecture
and obtain the object detection model of the lesion area to
determine the location and category of the tuberculosis.

2.1. Dataset. +e JSRT dataset was gathered by the Japa-
nese Society of Radiological Technology. It consists of 247
CXRs. 93 are normal and 154 are abnormal with different
TB manifestations. Each image in the dataset is stored in
PNG format with 2048 × 2048 pixels and has a grey-scale
depth of 12 bits. +e lung masks of the images are pro-
vided by the same authors in another dataset named the
SCR dataset [35]. So, the JSRTdataset was used to segment
the lung regions.

+e Montgomery dataset was created by the U.S. Na-
tional Library of Medicine in collaboration with the De-
partment of Health and Human Services, Montgomery
County, Maryland, USA. It contains 80 CXRs that have been
classified as normal by doctors and 58 CXRs that have TB
manifestations. +e images are stored in PNG format with a
pixel resolution of 4020× 892 pixels with a grey-scale depth
of 12 bits. +e corresponding manual lung masks that were
generated under the supervision of radiologists are also
available. +e Shenzhen dataset was collected in the
Guangdong Hospital in Shenzhen, China. +e dataset
contains 662 frontal CRs. 336 of those have tuberculosis
inflections, and 326 are normal. All image resolutions are
approximately 3,000× 3,000 pixels [26]. +erefore, the
Montgomery and JSRT datasets were used to detect tuber-
culosis; besides, the Montgomery dataset also was used for
the segmentation of lung.

+e local dataset was collected from the First Affiliated
Hospital of Xi’an Jiao Tong University (FAHXJU) in Shanxi,
China. +e FAHXJU dataset contained 2382 CXRs classified
as normal and 2962 CXRs classified as containing tuber-
culosis by two professional physicians. +e resolution of the
images ranges from 858×1004 to 3480× 4240 pixels. +e
local dataset was collected to detect multiple categories of
tuberculosis signs. +e most common seen signs of tuber-
culosis, including exudation, nodules, calcification, miliary
tuberculosis, encapsulated pleural effusion, and free pleural
effusion, were defined according to the glossary of terms for
thoracic imaging of Fleischner Society [36]. Since the an-
notations were intended for computerized pattern recog-
nition, the regions of interests have to delineate very
precisely. After learning the glossary, 2962 CR images were
randomly selected, and the ground truth of the six signs was
annotated by two radiologists double-blindly as a prelimi-
nary experiment to test the interobserver consistency for the

identification of the six CT signs. +e disagreements were
decided by a higher experienced radiologist. +e physicians
used a professional image annotation software called
labelimg [37] to label tuberculosis signs. +e signs were
labelled with rectangle boxes that were as small as possible to
decrease the possibility of introducing noises in the training
process. +en, the left CR images were annotated by the two
radiologists double-blindly by the same way. Disagreements
were decided by a higher experienced radiologist. +en, the
ground truths were saved as .xml file.

2.2. A Fully Convolutional Neural Network for Lung
Segmentation. Lung segmentation is the primary task in the
detection of multicategory tuberculosis lesions in computer-
aided systems. In segmentation, it is necessary not only to
classify pixels into foreground or background, but also to
preserve their spatial information.+e previous research has
well solved the issues in the use of an encoder-decoder
network. +erefore, we chose the fully convolutional neural
network U-Net [25] for lung segmentation, and based on the
actual situation of the data, a small number of modifications
are used, as shown below. +e CXRs are resized to a
256× 256 resolution and then preprocessed for delivery to
the U-Net network. As shown in Figure 4, the network
structure consists of shrink and expansion modules. After
acquiring each image, the shrink module performs two 3× 3
convolutions (unpadded convolutions). Each convolution is
followed by a batch normalization layer and rectified linear
unit (ReLU) for the lung segmentation of the full con-
volutional neural network, and it down samples the image
into half its size using the max pooling of 2× 2. After each
iteration, the depth of the generated feature map is doubled,
and its spatial size is reduced to half. +en, the expansion
module up samples the feature map and connects it with the
corresponding feature map in the contraction module; the
rest is consistent with the convolution operation of the
contraction module [25].

