
Computer Algebra Algorithms Applied to Computer

Vision in a Parking Management System.

R.J. López Sastre, P. Gil Jiménez, F.J. Acevedo, S. Maldonado Bascón

Department of Signal Theory and Communications

University of Alcalá

A-2 Km 33.600, Campus Universitario, 28805, Alcalá de Henares, Spain

Email: {robertoj.lopez, pedro.gil, javier.acevedo, saturnino.maldonado}@uah.es

www2.uah.es/teose

Abstract— From this paper, we propose a novel methodology
to compute a 2D Homography applying some algorithms of
computer algebra. We consider the classical problem of solving
(exactly) a linear system of algebraic equations, and we suggest
a new algorithm for computer vision, based on homomorphism
methods over Z, to solve a system of equations necessary to
achieve a 3×3 matrix H which lets us to compute the projective
transformation which translates coordinates between points in
different planes. From this work, we want to show that it is
possible to apply a symbolic approach to some crucial issues
of computer vision, moreover of the numerical methodology,
in order to reduce the complexity of some algorithms, and to
eliminate the problems associated with loss of precision and
normalization. We test our technique in a real situation: a
parking management system, which creates a pseudo-top-view
of a parking area to determine if there are free parking lots or
not.

I. INTRODUCTION

The main objective of this paper is to link some computer

algebra algorithms to computer vision, in order to reject

some numerical approaches which are more complex and

inefficient. Holt et al. presented some algebraic methods for

image processing and computer vision in [1]: Bézout numbers,

Gröbner bases and homotopy methods. From this paper we

propose a new computer algebra resource: homomorphisms

methods for solving systems of equations, which are widely

described in [2], [3] and [4]. There are numerical and symbolic

methods to compute all solutions of a given zero-dimensional

polynomial system, and every approach has its advantages and

disadvantages. An hybrid method could be a great solution for

the problem, as [5] shows. To study the complexity of each

type of approach, numerical or symbolic, as it is shown in [6],

will be an important task if we want to decide which one that

is better-conditioned.

Important problems in computer vision can be formulated

as the solution of a system of equations. To be concrete,

the problem of computing the 3 × 3 Homography matrix H ,

which lets us to compute the projective transformation which

translates coordinates between points in different planes. In the

literature reviewed ([7], [8] and [9]), all authors use numerical

algorithms to determine the problem. Ideally, to solve this

system we need four correspondences of points, but in these

numerical approaches the more the number of pairs of points,

the more exactly is the solution. We aim for a new approach

which uses a computer to perform a mathematical computation

symbolically. This computation must solve a linear system

of equations, and in our symbolic approach we only need

four correspondences of points in order to achieve the exact

solution of the system.

From this mathematical work, we propose a computer vision

application for a parking management system in which we use

the symbolic approach proposed to construct a pseudo-top-

view of a parking area, computing the homography by means

of the homomorphic method for solving a linear system of

equations.

This paper is organized as follows. In section II we des-

cribe the 2D homography computation process, including a

comparative analysis between the symbolic and the numerical

approach. Section III shows a description of the developed

parking management system, and in section IV we have

described the texture feature extraction used in the parking

management system. Finally, sections V and VI contain the

experimental results and the conclusions, respectively.

II. 2D HOMOGRAPHY COMPUTATION

A. Problem Under Consideration: 2D Homography

We can define a point x of an image I in homogeneous

coordinates as follows x = (x, y, z)T . Given a set of points

xi in I , and the corresponding set of points x′
i in image J , we

compute the projective transformation which transforms each

xi in x′
i. Each image, I and J , is considered as a projective

plane P2. A 2D Homography is a 2D projective transformation,

which is defined by the equation

x′
i = Hxi (1)

, where

H =





h1 h2 h3

h4 h5 h6

h7 h8 h9



 (2)

The equation (1) may be expressed in terms of vector cross

product as x′
i × Hxi = 0. If the j-th row of the matrix H is

denoted by hjT , then we can write

Hxi =





h1T xi

h2T xi

h3T xi



 (3)
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If x′
i = (x′

i, y
′
i, z

′
i)

T , then the cross product may be given as

x′
i × Hxi =





y′
ih

3T xi − z′ih
2T xi

z′ih
1T xi − x′

ih
3T xi

x′
ih

2T xi − y′
ih

1T xi



 = 0 (4)

The previous equation can be written as




0T −z′ix
T
i y′

ix
T
i

z′ix
T
i 0T x′

ix
T
i

−y′
ix

T
i x′

ix
T
i 0T









h1

h2

h3



 = 0 (5)

This last equation has the form Aih = 0. Although there

are three equations in (5), only two of them are linearly

independent, hence, this set of equations become

(

0T −z′ix
T
i y′

ix
T
i

z′ix
T
i 0T x′

ix
T
i

)





h1

h2

h3



 = 0 (6)

B. Symbolic Approach

Our symbolic approach is based on a new computer al-

gebra resource in computer vision: homomorphisms methods

for solving systems of equations over Z. The equation (6)

describes a system of linear equations with coefficients ∈ Q.