Finally, the trained segmentation network is used for
lung segmentation on its own tuberculosis dataset. For the
segmented data, there is a small amount of data containing
some small holes, small unnecessary objects/points in the
lung region or fused left and right lungs. We have post-
processed these data. In the entire computer-aided detection
system, the main role of the segmentation stage is to obtain
complete lung regions. +erefore, in image postprocessing,
the method of image connected region detection is mainly
used to detect whether the nonlung region is segmented in
the segmented image. Because the nonlung regions in the
segmented images are mostly other tissue images with small
areas, we use the method of preserving the two largest areas
obtained from the image connected area detection, and the
small objects are removed by selecting the two foreground
objects having the left and right lung regions. In this way, a
segmented image of the final lung region is obtained, and
then the original chest X-ray is cropped according to the size
of the segmented lung region to acquire the data for tu-
berculosis detection analysis. +is method reduces unnec-
essary tissue images in chest X-rays and avoids the problem
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of losing some context information due to segmentation.
+erefore, the quality of the lung region image sent to the
detection stage is not significantly degraded.

2.3. A Region-Based Convolutional Network forMulticategory
Tuberculosis Lesion Detection

2.3.1. Learning the Scalable Feature Pyramid Architecture of
Multicategory Tuberculosis Lesion Detection. +is paper
focuses on the specific tuberculosis area for analysis. Since
the RCNN is computationally expensive and extremely slow,
the Faster RCNNnetwork is used as themain framework of the
detection stage.+e different lesion sizes pose a great challenge
to the detection task, especially the detection of small lesions. It
is difficult for the traditional detection framework to combine
rich semantic information with detailed feature information.
+e current target detection network uses the feature pyramid

network (FPN) structure to solve the multiscale problem,
which is very helpful for detecting small objects. It adopts a
backbone model that is usually used for image classification.
Furthermore, it builds the feature pyramid by sequentially
combining two adjacent layers in the backbone model, and the
feature pyramid is built via top-down and lateral connections to
produce high-resolution and semantically strong feature rep-
resentations.+e FPN is simple and effective, but it may not be
the optimal architecture design. +erefore, a better learning
scalable feature pyramid structure is used here for the detection
of multicategory tuberculosis lesions in chest radiography.

+e new FPN architecture is customized using the
Neural Architecture Search approach. First, the search space
is constituted to cover all cross-scale connections to produce
multiscale features. Multiple merging cells constitute the
search space, where one merging cell fuses two feature
connections from different feature layers to generate the
feature output. +e feature fusion method here uses nearest
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neighbour sampling or max pooling to adjust the input
feature layer to the output resolution. +e merged feature
layer will always follow the ReLU, a 3× 3 convolution, and a
batch normalization layer. +en, it uses the reinforcement
learning training controller to select the optimal FPN ar-
chitecture in a given search space. Since the FPN cross-
connection is not known, a recurrent neural network is used
as a controller and trained using the Near-end Strategy
Optimization algorithm to construct different connections.
+e final FPN structure is obtained via its controller’s
convergence, and its accuracy is the highest [34].

As shown in Figure 5, we apply the learning scalable
feature pyramid architecture to the RPN in the Faster
RCNN network, which is used to generate the initial
candidate area. +e specific improvement adjusts the
process by replacing the original single-scale feature map
of the RPN with the NAS-FPN. +e last layer in each set
of feature layers is used as the input to the first pyramid
network, and the output of the first pyramid network is
the input to the next pyramid network. Five scales {C2,
C3, C4, C5, and C6} are used as input features, and the
corresponding feature steps are {32, 64, 128, 256, and
512} pixels. +en, the input features are passed to the
learning scalable feature pyramid architecture, and the
pyramid network then outputs the enhanced multiscale
features representing {P2, P3, P4, P5, and P6}. We
connect the operations of performing class-specific
classifiers and the bounding box regression (3 × 3
transformation and 2 sibling 1 × 1 transformations) to
each level on the feature pyramid and use multiple an-
chors with aspect ratios of {1 : 2, 1 : 1, and 2 : 1} at each
level, and the rest of the network is consistent with Faster
RCNN [32, 33]. It can solve the problem that tuberculosis
lesions have different categories, sizes, and positions in
chest radiographs, especially that small lesions are not
easy to detect.

2.3.2. False-Positive Tuberculosis Lesion Reduction Module.
+e screening of tuberculosis diseases, especially large-scale
screening, is different from daily clinical detection. To find
more cases earlier, screening usually emphasizes that the
screening technique is more sensitive; therefore, in the
proposed computer-aided system, we adjusted the param-
eters to minimize the detection of false negative lesions, but
this resulted in more false positives. +is mainly occurs
because ordinary lung infections are often similar to tu-
berculosis in imaging, which makes them difficult to dis-
tinguish and prone to misjudgements. +erefore, we added a
false-positive tuberculosis lesion reduction module to mine
the indistinguishable samples during the detection process.
Based on the previous tuberculosis detection model, we send
the normal chest X-ray collected by us to the best trained
tuberculosis detection module and apply the detector to the
normal chest radiograph. After the detection, a portion of
the normal chest X-rays will be determined to contain la-
belled suspected lesion areas. +ese areas are similar to the
appearance of tuberculosis in chest X-rays. +erefore, we
apply normal labels for false positive samples. +en, we put

them into the negative sample dataset and use reinforcement
learning to train the detector again to reduce the detection of
false positives.

3. Results and Discussion

3.1.Experimental Settings. In this work, we use the JSRT [35]
and the Montgomery [26] datasets to train and test the
segmentation stage. +e tuberculosis disease detection stage
is trained and tested using the collected tuberculosis dataset.
+e performance of the proposed computer-aided system in
the segmentation and detection phases is gradually evalu-
ated. At each stage, a five-fold cross-validation test is per-
formed using the training and test datasets. +ese training
and testing data are generated via a hierarchical division to
ensure that each chest X-ray is tested the same, and any
deviation is prevented. In all experiments, 80% of the dataset
was used for training and 20% was used for testing.

To train a better deep learning model, we enhance the data
by improving the diversity of the training data. In the seg-
mentation stage, we performed related experiments on the size
of the input image. +erefore, we uniformly convert the images
in the two public datasets [26, 35] to the size of 256× 256, which
is a resolution that satisfactorily retains the structural details of
the images, while significantly reducing the model’s computa-
tional cost. And then rotate and translate these images to expand
the size of the training set to 5 times the original size to prevent
overfitting the model. In the detection stage, the small lesions
account formost of the legions in the entire lesion detection task,
so the size of the input cropped chest X-rays in the detection
stage cannot be converted too small. At the same time, under the
guidance of the experimental performance of reference [34], we
convert the local dataset to 1024×1024 pixels in consideration of
the capacity of GPU memory and detection performance and
then randomly adjust the brightness and contrast of the training
images to ensure the randomness of the sample and ensure that
the training is not affected by irrelevant factors.

For the end-to-end training of the segmentation stage,
the number of training epochs is set to 100, and the batch
size is set to 8. We use the Adam optimizer to iteratively
update the neural network weights based on the training
data, the loss function selects the cross entropy, and a
checkpoint is used in the training process to get the best
model. In the detection stage, we used the stochastic
gradient descent for back propagation and weight decay,
and the number of training steps is set to 50k. Due to
memory issues with the GPU, the batch size is set to 1. +e
learning rate is set to 0.00125 in the first 25k steps,
0.000125 from steps 25k to 40k, and it drops to 0.0000125
after 40k steps. +e weight is set to 0.0001. +e optimizer
is the SGD, the MOMENTUM is set to 0.9, and Nesterov
gradient acceleration is used. A mass is considered to be
detected if the overlap ratio between the bounding box of
the candidate region and ground truth is 0.3, which is
similar to other works in the field [32–34]. We use the
transfer learning method to initialize the parameters of
the deep learning models, and the Microsoft COCO
dataset [38] is utilized to pretrain the deep model. All of
these experiments are trained on a PC with the following
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specifications: Intel® Core i7-9700K CPU with a
3.360 GHz clock speed or frequency, 32 GB of RAM, an
NVIDIA GeForce GTX 1080 GPU, and the Ubuntu 18.04
operating system. +e deep segmentation models are
implemented utilizing the +eano and Keras deep
learning libraries, and the detection models are imple-
mented under the TensorFlow environment.