From a theoretic point of view, the problem can be solved

using symbolic computation, for example Cramer, which has

complexity n!, where n is the number of equations. In order

to reduce this complexity, we propose the homomorphism

method over Z, also called modular method.

Let P be a problem whose input and output are from

domain D. The basic idea of the modular method in computer

algebra consists of applying homomorphisms ϕ1, ..., ϕn to

D, ϕi : D 7→ Di, such that the corresponding problem Pi

can be more easily solved in Di, and the solutions of the

problems in the image domains can be combined to yield the

solution of the original problem P in D. We can combine the

partial solutions by the CRA (Chinese Remainder Algorithm),

which is described in [2]. Is every homomorphism ϕi valid

in this process?. How many homomorphism do we need?. To

answer these questions we must complete a qualitative and

quantitative analysis, respectively.

In our case, let being the problem P ≡ “Given a

regular matrix A = (ai,j)1≤i,j≤n over D and b =
(b1,n+1, ..., bn,n+1)

T ∈ Zn, solve the system of equations

defined by Ax = b”. However, the solution to the 2D

Homography problem is, in general, an element which belongs

to Qn, and not to Zn. Under this situation, we propose the

following method to achieve the solution. The problem P is

equivalent to solve the system of equations Ay = det(A)b,

where now, the solution belongs to Zn, and then we only must

divide y by det(A). Therefore, we can reconsider the problem

as follows: “Given a regular matrix A = (ai,j)1≤i,j≤n over

Z and b = (b1,n+1, ..., bn,n+1)
T ∈ Zn, determine the vector

y, which solves the system Ay = det(A)b”.

In the qualitative analysis we must conclude if every ho-

momorphism is valid. For our concrete problem, the primes

m, which do not solve the system, are those primes which

make that det(ϕm(A)) = 0. In our case, these primes are the

divisors of det(A), and the number of divisors of det(A) is

lower than log2(n!)+nlog2(n)+2. Then, the strategy will be

to take a prime m, and if we discover that det(ϕm(A)) = 0,

we will discard m and we will take another one.

In the quantitative analysis, we want to determine the

number of homomorphisms that we need to find the solution.

Let be c ∈ N an upper bound for the elements of the amplied

matrix |(A|b)|. Then, each solution βi, using Cramer, is the

determinant of a submatrix of |(A|b)|, and we can use the

bound of Hadamard, which determines that |βi| ≤ nnc2n,

where n is the number of rows of matrix A, to limit the number

of primes to use.

From this point, we can present the steps of the proposed

algorithm for solving a 2D Homography using the modular

method:

• 1 Determine four correspondences between points xi and

x′
i. Then, construct the system of equations defined by

(6), to solve the system Ax = b with 8 unknowns.

• 2 Compute the bound given by the equation

CT = n! · max {|ai,j |1 ≤ i ≤ n, 1 ≤ j ≤ n + 1} (7)

• 3 Initialization: p = 1; P = 1; β1,p = 0; . . . ; βn,p = 0;

βn+1,p = 0.

• 4 while P ≤ 2CT do

– 4.1 Take a prime m of simple precision.

– 4.2 Reduction: Am = ϕm(A); bm = ϕm(b); Aa =
(Am|bm).

– 4.3 Solve over Zm

∗ 4.3.1 Apply Gaussian Elimination over Zm to

matrix Aa, to obtain matrix Age.

∗ 4.3.2 βn+1,p = det(Age). If βn+1,p = 0 return to

step 4.1.

∗ 4.3.3 Solve the system over Zm. Let be the

solution of the system (β1,p, . . . , βn,p)
T

∗ 4.3.4 Multiply this solution by the determinant

βn+1,p.

– 4.4 for i from 1 to n + 1 do

βi,p = CRA([βi,p, βi, m], [P,m]) (8)

– 4.5 p = m;P = Pm;.

• 5 Return the definitive solution
(

β1,p

βn+1,p

, . . . ,
βn,p

βn+1,p

)T

We have showed the symbolic algorithm used to solve a

system of equations. For this work, we used the software

Maple to achieve results.