3.2. Evaluation Metrics and Results

3.2.1. Evaluation of the Lung Segmentation Stage. To eval-
uate the performance of the segmentation method, we use
the two common evaluation indicators of the Dice coeffi-
cient and Intersection over Union (IoU) to evaluate the
medical image segmentation performance of the segmen-
tation stage in our proposed system.+eDice indicator is the
ratio of the intersecting area to the total area between the
ground truth images (G) and the segmented images (O). It
can be computed by using equation (1), and the IoUmeasure
can be calculated using equation (2):

Dice �
2 G∩ O| |

|G| +|O|
, (1)

IoU �
|G∩O|
|G∪O|. (2)

In the segmentation stage, considering the capacity of
the GPU memory, we compared the segmentation experi-
ments with different resolution images as input. As shown in
Table 1, we found the result that resolution has little effect on
the segmentation of the lung region, which can be ignored.
In consideration of the model’s computational cost and
segmentation performance, we selected a more appropriate
256× 256 pixels size setting for the image so that the results
are comparable with the state-of-the-art approaches during
the segmentation stage.

In the segmentation stage, as shown in Figure 6, our
segmentation model can completely segment the lung re-
gion, especially the lung region where the tuberculosis le-
sions are located. We have achieved fairly good
segmentation results that accurately define the region-of-
interest and can be used by the detection stage of the
computer-aided system. Compared with the other methods
in Table 2, our method has achieved better segmentation
results so far.

3.2.2. Evaluation of the Multicategory Tuberculosis Lesion
Detection Stage. We use theMean Average Precision (MAP)
that is commonly used to assess multiobjective detection
models to evaluate our model in this paper. First, we cal-
culated the IoU of the prediction box and ground truth. We
specified that the prediction box whose intersection ratio
exceeded 0.3 was the correct prediction. +en, we calculate
the number of correct detections for each category in each
graph, divide that by the total number of targets of this
category in the graph, and obtain the accuracy of this cat-
egory in the graph, as shown in the following equation:

PrecisionC �
N(True Positives)C
N(Total Objects)C

. (3)

+en, the accuracy of each category is calculated for all
test images, and their average is calculated to obtain the
average accuracy of this class, as shown in the following
equation:

Average PrecisionC �
∑  PrecisionC

N(Total Images)C
. (4)

Finally, we integrate all the classes in our dataset and
average the average precision of each class to get the mean
average precision, as shown in the following equation:
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MeanAverage PrecisionC �
∑  AveragePrecisionC

N(Classes)
. (5)

We compared the detection results of the Faster RCNN
model and the Faster RCNN model with the added original
feature pyramid structure. +e following Figure 7 shows the
detection results of our model. We can see that our methods
can well detect the lesions with different sizes and distri-
butions. As seen from Table 3, we show that the computer-
aided system can effectively detect tuberculosis lesions and
effectively solve the challenges of tuberculosis lesions with
different distributions and sizes, especially for small lesions
such as nodules, exudation, etc. Our system can significantly
improve the detection of small targets. Due to the un-
evenness of the detection data, the detection of large-area
lesions slightly declines, but the overall detection of multiple
categories of tuberculosis lesions has greatly improved.

3.2.3. Evaluation of the Proposed Computer-Aided System for
Whole Chest X-Rays. To compare our method with existing
tuberculosis computer-aided systems, a classification rule
based on the tuberculosis detection model is proposed to

verify the effectiveness of the proposed system.We tested the
proposed strategy for classifying chest X-rays using the
tuberculosis detection model on the local collected dataset
and the two publicly available tuberculosis datasets [26],
Montgomery dataset and Shenzhen dataset. +e corre-
sponding lesion area and the probability of the lesion being
the disease are calculated for each chest piece. +e highest
probability of lesions in each chest radiograph was selected
as the final lesion probability of the chest radiograph. +e
threshold range was set to (0, 1), and the interval was 0.1 for
the classification analysis. Here, tuberculosis is regarded as
the positive class, and no tuberculosis is regarded as the
negative class. When a normal chest radiograph is deter-
mined to have a tuberculosis lesion, if the probability of the
lesion is greater than the currently set threshold, then it is
judged as a false positive (FP); and if it is less than the
threshold, it is classified as a true negative (TN). Similarly,
when a chest radiograph with tuberculosis is determined to
have a tuberculosis lesion, if the probability of the lesion is
greater than the currently set threshold, it is judged as a true
positive (TP); and if it is less than the threshold, it is a false
negative (FN). Each image is classified according to the
above rules. When the threshold is set to 0.6, the

(a) (b)

Figure 6: Segmentation results: (a) JSRT and (b) Montgomery. +e columns are the original image, segmented mask, ground truth, and
difference of the segmented mask from the ground truth from left to right.

Table 2: Performance of the proposed computer-aided system in the segmentation stage.

Method Year Dataset Dice IoU

Peng et al. [31] 2019 JSRT 0.965 0.932
Johnatan Carvalho Souza [30] 2019 Montgomery 0.936 0.881
Mittal et al. [29] 2018 JSRT+Montgomery — 0.951
Rahul Hooda et al. [28] 2018 JSRT 0.958 0.917
Novikov et al. [27] 2018 JSRT — 0.95
Ours method 2019 JSRT 0.980 0.961

Montgomery 0.978 0.957

Table 1: Precision of the proposed method using the Dice and IoU on various resolutions.

Resolution Dataset Dice IoU

256× 256
JSRT 0.980 0.961

Montgomery 0.978 0.957

512× 512
JSRT 0.980 0.962

Montgomery 0.979 0.959

1024×1024
JSRT 0.980 0.960

Montgomery 0.977 0.955
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classification accuracy, specificity, and sensitivity of the
proposed computer-aided system are calculated separately
using equations (6)–(8), respectively:

Accuracy �
TP + TN

TP + TN + FP + FN
, (6)

Specificity �
TN

TN + FP
, (7)

Sensitivity �
TP

TP + FN
. (8)

+e classification results are also evaluated using the
receiver operating characteristic curve (ROC), and we
also obtain the area under the ROC curve (AUC). In
Table 4, compared with other methods, our method has
achieved the best results so far, especially on the
Montgomery dataset, which has improved significantly.
Due to the lower image resolution of the Shenzhen
dataset, the improvement of the system on the Shenzhen

dataset is slightly lower than that for the Montgomery
dataset. In addition to the good results obtained on the
two public datasets [26], the proposed system is evaluated
on the local dataset, and its performance reaches the best
results of AUC � 0.993 and ACC � 0.974 (as shown in
Table 4). +e system can achieve effective auxiliary di-
agnosis of tuberculosis diseases. Overall, our proposed
system has better performance in the diagnosis of
tuberculosis.

We select the detection model trained by the NAS-
FPN network [34] as the baseline model. We use the
classification rule on the baseline model for further
analysis. We plot the accuracy, ROC curve, ture positive
rate, and false positive rate when the classification
threshold is changed within the range of [0, 1]. As shown
in the following Figure 8, our system is a significant
improvement over baseline model on the two public
datasets [26] and the local dataset, and our proposed
system can effectively reduce the false positive rate and
improve the sensitivity and accuracy.

(a) (b) (c)

(d) (e) (f )

Figure 7:+e red boxes are the ground truths, and the green, blue, and white boxes represent the results of our proposedmethod.+e lesion
categories: (a) exudation, (b) nodules, (c) calcification, (d) miliary tuberculosis, (e) encapsulated pleural effusion, and (f) free pleural
effusion.

Table 3: Performance of the proposed computer-aided system in the detection stage.

Method
Mean
average
precision

Average precision

Exudation Calcification Nodule
Miliary

tuberculosis
Free pleural
effusion

Encapsulated pleural
effusion

Faster RCNN 22.66 41.49 5.52 0.37 40.57 45.65 2.36
FPN 50.96 52.89 42.84 17.50 87.72 52.67 52.13
Our method 53.74 55.54 41.82 22.73 84.62 64.92 52.79
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Table 4: Performance of the proposed computer-aided system on whole chest X-rays.

Method Year Dataset AUC Accuracy Sensitivity Specificity

+i Kieu Khanh Ho et al. [19] 2019
Shenzhen 0.914 — — —

Montgomery 0.939 — — —
Satyavratan et al. [12] 2019 Montgomery 0.94 0.878 0.877 0.859

Sivaramakrishnan et al. [18] 2018
Shenzhen 0.926 0.855 — —

Montgomery 0.833 0.758 — —
Mohammad et al. [21] 2017 Shenzhen 0.940 0.900 0.88 0.92