C. Numerical Approach

This numerical approach is based on the algorithm called

DLT (Direct Linear Transformation), which is widely deve-

loped in [7], and in this section we only present an outline

of itself. At firs, we need to establish more than 4 corres-

pondences between points, in order to reach a better solution,

with 8 correspondences it is enough. In a second step, we

have to make a normalization of xi and x′
i. We compute a

transformation matrix T (which consists of a translation and
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a scaling), which takes points xi to a new set of points x̃i

such that the centroid of the new set is the coordinate origin

(0, 0)T , and the average distance of all the points to the origin

is equal to
√

2. Also, we compute a similar transformation

T ′ between the set of points x′
i and x̃′

i. T and T ′ are upper

triangular matrices which are defined as follows

T =







√
2

p
0 −

√
2

sx

mx

0
√

2
p

−
√

2
sy

my

0 0 1






(9)

, where: m is a vector of 2 × 1 defined as m = (mx,my)T ,

which contains the mean value of the coordinates x and y of

the vectors xi, s is a vector of 2×1 defined as s = (sx, sy)T ,

with the standard deviation of the coordinates x and y of a set

of points xi, and p is the mean value of the components of

vector s. Then, we can compute the transformation between

these two sets of points as follows

x̃i = Txi (10)

From this point, we have two transformation matrix: T and

T ′. For each new correspondence between the set of points

x̃i and x̃′
i we compute the matrix Ai defined in (6). Then we

assemble all the 2×9 matrices into a single matrix A. We seek

the non-zero solution for h. Matrix A has rank 8, hence it has

a 1-dimensional null-space which provides the exact solution

for h. This would be the case if the measurement of image

coordinates were exact, but in others situations the established

correspondences between the sets of points are inexact. Instead

of needing an exact solution (the null-space), we can find

an approximate solution which minimizes a determined cost

function. To solve the system of equations under this situation,

we have to obtain the SVD (Singular Value Decomposition)

of matrix A. The cost function to minimize is the quotient

||Ah||/||h||, that is the same that to minimize the norm ||Ah||.
The unit singular vector corresponding to the smallest singular

value is the solution h. Specifically, if A = UDV T with

D diagonal and with positive diagonal entries, arranged in

descending order down the diagonal, then h is the last column

of V .

Let h̃ be the obtained solution, and H̃ the compounded

matrix. In order to obtain the matrix H we have to do the

following denormalization

H = (T ′)
−1

H̃T (11)

H =

(

1

h9

)

H (12)

D. Experimental Results

We have presented an alternative approach to compute a

2D Homography based on computer algebra. A symbolic

algorithm offers the exact solution of a problem, whereas the

numerical one returns an approximation. There are advantages

and disadvantages in each kind of approach. First of all, in the

developed comparative analysis, we have to take into account

that DLT algorithm needs transformations of normalization,

because its result, for computing homographies, depends on

the coordinate frame in which points are expressed. This

normalization, consisting of a translation and scaling of image

coordinates, will make that the algorithm be invariant with

respect to arbitrary choices of scale and coordinates origin.

Whereas, the symbolic methodology proposed from this paper

is invariant, without the necessity of any kind of normalization

process which adds more complexity to the algorithm, and

problems of loss of precision.

To compare both approaches, we have created a real-

top-view of a figure over a plane. Then, we have matched

4 correspondences (8 for the numerical approach) between

points, in order to compute the 2D Homography. Finally, we

have measured the similarity between the real-top-view and

the generated top-views, computing the SSD (Sum of Squared

Differences). Figure 1 shows the picture generated and the

real top-view, and in figure 2 we can see that both algorithms

presents a quite similar solution, but the SSD obtained is of

9.876.292 for the symbolic approach, and for the numerical

method is of 10.003.448.

(a) (b)

Fig. 1. This figure shows the created model: a) is the projective view, and
b) is the real-top-view.

(a) (b)

Fig. 2. This figure shows the pseudo-top-views created, a) with the numeric
approach, and b) with the symbolic methodology.

III. APPLICATION: PARKING MANAGEMENT SYSTEM

To apply the mathematical work proposed from this paper,

we have developed a parking management system. In this kind

of systems, based on computer vision, there are some problems

derived from the use of cameras. In [10] the authors present a

work for determining car-park occupancy from single images,

but a full visibility from the camera position to the whole car-

park has to be ensured. Others works, as it is shown in [11],

assume that it is possible to install a camera high enough to

implement a parking condition discrimination system based

on a real-top-view of the parking area. We understand that

all of described situations impede the installation of these

management systems in a lot of real places, as in underground
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parkings. To solve these problems, our work compounds a

pseudo-top-view of the parking area. It has to be ensured that

our surveillance camera has a good visibility of the parking

area, in order to manage more parking lots. The main objective

of this image compounding task is to achieve a reference image

where it can be done easily the identification and delimitation

of each parking lot, and the extraction of the texture feature

characteristics.

We present a solution based on a single camera. This

first approach offers the following administration tasks: sur-

veillance of the parking area, determination of free parking

lots, determination of parked vehicles in forbidden zones and

average time of parking. Every minute, we capture an image

of a parking area from a surveillance camera. The view that

offers the camera is not the optimal to the achievement of the

proposed tasks. Our first goal is to compound a pseudo-top-

view of the parking area. To reach this objective we implement

an homography computation, like described in this paper,

over the captured image of the parking area which has been

bounded previously. Only with four identified correspondences

between captured image and pseudo-top-view, we can compute

the homography correctly. From this compounded image we

can extract all the characteristics of interest easily. In a second

stage, we realize a texture feature extraction of each parking

lot using a Gabor filter bank. This kind of filter banks are

used for the texture feature extraction in the literature [12],

[13] and [14]. Finally, each feature vector is processed by an

SVM (Support Vector Machine) trained to recognize parking

conditions. Figure 3 shows the steps that our system follows

to achieve these objectives.

IV. TEXTURE FEATURES EXTRACTION

The main goal of the proposed parking management system

is the detection of free parking lots in a parking area. These

kind of problems can be solved with techniques like motion

detection and tracking, but due to given restrictions (single

images, large distance, lens distortion, changes in lighting)

these techniques are not applicable easily, and there are some

works, [10] and [11], which deal with this difficulties. We

suggest a solution to solve these problems: an SVM trained

with texture feature vectors of every parking lot, which have

been taken in different illumination conditions and with di-

verse type of shadows. From this paper, we propose Gabor

filters for texture feature extraction of the background of

the parking area, because they compound a multi-resolution

representation of itself, as it is described in [12] and [13]. A

Gabor filter lets us to extract various features related to the

local power spectrum of an image. These features are obtained

by filtering the image with a bank of two-dimensional Gabor

filter. In [15], [16] and [17], there is a complete description of

this kind of filters. A Gabor filter has a convolution kernel

which is a product of a Gaussian and a cosine function,

and we can establish a preferred orientation and a preferred

spatial frequency. The use of Gabor filters, in extracting texture

features of an image, is motivated on the following factors:

Gabor representation is optimal in the sense of minimizing

Fig. 3. Paring Management System Diagram.

the joint two-dimensional uncertainty in space and frequency,

and a Gabor filters can be considered as an edge and line

detectors, hence this kind of filters can be used to characterize

the texture information. A two dimensional Gabor function

g(x, y) and its Fourier transform G(u, v) can be written as:

g(x, y) =

exp

{

−1
2

[

(

x
σx

)2

+
(

y
σy

)2
]

+ 2πjWx

}

2πσxσy

(13)

G(u, v) = exp

{

−1

2

[

(

(u − W )

σu

)2

+

(

v

σv

)2
]}

(14)

, where σu = 1
2πσx

and σv = 1
2πσy

. The gaussian’s major

and minor axis widths are determined through σx and σy ,

respectively. Typically, an input image I(x, y), where (x, y)
ǫ Ω, and Ω represents the set of image points, is convolved

with a 2-D Gabor function g(x, y), to obtain a Gabor feature

image S(x, y) as follows

S(x, y) =

∫∫

Ω

I(φ, ϕ)g(x − φ, y − ϕ)dφdϕ (15)

For the texture feature extraction, we need to generate a

Gabor filter dictionary scaling and changing the orientation

of a Gabor function g(x, y). Let g(x, y) be the mother Gabor

function, then the Gabor filter dictionary can be obtained
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through the generating function gmn(x, y) as follows

gmn(x, y) = a−mg(x′y′) (16)

, with

x′ = a−m(xcos(θ) + ysin(θ))

y′ = a−m(−xsin(θ) + ycos(θ)) (17)

, where a > 1, m and n are integers, θ = nπ
K

, and K is the

number of orientations.

A Gabor filter family, generated with equations (16) and

(17), forms a complete but non-orthogonal basis set, hence

it implies that there is redundant information in the filtered

images. We can establish some criteria to design a Gabor

family depending on the application. For the texture feature

extraction it is crucial to reduce the possibly redundancy

derived from the non-orthogonality of the functions set. Let

zl and zu be the lower and upper frequencies of interest, K
the number of orientations and R the number of scales in

the multi-resolution decomposition. The design strategy is to

ensure that the redundant information is minimized, thus the

half peak magnitude of the filter responses has to be tangent

to its nearest half peak magnitude neighbours, as [12] shows.

For our application we have employed the following values:

zl = 0.05, zu = 0.4, K = 6 and R = 4. Figure 4 shows the

contours which indicate the half peak magnitude of the filters.

Fig. 4. Contour of the half-peak magnitude of the generated Gabor functions.

Then, given an image I(x, y), its Gabor transform

Smn(x, y) is obtained changing the Gabor function g(x, y)
in (15) by gmn(x, y). For each parking lot we compute its

Gabor transform, then we use the mean µmn and the standard

deviation σmn of the filtered image for the classification and

recognition purposes. A feature vector f̄ is created using µmn

and σmn as follows

f̄ = [µ00σ00µ01σ01 . . . µ(S−1)(K−1)σ(S−1)(K−1)] (18)

Length of vectors Class Rate

48 99.73%
38 99.73%
28 99.71%
18 99.62%
8 98.17%

TABLE I

EXPERIMENTAL RESULTS OBTAINED WITH DIFFERENT LENGTHS OF THE

TEXTURE FEATURE VECTORS.

For this work, each parking lot is filtered by the described

Gabor filter bank and each feature vector of our application

has 48 components, because we have employed the following

values: K = 6 and R = 4.

V. EXPERIMENTAL RESULTS

The parking condition recognition task is done through a

trained SVM. We need to use a supervised learning method

because the surveillance camera takes images: with different

illumination conditions, shadows and possibly strong sun-light

spots. Thus, an approach to object detection based on tech-

niques as motion detection or tracking is not easily applicable.

For this work, we have created a texture database which

consists of 2 different texture classes: one class represents the

texture of the background of a parking lot, and the other one

represents the textures of vehicles. We have trained the SVM

with a database which contains 24300 different texture feature

vectors, extracted from images which were taken in diverse

illumination conditions, of which 22470 belong to the free

parking lot class, and 1830 belong to the vehicle texture class.

For the training step we have used 12150 feature vectors, the

half of each class. With the SVM we can use some different

types of kernels, but for this study we have used a Linear

kernel only. We have made use of the implementation in C

called SVMLight described in [18].

Finally, the implementation of the parking management

system offers the following results. Every minute the system

captures an image of the parking zone of 720×576 pixels. For

this work, we can manage a parking zone with 21 parking lots

with a single camera. The first step is to compound the pseudo-

top-view of the image. Then, the system extracts the texture

feature vector of each lot. To end, these 21 texture vectors

obtained are passed to the trained SVM for the recognition

task. We have tested our trained SVM with 12150 feature

vectors and the results obtained with different lengths of the

feature vectors are in Table I.

From vectors with more than 38 components the class rate

obtained is the same, then we can compute the recognition

task with vectors of 38 components in order to reduce the

average time of feature extraction and classification. These

results show that the main information for class recognition

is in low frequencies. The software developed for this work

generates visual information over some images which indicates

if the parking lot is free (white rectangle), if it is occupied

(white rectangle with a cross inside) or if the car is parked
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on a forbidden zone (white rectangle with a two white filled

triangles inside). Figure 6 shows that our systems recognizes

free parking lots even if there are shadows over the parking

area, and it displays some results obtained with vehicles in

forbidden zones and with sun-light spots.

Fig. 5. Captured image with sun-light spots and shadows.

Fig. 6. Experimental results over occupied parking lots.

VI. CONCLUSIONS

In this paper, we have proposed a novel methodology for

computing a 2D homography applying a concrete algorithm

of computer algebra: the homomorphic method for solving

systems of equations over Z. This algorithm is a new re-

source for the computer vision discipline, which eliminates

the problems of normalization and of loss of precision which

are associated with the numerical approach developed in the

DLT algorithm. We have showed the results obtained with a

comparative analysis between these two methodologies, and

the symbolic approach presents the best solution: it solves the

system without normalization process and with less number

of correspondences between points. Also, we have presented

a Parking Management Systems based on the computer algebra

algorithm proposed, which works well in a real scenario.

In future works, we will deal with: a deeper comparative

analysis of complexity between these numerical and symbolic

algorithms, and with a new search of computer algebra al-

gorithms that could be appropriate in some computer vision

problems. Related to the parking management system, future

works will include tests with more than one cameras and with

car tracking techniques. Then, we will try to compound a real-

top-view of a parking zone, and we will be able to solve the

problems of occluded regions in the image.
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