Lopes et al. [17] 2017
Shenzhen 0.926 0.847 — —

Montgomery 0.926 0.826 — —

Sangheum Hwang et al. [20] 2016
Shenzhen 0.926 0.837 — —

Montgomery 0.884 0.674 — —

Our method 2019
Shenzhen 0.941 0.902 0.854 0.951

Montgomery 0.977 0.926 0.931 0.923

Local 0.993 0.974 0.983 0.962
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Figure 8: +e Performance of the proposed computer-aided system on whole chest X-rays on local dataset (MyDataset) and two public
datasets, the Montgomery dataset (MC), and the Shenzhen dataset (ShenZhen). (a) ROC, (b) accuracy, (c) false positive rate, and (d) true
positive rate.
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4. Conclusions

+is paper proposes a computer-aided system, which is
based on deep learning, for the detection of multiple cate-
gories of tuberculosis lesions in radiographs. For tubercu-
losis, the proposed computer-aided system can
automatically segment the lung area and then detect the
multiple categories of tuberculosis lesions in the segmented
lung X-rays to achieve the auxiliary analysis and diagnosis of
tuberculosis. +erefore, it can play a vital role in forming the
second opinion of a radiologist. In the segmentation stage,
the system achieves higher segmentation performance on
the two public datasets [26, 35] than current methods. In
addition, because of the segmentation capability of the deep
model that was used, the segmented image is used in the
detection stage, and the computer-aided system can achieve
better detection results. For the detection of tuberculosis,
this system is different from the previous method that
conducts classification using the whole CXR. It is focusing
on the regions with tuberculosis lesions, incorporates the
learning scalable pyramid structure into the Faster RCNN,
and applies reinforcement learning in the trained lesion
detection model, which forms the proposed multicategory
tuberculosis lesion detection method. Multicategory tu-
berculosis detection methods can effectively detect tuber-
culosis lesions with different sizes, locations, and categories,
especially for small targets such as lung nodules. +e pro-
posed deep learning computer-aided system achieves higher
performance on the two public datasets [26] than current
methods. Compared with the baseline model [34], the
system effectively reduces the false positive rate and im-
proves the sensitivity. +e proposed deep learning com-
puter-aided system integrates trained segmentation and
detection models and can be implemented on ordinary
computers.+e system can be used in clinical applications to
assist radiologists in diagnosis and public health providers in
screening for tuberculosis in areas where tuberculosis is
endemic. For low- and middle-income countries with high
incidence of tuberculosis, this system is very practical and
economically useful for tuberculosis detection.
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Silva, A. Corrêa Silva, and A. C. de Paiva, “An automatic
method for lung segmentation and reconstruction in chest
X-ray using deep neural networks,” Computer Methods and
Programs in Biomedicine, vol. 177, pp. 285–296, 2019.

[31] T. Peng, Y. Wang, T. C. Xu, and X. Chen, “Segmentation of
lung in chest radiographs using hull and closed polygonal line
method,” IEEE Access, vol. 7, pp. 137794–137810, 2019.

[32] S. Ren, K. He, R. Girshick et al., “Faster R-CNN: towards real-
time object detection with region proposal networks,” IEEE

Transactions on Pattern Analysis & Machine Intelligence,
vol. 39, no. 6, pp. 1137–1149, 2015.

[33] T.-Y. Lin, P. Dollár, R. Girshick et al., “Feature pyramid
networks for object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 2117–2125, (CVPR), Honolulu, HI, USA, July 2017.

[34] G. Ghiasi, T.-Y. Lin, and V. Quoc, “Learning scalable feature
pyramid architecture for object detection,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Rec-
ognition, (CVPR), Long Beach, CA, USA, pp. 7036–7045, June
2019.

[35] Japanese society of radiological technology database, http://
db.jsrt.or.jp/eng.php.

[36] D. M. Hansell, A. A. Bankier, H. MacMahon et al., “Fleischner
society: glossary of terms for thoracic imaging,” Radiology,
vol. 246, no. 3, pp. 697–722, 2008.

[37] L.I. Tzutalin, “Git code,” 2015, https://github.com/tzutalin/
labelImg.

[38] T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft COCO:
common objects in context,” in Computer Vision-ECCV 2014,
pp. 740–755, Springer, Berlin, Germany, 2014.

12 Journal of Healthcare Engineering

http://arxiv.org/abs/1705.09850v3
http://arxiv.org/abs/1705.09850v3
http://db.jsrt.or.jp/eng.php
http://db.jsrt.or.jp/eng.php
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg

