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Abstract

The complicated nature of calculations in general relativity was one of the driving
forces in the early development of computer algebra (CA). CA has become widely
used in gravity research (GR) and its use can be expected to grow further. Here the
general nature of computer algebra is discussed, along with some aspects of CA
system design; features particular to GR’s requirements are considered; information
on packages for CA in GR is provided, both for those packages currently available
and for their predecessors; and applications of CA in GR are outlined.
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1 Introduction

The term “computer algebra” (CA) covers the theory and implementation of computer
programs to perform the symbolic manipulations and calculations usual in mathemat-
ics, in particular those arising in algebra and calculus. Fuller descriptions are given
in texts cited below. This review deals with the use of computer algebra in gravity
research (GR) in the period 1980 onwards: work before that date is described in cited
earlier reviews. Because of the complicated nature of calculations in GR, CA methods
have proved very useful in many aspects of GR research.

In the following sections, I discuss the nature of CA, the requirements of its use
in GR, and the available programs. Finally a (hopefully representative) selection of
specific applications, from the many made, is described. A fuller description of the
contents of the main sections below is given in the next subsection and Sect. 1.5.

1.1 Computer algebra

This would be a very long review if it attempted to cover all aspects of the design,
implementation and features of computer algebra (CA) systems and their history,
and then similar details for all packages for application in gravity research (GR: this
abbreviation could be understood more narrowly as “general relativity”, but here the
wider meaning is intended). Moreover there are now good textbooks which describe
algorithms and general design features of CA systems,1 e.g. Geddes et al. (1992),
Mignotte (1992), Davenport et al. (1993), Bronstein (1997), Cohen (2002), von zur
Gathen and Gerhard (2013) and Bostan et al. (2017); there were few such texts before
1990. There are also texts discussing the use of CA in physics (e.g. Grozin 1997; Enns
and McGuire 2001; Baumann 2005) and one that contained introductions to three of
the main CA in GR systems of the day (MacCallum et al. 1994). There have been
numerous journal reviews of CA in GR, many cited below.

CA itself is part of the wider field of symbolic computation. Current developments
are discussed in the specialist journals “ACM Communications in Computer Algebra”
(and its predecessor the “ACM SIGSAM Bulletin”), published by the Association
of Computing Machinery (ACM) Special Interest Group on Symbolic and Algebraic
Computation (SIGSAM), “Applicable Algebra in Engineering, Communication and
Computing”, and “Journal of Symbolic Computation”. The ACM journal also provides
news of activities in the CA research community. There are specialist conferences,
listed at [C69], notably ACM SIGSAM’s annual ISSAC (International Symposium
on Symbolic and Algebraic Computation), whose proceedings contain many impor-
tant papers; papers on CA are also spread widely throughout the mathematical and
computer science literature.

As well as journals and conferences, there are a considerable number of books and
papers devoted to specific systems or applications or both: I shall mention some of

1 I use the word system for programs that cover a wide area of mathematics, including calculus and
algebra, and refer to more specialized programs, or specific application programs within the main systems,
as packages. When necessary I shall continue this hierarchy to “modules”: for example Sheep (Sect. 7.4)
is a special purpose system which provides two main packages, Classi and Stensor; and Classi provides a
module ELDYNF for Maxwell’s equations written in tetrads.
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those which describe systems widely used in GR, or describe particular GR uses, later,
and give pointers to the more extensive online bibliographies available. Where it may
be of interest or help to the reader but is not mentioned directly in the text I have
appended to a citation the name of the CA package used, in, e.g., the following form
(Stephani et al. 2003 {Classi}). Appendix A gives a alphabetical list of the packages
showing where in this review further information can be found.

Because many packages and the information about them are now made available
only via the Internet rather than published in books or on CDs or DVDs, I have provided
Appendix C in which the URLs for downloads of, or information on, systems and
packages can be found: references to the data there have the form, e.g., [C61].

Three starting points are often cited as beginning the history of CA. The earliest
(not counting the prescient 19th century arguments by Ada Lovelace and Charles
Babbage that such computations should be possible with what we now call computers),
and most frequently cited as the starting point, was work by Kahrimanian (1953)
and Nolan (1953) in which symbolic differentiation was implemented. Next, and
sometimes cited as the first full CA use, was the paper by Boys et al. (1956). They
used EDSAC (the early computer built at Cambridge University) saying “the advent
of such machines has simplified and made practical such calculations, not only as
a means for performing the arithmetical operations, but also for the carrying out
of much of the mathematical analysis of the most formal type”. Their application
involved antisymmetric functions “formed from a set of elementary three-dimensional
exponential polynomial functions”, leading in some cases to “formulae involving more
than five hundred terms”. A further starting point sometimes cited is McCarthy’s
invention of Lisp, which proved a suitable implementation language, as described
below. Development of CA was slow for quite a while, awaiting improvements in
hardware, implementation languages, and systems software.

The first more complete system was FORMAC (Bond et al. 1964), whose devel-
opment began in 1962; it was based on the programming language widely used in
the 1960s for numerical computation, FORTRAN. Because FORTRAN was not very
suitable for algebraic manipulation, FORMAC was later rewritten in PL/1 (Xenakis
1971). A second major system was REDUCE, stimulated by McCarthy’s proposal of
Lisp as a basis for non-numerical calculations in physics (Hearn 2005) [C67], and ini-
tially intended and used for computations in quantum electrodynamics (Hearn 1966).
A third, developed from 1968 to 1969 onward as part of Project MAC at the Mas-
sachusetts Institute of Technology was Macsyma (MACSYMA is short for Project
MAC SYmbolic MAnipulator). [This followed an earlier Lisp-based system at MIT
called MATHLAB (Ogilvie 1989).] Macsyma and Reduce were (and are) based on
(different dialects of) Lisp.

Many other systems were developed at that time (see Moses 2012) and since. van
Hulzen and Calmet (1983) reported an estimate that there were then about 60 systems,
and the 2003 handbook (Grabmeier et al. 2003) describes 9 general purpose systems,
43 special purpose systems and 15 packages. As of February 2018 the Wikipedia2

page comparing CA programs [C80] listed 39. The swMATH project has analysed

2 Wikipedia is not always accurate, as it is open to being edited by underinformed people, but in my
experience it is pretty reliable in mathematical areas.
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more than 215,000 citations of software and from them lists the citations of more than
100 CA systems (Heinle et al. 2017) [C62]. Of these many systems, some were or are
specialized, for example, to commutative algebra or polynomial rings, and so were or
are not generally applicable in gravity research. This being a review of CA in gravity
research, only those systems that have been or could be used for such purposes will
be mentioned.

Yun and Stoutemyer (1980), Gerdt et al. (1980) and van Hulzen and Calmet (1983)
give useful surveys of the early systems. Among those systems, Macsyma and Reduce
have been the most used in GR. The most important post-1980 systems for such appli-
cations are Maple and Mathematica®. Maple and Mathematica® are also today’s most
successful and widespread commercially available systems (whereas both Macsyma,
in its Maxima incarnation, and Reduce are now open source). These systems are dis-
cussed in more detail in Sect. 3, though some aspects of their designs will be referred
to in the preceding Sect. 2, which deals with general considerations in the design and
implementation of CA systems.

As well as these four main general purpose systems for which packages for relativity
have been written (Macsyma, Maple, Mathematica® and Reduce), I shall describe in
Sect. 3 below some others which either had interesting architecture or were employed
in interesting GR applications.

In Sects. 6 and 7 I list and briefly describe systems or packages written since 1980
which I know to have been used or intended for use in GR or related fields. (I also give
references to further earlier surveys of CA in GR.) Some of those systems and packages
have ceased to be available or be maintained or developed, or have become obsolete
or otherwise defunct: they may therefore not be currently used or even usable. Despite
that, information about them may make papers which used them in applications more
intelligible. I shall refer to them just as “earlier”, since I am not sure in all cases of
the current status. Some may still be available and usable, and in a few cases that
is definitely so, even though the packages may have had no recent development or
maintenance. I have tried to indicate where this is the case (it applies, for instance, to
the Maple package GRTensorII and the Reduce package GRLIB).

In addition, there are also a number of packages (Hartmann and Davis 1989; Ilyin
and Kryukov 1989; Seiler 1991; Jamin and Lautenbacher 1993; Poghosyan 2005;
Abłamowicz and Fauser 2015) which provide facilities for Clifford algebras or more
specifically for γ -matrix algebra. Such packages can be used both in quantum field the-
oretic and geometric calculations, but were considered too specialized to be included
in Sects. 6 and 7: many of their applications fall outside GR.

1.2 Pros and cons of CA

The main reasons for using computer algebra (CA) are speed and accuracy, the ability
to handle more complicated calculations than can be done by hand, and relief from
the boredom of repetitive tasks. These all apply to applications in GR, so much so that
GR, celestial mechanics and quantum electrodynamics supplied much of the early
motivation for developers (Yun and Stoutemyer 1980; van Hulzen and Calmet 1983);
Barton and Fitch (1972) gave a survey covering early use in all those three areas.
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In more detail, the advantages of computer algebra are as follows.

1. Accuracy. CA gives exact and accurate answers: well-written and tested computer
algebra packages do not lose factors of 2 or get the sign wrong.

2. Speed. CA is fast: the classic example is Delaunay’s calculations of lunar motion
in the 19th century, which took him 20 years, but was repeated and corrected
(using at least 18 h of IBM 360-44 CPU time) by Deprit et al. (1970). An example
in relativity is given by the famous Bondi metric, where the initial calculations
(Bondi et al. 1962) took 6 months and still contained errors, whereas d’Inverno’s
clam could repeat the calculation (correctly!) in 18 s (see Table 3 of d’Inverno
1980), and my PC now does it in milliseconds.

3. Repetitive tasks. CA removes the tediousness of almost identical repeated calcu-
lations, for example calculations of curvature for similar metrics.

4. Calculations infeasible by hand. The power of the systems opens up projects which
would be unthinkable by hand, sometimes with unexpected results. For example,
a brute force calculation may lead to a simple answer which prompts new insight,
revealing deeper principles and enabling the answer to be derived more elegantly
(e.g. Frick 1977a; Pavelle 1979; Amerighi et al. 1986 {Sheep, Macsyma, Stensor}).
A more recent example is given by Torre (2012) {DifferentialGeometry}, where
a result is given that was only obtained while testing some “fairly elaborate code”
(in the author’s words).

The last two points are especially relevant to applications in gravity theory. As already
mentioned, GR was a testing ground of many early computer algebra systems, essen-
tially because of the large size of the Einstein equations for general relativity expressed
in terms of a general metric in coordinate form, which stretched those systems to their
limits. There are 4 equations with around3 8574 terms and 6 with 11,018 terms: these
numbers themselves come from a CA calculation.

I should add a warning note here about the last advantage. Despite the enormous
increases in CPU speed and storage capacity since CA began, the limitations on prac-
tical uses of CA still come from computation time and storage requirements. CA can
successfully tackle expressions with hundreds of thousands or even millions of terms
(though the value of the output if the expressions do not simplify to a small num-
ber of terms seems rather doubtful), but combinatorial explosions quickly outrun the
capacity of any system. It remains quite easy to set up calculations which completely
fill available memory. (One symptom can be excessive paging to and from virtual
memory or swap space. This occurs when the main memory becomes full and the
operating system swaps some data out and replaces it, only to find it needs, and reads
back, the copied data, which then fills the main memory again …Some systems, such
as muTENSOR, FORM and Stensor, had a system of “bucketing”, or writing to disk,
designed to limit that problem.)

For instance, the number of terms in the determinant of an n × n matrix each of
whose entries is a sum of 2 terms is 2nn! (before any collection of like terms). This
grows rapidly with n, and most general purpose algebra systems on an average machine
become unable to cope at about n = 10–11, which often surprises unwary users who

3 The precise numbers depend somewhat on how the result is formatted.
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think that since they can handle n = 3 easily and are not daunted by n = 4, a machine
should be able to do much more. A reasonable estimate, due to Fritz Schwarz, of the
increase in the size of expressions which can be handled by using CA instead of “hand
calculation” is a factor of 104, or maybe 105.

Advanced algorithms can prove hard to implement in an efficient manner, and some
CA algorithms have long running times, so time, as well as the memory requirements
of large expressions, can still be a limiting factor. Good complexity estimates would
help in estimating requirements, but in practice one often just has to try things out.
Both for timing comparisons and absolute values of timings, the information in past
papers is likely to be long outdated due to changes in hardware, systems software and
CA systems. Comparative data are still of interest but an up-to-date experiment to
check them might be wise.

The reasons against using CA include the cost, in time and effort, of learning one or
more systems and the possibility of encountering bugs. But perhaps the worst hurdle
for many users is the need to develop a sufficient understanding of the underlying
mathematics to be able to anticipate where the system might give no answer or a
wrong answer: it has been recognized for a long time that not only designers and
implementers need this understanding (van Hulzen and Calmet 1983). The fault may
not be with the implementations available, but with the lack of any, or any efficient,
general algorithm. One could argue that CA systems ought not to attempt to cover
calculations which lack a good algorithm. In practice, user or commercial pressures
may dictate that when there is no algorithm, heuristics, that by definition may not
always work, are used instead.

Among the areas where good general algorithms are hard to find, or non-existent,
are problems in handling the following: algebraic numbers; functions with branch
cuts (Dingle and Fateman 1994); definite integrals requiring contour integration; and
simplification using identities involving sums (e.g. given a polynomial in sin x and
cos x , return the shortest equivalent expression obtainable by using the identity sin2 x+
cos2 x = 1, i.e. the one with fewest completely expanded terms to be added together).

This last is the problem of “sum-substitution”. Although there are formal methods,
such as Gröbner bases (Buchberger and Winkler 1998), to find a canonical represen-
tative in a space of equivalent polynomial expressions, in a sense specified by some
well-defined term ordering, that representative may be far from being the one the user
would wish to obtain, e.g. the shortest possible equivalent expression. This applies
not only in the trigonometry example above, but (e.g.) in the context of the indicial
tensor calculators discussed in Sect. 4. Automating the choice of where, and where
not, to make a sum-substitution, gives difficulties (Hörnfeldt 1979): one may not wish
to apply the same substitution for, say, A + B, to all expressions containing A + B.

The procedure used by Stensor (Hörnfeldt 1977, 1979) seems by experiment to
be rather effective but is not, as far as I know, fully documented anywhere: to obtain
a full description one would need to analyse the rather complex code itself (which
was said in 1989 to have required 14 years of work resulting in code 2/3rd of the
length of the Reduce source code). There is a presentation in Hörnfeldt (1979) and a
description of its use as a simplifier for trigonometric expressions (Hörnfeldt 1982),
stating that it considers expressions of the form a sinn x cosm x , where a is a numerical
coefficient, by considering reduction not only within the triangle of terms with powers
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(m, n), (m − 2, n + 2) and (m − 2, n) but also the terms with powers (m − 4, n + 4),
(m − 4, n + 2) and (m − 4, n). Presumably similar ideas were used in more general
cases.

There is a high cost in time and effort in writing one’s own system or package,
whether general or specifically for GR (although, as this review shows, the latter has
been a popular endeavour). Even 30 years ago, it was said that to write a passable
general-purpose system required at least 50 person-years of effort. To match existing
systems now would impose a much higher requirement, despite the help provided by
the books and articles now available which describe efficient implementations of CA
algorithms, because the systems have been extended substantially both by their user
communities and, for the proprietary systems, by the companies that own them. For
all the larger systems, the total number of contributors is large.

When writing a package specifically for use in GR there is a considerable added
risk of “reinventing the wheel”, given the number of packages there have been (failure
to re-invent the wheel can of course be costly in a different way). There are about 100
packages listed in the table in Appendix A, the exact number depending on what is
counted as a distinct package, and the list is almost certainly incomplete. (This is more
than double the number of such packages I knew of before starting to compile this
review.) It is rare for authors of packages to explain in what way their package offers
new internal design features of value, which makes understanding the real differences
more difficult: instead the focus of authors’ descriptions tends to be on the set of
calculations a user is enabled to perform. I would strongly advise anyone considering
writing a new package to first delve into the details of existing packages. For example,
if one wishes to perform a particular calculation but does not know of an existing
package that provides that facility, it may be much simpler to add that facility to an
appropriately chosen package than to build a new package.

1.3 CA in GR

Gravity research covers a wide area and CA may be useful not only to theorists but
also to researchers whose primary interests are experimental or numerical. In principle
it of course includes Newtonian gravitational calculations, e.g. in astronomy, and
Newtonian and relativistic celestial mechanics, but I have not attempted to survey those
applications. Predicting the paths of spacecraft is an important engineering application
of general relativity. Thus relativistic celestial mechanics programs can have practical
as well as astronomical uses. Accurate numerical values for orbits, however, generally
come from numerical rather than algebraic programs. For some developments of CA
in celestial mechanics later than those mentioned above see Brumberg et al. (1989),
Deprit and Deprit (1990), Vakhidov (2000) and Laskar and Gastineau (2012). However,
I am told (Carl Murray, private communication) that celestial mechanics researchers
now tend to use packages in general purpose CA systems rather than special purpose
programs.

Because of the close connection between GR and differential geometry, I shall
include mention of CA systems and packages for differential geometry, as these can
easily be specialized to, for example, spacetimes in general relativity. However, I
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shall not cover packages designed mainly for three-dimensional vector calculus in
curvilinear coordinates or for the geometry of surfaces in three-dimensional space, for
studying or solving systems of differential equations (some interfaces to which are
mentioned by Dray 1996) nor, in general, those for evaluating Feynman diagrams or
for similar applications in quantum field theory, although such systems can be useful
for work on quantum field theory in curved space or quantum gravity (which I shall
refer to collectively as quantum GR).

Moreover I note that searches for tensor software on the internet will find, in addi-
tion to the sorts of package described here, packages or libraries aimed at numerical
simulations in, for example, non-relativistic fluid dynamics or elasticity, which are
disciplines making heavy use of tensors in flat space, often in curvilinear coordinates.
(Conversely, CA systems which handle curved spaces can be used for calculations in
such disciplines: see for example Bebbington and Göbel 2001 and Sect. 7.4.)

Under the hardware constraints of the 1960s, specialized systems for GR were
almost a necessity, though FORMAC was used quite a bit in early work [beginning with
work of Thorne and Zimmerman, of Clements and Matzner, and of Ernst (d’Inverno
1980)]. Other early systems were GRAD Assistant (Fletcher et al. 1967), based on Lisp,
CAMAL, the CAMbridge ALgebra system4 (Wainwright 1978; Fitch and Cohen 1979;
Fitch 2009), Lisp Algebraic Manipulator (LAM) which was originally implemented
at Kings College London in Lisp and in machine code (d’Inverno 1969; d’Inverno
and Russell-Clark 1974), and packages or programs in Macsyma and Reduce. In total,
quite a number of packages were written in those early years: for example, d’Inverno
(1980) mentions 7 in FORMAC alone. The early packages, and their applications,
were surveyed by Barton and Fitch (1971), d’Inverno (1975, 1980, 1983), Cohen et al.
(1976, 1984), Pavelle (1979) and Ogilvie (1989), and earlier reviews cited therein.
Work behind the “Iron Curtain” is discussed in Gerdt et al. (1980) and Fedorova et al.
(1989). As many early packages were of limited capability compared with present-
day ones, due both to improvements in computer power and improvements in software
design, I shall not repeat the information from those reviews, instead concentrating on
work since 1980.

Those early systems were written mainly in FORTRAN or PL/1 (for FORMAC),
or Lisp (for Macsyma and Reduce), or in assembler or native languages for particular
machines which are now only available in museums. Examples of machine-specific
systems were ALAM for Atlas (d’Inverno 1969), CLAM for CDC 6600 (d’Inverno
and Russell-Clark 1974), the TITAN and IBM machine language versions of CAMAL
(CAMAL was later written in BCPL, the forerunner of C, which was first introduced
in 1978, see Kernighan and Ritchie 1988) and the first versions of Sheep (now called
Sheep1), written in the macro language for DEC-10 machines. Indeed d’Inverno (1980)
pointed out that at that time all the systems only ran on specific hardware.

4 The CAMAL package now available in Reduce supplies only the celestial mechanics capabilities of the
original CAMAL.

123



6 Page 10 of 93 M. A. H. MacCallum

It should be noted that the implementation languages for CA systems and packages
(such as FORMAC, Lisp, C, and Python5) are rarely also the programming languages
presented to the user by those systems.

There are several reasons for CA packages for GR aging or dying. Most such
packages are developed and maintained by only small groups of people, and lack
a sufficient user base to sustain themselves financially (or justify owners of general
purpose systems putting resource into maintenance of GR packages).6

Even those packages that have been maintained may accrete code from several
different stages of evolution of the underlying systems and thus end up with parts in
different styles or requiring different facilities, potentially giving rise to problems. (I
have been told this applies to, for example, xAct, described in Sect. 6.3.4.)

Some packages have died because of changes to the underlying general purpose
algebra system (“general purpose” as described in Sect. 3), which discouraged the
package’s originator from updating. Significant changes, such as when Reduce (or
more accurately its underlying Lisp) switched from upper case as default to lower
case, are sometimes called “flag days”, and can make packages unusable unless their
maintainers are willing to invest significant effort. As examples of this effect, RicciR
(Kadlecsik 1996) ceased development due to changes between Reduce 3.5 and later
versions, and GRtensorII [C24] was not updated for some time after Maple version
11 (it can still be run, and was recently replaced by GRTensorIII).

Changes are not always negative, however. Additional facilities in, or other improve-
ments to, a general purpose system may stimulate or facilitate progress in CA software.
For example, Maple’s good algorithms for handling over-determined systems of linear
partial differential equations, such as often appear in differential geometric applica-
tions, are used by DifferentialGeometry (see Sect. 6.2) in finding symmetry generators,
geometric objects with a prescribed group of symmetries, parallel tensor fields, and
so forth, and were also used by Hickman and Yazdan (2017).

Mathematica® and Maple now have annual licencing, and Maple in particular has
recently had annual updates, with the consequence that it takes more and more effort
for package maintainers (and users!) to keep up, as well as making it difficult or
impossible, when annual licences expire, for one to test packages which worked under
previous versions, even if one has a licence for the current version. (Reduce is even
more frequently revised, see Sect. 3.1.4, but generally not in such a manner as to
break existing packages.) I have not attempted to check whether currently available
packages all work with the current system versions, but in Sect. 6 I have noted available
information about the latest versions for which I have found that packages are, or claim
to have been, updated.

5 This is far from an exhaustive list: apart from implementations in machine code or assembler for specific
machines, other high-level languages such as ALGOL-W and Modula-2 have been used. The recent Redberry
(see Sect. 3.2.4) is written in Java.
6 At the extreme, van Hulzen and Calmet (1983) remark that it has been the misfortune of many systems
and facilities to be used only at one place, i.e. only by their original author. They say the reasons are often
“importability, language design or lack of significance when finally known outside its residence”. Moreover,
it has been said that “systems for CA in celestial mechanics are like toothbrushes: one used them every day
but would not lend them to friends”. Thus in looking for applications of packages it can help to find the
publications of the package’s author(s), which is why I have tried below to list package authors’ names.
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A second reason packages die is change of personnel. In extreme cases this may be
due to the literal death of the lead author, but more commonly it is because people move
from academia to other employers, or shift research topics, perhaps because their CA in
GR work does not attract sufficient recognition. (Software design and implementation
tends to be undervalued in academia by those who do not do it, despite its need for
original and ingenious ideas.7)

Lastly, because some CA systems are now produced by substantial companies,
packages or systems may cease to be maintained due to commercial pressures.

1.4 Choosing a CA package

Before any discussion of CA’s nature, designs, and capabilities, or its applications in
GR, I want to state firmly that there is no best package, either for CA in general or CA
in GR in particular. If you have found a package which works with the machine and
operating system, or within the general purpose CA system you are already familiar
with, and which does the calculations you want to do, or can readily be adapted to do
so, use that. And if you have not found such a package (yet), look for one such rather
than seek a “best” one. In the final section of this review I say a little more on this
issue, despite the cautionary remarks that follow.

In particular, do not believe anyone, including me, who purports to draw objec-
tive comparisons, without making your own independent check. Users accustomed to
particular systems often offer comparisons based on incomplete knowledge either of
the other available systems or of the underlying mathematics and computer science.
They tend to focus on the good points of the systems they know well, and criticise
other systems which do the same things less well or not at all, while disregarding the
strong points of those other systems. (Claims that the author’s favoured system is the
only one that can do a certain type of calculation should be viewed with particular
scepticism, although they may sometimes be correct.) One can hence find examples
where system A was better than system B in one comparison and B surpassed A in
another. Moreover, all such comparisons go out of date very fast.

That warning should be followed by a “full disclosure” or “disclaimer” to help the
reader to discount any bias that may be present in the following review. The systems
with which I am most familiar are Reduce (see Sect. 3.1.4) and Sheep (see Sect. 7.4), for
both of which I have written introductions (MacCallum and Wright 1991; MacCallum
et al. 1994) and contributed code, and Maple, on which I have taught courses. At
the time of writing, my own computer can run under either Windows and Linux: in
addition to Reduce and Sheep it runs recent versions of Axiom, Cadabra, Maxima,8

Maple, Mathematica® and Sage, and I have downloaded and briefly tested a number
but not all of the CA in GR packages listed as currently available for those systems in
Sects. 6 and 7.

7 William Stein, the originator of Sage (described in Sect. 3.2.5) has been quoted as saying “Every great
CA package is built on the ashes of an academic career”.
8 Within SageMath, which is not to be confused with the business and finance software Sage, though I shall
refer to SageMath just as Sage hereafter.
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One should also note that while several, or even many, systems may be able to deal
with a particular problem, they will vary in their hardware requirements or efficiency.
As an essentially historic aspect, due to the increases in speed and memory of machines,
some systems had important built-in limits on the numbers or sizes of objects. As
examples, Reduce 3.5 and Maple V.3 on DOS-based PCs had limitations of this sort
which prevented certain calculations, feasible on other hardware, from being carried
out.

1.5 Plan and aims of this review

In Sect. 2 I discuss design issues in CA in general, without much specific relevance
to GR. This is followed by a survey of available general purpose systems for CA in
Sect. 3. I consider what calculations are required in GR in Sect. 4. The resulting design
considerations for CA in GR are introduced in Sect. 5, and this is followed by two
sections listing and briefly describing CA packages for use in GR, firstly those built
on general purpose CA systems, in Sect. 6, and then those which are stand-alone, in
Sect. 7. I conclude with a section discussing applications, Sect. 8, and appendices
giving an alphabetic cross-listing of packages, a note on packages with some selected
special features, and the list of URLs quoted in the text.

I have tried to give rather complete lists in Sects. 6 and 7, omitting only the many
early packages discussed in the reviews cited above which I believe to be no longer
maintained or no longer available, and some others for which I could not find any
current online or printed documentation. Other such lists have been provided by authors
of some of the packages, for example at [C23] and [C38]: see also [C80] and [C62].

In each of Sects. 6 and 7, I have included “earlier” subsections for the earlier pack-
ages as defined above. One particular source of packages is the journal ‘Computer
Physics Communications’, which maintains an archive [C71] of the programs pre-
sented in articles. Although some of those in the archive were frozen at the time of
their publication, others are still maintained and/or distributed. I have included below
all those packages which I believe to be still of use now or to have been used in the
past in interesting applications.

The reader will infer from the large number of packages mentioned and their dis-
persion in the literature that it is highly likely that there are further packages which I
am not aware of. Indeed some of those described are only available via the internet,
without related published books or articles: as already stated I have tried to provide
the relevant URLs.

I have not attempted to list for each package the facilities it has or lacks. That
is described in the individual packages’ manuals, which together cover thousands of
pages. Trying to make any useful digest would thus take an enormous amount of effort,
still fill many pages, and be inevitably unreliable. Any attempt to do it is made more
difficult by the advent of “worksheet” or “notebook” interfaces, online tutorials, and
online manuals accessed from within the system, replacing the more common printed
or printable manuals ubiquitous in the past; those newer resources mean one has to
run the system in order to see what is available.
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I therefore instead give only a general indication of the nature of each package
together with references enabling readers to find out more. If presented as quotations,
the short descriptions come from the packages’ own material. Some other descriptions
are based on freely available digests made by others. I apologize to anyone whose work
has unintentionally not been adequately credited.

Despite those cautionary remarks, I have added Appendix B, providing a list
(probably very incomplete) of packages offering certain important specific types of
calculation, for example listing packages providing the Newman–Penrose formalism.

The section discussing applications, Sect. 8, is as complete as I could make it, in
terms of the topics in GR mentioned, but certainly does not provide a comprehensive
bibliography of papers in GR where CA was used, if only because researchers may
use a CA package in their calculations without mentioning it in the published work
(d’Inverno 1980 gives examples from his own research). However, I shall be very
pleased to hear about applications which are not covered by one of the subsections in
Sect. 8, and papers which make substantial advances in the areas I do mention. I hope
the selected examples will assist readers considering work on a particular application
and looking for some related work as a starting point.

Although this review covers gravity research rather than just general relativity, many
applications are within that theory or closely-related generalizations. In discussing
such work I shall assume except where otherwise stated the same notational and sign
conventions as in Stephani et al. (2003), the most important of which are that the 4-
dimensional spacetime signature is taken to be (+ + +−); lower case Latin indices run
from 1 to 4, with any timelike coordinate last; a comma denotes partial differentiation
and a semicolon covariant differentiation; symmetrization and antisymmetrization of
index pairs are indicated by round and square brackets respectively: thus

v(ab) :=
1

2
(vab + vba), v[ab] :=

1

2
(vab − vba).

The Riemann tensor is defined by 2va;[bc] = vd Rd
abc, for any vector field v, and

obeys the first Bianchi identity

Ra[bcd] = 0 ⇔ Rabcd + Racdb + Radbc = 0, (1)

and the Ricci tensor, Einstein tensor, and scalar curvature are defined by

Rab := Rc
acb, Gab := Rab −

1

2
Rgab, R := Ra

a .

Other conventions are defined later as required.
For clarity later a number of (hand) computation techniques in relativity need to be

defined. To avoid writing a whole new textbook explaining these I shall usually refer
to the relevant chapter or section of Part I of Stephani et al. (2003), but good accounts
of each of them can be found in many other places (e.g. Penrose and Rindler 1984,
1985; Stewart 1990; Wald 1984). Similarly I do not give introductions to each of the
areas of GR in which CA has been used: I assume the reader already knows about GR
or can find the necessary information via the applications papers cited.
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2 The nature of computer algebra systems

Systems can be classified in various ways, for example by their approach to simpli-
fication (Moses 1971; van Hulzen and Calmet 1983) or by their evaluation strategy
(Hartley 1996): some such issues, and related design considerations, are discussed
here. Interestingly, most of them were already perceived and discussed by the time of
the Yun and Stoutemyer (1980) and van Hulzen and Calmet (1983) reviews.

CA systems differ significantly from numerical programs in their structures and
strategies. The most basic difference between algebraic and numerical calculations
by machine lies in the storage requirements. This leads on to the need for large total
memory, problems of intermediate expression swell, issues in the choice of imple-
mentation languages, the demand for good simplification routines, and the strong data
dependence of execution times. [Execution times for the same programs using the
same system on different hardware can also show unexpected performance ratios,
possibly due to differing versions of the implementation languages (MacCallum 1989
{Reduce}).]

In a numerical program, the storage required for a particular variable is predictable
in advance: double precision floating point numbers in FORTRAN 77 by default used
64 bits, which gave about 1019 distinct numbers (though their magnitudes could be
much larger than that, depending on the division of the 64 bits between exponent
and mantissa). Thus the programmer could work out in advance the total storage
requirement of a program, and find out whether it would run on a PC or needed a
supercomputer. The same applied to estimating computation times.

In CA, this is no longer the case. The algebraic expression which is the value of a
variable may be of any length, and even such a simple expression as 2x3+y2, converted
to a commonly-used, if old-fashioned, input-output format9 as 2*x**3+y**2 and
stored as 8-bit ASCII code, would already take more than the 64 bits of double precision
FORTRAN 77. This basic difference between symbolic and numerical calculation has
a number of side-effects.

The first is that the overall storage requirement tends to be high. Now that typical
PCs have 64-bit CPUs and at least 4 Gb RAM, this is less of a problem than in the past.
A critical point was reached some years ago when memory became cheap enough to
prompt researchers to overcome memory bounds by buying bigger machines rather
than spend 6 months thinking of ingenious ways to pack the calculation into available
store. As a result systems have tended to become swollen in size and inefficient, even
if for routine problems they still run in times and memory sizes acceptable to users.

CA systems are in any case large: under Linux on my PC, Axiom occupies 3.05 Gb
of the file store, Maple 2017 2.41 Gb, Mathematica® 11.2 9.81 Gb, the main “trunk”
Reduce directory 1.74 Gb, and Sage-8.0 (built from source) 8.53 Gb. Maxima as a
standalone package has a surprisingly small set of download files given Macsyma’s
reputation for being large.

It should not be assumed that these figures measure differences in capability or
efficiency. CA systems may come with extensive directories of applications, and for

9 Many systems now allow two-dimensional or more complex input formats, looking more as mathematics
usually looks, especially via menu driven graphical user interfaces, “notebooks” or “worksheets”.
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the sake of independence from the underlying operating system version, may include
operating system software or libraries. In particular the Sage sources for Linux include
the versions of compilers and libraries required to build and run Sage. While this avoids
the problems given by those other systems and packages that can be difficult to install
because they require specific revisions of system programs or libraries which may not
be present, it significantly increases the store required (the pre-compiled binaries for
Sage are much smaller). Sage also incorporates many other programs, again increasing
storage use: see Sect. 3.2.5.

A second is “intermediate expression swell”. As an example, consider the multi-
plication of 2 univariate polynomials of 10th degree with numerical coefficients, each
having 11 terms. If one calculated all possible cross-products of their terms before
simplifying, one would obtain 121 terms, while the final answer must be a 20th degree
polynomial and thus have at most 21 terms. So in the middle of this calculation one
would have 100 more terms than at the end. This has two consequences: one of them
is to again boost the overall storage requirement, but the new feature is the importance
of using software providing “garbage collection”, where storage used but no longer
required is re-allocated for a new use. (See also Padget 1982.)

It is not impossible to implement garbage collection in FORTRAN, but it is not a
standard feature, whereas it is standard in Lisp and C. That is why those languages
have been the most common bases of CA systems, with the more recent addition of
Python.

I shall not try to describe those programming languages in any detail here but just
give some references. Winston and Horn (1981) is a good introductory text on Lisp
and described the variant Maclisp used in the initial implementation of Macsyma:
there are some appendices mentioning other Lisps. Lisp naturally operates on lists,
which is how algebraic expressions can be regarded: “Lisp” stands for LISt Processing
(though because of the formatting commonly used, with many brackets, it is jokingly
said to mean “Lots of Irritating and Superfluous [or Silly] Parentheses”). A Lisp list
may itself be composed of lists or of indivisible “atoms”. Lisp has a number of dialects
which differ in (e.g.) the way in which macros are expanded.

C (Kernighan and Ritchie 1988) grew from an earlier language B (which in turn
developed from BCPL) and was the language in which Unix and its later derivatives
were and are written. It is well-adapted for system programming. Many applications
nowadays use its object-oriented extension C++ (or the GNU version G++). A number
of Lisp systems have been written in C or its extensions, e.g. the CSL used by Reduce.

Python (Ramalho 2015; Stewart 2017) provides object-oriented programming and
structured programming paradigms, and has features and extensions supporting further
styles: it is used by Cadabra and in Sage.

One can extend a CA system with additional code in the implementation language,
but each of the systems described in Sect. 3 also has its own programming language for
users. For most of the systems, these are rather similar even though the implementation
languages may be quite different.

For example, although one can program Reduce directly in Lisp, it, like Mac-
syma, provides an ALGOL-like interface. This is internally parsed into the Lisp, and
has two modes, algebraic and symbolic (see MacCallum and Wright 1991). Maple
has a user language similar to PASCAL. Mathematica® is somewhat different as it
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makes idiosyncratic use of non-alphanumeric characters (such as @, #, and |). As an
example of the sometimes confusing differences, Mathematica® and Sage use SHIFT-
RETURN to terminate interactive commands, rather than RETURN (often labelled
ENTER), while in Maple this is used to mean that the command continues on a new
line.

These language choices however acted, and to some extent still act, as an inhibiting
factor in the spread of CA. Users are reluctant to learn a new language, and still more
so a new programming style. It used to be said by my collaborators in Stockholm that
one could learn Lisp programming in 3 weeks unless one had learnt FORTRAN first,
in which case one must double the time. In particular, recursive algorithms, which
were impossible in FORTRAN, are almost essential in CA as a way to cope with
expressions whose length is a priori unknown.

Avoiding intermediate expression swell affects algorithms. For example, when
forming a product of three expressions a, b and c, it may be useful, having checked in
advance whether any of them simplifies to 0, to multiply (say) a and b and simplify
the result before multiplying by c.

The third effect is indeed the need for, and difficulty of, simplification routines. One
may want these in order (Fitch 1973; Yun and Stoutemyer 1980) to make expressions
smaller (to save on intermediate expression swell), to make them more intelligible to
humans, or to check whether an apparently non-zero expression is actually zero. It is
a theorem that even apparently elementary classes of simplification problems are not
formally decidable (Buchberger and Loos 1983): for example, there is no algorithm
guaranteed to simplify to 0 in finite time all expressions which are equivalent to 0 and
are expressed by applying +, −, × and ÷ to rational numbers, x and π , using also
exp, log, sin and the modulus | | (this result is due to Richardson (1968) and Caviness
(1970); see also Fitch (1973)).

Hartley (1996) described simplification as “one of the most confusing and at times
irritating areas in CA for the user” and remarked that “The difficulty with ‘simplify’
as it is used in the physics literature is that it is too vague”. Yun and Stoutemyer (1980)
listed a very large number of aspects of the problem and the choices involved for both
designers and users, and Moses (1971) noted the dependence of some simplification
methods on the correctness of number theoretic conjectures.

Simplifications may be of such a character that it is always safe to apply them:
for example 0 × x = 0. More generally one may want to have a “normal” simpli-
fier, which is one that returns 0 for any expression equivalent to 0 (as stated just
above, a usable normal simplification algorithm may not exist for some classes of
expressions). One may further want a “canonical form” so that equivalent (non-zero)
expressions have a unique representation. There are many theorems about simplifiers
and the issues also link to problems of “term rewriting”, theorem proving and logic
programming.

Frequently, there are simplifications special to the problem, requiring good control
of substitutions or rewrite rules, preferably with an interactive interface so that one can
inspect the results of trial simplifications readily without over-writing the expression
to be simplified and thus perhaps needing to recompute it. In general one needs some
human intervention to set and control the pattern matching involved in most simplifi-
cations. Thence CA systems only really took off when interactive operating systems
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became the norm. For some more on simplification see the texts cited above: Caviness
(1970), Moses (1971), Fitch (1973), Yun and Stoutemyer (1980), d’Inverno (1980),
Buchberger and Loos (1983) and Stoutemyer (2011).

In revisiting simplification issues recently, Stoutemyer (2011) set out 10 “Goals”.
Several of these relate to issues about domains of definition: Stoutemyer begins by
pointing out that a simplifier may need to know whether a function is real valued,
whether its value is necessarily finite or can be infinity, and whether the value is
unique (for example,

√
a2 might be a or −a). He amusingly defines ‘candid’ and

‘misleading’ expressions, showing examples of the latter which many systems fail
to simplify satisfactorily. He also shows that no one canonical form is always good
for all purposes. There are too many further interesting points for all of them to be
summarized here, among them some of the difficulties system designers have with the
range of different results users might want.

There are simplification or substitution problems which may be decidable but for
which no algorithm is yet known, for example the problem mentioned above of achiev-
ing a shortest expression using “sum-substitution”.

Another comment worth making is that execution times can be very much affected
by when a substitution is made. If a quantity Q has as its value a long expression, and
Q appears in various steps of a calculation, the best strategy may be not to use the
value of Q until the final step, carrying Q up to then as a formal symbol. This does
depend on how the system performs the steps involving Q. (See for example Nielsen
and Pedersen 1988; Schrüfer 1988; MacCallum 1989 {Reduce}.)

These sorts of issues imply that execution times, and even the feasibility, of partic-
ular calculations, are not only data dependent but also dependent on the ways systems
deal with the data, i.e. the design choices and available options.

There are some common bases for any reasonably general CA system, for exam-
ple the implementation of efficient integer arithmetic for arbitrary size integers,
and good algorithms for polynomial arithmetic: algorithms for such basic facil-
ities are described in modern texts. Beyond that, there are quite a number of
choices which have to be considered when building an algebra system. Many of the
design decisions are more computer science than mathematics. Among these are the
following.

1. Amount of mathematical knowledge

This affects the class of problems one can treat. It may sound good to expand
that class as far as possible, but each capability, especially if automatically invoked,
carries an overhead. Hence special purpose systems, omitting capabilities irrelevant
to the class of problems treated, can be more efficient. Areas which have generated
special purpose packages include quantum theory and celestial mechanics as well as
GR, and there also exist special systems for pure mathematical problem domains such
as ring theory or Lie algebras. A subsidiary issue is to decide for what class of inputs
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the programs should be optimized. This again may favour special purpose systems,
like those in Sect. 7.

2. Programming style

While all the general purpose CA systems described in Sect. 3 seem to use elements
of all the main styles, they each emphasize certain aspects more than others. Each of
the choices has advantages and disadvantages.

– Reduce and Macsyma are based on a functional programming style. This enables
natural expression of the mathematical idea of a function, i.e. a mapping which
takes a value in some domain and returns a value in some range. For example, one
might define a function factorial which acted on an integer n and returned the value
of n!. Such functions can be composed, e.g. one could evaluate f (g(x)) if f (x) and
g(y) are functions defined for suitable x and y, and they can be used recursively
(e.g. defining factorial using f actorial(n) = n ∗ ( f actorial(n − 1))).

– Maple makes essential use of hashing techniques and stores quantities in dynamic
arrays. There are a number of internal data representations. Simplified expressions
are stored only once and assigned a signature which is independent of the order of
terms (Char et al. 1983). This design improves efficiency, but the order in which
expressions occur in the course of a session may then affect how they are stored
and hence, for example, the order in which terms in an output expression appear.

– Mathematica® makes considerable use of rewrite rules, i.e. has more extensive
pattern-matching than other systems. This can make implementation of substitu-
tions, or of rules such as symmetries of tensors, easy for users. An example would
be using the identity eiπ = − 1. The main disadvantages are that if a very large
set of rules have been defined, it may take a long time to check all of them to see
if they apply, and that the order in which rules are applied may be important but
not easy to control.

– Axiom uses object-oriented methods. For example it gives an object-oriented def-
inition of polynomials over an arbitrary ring and of operations on them: they will
then inherit whatever operations are defined in the specific ring.

3. Data representation

The data representation can affect efficiency and the class of optimally-treated
problems, and can have an enormous effect on the speed and the possible features. For
example,

– A dense representation provides fast manipulation for dense polynomials: here
every possible power is assumed to be present, so only a list of coefficients is
required. This becomes extremely wasteful for multivariate polynomials with
many terms absent; the latter require a sparse representation, in which not only
coefficients but also powers are explicitly recorded.

– Polynomials may be stored in a factored or an expanded form; for example
(1+x)100 or 1+100x +4950x2 . . . and may be in a distributed or a recursive repre-
sentation, for example 1+2x +2y+x2 +4xy+5y2 or (1+5y2)+(1+4y)x +x2.

– maple’s tree structure for data may affect its substitution capabilities, making it
harder to substitute for a + b in a + b + c.
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– reduce’s data representation, which by default is a nested list structure, may be
the reason for its superior performance on the example of Yamartino and Pavelle
(1991).

Some interesting reflections on representations were given by Hearn (1985). For a
comparison between data structures see Fateman and Ponder (1989).

Stoutemyer (2011) stresses the impact of the choice of representation on simplifi-
cations, and advocates and describes a particular form of representation as a way to
achieve the “Goals” he set out for simplification; it is the “recursive partially factored
form” that was used in Derive (see Sect. 3.3.2), and was based on the form used in the
1960s package ALTRAN.

4. Choice of algorithms

CA systems use methods of calculation which can be very different from those a
human would typically use in a hand calculation; factorization of polynomials over
the integers, and indefinite integration, provide examples. The user unaware of how
these calculations are done may be left puzzled by the behaviour of the system and
unable to exploit its features fully.

For certain problems a “best” algorithm may not exist, and the CA system will then
necessarily perform well on some examples and poorly on others (some systems are
provided with more than one algorithm for certain tasks, but in such cases there is
often no simple way to decide from the input which algorithm to choose, so even this
may not help).

As mentioned above, there are questions for which only heuristics, sometimes
unreliable ones, are known, but which users would like the system to deal with;
the unfortunate system providers are criticised for incompleteness if they leave such
heuristics out, and for incompetence if they put them in. (The most obvious example
of such a feature is given by definite integration when contour integrals are required.)

5. Use of datatypes and overloading of operators

Some systems (e.g. Axiom) use a strong type scheme; then parametrized data types
can take advantage of an object-oriented design. A disadvantage of such a scheme is
that the system might not accept addition of a polynomial and a truncated power series
until one has been converted (“coerced”) to the type of the other.

Hartley (1996) states as an advantage for the user that “most systems are (virtually)
type free”. Most systems also, relatedly, “overload” the operators of some common
operations, for example multiplication, so that a given command can produce different
operations for different types of data: multiplication of two integers is not the same
as multiplication of two matrices. (This can sometimes be confusing if the symbols
presented to the user are identical even though they stand for different processes.)
Overloading is typically achieved by defining a function which first tests the types of
the data and then calls the appropriate subroutine. To avoid overloading one may define
different functions for various data types and require the user to choose the right one
or, in a higher-level design, use inheritance properties in an object-oriented system.
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6. Evaluation of chains of assignments

One aspect of evaluation strategy is the handling of chains of assignments (another
is mentioned in point 8 below). Suppose (following Hartley 1996) we have made the
assignments

a ← b + 1 (2)

b ← 0 (3)

c ← a (4)

and we ask the system to evaluate c. If it makes a simple evaluation the result is a. If
the program automatically follows the assignments one step the result is b + 1. This
is, or used to be (I have not checked that the same applies to the latest versions) done
in Axiom, and Macsyma. Maple is (or was) single-step inside procedures but n-step
or indefinitely many at the interactive level—which could trip programmers up when
debugging. If the program automatically follows the assignments as many steps as it
can (which Reduce does), the result is 1. Mathematica® was able to treat an expression
as one step or in an indefinite number of steps (I have not checked if this is still
true).

One also has to beware of infinite loops if the system can make indefinitely many
steps through the assignments, e.g. asking for the value of c after

a ← b + 1 (5)

b ← a (6)

c ← b (7)

would create a never-ending loop (which many systems would detect, returning an
error after 2 or 3 steps).

Another aspect is that one wants to avoid repeated evaluations of the same quantity,
which can easily arise when dealing with recursive functions. An example is that of
defining the Legendre polynomials recursively via the recurrence

n Pn(x) = (2n − 1)x Pn−1(x) − (n − 1)Pn−2(x) (8)

(with P0 = 1, P1 = x). Done incautiously, one would end up evaluating Pn−2 twice
and so on (cf. Fulling 1991). So in a “lazy evaluation” strategy, where a value is
computed only when it is required, and otherwise only the way to compute it is stored
(this is used in calculating geodesics in GRWorkbench and in the power series packages
of Reduce and Sheep), storing those values that have been computed may also improve
efficiency.

A further issue is that the result of evaluations may depend on the context in which
the values were assigned, i.e. the way in which bindings of values to variables are han-
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dled (some traps for the unwary are noted on pages 259–260 of Yun and Stoutemyer
1980).

7. Control philosophy

Moses (1971) characterized systems’ simplification processes as “radical” if the
output has to be in a canonical form, “new left” if the user is allowed some control
over the expansion, “conservative” if only trivial simplifications, such as x + 0 → x ,
are done automatically, and “catholic” if the user can choose which is to be done.
An example of the resulting differences is that in Maple the function normal some-
times has to be called to do what Reduce would do automatically. Stoutemyer (2011)
discusses what the design of systems’ defaults (i.e. with no call such as to normal)
should cover, and singled out those systems, mostly for educational use, in which
individual steps of simplification are or can be followed.

8. Further issues

There are some important additional issues requiring choices. One is the evaluation
strategy applied when a variable which has been assigned a value is given as an
argument to a function. There are quite a few approaches but the two most common
are “call by value” and “call by reference” (others are “call by name”, ”call by sharing”,
etc.). In call-by-value, the function evaluates its argument and uses the value found,
usually copying it: the variable’s value, which might be used elsewhere, remains
unaltered. In call-by-reference, the function uses a reference to where the value is held,
so that it could assign the variable a new value which would then be used elsewhere.
FORTRAN II used call by reference. Most CA systems use call by value as default,
though they may provide call by reference as well.

Related to this is the question of the scope within which a variable has a certain
value. Global variables have the same value in all places, so if the value is changed
somewhere that value will be returned wherever the variable is subsequently evaluated.
Local variables may have one value within a procedure and a different value elsewhere,
and changes within a function or procedure do not propagate elsewhere. The use
of “packages” or “closures” provides more flexible ways to manage the scope of
variables’ values.

Another issue is the order in which a function with several arguments evaluates
them (e.g. left to right, right to left, …).

One may note that an important efficiency aspect may be whether a program is
run interpreted (i.e. executes instructions without compiling them into the machine’s
internal codes) or compiled. The latter will usually be much faster, but not all CA
systems’ interface languages offer compilers. As far as I can tell from their documen-
tation, Maple can compile a limited subset of procedures, via C, and Mathematica® can
compile functions assuming or being given the argument type: it appears neither can
compile a whole module. If a system offers a compiler, a good strategy in development
can be to run code interpreted until its correctness has been tested, and then compile
it. This is possible, for example, in Reduce and Sheep, and most of the modules in the
standard distributions of those systems are compiled when the systems are built.

Thirty years ago it was easy to list many aspects in which the current systems could
be improved. One might have listed: more powerful portable systems, available on
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devices that would fit in a pocket; improved symbolic-numeric interfaces; embedded
systems; graphical output; easier user input including symbol menus, pen pad input,
and two-dimensional input; and improved help systems. These have virtually all come
to pass, though not all in any one system.

Fuller explanations of some of these aspects (with some consideration of the sys-
tems’ uses in GR) are given (e.g.) in reviews by me (MacCallum 1996, 2000) and
Hartley (1996): although these are out of date in their descriptions of systems, the set
of design options has been rather stable (Grabmeier et al. 2003).

3 General purpose systems

There is no clear definition of a general purpose system. Here I shall consider as
general-purpose systems those which can carry out the mathematical operations of
the calculus and algebra common in mathematical methods courses and mathematical
physics. This means I will not discuss the rather general systems that are primarily
aimed at pure or discrete mathematics such as MAGMA or GAP.

While the subset of facilities common to all the general purpose systems (for this
paragraph, including those such as GAP) may be small, a general purpose system
will have a rather large set of capabilities. Past attempts at system comparisons have
constructed tables showing which systems offered which features, but such a table
would now be so extensive it would be very hard to construct reliably and be unrea-
sonably long. Such a table would anyway not help one to define which systems are
general-purpose and which are not.

It should be noted that most modern general purpose CA systems offer numeri-
cal and graphical capabilities as well as algebraic computation, and have graphical
user interfaces, following the introduction of such features in Mathematica® (see
Sect. 3.1.3).

All general purpose systems implement utilities such as factorization of polynomi-
als over the integers, integration of rational functions, and so on, the algorithms for
which are discussed in texts such as those cited earlier, e.g. Geddes et al. (1992) and
von zur Gathen and Gerhard (2013). A number of more recently-developed algorithms,
or extensions of the standard ones, may not be, or may not be fully, implemented in
all systems. Examples are van Hoeij’s knapsack method for factorization of polyno-
mials over the integers (van Hoeij 2002), Wu’s characteristic sets method for solving
systems of polynomial equations (summarized in Wu 2001), and recent methods for
differential equations (see, e.g., papers in MacCallum and Mikhailov 2009).

The systems also offer interactive command-line interfaces and windowing inter-
faces, the latter generally by using the operating system’s native windowing systems
(e.g. the eponymous Windows or, for example, X Windows). The command line inter-
faces, though they may be considered superseded for interactive use, are very useful
for running sets of commands in a batch mode, which may be less convenient to do
using, for example, Maple’s worksheets or Mathematica®’s notebooks.

The output routines now at least offer a two-dimensional text layout in which
indices are raised and lowered appropriately, and most if not all systems make fully
formatted output, looking like printed mathematics, available, in many cases through
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the medium of LATEX. Being able to save output in LATEX form has obvious advantages
in preparing publications, although that form would not be suitable for feeding into
subsequent steps of a calculation; a trivial example of the difference is that one may
want to see Ri

jkl printed in the output or shown on screen, but for further calculations
one needs to know whether the jkl is three indices or one index with a three-character
name. So in order to carry out further operations on the results, one usually needs them
in the relevant input format. In many cases the input formats are either like FORTRAN
arithmetic expressions or use a prefix notation.

Because the various general purpose systems, as well as more special systems, offer
different facilities, it could be useful to pass problems from one to another and use the
best features of two or more systems. (To some extent this is a motivation for Sage.)
To do so requires a common semantics and syntax to provide intercommunication
between the systems; this aim is not met by, for example, Presentation MathML (see
[C77] for fuller information about MATHML and its variants), which is concerned
with visual rendering, but may be met by the MathML variants which cover semantics.

Such intercommunication can be achieved for specific cases by do-it-yourself
methods, for example by using perl scripts, but that is clearly of limited utility. In
principle OpenMath [C78], which aims to capture semantics as well, offers consider-
able prospects but it has not developed far enough yet to provide a universal solution
to the difficulty; however, proof of concept work has succeeded (Berth et al. 2000).
An alternative approach is code-sharing via pseudocode, which has been validated in
examples such as work on linear ordinary differential operators (Wright 1995).

Most of the packages in Sects. 6 and 7 developed separately from one another
although better and more comprehensive packages might have been developed had
individuals and groups combined their efforts. Some of them do make use of others,
for example combining Mathematica® and FORM (Cyrol et al. 2017), but intercommu-
nication between them, such as Pollney’s linking of Sheep and GRTensorII (d’Inverno
1998) has not been much used.

As already mentioned, the earliest of the current major systems, with origins in the
1960s, were Macsyma and Reduce, both Lisp-based. Work on muMATH, designed for
the early PCs, began in the 1970s. IBM had started to develop a system Scratchpad in
the 1960s but this was replaced by Scratchpad II in 1977; that became Axiom, which
is still available.

The 1980s brought the two most successful commercial systems, both C-based,
Maple and Mathematica®, which have become powerful pieces of software with many
add-on packages for special purposes. These are also as far as I know the only two
independent (i.e. available other than as part of a software suite) systems that are still
commercial. The even more recent system MuPAD, developed at the University of
Paderborn, was eventually sold to MathWorks.

Finally the open source system Sage, which incorporates many other pre-existing
programs for a range of mathematical sub-disciplines including the Maxima derivative
of Macsyma, has become very popular and offers a very wide range of capabilities.
The systems mentioned in the last three paragraphs, and some others, are described
more fully in Sects. 3.1.1, 3.1.2 and 3.3.3.

I believe all the current general purpose systems are available under recent versions
of Windows, Apple operating systems and Linux. (I have heard that although Sage is
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not directly available for Windows it runs fine within a virtual machine.) I do not know
which are currently available for smartphones and other devices (as a past example,
Derive was available on the calculators made by Texas Instruments (TI), and TI later
developed their own specialized system; currently Xcas [C16] is available on some
devices). Some systems provided online versions usable remotely, i.e. where the actual
calculation is done at a remote host site (see e.g. Ishak et al. 1999 for an early example):
Wolfram|Alpha now provides the most extensive such service (see Sect. 3.1.3). (In
the early days, when only specific machines could support CA systems, people often
accessed those machines remotely via modems. However, this could not be done with
the speed and immediacy modern links provide.)

For detailed documentation of almost all systems and packages the accompanying
manuals are the primary source of information. These are typically circulated in elec-
tronic form, whether on CDs or DVDs or via the Internet, and are thus obtainable via
the URLs listed in the appendix. I have therefore not listed them in the bibliography.
The more recent systems also have rather extensive internal or online help facilities.
Some introductory texts are listed below, as are references to the extensive bibliogra-
phies available for the main systems. Nelson Beebe maintains bibliographies [C61] for
the following systems: AXIOM and Scratchpad, MACSYMA and VAXIMA, Maple,
Mathematica®, MATLAB, and Reduce. When there has been a publication describing
a package, online citation information may help one find applications of that package.

3.1 The principal general purpose systems used in GR

3.1.1 Macsyma (andMaxima)

Macsyma was developed at MIT from 1968 to 1982 as part of the MAC project (which
also led to the well-known Emacs editors, and hence GNU and Linux) funded by
DARPA (the Defence Advanced Research Projects Agency, whose networking project
was the basis of the internet). It has been implemented then and since in a considerable
number of different Lisp systems. The MIT team included many pioneers in the field
and developed many of the fundamental algorithms of CA, so the impact of the work
done then is still substantial. For a history of that period and later developments see
Moses (2012).

Macsyma’s ownership history is rather convoluted. (Note: I am not confident that
the following is entirely accurate, but the same may well be true of the longer version
available on Wikipedia [C60]). The rights to MIT’s Macsyma passed in 1982 to Sym-
bolics Inc, a company making Lisp machines, hardware first developed in the early
1970s that was specially designed to run Lisp programs. Macsyma was further devel-
oped by Symbolics and by Macsyma Inc, which purchased the rights from Symbolics
Inc in 1992; its capabilities were very competitive with other systems at that time. In
1985 there were 415 papers listed in the Macsyma bibliography maintained by Sym-
bolics. However, commercial pressures and the unwillingness of investors to put in
necessary capital eventually led to the sale of Macsyma Inc to the same company that
had bought Symbolics Inc. The rights to this version remain with Symbolics, now a
private company: its website [C1] still lists Macsyma 2.4 as available for Windows PCs
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with operating system versions up to the now discontinued XP. Some later promising
attempts towards reviving this version of Macsyma came to naught in competition with
funding for more abstract pure mathematics (Richard Petti, private communication).

Because the MAC project had received US Government funds, the rules governing
US public funding meant that the US Department of Energy retained the rights to a
version, DoE-Macsyma (Carrette and Harten 1985). A licence was also granted to the
University of California Berkeley and Macsyma was eventually implemented using
their Franz Lisp (later Allegro CL). At one time this version was referred to as Vaxima,
because it was available in particular for DEC VAX machines.

DoE-Macsyma was for some years maintained by Paradigm Associates. It is this
version which has become Maxima [C2], which was released in 1998 under GPL
(GNU General Public License). It does not have all the facilities that were added
after Macsyma and DOE-Macsyma started to develop separately, but is under active
development. It has a number of extensions and interfaces with other systems and is
available for the main operating systems. It is written (now) in Common Lisp; the web-
site lists the GNU Clisp implementation as a preferred base. Maxima is a component
of Sage, which provides as the Lisp base ECL (Embeddable Common Lisp).

For completeness, as papers may reference them, I note that there were earlier
versions of Macsyma for Macintosh computers (aljabr from Fort Pond Research,
and paramacs from Paradigm Associates) both being licensed from DoE-Macsyma.

Davenport et al. (1993) begins with an introduction to Macsyma, and Maxima has
a very extensive manual.

3.1.2 Maple

A group at the University of Waterloo, Canada, began to develop Maple [C3] (Char
et al. 1983) in late 1980 and it was first released soon afterwards. One aim was to
have a system that would be small and fast enough for whole classes of students to use
simultaneously on the time-shared machines of the day (Macsyma was not suitable
for that, being only available on one machine not readily accessible under the poor
network connectivity of the time, and requiring too much time and store for time-
shared use in teaching: it was at one time claimed to be the largest Lisp program
written).

A second aim was portability, so Maple was written in languages in the BCPL
family (initially Maple was written in the common subset of B and C, and a custom
macro processor, Margay, was used to specialize to one of the two; later only C was
used). Maple has undergone substantial development in its interfaces and libraries, and
has also changed ownership. The graphical user interface was first released with Maple
V. Versions continued to be numbered up to Maple 18, and then changed to an annual
label: the current version is Maple 2017. Maple’s small kernel and its large library,
with good interfaces, have led to its wide use, especially in research and higher-level
education.

As use of Maple grew, a spin-off company, Waterloo Maple, was formed, and the
rights are now with Maplesoft (see [C3]). Early versions distributed the commented
sources of the library code (though not the kernel C code); that has long since ceased
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to be the case, although one can see the uncommented code for a function by using
the help function within Maple.

There are many books on Maple, for example Wright (2002) and Heck (2003),
some now out of date in that they refer to rather old versions. For a fuller bibliography
of Maple books see [C63].

3.1.3 Mathematica®

Stephen Wolfram’s Mathematica® [C4] replaced his earlier SMP (see Sect. 3.3.3) and
was first released in 1988. Development had started in 1986. It was a fully commercial
CA system from the start. As of February 2018 it was at version 11.2. It has been very
successful and is perhaps the CA system best known to physicists, possibly because
its originator, Wolfram, is also a physicist. It has been jokingly called the IBM of
CA (referring to the time when “nobody got fired for recommending buying from
IBM”).

On its first release in 1988, it was the only system offering a comprehensive com-
putational environment integrating numerical and graphical facilities with algebraic
ones, and had a unique user interface, with “notebooks”: it was (and is) thus not
only a CA system but a more general system for mathematics. In these respects it
outpaced other systems, whose progress in those areas, while not non-existent, had
been up to then been leisurely. (Other systems soon followed suit in providing such
integrated graphical, numerical and interface features, and by now the other main sys-
tems have generally caught up.) Mathematica® has become a large system with many
applications-oriented features. My impression is that its advertising prompted a ten-
dency for all systems to overstate their powers in the hunt for sales: this is regrettable
but was probably inevitable.

Mathematica® is based on C rather than Lisp. It has been claimed this makes it more
efficient, but that may be more an issue of implementation details than of underlying
language (Fateman and Hayden 1996). In its early history there were some amusing
bugs (see Fateman 1989, 1992), but these are of course long gone.

The standard source on Mathematica® was Wolfram (2003), but rather than
continue to produce new editions of that book as the amount of documentation
and the number of the packages within the system has grown, users are now
referred to the Wolfram Documentation Center [C65] for information. I have used
some introductory texts such as Crandall (1991), but do not know the available
books well enough to pick out particular ones among them: for a full booklist see
[C64].

The Wolfram Language, which “grew out of Mathematica” is the implementation
language of Wolfram|Alpha [C5], which provides an online service “doing dynamic
computations based on a vast collection of built-in data, algorithms and methods”. It
aims “to make all systematic knowledge immediately computable and accessible to
everyone”.10

10 Stephen Wolfram was awarded the 2017 Richard D. Jenks prize of ACM SIGSAM for his work on
Wolfram|Alpha and Mathematica.
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3.1.4 Reduce

Reduce is a highly portable system available on a wide range of machines and was
probably at one time the most widely used in a geographical sense. It was initially
written by A.C. (Tony) Hearn for use in scattering problems in quantum theory. It
is written in Rlisp (Marti 1993), itself written in Standard Lisp (Marti et al. 1978,
distributed with Reduce). Its standard test inputs include a straightforward general
relativity program due to Barton and Fitch which computes the Einstein tensor from
a metric.

Reduce was for a while a commercial product of the Rand Corporation, but it is now
available free and can be downloaded via its website [C6]. The Reduce distribution
offers two Standard Lisps, PSL (Portable Standard Lisp) and CSL (Codemist Standard
Lisp) and users may build from either (or both) depending on their hardware and
operating system. The last release with a version number was Reduce 3.8 but the system
has been developed since. The present sources are organized under the subversion
programsvn and change frequently (as of February 2018, my copy was for subversion
number 4441). Unusually, the source code repository provides, alongside the current
“trunk” version, a “historical” archive of some preceding versions’ source code (not
necessarily possible to rebuild from).

Being free, like Maxima, Reduce lacks the salespeople and glossy brochures of
the main commercial systems, but it is an extensive system still under active develop-
ment which distributes its complete source code (a description which also fits Maxima
and Sage). For that reason it has been especially popular with algorithm developers,
so that Reduce still has in some areas (in my view) the best current auxiliary pack-
ages. That may also be why a number of CA packages for GR were or are built on
Reduce.

The introduction to Reduce of which I was a co-author (MacCallum and Wright
1991) is still useful although it was written before the switch from upper to lower case
as default. For other books see the ‘Books’ tab at [C6]: some such as Grozin (1997)
are aimed at particular application areas, but none I know of cover the same ground as
MacCallum and Wright. For references, consult Nelson Beebe’s bibliographies [C61]
and the ‘Bibliography’ tab at [C6].

3.2 Other current systems

Here I briefly introduce other general purpose systems which could be, but to the best
of my knowledge have not been, or not yet been, used to support CA in GR.

3.2.1 Axiom

A group at IBM led by the late Richard Jenks created a very high level design for
a system known in development as Scratchpad II. The project started in 1980 as a
follow-on from the earlier Scratchpad, which had been written in FORTRAN and
developed since 1965. Scratchpad II was intended to exploit high-level mathematical
concepts to produce a clean and powerful design, having a very abstract approach to
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datatypes, based on category theory and the object-oriented programming approach,
which it embodies.

In 1990 it was sold to NAG (the Numerical Algorithms Group) and renamed Axiom.
Axiom (Jenks and Sutor 1992) is a large and powerful system. NAG ported it to
Codemist Common Lisp, but stopped selling it in 2002 and eventually released it to be
distributed as free software. (Codemist also created Codemist Standard Lisp (CSL),
now one of the bases for Reduce.) There are now three freely available descendants,
Axiom [C8], FriCAS [C9] and Open Axiom [C10], due to disagreements between
maintainers and developers about various issues. Axiom is currently supported by
CAISS, the Center for Algorithms and Interactive Scientific Software, a joint effort
of the Computer Science and Mathematics Departments of The City College of New
York.

Axiom had a lead in some features, e.g. indefinite integration. A (cross-)compiler,
Aldor, conceived as an extension language for Axiom and originally named A#, which
can accept and output several formats and has libraries embodying the Axiom domain
and inheritance properties (Watt et al. 1994; Watt 2003), has also now become freely
available [C11]. It may be of interest for symbolic calculation in GR because of its
high-level features. However, there are as far as I know no gravity or differential
geometry programs yet in Axiom or Aldor.

In my view, Axiom deserved to be much more widely used than it was, but the
present divergence into multiple descendant systems makes that an unlikely future.

3.2.2 FORM

FORM [C12] (Kuipers et al. 2013) was developed, initially by Jos Vermaseren, to
handle very large expressions efficiently, optimizing the processing speed and mak-
ing use of disk storage when necessary, rather than “mimic the way humans work
with formulas as much as possible” which its website says other CA systems do.
Its applications have been mainly in theoretical particle or high-energy physics, for
example in evaluation of Feynman diagrams. Initially written in FORTRAN 77 it
was later rewritten in C and eventually made open source. There are now paral-
lelized and multi-threaded versions. Its potential use in GR is principally in quantum
GR.

3.2.3 MuPAD

MuPAD was developed at the University of Paderborn (Gerhard et al. 2000). It was
eventually purchased by MathWorks. It is no longer sold as a separate product but
is included in the Symbolic Math Toolbox add-on for MATLAB, which, from the
company’s website [C13], appears to mean it can still be used as a CA system. I am
not aware of any geometric or GR packages written in MuPAD.

3.2.4 Redberry

Redberry is described in Bolotin and Poslavsky (2013) as “an open source com-
puter algebra system with native support of tensorial expressions. It provides basic
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computer algebra tools (algebraic manipulations, substitutions, basic simplifica-
tions etc.) which are aware of specific features of indexed expressions: contractions
of indices, permutational symmetries, multiple index types etc. Redberry sup-
ports conventional LATEX-style input notation for tensorial expressions. The high
energy physics package includes tools for Feynman diagrams calculation: Dirac
and SU(N) algebra, Levi-Civita simplifications and tools for one-loop calculations
in quantum field theory. Redberry is written in Java 7 and provides convenient
Groovy-based user interface inside the high-level general purpose programming
language environment.” From this description it may deserve to be placed with
standalone GR packages rather than general purpose systems. Redberry is available
at [C14].

3.2.5 Sage

Sage [C7] is a very extensive system for mathematical work which combines fresh
code with a number of pre-existing packages. The current list of included packages
has 90 entries, among them Maxima (see above), Xcas (see below), the statistical
package R, NumPy, SciPy and Sympy (programs for numerical, scientific and sym-
bolic manipulations in Python), and important packages for pure mathematics. Its
main implementation language is Python, and its user interface language is similar
in character. For speed it also uses the superset of Python, Cython [C70], which can
produce compiled C and link with C++.

As already mentioned, it has the commendable feature that the distribution set of
Linux sources includes all the packages on which it depends, so that it is entirely
self-contained.

There is a differential geometric package for Sage, distributed with the system. It
is called SageManifolds and has been developed by a number of authors led by Eric
Gourgoulhon (Gourgoulhon et al. 2015) [C52]: see also Birkandan et al. (2017). It uses
the iPython interface. There are or were also tensorial packages for other components
of Sage: TensorA [C53] for R, written by K. Gerald van den Boogaart, which appears
to have been last updated in 2006; diffgeom [C54], defining rather general classes
for manifolds; Tensor [C55], which uses array and matrix methods, for Sympy; and
GraviPy [C75] which uses iPython.

3.2.6 SymbolicC++

SymbolicC++ [C15] (Hardy et al. 2008) “uses C++ and object-oriented pro-
gramming to develop a computer algebra system.” It “introduces, amongst oth-
ers, the Symbolic class which is used for all symbolic computation. The Sym-
bolic class provides almost all of the features required for symbolic computation
including symbolic terms, substitution, non-commutative multiplication and vec-
tors and matrices.” The system includes facilities for Clifford algebras and Gröbner
bases.

One may also note the C++ library described in Limache and Rojas Fredini (2008),
but I am not aware of any package based on it.
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3.2.7 Xcas

Xcas [C16] is a user interface to Giac, a “free, basic Computer Algebra System”. These
are open-source projects developed by Bernard Parisse et al. It is based on experiences
gained with Parisse’s former project Erable. It can be used “directly inside software
written in C++” and has been utilized in a number of mobile devices (e.g. HP Prime,
TI Nspire) and pocket systems. It has compatibility modes with Maple and MuPAD,
interfaces with a number of well-known libraries, can be used from LaTeX, and there
is or was an OpenOffice (now LibreOffice) plugin enabling its use within spreadsheets
etc. A version is included with Sage (see Sect. 3.2.5).

3.3 Earlier systems

Here I briefly cite sources for information on general purpose systems which have
been used for CA in GR but are, or appear to be, no longer available or maintained.

3.3.1 FORMAC

FORMAC was a list-processing extension initially of FORTRAN and later of PL/1
(Sammet 1993). It was revised significantly from 1973 to 1977 (Bahr 1973, 1977;
Yun and Stoutemyer 1980). Before 1980, many packages using it in GR were written.
It was still available in 1987.

3.3.2 muMATH

muMATH (Wooff and Hodgkinson 1987) was based on muLISP and provided a system
for CP/M and later MS-DOS microcomputers (before Windows was introduced). Its
lead author, David Stoutemyer, designed it to be usable within the small memory of
those now obsolete machines (early IBM PCs had 640K of memory). As hardware
and operating systems improved, the original system was replaced by Derive, as used
in TI calculators (mentioned above). Derive was discontinued in 2007 in favour of a
newer TI CA system (see Stoutemyer 2011). MuMATH itself was rewritten for the
Atari ST and TT with 32-bit address pointers, allowing a much larger data space, and
with a windowing interface: this version, whose manual was as far as I know available
only in German, was called riemann.

3.3.3 SMP

SMP (Symbolic Manipulation Program: the acronym is amusing to UK users brought
up in the era when the School Mathematics Project, a scheme to modernize the high
school mathematics syllabus [C79] was being introduced) preceded Mathematica®

as a product of Stephen Wolfram and colleagues. Design work started in 1979 and
it was sold as a commercial product from 1981 to 1988. Some claims made for this
system (Wolfram 1985) were considered unjustified by other researchers (Fateman
1985; Davenport et al. 1985; Monagan et al. 1986). Experience with SMP presumably
informed the design of Mathematica®.
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4 Calculations in gravity research

There are two main types of algebraic calculation in GR. One is the calculation of
general expressions in indexed objects such as the equations defining the Levi-Civita
connection and Riemann tensor in coordinate components for a spacetime in general
relativity, i.e.

Γ i
jk :=

1

2
gil{g jℓ,k + gkℓ, j − g jk,ℓ} =:

1

2
gil [ jk, ℓ] (9)

Ri
jkℓ = Γ i

jℓ,k − Γ i
jk,ℓ + Γ i

mkΓ
m

jℓ − Γ i
mℓΓ

m
jk, (10)

(here =: means that the left side defines the object on the right, and similarly for
:=). The other is the calculation of one or more values for specific indices, typically
components of tensors, e.g. the component R1

234 of (10) for given coordinates and
metric. These will be referred to respectively as indicial and component calculations.

In indicial calculations, the indices are in effect “abstract indices” (Penrose 1968;
Ashtekar et al. 1982; Penrose and Rindler 1984): the set of possible values need not be
specified. The indices’ nature (coordinate, orthonormal or null frames, spinorial, etc)
generally does not affect packages’ ability to compute with them, though there may be
special simplifications to apply, and some packages allow multiple types of index to
be treated simultaneously (thus including the ‘generalized tensors’ of Ashtekar et al.
1982).

There are two very useful crossovers between indicial and component calculations
which CA packages may provide: (i) a package may provide a facility for generating
code for evaluation of components from the indicial form, such as the “tensor com-
piler” (Hörnfeldt 1976, 1977, 1979) which was used in Holmes et al. (1990), and the
ic_convert command in Maxima’s itensor module (see also MathGR in Sect. 6.3); and
(ii) a package may allow a component to be expanded in terms of symbolic compo-
nents for other objects. As an example of the latter, here is an expanded component
of (9) (using Sheep where the object Γ i

jk is called GAM) for a metric with symbolic
entries dependent on all coordinates, here numbered 0–3,

0 00 02 03 02
GAM = 1/2g g -1/2g g -1/2g g +1/2g g

01 00,1 01,2 01,3 02,1

03 01 02 03
+1/2g g+1/2 g g +1/2g g +1/2g g .

03,1 11,0 12,0 13,0

Let us first consider component calculations. Introductory texts on general relativity
mostly start with the coordinate component formulae. Direct substitution of values
into formulae such as that immediately above can be tedious; to evaluate, for example,
R1

234 from (10) one has to repeatedly look up values of the Γ i
jk . Computers handle

such table lookup much better than humans.
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In hand (or “pencil and paper”) calculation a more convenient method than directly
using (9) is to note that the geodesic equations

ẍ i = Γ i
jk ẋ j ẋk, (11)

where the dot means the derivative with respect to an affine parameter, are the Euler–
Lagrange equations of the Lagrangian

L = gi j ẋ i ẋ j , (12)

calculate those, and read off the coefficients from (11).
To go from (9) to (10) an efficient hand calculation method is to use differential

forms, the connection form and Riemann curvature form for a coordinate basis being

Γ
a

b := Γ a
bcdxc, (13)

Θ
a

b := dΓ
a

b + Γ
a

c ∧ Γ
c

b =
1

2
Ra

bcddxc ∧ dxd . (14)

(For those unfamiliar with differential form methods, Stephani et al. 2003, Chapt. 2,
provides a concise introduction.)

One may choose a more general basis of vectors than the coordinate one. Such
a choice may be made because components in the new basis are more readily inter-
pretable physically, for example the energy-momentum of a fluid in an orthonormal
basis whose timelike unit vector is aligned with an observer’s motion has components
interpretable as the energy, fluxes, pressure and stresses the observer would measure.
Or it may be that the choice simplifies calculations or facilitates study of conditions
applied to the problem, for example in studying algebraically special solutions of the
Einstein equations (Stephani et al. 2003, Part III).

In four dimensions a basis of vectors at each point (in general, not a coordinate
basis) is called a tetrad or vierbein. Tetrads used are typically chosen to have fixed
scalar products between their basis vectors, but this is not always the case. For fixed
scalar products the principal choices are orthonormal or Lorentz tetrads and complex
null or Newman and Penrose (1962) tetrads.

An orthonormal tetrad {Ea} consists of three spacelike vectors Eα, α = 1 . . . 3,

and one timelike vector E4, such that

Eα · Eβ = δαβ , E4 · E4 = − 1, Eα · E4 = 0, (15)

where Greek indices run from 1 to 3 and the dot denotes a scalar product. The most
widely-used notation for orthonormal tetrads is that due to Ellis (1964, 1967) as set
out in MacCallum (1973). Variants on this have appeared subsequently (Ellis et al.
2012).
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A complex null or Newman–Penrose tetrad {ea} consists of two real null vectors
k, l and two complex conjugate null vectors m, m:

{ea} = (m, m, l, k) ,

gab = 2m(amb) − 2k(alb) =

⎛

⎜

⎜

⎝

0 1 0 0
1 0 0 0
0 0 0 − 1
0 0 − 1 0

⎞

⎟

⎟

⎠

. (16)

Thus the scalar products of the tetrad vectors vanish apart from

kala = − 1, mama = 1. (17)

Note that the spacetime remains real (i.e. modelled on R
4) although it is described

using complex quantities. Sometimes m and m are replaced by their real and imaginary
parts 1

2 (m+m) and 1
2 (m−m)/i in a “half-null” tetrad, so that objects can be explicitly

real.
The commutator [u, v] of two vector fields u and v is defined by [u, v]( f ) :=

u(v( f ))−v(u( f )) for any adequately differentiable function f . For any basis {ea, a =
1 . . . 4}, the commutators

[ea, eb] = Dc
abec, Dc

ab = −Dc
ba, (18)

define the commutator coefficients Dc
ab. Then the Levi-Civita connection is given by

Γabc =
1

2
(gab|c + gac|b − gbc|a + Dcab + Dbac − Dabc), Dabc := gad Dd

bc, (19)

where gab = ea · eb, the dot again denotes a scalar product, and the vertical bars
denote directional derivatives. If we denote the one-form basis dual to the tetrad {ea}
by {ωc}, we can replace each dxc in (13) and (14) by ω

c to get formulae for the tetrad
components of the connection and Riemann curvature forms. For a tetrad basis with
fixed scalar products we have

dω
a = −Γ

a
b ∧ ω

b. (20)

In the Newman–Penrose formalism, each commutator coefficient Dc
ab is assigned

a single-letter Greek alphabet name, and the curvature, Bianchi identities, etc are then
calculated using that notation, which is complemented by a notation for curvature
components taking advantage of the symmetries of the tensors. The full sets of equa-
tions are written out in several references, e.g. the original NP paper; Pirani (1965),
Penrose and Rindler (1984), Stewart (1990); and Chapters 3 and 7 of Stephani et al.
(2003). (The set in that last reference were checked using the Sheep module NPEQNS
with suitable input data.)

Tetrad methods with well-chosen tetrads, expressed in the differential form notation,
provide very efficient and reliable means for hand calculations of components, and I
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normally use them. From experience the same remark about efficiency often applies
to CA calculations (Campbell and Wainwright 1977; MacCallum 1989 {CAMAL,
Reduce, Sheep}): however, experiment shows that the critical aspect may be the
simplifications required or used rather than the choice of basis (Pollney et al. 1996
{GRtensorII}). One drawback of coordinate calculations is that they may obscure
invariant properties and so hamper physical study of the metrics under discussion.

The references for the NP formalism cover the closely related two-component spinor
formalism, also named NP, which provides a very compact and elegant framework for
numerous calculations in general relativity. The underlying mathematical fact is that
the (connected) group SL(2, C) of linear transformations in two complex dimensions,
with determinant of modulus 1, has a two-to-one homomorphism onto the proper
orthochronous Lorentz group L

↑
+ in four dimensions. The space on which SL(2, C)

acts is called spinor space, and its elements are (one-index) spinors with components
ϕA. Spinor indices like A range over 1 and 2, or, commonly, 0 and 1.

The groups SL(2, C) and L
↑
+ respectively preserve determinants of 2 × 2 complex

matrices and the Minkowski metric. Hence we expect that the determinant-forming
2-form in spin space, with components

εAB =
(

0 1
− 1 0

)

= εAB, (21)

will play the role of the metric. Spinor indices are raised and lowered according to the
rule

ϕA = εABϕB ⇔ ϕA = ϕBεB A. (22)

Note that ϕAεAB 
= εB AϕA. The scalar product of two spinors (with components ϕA

and ψ A) is then defined by

εABϕAψ B = ϕAψ A = −ϕAψA. (23)

If ϕB transforms under S A
B ∈ SL(2, C), the complex conjugate spinor ϕ Ḃ must, for

consistency, transform under the complex conjugate S
Ȧ

Ḃ , and similarly ϕA transforms
under the inverse of S A

B . Dotted (or dashed) indices are used to indicate that the
complex conjugate transformations are to be applied. The order of dotted and undotted
indices is irrelevant. One can obviously build multi-index spinors, in just the same way
that tensors are developed from vectors.

There is considerable flexibility in the relation between vectors and their corre-
sponding two-index spinors vAḂ . However in practice it is common to take (with the
signature (− − −+)) the correspondence

v1
E1 + v2

E2 + v3
E3 + v4

E4 ⇔ vAḂ =
(

v4 + v3 v1 + iv2

v1 − iv2 v4 − v3

)

(24)

between a vector in an orthonormal frame and a spinor in a standard dyad basis (a pair
of basis spinors (oA, ιA) such that oAιA = 1).
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The advantages of the NP spinor formalism are (i) a the spinor equivalent of a real
null vector na necessarily can be written as ±ζAζ Ẇ for some spinor ζA, which is
very useful in treating physical problems such as gravitational radiation where null
(lightlike) vectors naturally arise, and which simplifies some relations involving null
vectors and bivectors, and (ii) the somewhat complicated symmetries of the Riemann
and other tensors become very simple because multi-index spinors can be expressed
as products of completely symmetric spinors and εAB and its complex conjugate.

For example the spinor equivalent of the curvature tensor Rabcd can be written as

χABC DεẆ ẊεẎ Ż + εABεC Dχ Ẇ Ẋ Ẏ Ż + ΦABẎ ŻεC DεẆ Ẋ + εABεẎ ŻΦẆ ẊC D, (25)

where
ΦABĊ Ḋ = Φ(AB)(Ċ Ḋ) = ΦC D ȦḂ = Φ ABĊ Ḋ, (26)

and

χ
ABC D = ΨABC D +

1

12
R(εACεB D + εADεBC ), ΨABC D = Ψ(ABC D). (27)

Here R is the usual Ricci scalar, Φ is equivalent to the traceless Ricci tensor, and Ψ

gives the Weyl tensor. The symmetry of Ψ enables the notation ΨJ for its components,
where J = 0 . . . 4 counts the number of ιC it is contracted with. Similarly one can
write the components of Φ as ΦJ K̇ , where J and K run from 0 to 2 and count the
number of ιC or its complex conjugate in the contractions.

Those coordinate, orthonormal tetrad, and NP formalisms, vector and spinor, are
quite commonly used. Tetrads with variable scalar products are less common but
sometimes useful (Holmes et al. 1990). The NP formalism has been extended to the
GHP formalism (Geroch et al. 1973) and its generalization (Held 1974, 1975), and to
a formalism based on a single null vector (Machado Ramos and Vickers 1996) though
these have been less often used. (In the case of GHP this is probably because it is best
adapted to Petrov type D solutions, and harder to use otherwise.)

That is a far from exhaustive list of computation techniques for components in
general relativity, let alone gravity research in other theories. For example, it omits the
bivector method (Cahen et al. 1967) closely related to the NP tetrad technique. But it
covers most of the component calculations available in packages for CA in GR, and
the ideas readily extend, mutatis mutandis, to higher-dimensional theories, additional
tensorial or spinorial fields, non-commuting objects, geometries with torsion and non-
metricity, and so on—examples of which will be mentioned in Sect. 8. In particular,
most of the systems which have been or can be used in quantum GR provide facilities
for anticommuting or noncommuting objects.

Turning to indicial calculations, suppose we have an expression which is a sum
of products of indexed objects (which need not be tensors, though in practice they
usually are), each term having the same free indices (since otherwise the expression
is not well-formed). We can think of the terms as monomials in the indexed objects.
There are two main issues.

The first is to deal with re-ordering or renaming of indices on each monomial: given
a monomial one wishes to pick a canonical representative of the class of expressions
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equivalent to it under the relevant permutations of indices. After transforming each
given monomial to canonical form, like terms can readily be collected. In hand cal-
culations the numbers of terms, and of indices on them, are small enough to allow
the researcher to manage the issue quite readily, but this will not be true when, for
example, looking for relations between scalar polynomial invariants of high order in
the Riemann tensor.

The second issue is to deal with simplifications of the sum of terms other than simple
collection of like terms: in particular, sum-substitutions may allow combination of
monomials or other simplifications. Generalizing the naming by Balfagón and Jaén
(1999) and Li et al. (2017) one can call the two issues the monoterm and multiterm
problems. [‘Generalizing’ because for example Li et al. 2017 consider only products
of Riemann tensors, and the identity (1)].

Not all indicial tensor packages state their methods in detail, so the following is an
incomplete account.

The earliest indicial package to be released, ITMS (Bogen and Pavelle 1977), which
developed into Maxima’s itensor, used a method of renaming dummy indices, essen-
tially a “systematic labelling scheme” (Hartley 1996), to find the canonical monoterm
representatives. Similar methods have been used in later programs, using lexicographic
or numerical ordering schemes in the relabelling. For example (Portugal 1999), dummy
index renaming can be implemented by first assigning numbers in lexicographic order
to indices, and dividing indices into two classes depending on whether a symmetry
can move both or one of the dummy pair (see below, McLenaghan’s contribution in
MacCallum et al. (1994), and Pollney et al. (1996)), each handled by numerical sub-
stitution and reordering: Portugal (1999) noted that Balfagón and Jaén (1998, 1999)
used a similar method.

ITMS did not always succeed in intended simplifications (Pavelle 1979). Hartley
(1996) stated that none of the packages he had available at the time he wrote his review
could successfully deal with all the examples he gave.

Product monomials can be considered as a single tensor via the ‘full reduction
method’ of Portugal (1999). For this purpose it is usually assumed that the factors
commute, which would not necessarily be true if the objects were indexed differential
operators: in fact I do not know of an implementation of the generalization to the
non-commuting case. The monoterm problem then has two main descriptions in the
literature, either as a group theoretic problem, double coset enumeration, or as a graph
theoretic problem. [One may also use rule-based methods (Parker and Christensen
1994), Young tableaux (Peeters 2007a), and so on.]

The double coset formulation, first identified for GR use by Rodionov and Taranov
(1989), given a generally used notation by Ilyin and Kryukov, and explained in detail in
Martín-García (2008), is as follows. We distinguish two groups that act on the indices:
one is the group S of symmetries interchanging positions of indices, and the other,
D, is the group comprising the renaming of dummy indices, raising and lowering by
the metric, and exchanging repeated indices. Elements of S carry an associated sign
depending on whether the exchange is symmetric or antisymmetric.

For a given configuration of indices g, the equivalent expressions have index con-
figurations sgd where s ∈ S, d ∈ D. The set of these is, in group-theoretic terms, a
double coset. In each coset a canonical representative is chosen (perhaps randomly,
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see Martín-García et al. 2007). Having identified the relevant coset for a monomial, it
is then transformed to its canonical representative. There are two well-known permu-
tation group methods for dealing with this problem. One is the algorithm introduced
by Butler as developed by McKay (1977) and modified and expounded in Butler and
Lam (1985). I understand that the other, the method of Leon (1991), is in principle
superior asymptotically for large numbers of indices, but the cross-over is probably
outside the range of practical interest for GR. Packages for indicial calculations on
tensors typically cite Butler and Lam.

Martín-García (2008) referred to the method he used as the “Butler–Portugal”
algorithm, citing Manssur et al. (2002) which combines results from Portugal and
Svaiter (2001) and Manssur and Portugal (2001), and giving comparative timings for
various implementations. His name for the method reflects the substantial already-cited
contributions of Portugal to its development and implementation (cf. also Portugal
1998 where the Gröbner basis technique is proposed for the multiterm work). This
method has itself recently been speeded up by improved label renaming and better
strategies for the case where subsets of indices are totally (anti-)symmetric (Niehoff
2017 {Mathematica}), using an approach via Penrose’s graphical notation (Penrose
1971, see also the Appendix to Penrose and Rindler 1984: a similar idea was used in
Yamashita 1984).

The alternative to the group theory description is as a problem in isomorphism of
graphs (Butler and Lam 1985). This description (whose different formulations may
use directed or undirected graphs and a variety of graph labellings) is mentioned in
Hörnfeldt (1990) and was used in Lim and Carminati (2007) and Li et al. (2017)
and references therein. Li et al. (2017) analyse several of the earlier methods in the
literature and introduce a new graph-theoretic method.

The multiterm problem concerns relations between components, such as (1). Li
et al. (2017) note that although “there are fast monoterm canonicalization algorithms”,
“efficient multiterm canonicalization algorithms are still missing”. The objective of
the various methods is to express the multiterm expression as a canonically-chosen
equivalent expression in terms of canonical monoterms.

Ilyin et al. (1991) and Ilyin and Kryukov (1991, 1996) {Reduce} give an algorithm
for the case of linear relations between tensors. They use linear algebra in a Euclidean
space of dimension k! where k is the number of indices involved (the group algebra
of the permutation group on the indices). The basis vectors of that space are the set
given by writing the relevant tensors with all possible orders of indices. The algorithm
then maps any expression to its components in the orthogonal complement of the
space spanned by the relations implied by the tensors’ symmetries and the identities
arising from dummy index permutations. It uses a ‘triangle’ method of changes of
vectors starting with the left sides of identities implied by the symmetries, exchanges
of dummies and linear identities.

Portugal’s method (1999), like his associated method for finding a canonical rep-
resentative of a monoterm, substitutes indices with numerical values and applies an
ordering on the numerical lists. Portugal illustrates his method by showing that the
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algorithm makes the following change

Rabcd Re
a

f
c Rb f de → Rabcd Re

a
f

c Rbed f −
1

4
Rabcd Re f

ab Rced f . (28)

This example also illustrates the sum-substitution problem as stated above. If one
wants the shortest equivalent expression to be the canonical representation, one might
prefer to leave the left side of (28) unaltered. However, the same preference would
want the change

Rabcd Re
a

f
c Rb f de +

1

4
Rabcd Re f

ab Rced f → Rabcd Re
a

f
c Rbed f (29)

to be made. Similar comments apply to the example given in Kavian et al. (1997).
I have not yet seen a description of an algorithm for non-linear identities such as

that arising from the Ricci identity for the curvature:

Rcde
f
;[ab] = Rcab

k Rkde
f + Rdab

k Rcke
f + Reab

k Rcdk
f − Rkab

f Rcde
k,

other than the approach of Invar (see Sect. 8.1.1 and [C38]), which expresses multiterm
expressions in terms of a minimal basis of monoterms, and the rule-based methods of
Christensen (1998) {MathTensor}.

As mentioned earlier, the procedures used in Stensor (see above and Sect. 7.4) seem
rather effective but are incompletely documented. Kavian et al. (1997) {Mapletensor}
used genetic algorithms, a non-deterministic and stochastic method. Further methods
for similar and related problems are discussed in Harris (1999), Ilyin et al. (2000)
using Java, and Liu (2017).

5 Requirements of CA for GR

Programs for gravity need some standard CA features, like

– Good simplification routines
– Good control of substitutions
– Differentiation
– A reasonable range of known mathematical special functions, and facilities to add

others.
Depending on their intended uses, they may not need:

– Polynomial factorization
– Integration and solvers for differential equations
– Numerical and graphical features.

CA for GR clearly requires tensor algebra and calculus. More precisely it needs
facilities for handling indexed geometric objects, not all of which are tensors (though
for brevity I shall refer to them all as tensors in the subsequent discussion). The
more fully-featured systems offer user-friendly facilities for extending both the set
of objects and the operations on them. For GR, one may need to go beyond general
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facilities for tensor algebra, both in component and in indicial calculations, as I now
discuss (see also Korolkova et al. 2013). It is also useful to be able to handle differential
and algebraic identities like the Ricci identity, requiring “sum-substitution”, which,
as discussed above, pose hard problems for CA systems.

The exact choice of facilities offered depends on the purposes the designer had
in mind: examples of facilities available in some packages and not others include
classification of the Weyl (conformal curvature) tensor in general relativity into Petrov
types, and functional differentiation of Lagrangians. Algorithm choice can markedly
affect efficiency (see below, McLenaghan’s contribution in MacCallum et al. 1994;
Pollney et al. 1996).

For component calculations, efficient methods for storage and retrieval of compo-
nents that take into account the symmetries on indices are desirable. For example, in
a four-dimensional spacetime the curvature tensor Ri jkl has 256 components but all
except (at most) 20 of these can be expressed linearly in terms of the others: this is one
reason why, rather than using arrays or matrices, many systems employ a functional
programming paradigm to define tensors as functions of their indices, the function
then returning the value of the component for the given index values. To make such
definitions of tensors efficient one needs combinatorial algorithms to deal with the
symmetries. The more extendible packages provide ways to specify the symmetries
of new objects that will automatically generate good storage and retrieval methods.

Input formats still have elements of the FORTRAN style of early systems, mainly
because many users find it quicker and easier to type input data as ASCII characters
along a line than to move up and down between lines to compose a formula or to
search in a palette for the symbol one wants. One specific issue is how to indicate
index positioning in one’s input. Mapletensor (Kavian et al. 1996) used upper and
lower case letters while MathTensor (Parker and Christensen 1994) used “ua” and
“la”. Some systems have used LATEX-like notations such as ∧a and _a or, (e.g.) as in
the itensor package in Maxima, used −a for contravariant and a for covariant indices.
Classi (see Sect. 7.4) has a rather flexible but somewhat verbose way to define index
positions when a tensor is defined, and treats different index positions for the same
object as defining different tensors (not unreasonable since the component values will
in general be different). This, and other issues concerning the relation of input notation
and textbook notation, may be important factors in users’ choices of package.

The specific objects and functions required by a user are of course problem-depend-
ent. For component calculations they may include Petrov and Segre classification,
coordinate and tetrad transformations, the ability to handle alternative sign conven-
tions, the computation of sets of scalar or Cartan invariants (as defined in MacCallum
2015), covariant differentiation to any order, the handling of Lie algebras, geodesic
equations, auxiliary fields (Maxwell, Yang–Mills and so on), a wide range of geometric
object types, operations such as Hodge duality, functional differentiation, perturbation
expansions, complex numbers and functions, and flexibility in metric, connection and
so on (perhaps allowing multiple metrics to be worked on simultaneously). No single
system at present (as far as I know) offers all possible such facilities for geometry and
gravity, though some come close.

It is also important to choose algorithms with care. Sometimes this takes one in
a different direction from general research in CA. That research tends to be devoted
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to finding algorithms good for asymptotically large dimension n, while CA in GR
usually requires efficient algorithms for small dimension n.

As a simple example in algorithm choice, the direct use of the textbook formulae
(9) and (10) for calculating the curvature from the metric in coordinates is inefficient,
compared with [ jk, ℓ] := g jℓ,k + gkℓ, j − g jk,ℓ and

Ri jkl =
1

2
[giℓ, jk + g jk,iℓ − gik, jℓ − g jℓ,ik] + gmn{[ jk, m][iℓ, n] − [ jℓ, m][ik, m]},

(30)
Hartley (1996). There are two main reasons. The formula (30) avoids differentiating the
inverse metric gi j , which is the ratio of one polynomial of degree 3 in the components
of g jk and another of degree 4, and Ri jkl has more symmetry than Ri

jkl so fewer
components need to be stored. For this sort of reason the intermediate quantities a
system calculates may not be the ones users expect on the basis of textbook formulae,
but instead may follow a path chosen for efficiency reasons. (For an example where
inefficient intermediate steps seem to have been used, see MacCallum 1989.)

A second example is provided by the discussion in Allen et al. (1994). A textbook
computation of Newman–Penrose quantities might work by

Ca
bc = (ha

i, j − ha
j,i )hb

i hc
j , (31)

Γabc =
1

2
(Ccab − Cabc − Cbca), (32)

where ha
i are the components of the basis vectors. Using Jacobi’s theory of minors to

re-express the inversions of h, Allen et al. obtained

Ca
bc =

(

ha
i, jδ

i jkp
bcdehd

khe
p

) /

det
(

h f
q

)

, (33)

leading to a speed up by a factor 2 in four dimensions. They then found that even better
was to do a once-for-all evaluation of (33) and write (for example) the NP coefficient
μ as

μ =
1

2
ei jkp[ni, jℓkn p + mi, j m̄kn p − m̄i, j mkn p]/(i

√
−g) (34)

leading to another speed up of factors 2 to 5 and a saving in memory of 65% or more.
The method using (33) is an example of the Cartan package for Maple which was
designed to handle a general tetrad, while the one using (34) was part of the Debever
package modelled on Debever’s null frame formalism.

The efficiency of algorithms is important, but a user who does not have heavy and/or
repeated calculations to make may choose to meet the need for the user to understand
the mathematics by preferring one of the less sophisticated programs listed below,
which may thus still be of value. In particular, such a user might prefer one of the
packages which more or less directly implements textbook formulae. To achieve input
notation mirroring standard formulae, one usually has to define operators as “infix”
rather than “prefix” and use textbook tokens for their names, so that one can write
(e.g.) a∧b rather than wedge(a, b).
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For indicial tensor calculus, the most critical aspect is the handling of dummy
indices and symmetries, discussed in Sect. 4. Other features desirable in an indi-
cial package include the ability to deal with subspace splitting and with additional
fields (requiring simultaneous use of two or more index sets); functional differenti-
ation with respect to indexed objects; substitutions for indexed objects, for example
substituting from (9) into (10) to express the curvature directly in terms of the met-
ric; ‘tensor compiling’ (the generation of code for component computations from
the indicial formulae); and the handling of commutation rules for non-commuting
objects. It is worth noting that although indicial tensor calculus does not give
rise to the issues concerning efficient storage and retrieval of values by compo-
nent calculators which were discussed above, the combinatorial algorithms required
to do that are similar to those needed in transforming a monoterm to canonical
form.

6 GR packages for general purpose systems

Here I shall briefly outline the available packages for GR and/or differential geometry
within each of the main general purpose CA languages (Macsyma/Maxima, Maple,
Mathematica, Reduce). To the best of my knowledge there is no GR package for Axiom
or MuPAD, or for Sage other than SageManifolds (see Sect. 3.2.5) and those for the
Maxima within Sage. There was a package, muTENSOR, for muMATH, which was
closely related to the Reduce package REDTEN (Dyer and Harper 1988). I do not
know of packages that worked with Derive.

Some of the packages for general purpose CA systems are automatically included
in the standard distributions of those systems. The other packages mentioned here are
almost all freely available over the internet, even those written for the commercial
general purpose CA systems. I believe the exceptions are atlas 2 (for Maple and
Mathematica®11) and the Mathematica® programs MathTensor and Tensorial. Some
others have at various times charged a fee or been shareware (i.e. relied on optional
donations) but I have not recorded those histories.

A few packages seem to me to have particularly interesting features or be of special
importance because of their widespread use or the facilities they offer (or both) and
I have given these separate subsubsections of their own. The selection of these is of
course entirely subjective.

6.1 Macsyma/Maxima

6.1.1 Current Maxima packages

Maxima ([C2], [C7]) comes with four relevant packages. Of these, ctensor and itensor
were inherited from DoE-Macsyma, but “in various stages of disrepair” (Toth 2005). A
new module atensor was added to achieve parity with the commercial version of Mac-

11 As of February 2018 the websites for Atlas 2 were no longer reachable, but I have retained the information
about Atlas 2 in case this is a temporary glitch.
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syma (Toth 2005). The Maxima manual provides descriptions of the four packages.
They are:

atensor For algebraic tensor manipulation in the sense of objects in, for example,
a Clifford, Grassmannian or symplectic algebra. “The essence of atensor is a set
of simplification rules for the noncommutative (dot) product operator (“.”).”
cartan This, which is described under “Functions for differentiation” in the
manual, implements the exterior product and Lie and exterior differentiation for
differential forms. It was originally written by Frank B. Estabrook and Hugo D.
Wahlquist.
ctensor For component calculations in coordinates or frames. It was extensively
rewritten in 2004. It can Taylor expand tensors, compute Petrov type (by the method
of Pollney et al. 2000c, which adapts that of Åman et al. 1991), and include torsion
and nonmetricity.
itensor For abstract (indicial) tensor manipulation. In itensor a tensor is repre-
sented as an “indexed object”, a function of 3 groups of indices which define the
covariant, contravariant and derivative indices.

6.1.2 Earlier Macsyma/Maxima packages

GEOCALC (Moussiaux and Tombal 1987; Tombal and Moussiaux 1989) was based
on the Geometric Calculus of Hestenes (1986), which used Clifford algebra based on
a “fiducial” orthonormal frame. GEOCALC could use those methods to calculate the
curvature from a metric.

Early versions of Stensor (see Sect. 7.4) were also implemented in Macsyma, but
I do not know of an available source for that code.

6.2 Maple

Maple has during its evolution had a succession of GR or differential geometric pack-
ages distributed either as part of the system or with the system in its share library, or
made available independently. At one time there seems to have been more than one
“tensor” package distributed with the system. The most recent version I have (Maple
2017) includes a physics package which is said to be better integrated with other
Maple facilities, such as the DifferentialGeometry package, than past packages: it was
presented in a “webinar” [C17] and the worksheet shown in that webinar is also avail-
able [C18]. The physics package is an in-house product, with work led, I believe,
by Edgardo Cheb-Terrab.

6.2.1 Current Maple packages

To the best of my knowledge these are the other current Maple packages: note that
GRTensorII (see below) could still be included in this list although it has been super-
seded by GRTensorIII.

Atlas 2: This is a commercial product for Mathematica® and Maple. (See the
footnote in Sect. 5 about availability as of February 2018. As far as I know this
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package is not related to the ATLAS numerical linear algebra software project.)
The website [C19] said it was updated to Maple 2015. The overview at the website
gave information on the capabilities and appearance. The summary there is “Atlas
2 for Maple is a powerful Maple toolbox for performing calculations in the general
area of differential geometry: from formulating and solving 2D/3D problems to
working with an N-dimensional manifold as a whole.
Atlas 2 allows you to concentrate on differential geometry problems, but not on the
programming. Atlas 2 uses standard differential geometry notations which allow
you to always get output as you expected.”
Canon: (Manssur and Portugal 2004) [C71], program ADSP. This package pro-
vides indicial tensor methods especially for the monoterm problem. It was used to
support the Invar work (see Sects. 6.3.4 and 8.1.1). It is also used by TensorPack
(see below), whose distribution pack includes a 2008 version of Canon.
DifferentialGeometry: [C20] is a package developed by Ian Anderson and
Charles Torre: as described in Anderson and Torre (2012) it is a component-
oriented package. It performs fundamental operations of calculus on manifolds,
differential geometry, tensor calculus, General Relativity, Lie algebras, Lie groups,
transformation groups, jet spaces, and the variational calculus. There are self-
explanatory subpackages for: GroupActions, JetCalculus, and LieAlgebras. The
“Tensor” subpackage provides support for advanced GR applications. The “Tools”
subpackage is for developing new applications. The breadth of coverage has led to
the use of DifferentialGeometry in a considerable number of papers other
than the examples in GR, notably in relation to differential equations and systems.
The latest versions are being developed independently, but an earlier version is
included with Maple, and is used by the physics package.
Exterior: Written by Mark Hickman, this package’s initial purpose was to investi-
gate Lie symmetries [C21] but it has now been extended to cover various (other) GR
calculations. “For example, the computation of the curvature of the Schwarschild
metric in a moving frame, coordinate frame and a null tetrad”.
Finsler: This package for calculations in Finsler geometries was developed from
a package in Riemann (see below) and written by Rutz and Portugal (2001, 2003).
It provided coordinate component calculations and some indicial facilities. It has
been modified by Youssef and Elgendi (2014) so that it works not only with “the
geometric objects associated with Cartan connection but also those associated with
Berwald, Chern and Hashiguchi connections in any dimension”: [C71], program
AERE.
GRTensorIII: [C22], which was released in early 2017, updated and upgraded
GRtensorII (see below). It provides component calculations, NP calculations, and
calculations for hypersurfaces and junction conditions. The authors of this and its
predecessor are Kayll Lake, Peter Musgrave and Denis Pollney. It can now export
a metric formatted for DifferentialGeometry (see above).
Riemann: (Portugal and Sautú 1997) [C71], program ADGP. “The package has
been developed for tensor component calculations in General Relativity and for
some tensor abstract manipulations. It allows the user to perform tensor algebra
operations, such as addition, multiplication and contraction of tensors. It is also
possible to create new tensors with defined symmetries and to apply Maple func-
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tions to the tensor components.” It was based on Tensorcalc (Portugal 1997), which
had similar indicial and component capabilities, and originally ran in Maple V.3.
Riemann is used by, and can be downloaded with, TensorPack, and by Finsler.
TensorPack: (Huf and Carminati 2015) [C23] is an indicial tensor calculation
package (the authors call this the covariant index format). “TensorPack is based
on the Riemann and Canon tensor software packages and uses their functions to
express tensors in an indexed covariant format. TensorPack uses a string repre-
sentation as input and provides functions for output in index form. It extends the
functionality to basic algebra of tensors, substitution, covariant differentiation,
contraction, raising/lowering indices, symmetry functions and other accessory
functions.”

6.2.2 Earlier Maple packages

Except for GRTensorII, the following earlier packages are as far as I know not available,
or not usable, or not maintained, for the current version of Maple:

bianchi: This module was part of the Maple V library and enabled classification
of three-dimensional Lie algebras into Bianchi types, important in exact solutions
especially for cosmology.
Cartan: This package provided general tetrad calculations (McLenaghan in Mac-
Callum et al. 1994; Allen et al. 1994). It was in the Maple V library.
Debever: This provided calculations using Debever’s null frame formalism
(McLenaghan in MacCallum et al. 1994; Allen et al. 1994). It was in the Maple V
library.
difforms: A differential forms package present from Maple V (Char et al. 1991)
until at least Maple 9.5.
fjeforms: A differential forms package by F. J. Ernst that was present in Maple V.
forms: This provided differential form calculations (Lang 1993). It was written
to overcome the limitations of the difforms package for studies in the equivalence
problem and related areas.
GHP: A package implementing the GHP (Geroch–Held–Penrose) formalism
(Carminati and Vu 2001; Vu and Carminati 2003).
GRtensorII: This [C24] was a rather widely used package, developed from the
earlier GRtensor (described in d’Inverno 1980) and now superseded by GRTen-
sorIII. It is “a computer algebra package for performing calculations in the general
area of differential geometry. Its purpose is the calculation of tensor components on
curved spacetimes specified in terms of a metric or set of basis vectors. The pack-
age contains a library of standard definitions of a large number of commonly used
curvature tensors, as well as the Newman–Penrose formalism. The standard object
libraries are easily expandable by a facility for defining new tensors. Calculations
can be carried out in spaces of arbitrary dimension, and in multiple spacetimes
simultaneously.” Additionally to material available at [C24], Pollney et al. (2000b)
provides a useful introduction.
Although essentially not updated since Maple 11, GRTensorII is still available and
its website gives instructions on running it under recent Maple versions. It sup-
ported a package for junction conditions, GRJunction (Musgrave and Lake 1996,
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1997), and was used in construction of an online database of exact solutions [C74],
which had access provided by a graphical interface GRtensorJ (Ishak et al. 1999).
LUCY (Schray et al. 1996) was “a MAPLE program that exploits the general
theory of Clifford algebras to effect calculations involving real or complex spinor
algebra and spinor calculus on manifolds in any dimension.”
Mapletensor: This was a system for both indicial and component calculation
(Kavian et al. 1996, 1997). I understand that the lead author, Kavian, tragically
died before the planned developments in the cited papers were complete.
NP and the related program NPspinor to convert spin equations to dyad form.
These packages (Czapor and McLenaghan 1987; Czapor et al. 1992, and McLe-
naghan’s contribution in MacCallum et al. 1994) provided the Newman–Penrose
tetrad and spinor formalisms.
NPtools: This package had three parts: (i) conversion between orthonormal and
null tetrads; (ii) an implementation of the full Lorentz group action; and (iii)
the Petrov–Plebanski method of classifying the Ricci tensor (Cyganowski and
Carminati 1998). Available in the CPC program library [C71] as ADJM.
ORTHOFRAME/oframe: This package provided orthonormal tetrad calcula-
tions in the Ellis–MacCallum form (see above) (Van den Bergh 1988). It was
distributed with Maple V.
PROCRUSTES: is “a package of routines for the computer algebra system Maple
which supports the explicit determination of the geometric quantities, field equa-
tions, equations of motion, and conserved quantities of General Relativity in the
post-Newtonian approximation.” (Puetzfeld 2006), [C71], program ADYH. Tested
with Maple 10.
Riegeom: “This paper describes a new package for abstract tensor calculation.
Riegeom can efficiently simplify generic tensor expressions written in the indicial
format. It addresses the problem of the cyclic symmetry and the dimension depen-
dent relations of Riemann tensor polynomials.” (Portugal 2000), [C71], program
ADLM.
tensor: This was a package for coordinate component calculations that formed
part of MapleV.4 (Chu et al. 1996). A package of this name, presumably the same,
was still present in Maple 14. The same package name and some of the command
names had earlier been used in a library command (Char et al. 1991).

6.3 Mathematica®

6.3.1 Current Mathematica® packages

Reflecting its commercial success in sales to physics departments, Mathematica® has
the largest number of packages for gravity or differential geometry of any of the main
general purpose systems. The following are available:

atlas2: This is a commercial product for Mathematica® and Maple. (See the foot-
note in Sect. 5 about availability as of February 2018.) The website [C25] says it
is updated to Mathematica 10. The overview at the website gives information on
the capabilities and appearance. The summary there is “Atlas includes a full list of
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functions for calculating common differential geometry problems, deploys results
in standard math notations to maximize your productivity, and automates solving
path of your tasks allowing to concentrate on ideas. Even if you’re an expert, you
solve differential geometry problems faster with Atlas!
Atlas 2 for Mathematica includes Atlas Palette that is integrated with DG Library
Visualization and Manipulation Atlas offers powerful functionality for visualiza-
tion of multidimensional differential geometry objects uniquely integrated with
Mathematica. Atlas provides access to Differential Geometry Library with hun-
dreds of objects and continuously growing data collection.”
ccgrg: (Woszczyna et al. 2016) [C26]. The “characteristic feature of the ccgrg
package is the specific coupling between the functional programming and the
Parker-Christensen index convention [i.e. the one introduced in MathTensor, see
below]. This causes that no particular tools to rising/lowering tensor indices neither
to the tensor contractions are needed. Tensor formulas are written in the form close
to that of classical textbooks in GR, with the only difference that the summation
symbol appears explicitly. Tensors are functions, not matrixes, and their compo-
nents are evaluated lazily.” From private discussion, I am aware that the authors
of ccgrg made a detailed study of other existing Mathematica® packages when
developing theirs. Woszczyna et al. (2016) also reported an implementation of
similar features in Python [C57].
diffgeo: This is one of a set of packages by Matthew Headrick [C27], “a package
for doing GR-type tensor algebra and calculus. Compared to other such packages I
know, it is easy to use and fairly comprehensive in the number of functions defined.”
Other programs on the same web page deal with Virasoro algebras, Grassmannians
(this, developed with Jeremy Michelson, seems to be the same as the grassmannOps
package listed at [C38]), approximations to Calabi–Yau manifolds and so on.
EDC/super EDC: “Exterior Differential Calculus” [C28] is a differential forms
package offering quite extensive facilities.12 An earlier version is available in the
Wolfram Library Archive. It has been used in calculations of Lie algebras and
cohomology. The extension superEDC can handle superalgebras.
EFTofPNG: This is a code for high precision Feynman computation in the Effec-
tive Field Theory of Post-Newtonian Gravity (Levi and Steinhoff 2017) [C29].
“The code covers the current state of the art PN accuracy including spinning com-
ponents in the merging compact binaries. Its final unit computes observables useful
for the waveform modelling, and serves as a pipeline chain for the wave templates.”
EinS (Klioner 1998; Grabmeier et al. 2003) [C30] is a “package allowing one
to perform operations with indexed objects, which may or may not be tensors.
The main application field of EinS is computations with indexed objects involving
implicit (Einstein) summations (EinS stands for ‘Einstein Summation handler’).
The idea of the package was to create a simple (EinS is a relatively small package
consisting of approximately 3000 lines of code), flexible package which would
be easy to alter for solving any problem involving indexed objects”. The current
version is 2.7.

12 The author of EDC and RTGC, Sotirios Bonanos, died on 1 Oct 2013. The packages remain available,
but should perhaps be moved to the “Earlier” category.
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geodesicCOMMENTED: “A procedure is developed for obtaining the metric
tensor explicitly from the Christoffel symbols. The procedure is extended for deter-
mining if a second order quadratically semi-linear system can be expressed as a
system of geodesic equations…” (Fredericks et al. 2008), [C71], program AEBA.
GRtensorM [C24] is a restricted version for Mathematica of the GRTensorII
package for Maple (see above), written by the same authors.
GRworkbench is of rather different character from all the other CA in GR pack-
ages. Thus a fuller description appears in Sect. 6.3.3.
Kranc is a module for “turning a tensorial description of a time dependent partial
differential equation into a module for the Cactus computational toolkit”, used in
numerical general relativity. It can output parallelized C or Fortran code, perform-
ing some optimizations (Husa et al. 2006) [C31]. Since initial release it has been
“actively developed by Ian Hinder, Erik Schnetter and Barry Wardell.” It forms
an integral part of the publically available EinsteinToolkit [C72], and was used to
generate its standard BSSN codes.
MathGR [C32] (Wang 2013) is a package to manipulate tensor and GR calcula-
tions with either abstract or explicit indices, simplify tensors with permutational
symmetries, decompose tensors from abstract indices to partially or completely
explicit indices and convert partial derivatives into total derivatives.
MathTensor: This (Parker and Christensen 1994; Christensen 1998) was the ear-
liest Mathematica package for GR that I know of, and was (is?) a commercial
product. It has indicial and component capabilities, and a differential forms mod-
ule. Owing to a fire, as of 2017 it had no website but was available from its
co-author, Steve Christensen, at sunfreeware@gmail.com. It is known to have
worked in Mathematica® 10 and is believed to work in the current version.
RGTC: “Riemannian Geometry and Tensor Calculus” [C35] is a component cal-
culation package with the standard facilities. It can classify the curvature in 4
dimensions, and provides calculations in null tetrads and the Newman–Penrose
formalism. It can combine with EDC (see above) for calculations in arbitrary
frames.
Ricci, [C33], is intended “for doing symbolic tensor computations that arise in
differential geometry”. From its website’s description it appears to be a rather
fully-featured indicial tensor manipulator, which recommends MathTensor for
component calculations. The latest Mathematica version for which its website,
updated in 2016, says it has been tested was 5.
Ricci (another one!) written by Juan M. Aguirregabiria [C37] provides coordinate
component calculations. It is a partner of Tetrad (see below).
TensoriaCalc [C36] by Yi-zen Chu “tackles (semi-)Riemannian tensor calculus
problems encountered in general relativity, cosmology, and field theory. Currently,
it calculates geometric objects—Christoffel symbols, the Riemann curvature ten-
sor, Ricci tensor and scalar, etc.—given a metric and the relevant coordinates; and
performs basic operations such as covariant derivatives of tensors”. It was updated
to Mathematica 10.
Tetrad written, like the second “Ricci” above, by Aguirregabiria [C37] provides
tetrad component calculations.
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xAct: “Efficient Tensor Computer Algebra for Mathematica” is a collection of
packages for fast manipulation of tensor expressions [C38], providing both indicial
and component calculations. The basic ideas are said to have been taken from
the abstract index approach (see Sect. 4). It has attracted a significant group of
contributors and been used in a number of projects. Thus it has developed into a
rather fully-featured system and merits a fuller description below (Sect. 6.3.4).

This list should perhaps include FeynCalc [C39], a package for Feynman diagrams,
which may be useful in quantum GR. In addition there is an unnamed program dealing
straightforwardly with the 3+1 formalism in coordinates (Hasmani and Panchal 2015):
this reference cites other programs by the same authors. Dai-Ho Park’s “Indicial Ten-
sor Package Using Notebook Interface” packages [C40] are another set of programs
apparently without an overall name; they “contain routines for manipulating indical
and component tensors in General Relativity and Kaluza–Klein Theory. References
and a few examples are included in notebooks.”

6.3.2 Earlier Mathematica packages

CARTAN: This package is described in Soleng (1996), but I have not been able
to find a current source. The author left research in GR in 1997. Despite that, the
package was extended to, and used in, Weyl–Cartan spacetimes (Babourova et al.
2009).
Differential Forms: An exterior forms package written by F. Zizza [C41]. Last
known to have been updated for Mathematica 6.
EinsteinTensor: This package, written by Pekka Janhunen, derived curvature from
a metric in matrix form [C43]. Last updated, it appears, in 1992.
EVOL and BOLTZ These provided a 3+1 treatment of the field equations together
with the Liouville operator for the relativistic Boltzmann equation (Salgado 1994)
[C71], program ACTG. The programs used relativistic transport theory as formu-
lated by Lindquist for neutrino propagation.
GREAT: Like EinsteinTensor (see above), on which it was based, GREAT [C42]
calculated curvature from a metric matrix. It was written by Tristan Hubsch: the
quoted URL gives a revision date of 2003.
grt: The facilities of grt [C44] were modelled on GRtensor. The author, Pascal
Vaudrevange, left academia in 2012.
Tensorial was “a general purpose tensor calculus package for Mathematica” writ-
ten by Renan Cabrera, David Park, and Jean-François Gouyet, with indicial and
component capabilities. I have been unable to download a copy, though there is a
webpage [C45], with a latest date 2007, stating it was updated to Mathematica 6.0.
Tensors: This provided tensor facilities based on multilinear algebra and matrix
methods (Ruíz-Tolosa and Castillo 2004) but the software download page at [C46]
still refers to Mathematica® 4.0. It appears to have been focused on tensors in
Euclidean space.
TTC: “Tools of Tensor Calculus”, written by A. Balfagón, P. Castellví and X. Jaén
(Balfagón and Jaén 1998, 1999; Castellvií et al. 1994), provided indicial and com-
ponent calculations for tensors including handling of submanifolds and changes
of coordinates. I have been unable to locate a current website for TTC.
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6.3.3 GRworkbench

A number of programs have set out to provide graphical or numerical tracing of
geodesics in gravity, typically in general relativity, for example those mentioned below.
GRworkbench is unusual in providing a CA interface to the numerical part of the work:
it is particularly aimed at enabling the investigation of global structures. The idea of
doing so by tracing geodesics was at the heart of the surprising and impressive results
of Scott and Szekeres (1986a, b). One subsequent use was to investigate a claim that the
mass of the Milky Way could be measured using an interferometer on Earth (Moylan
2003).

Some of the other programs which provide ray-tracing in curved space are:
Motion-4D (Müller 2014b), written in C++ but using GRTensorII to create the metric
input data in the Metric classes, [C71], program AEEX;
GeodesicViewer (Müller 2011) which gave graphical representations using Motion-
4D, [C71], program AEFP;
Gyoto (Vincent et al. 2011) [C76] using the Yorick language and Python.
GpuRay4D (Kuchelmeister et al. 2012) using a GPU, [C71], program AEMV; and
GeoVis, aimed at visualization of objects (Müller 2014a), [C71], program AESY.

GRworkbench has undergone evolution through a set of substantially different
designs. A first version used a custom graphical user interface (Evans 2000). This
was then replaced by a library in the Lax language, which gave rise to a version in
C++ (Searle 1999; Evans et al. 2002; Moylan et al. 2005a, b). There were limita-
tions of this approach and a set of options were considered for a new version (Lewis
2014), the final choice being to implement in Mathematica®. The numerical part of the
code uses lazy evaluation to continue the computed geodesics from the point already
reached.

6.3.4 xAct

xAct is a suite of packages, first released in 2004: the version currently available at
[C38] is 1.1.2, released in August 2015. Four packages act as a kernel for the rest.
They are:

– xCore: generic programming tools
– xPerm: manipulation of large groups of permutations (Martín-García 2008)
– xTensor: abstract tensor computations, the “flagship of the system”
– xCoba: component tensor computations.

xPerm provides a major component of the indicial manipulation capabilities, the
monoterm canonization discussed in Sects. 4 and 8.1.1.

There are some key applications and a number of contributed modules which are
supplied with the overall package. For an up-to-date list see [C38]. The main applica-
tion modules are:

– xPert: high-order perturbation theory in GR (Brizuela et al. 2009)
– Harmonics: tensor spherical harmonics (see Brizuela et al. 2006)
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– Invar: provides a list and basis of all scalar polynomial invariants of the Riemann
tensor and its covariant derivatives up to the 12th (Martín-García et al. 2007, 2008):
see Sect. 8.1.1

– Spinors: spinor computations in GR (García-Parrado Gómez-Lobo and Martín-
García 2012)

The Spinors module and the contributed SpinFrames module provide NP and GHP
formalisms.

The contributed modules extend the main ones in various directions. One giving
a range of extra facilities that have been quite widely used is xTras (Nutma 2014),
which was “field-theory inspired”. Capabilities of xPand, which extends xPert, are
mentioned in Sect. 8.2.2. Cyril Pitrou pointed out to me that one can combine xPert
with the variational derivative operator of xAct to obtain field equations from any
perturbed action.

Although I believe the original lead author of xAct, Martín-García, now works
for Wolfram Inc (the sort of circumstance that has led to other packages becoming
defunct), there are a body of other developers still involved, and the package has
attracted a considerable body of users, as shown by the extensive bibliography of
articles using the package [C66], so it seems likely to be maintained in future. It
certainly seems to be one of the most up-to-date and fully featured packages at present.
Its website lists over 300 applications papers: a number of its recent applications are
mentioned below.

6.4 Reduce

6.4.1 Current Reduce packages

The standard Reduce distribution provides 5 compiled packages which can be or have
been used in GR (and a couple more are among the contributed packages circulated
with Reduce). Details can be found at [C6]. In brief the 5 are:

atensor: An indicial tensor package (Ilyin and Kryukov 1994, 1996): see Sect. 4.
dummy: This provides reduction of sets of indices (such as the indices in an indi-
cial tensor expression) to canonical form (Dresse 1993a, b; Dresse and Henneaux
1994). It is or was used in the CANTENS package by Hubert Caprasse (see below).
eds: (Hartley and Tucker 1991; Hartley 1997). This “provides a number of tools for
setting up and manipulating exterior differential systems and implements many
features of the theory. Its main strengths are the ability to use anholonomic or
moving frames and the care taken with nonlinear problems.”
excalc: This provides a range of facilities for calculations written in terms of
differential forms. Because it has been used in a number of applications described
later, a slightly fuller description is given in Sect. 6.4.3.
susy2: “This package deals with supersymmetric functions and with the algebra
of supersymmetric operators in the extended N = 2 as well as in the nonextended
N = 1 supersymmetry.”

In addition there are a number of packages for calculations in GR which are available
but are not part of the main Reduce distribution:
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Dimsym: Written by James Sherring, Geoff Prince and Michael Jerie, this is
primarily for the determination of symmetries of differential equations [C47]. It
has been used for such problems in GR (Jerie et al. 1998) and has an interface to
excalc (see above)
GRG3.2: This package (Zhytnikov 1994) [C50] and GRGEC (Tertichniy and
Obukhova 1997) evolved from GRG 3.1 (Obukhova et al. 1992). It is a component
calculator providing a wide range of facilities, including spinors, Riemann–Cartan
spaces, differential forms, and indicial operations. One unusual feature is that it
can output results in the formats of several other CA systems.
REDTEN: This package (Dyer and Harper 1988, [C49]) was updated to Reduce
3.8: it builds correctly in the current CSL version of Reduce. Redten has indicial
and component features and provides NP and frame packages.
RicciR: (formerly TMP—Tensor Manipulation Package) is an indicial tensor
package (Kadlecsik 1992, 1996). To obtain the code, see [C48]. It has not been
updated since about 1997.
TAVI: (Demichev and Rodionov 1985) provided an extension from the spacetime
geometry to that of a higher-dimensional fibre bundle of Yang–Mills type, enabling
calculation of the geometry of the group quotient space G/H . It is still available
at [C71] as program AADJ.

The Reduce distribution set now also includes Ortocartan (see Sect. 7.3) in the
“contrib” directory.

It should be noted that because one can build combined Reduce/Sheep systems,
Sheep (Sect. 7.4) could nowadays be considered a Reduce package. The Reduce/Sheep
combined versions offer a non-commercial system competitive in power and features
with the larger Maple or Mathematica® packages.

6.4.2 Earlier packages for Reduce

The earlier Reduce packages I know of are:

CANTENS: This is available in the packages/assist subdirectory of the main
Reduce distribution [C6], but it appears not to have been maintained recently.
Written by Hubert Caprasse, it uses the assist and dummy packages, provides
indicial and component calculations, and can handle more than one space simul-
taneously.
GENRE: This was an overall name for a suite of programs in Reduce 2 which
supplied coordinate and NP component calculations, perturbation methods, and
some unusual facilities like null hypersurface geometry (Dautcourt et al. 1981;
Dautcourt and Jann 1983).
GRLIB: This suite of programs for component, tetrad and NP calculations was
written by the late Dermott McCrea and is described in MacCallum et al. (1994).
The programs are still available [C51] but somewhat outdated (for example, date
from before Reduce changed default case). While later programs offer more, these
programs are easy to understand and adapt, and both the code and the description
have been found useful in later research (Friedrich Hehl, private communication).
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Table 1 Some EXCALC
notation

Input notation Textbook notation Meaning

ˆ ∧ Exterior multiplication

_| � Contraction of a vector
with a form

|_ L Lie derivative

@ ∂ Partial derivative

# * Hodge dual

d d Exterior derivative

d t dt One-form, exterior
differential of t

RTENSOR was “a package for handling algebraic expressions having dummy
indices and symmetries with respect to index permutations” (Rodionov and Tara-
nov 1988a, b, 1991).

In addition an unnamed program for Newman–Penrose calculations is listed in full
in Esteban and Ramos (1990).

6.4.3 EXCALC

Input and output for the differential forms in this package are close to textbook format
and it is therefore very easy to use. It can deal with indexed objects and has many
geometric objects and ideas built in. As examples, Table 1 shows some of the near-
textbook notations.

The package knows the duality of natural basis elements such as dx and @(x). A
coframe and metric can be defined together by (e.g.)
coframe e r=d r, e(ph)=r*d ph with metric g=e(r)*e(r)
+e(ph)*e(ph); and so on.

The differential forms can themselves bear indices, as in Eqs. (13) and (14).
Given a Lagrangian n-form, EXCALC can compute variational derivatives, including
specification of boundary conditions, and calculate conserved quantities induced by
symmetry operators. Coordinate or tetrad calculations are defined via specification of
basis one-forms as in the example above.

7 Standalone software for CA in GR

As well as packages built on general purpose CA systems there are special purpose
systems. Some were of limited availability or applicability (for example, there was
a quite impressive one, TINMAN, written as part of a Master’s thesis I examined in
1996, which was designed to run on the original 640K DOS PCs). There have also been
announcements of potentially useful packages, e.g. Dreitlein and Sauer (1990), which
I have not (yet) found mentioned in later applications. I omit those. The standalone
CA for GR packages which I believe current are:
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7.1 Cadabra

From the website [C56]:
“Cadabra is a symbolic computer algebra system (CAS) designed specifically for
the solution of problems encountered in field theory. It has extensive functionality
for tensor computer algebra, tensor polynomial simplification including multi-term
symmetries, fermions and anti-commuting variables, Clifford algebras and Fierz trans-
formations, component computations, implicit coordinate dependence, multiple index
types and many more. The input format is a subset of TeX. Both a commandline and
a graphical interface are available.”

This overview shows that Cadabra ranks with other fully-featured programs for CA
in GR. The original version is still available but has been superseded by cadabra2.
It is written by Kasper Peeters and makes use of sympy and the xPerm module of xAct
(see Sect. 6.3.4). There is a substantial user community (as shown by citations) and
development work is ongoing.

7.2 Lisp programs for Posets

Rafael Sorkin has written a library of programs to work with posets (partially ordered
sets) [C59]. As far as I know the package does not have an overall name. The programs
were originally based on elisp, the Lisp underlying the well-known GNU emacs editor
program, but are also now available in Common Lisp. The principal application was
intended to be work on causal sets, an approach to quantum gravity initiated by Sorkin
(Sorkin 1991; Dowker 2013).

7.3 Ortocartan

Ortocartan (earlier called Orthocartan) underwent active development over a consider-
able period: see for example Krasiński and Perkowski (1981a, b) and Krasiński (1985,
1993, 2001). It was and is principally aimed at calculations in orthonormal frames.
Active development was suspended in 2000, at which stage the package ran using
the CSL base for Reduce (see Sect. 3.1.4) and would work on (e.g.) Atari Mega STE
machines. The code remained obtainable from the principal author, as was the manual.
Recently it has been re-implemented by Andrea Magnoni, again using CSL, and the
resulting code is now in the “contrib” section of the Reduce source code [C6] and will
therefore be automatically downloaded by those installing Reduce.

7.4 Sheep

Sheep’s name is a joke, since it grew out of Ray d’Inverno’s LAM (“lamb”), mentioned
in Sect. 1.3. Sheep is a relatively small and fast system (see e.g. De Rop et al. 1984).

Sheep’s first version was written by Frick (1977b) with contributions by Ian Cohen
and others, using DEC-10 machine code. It is now written in a dialect of Lisp, Slisp
(Sheep Lisp), which is an extension of Standard Lisp. It therefore can be and has been
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built on the Lisps used by Reduce (see Sect. 3.1.4). Past versions have also used other
Lisps: the current version is 062. Because of the shared basis, it is possible to build
combined Reduce and Sheep packages (Skea 1989) which enable Sheep calculations
to access the general algebraic capabilities of Reduce. By itself, Sheep lacks, for
example, polynomial division and integration.

There are two major extensions of the basic Sheep package: Classi, whose princi-
pal author is Jan Åman, and Stensor (formerly STENSR) with principal author Lars
Hörnfeldt. Classi is a component calculator, with extensive facilities implementing the
classification of exact solutions as applied in the “equivalence problem” (see Sect. 8.3.3
and Stephani et al. 2003, Chapt. 9), and Stensor is an indicial calculator. Stensor pro-
vides “tensor compiling” so that components of the tensors defined in Stensor can be
computed in Sheep or Classi.

Sheep itself initially provided just coordinate component calculations. It has been
extended to tetrads of all kinds, and Newman–Penrose spinor calculations, in a very
flexible manner. Most of the extra component calculation facilities are part of Classi
rather than bare Sheep (Frick and Åman 1985). The first article in MacCallum et al.
(1994) provides a still valid introduction to Sheep, Classi and Stensor, although the
code has been amended and extended since.

Within Sheep, Classi and Stensor have extensive facilities for defining new tensors
in both component and indicial forms, making use of their symmetries, handling co-
and contra-variant contractions, switching between bases and coordinate systems and
so on. Classi has many spinor facilities. Stensor can represent (e.g.) splits of spacetime
and internal manifolds of a fibre bundle. Sheep is interactive and has good facilities
for making targeted substitutions. For instance one can specify a substitution to be
used only when “printing” (to the screen) so that one can try different substitutions
without affecting the stored values.

The main hurdle for new users learning Sheep is that the interface language,
although it is reasonably easy to learn, is in the usual Lisp format, rather than the
type of interface language used for the other CA systems and packages described
above. Formulae are input in a typical Fortran-like style, and the output can be viewed
either in the same manner, or like the example in Sect. 4, or using a TEX-like interface.

Sheep has been used not only in general relativity, but also in elasticity theory
(Mouton 1978), gauge theories and supergravity, thermodynamics, and fluid dynamics.
Examples of the GR applications are given in Sect. 8.

7.5 Earlier systems

7.5.1 POLYNOM

POLYNOM (Hoenselaers 1982a, b) was written in order to handle the very large
polynomials that arise in stationary axisymmetric exact solutions. It was described
at length and used in Hoenselaers’ habilitation thesis (private communication). Its
implementation language was ALGOL-W and it made use of a non-standard way of
dealing with polynomial representation.

123



Computer algebra in gravity research Page 55 of 93 6

7.5.2 Tensign

This program, written in C by Anders Höglund, enabled one to (for example) use
the rule relating the Weyl and Riemann tensors to pass from one to the other. Its
interface enabled use of a cursor to choose where an operation should be performed.
It is still available from the author (at andersh@lysator.liu.se), although he now works
in another field.

One could add SCHOONSCHIP (Veltman and Williams 1993) to this list because it
has been used in quantum GR (some examples are mentioned below). It is considered
superseded by FORM.

8 Applications

In this section, areas of application known to me are summarized, but the examples
and references given here are just a few of many (each of the bibliographies cited
above for the more widely-used packages contains hundreds of papers, among them
large numbers of papers in GR). The applications mentioned are thus necessarily a
personal selection. (Note to readers: if you are expert in those areas of GR furthest
from my own research and expertise, I would welcome suggestions for an improved
selection.) Trying to cover a wide field necessitates rather brief descriptions of papers.
Cross-references to packages used are shown as described in Sect. 1.5. I have tried to
select both early examples and more recent ones.

In theoretical physics the highest level of endeavour, but the least frequently
achieved, is to invent a widely-accepted new theory.

Within an established theory one can try to prove a general result (like the famous
singularity theorems), or obtain results by approximation techniques (including numer-
ical methods), which is one of the main activities of applied mathematicians, or seek
exact solutions. Justifying approximations in nonlinear theories can be difficult: one
can seek to prove correctness either by a priori justification through, for example, error
estimates, or by comparison of the results with expectations on other grounds.

Finding exact solutions is also non-trivial in highly nonlinear theories like those of
relativistic gravity, and can only be done in special cases, but can be useful in several
ways: the solutions may be good approximations to physically important situations,
they may assist in studies of the general properties of the theory, and they can be used
as tests of numerical schemes.

All those activities can be supported by CA methods. One can use CA in obtaining
general theorems e.g. for differential identities (MacCallum et al. 1994 {Sheep}). CA
can be used for approximation techniques, e.g. in power series expansions, stability
analyses, and asymptotics (Piper 1997b; Chruściel et al. 1995 {Sheep}), and CA has
long been used (Nakamura 1987) in numerical relativity to generate formulae for
numerical evaluation.

Modern methods in CA can be brought to bear on GR problems. Gröbner basis
methods were used by Carminati and McLenaghan (1987) for investigating Huygens’
principle, Caprasse et al. (1991) {Reduce’s GROEBNER module} for fourth-order
gravity in higher dimensions, and Hartley and Tuckey (1995) for studying Clifford
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algebras and Grassmannians. Wu’s method was used in Åman et al. (1991). Marcelo
Araujo and I (unpublished) looked for closed form quasi-normal modes of black holes
using a variant of Kovacic’s (1986) method for finding Liouvillian solutions of second
order linear differential equations.

Much of CA in GR work is focused on general relativity, but more recently higher-
dimensional and modified classical theories of gravity have also been treated. CA
systems, including ones not designed for curved manifolds, have also been used in
quantum GR.

8.1 General results in GR

Most of the applications that belong under this heading consist of the generation and
analysis of systems of equations for particular classes of problem.

Bruni et al. (1995) {Maple} studied the general dynamics of irrotational “silent
universes”, cosmological models in which the magnetic part of the Weyl tensor, Hab,
vanishes and there are no non-local influences on local dynamics (Dray 1996).

Black hole thermodynamics has an internal geometry that can be studied using
differential geometric programs. There are a series of papers on this (e.g. Åman et al.
2003, 2015 {Sheep}), which have also considered higher-dimensional cases (Åman
and Pidokrajt 2006 {Sheep}).

As noted in Sect. 4, one can use component calculus to generate generic expressions
with symbolic values for (e.g.) the NP spin coefficients as a step in an investigation.
Such calculations have been made by a number of people, for example for the orthonor-
mal tetrad (3 + 1 spacelike and timelike) and NP equations (by Åman and myself in
Sheep, with results used in Stephani et al. 2003), for NP by Campbell and Wainwright
(1977) {CAMAL, checked with Macsyma} and by McLenaghan et al. (see McLe-
naghan’s article in MacCallum et al. 1994 {Maple}), and for equations in a general
tetrad in Holmes et al. (1990) {Sheep}.

Among other formalisms for which CA programs have been developed are the
ADM (Arnowitt–Deser–Misner) formalism for the Cauchy problem based on a 3 + 1
decomposition into space and time variables and the resulting Hamiltonian formalism
(see De Rop et al. 1984; Moussiaux et al. 1983; Tombal and Moussiaux 1985 {Reduce,
Sheep, Macsyma}), and the Ashtekar formalism rewriting the Einstein equations in
terms of a spin connection (Giannopoulos and Daftardar 1992 {Stensor}).

Calculating the Lanczos potential for the Weyl tensor is quite complicated and so
is another natural area for CA’s use: see Dolan and Muratori (1997, 1998) and Edgar
and Höglund (1997) {Sheep, Maple}.

d’Inverno (1980) reported how use of functional differentiation for the Noether
identities in the Bondi metric led eventually to the development of the 2+2 formalism
for the field equations, of use in theoretical and numerical work on gravitational
radiation and for work in spacetimes where two-surfaces naturally arise, e.g. Brizuela
et al. (2006).

Torre (2014) {DifferentialGeometry} found conditions for a geometry to admit
a null electromagnetic field, thus resolving a problem that had not been completely
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solved at the time of Stephani et al. (2003). In Krongos and Torre (2015) the results were
extended to perfect fluids and scalar fields, and to include a cosmological constant.

Galaev (2014) {DifferentialGeometry} showed how one can find decompositions
of Riemannian and Lorentzian manifolds which enable computation of their connected
holonomy groups.

8.1.1 Uses of indicial calculations

Indicial tensor calculus is used in many theoretical investigations.
One problem which involves both the issues for indicial tensor calculus mentioned in

Sect. 4 is that of enumerating scalar polynomial invariants (SPIs) in the Riemann tensor
and its derivatives. A number of CA programs to calculate SPIs have been developed
over the years, starting quite early (e.g. Hörnfeldt and Pavelle 1983 {Macsyma}).
While the maximum number of independent SPIs at each order of differentiation of
the Riemann tensor in general relativity has long been known, one cannot give a list
of exactly that number which suffices to give all independent SPIs in all cases (for a
review see MacCallum 2015). For the undifferentiated Riemann tensor, the slightly
larger set defined by Carminati and McLenaghan (1991), which will always include
all independent SPIs, can be used.

The work of Fulling et al. (1992), aimed at possible Lagrangians for gravity the-
ories, provides one reason for interest in the problem. In their paper, Fulling et al.
“(i) determine the dimensions of the spaces generated by each set of homogeneous
monomials formed by multiplication and contraction of the Riemann tensor and its
derivatives up to order twelve for scalars; (ii) construct bases of the above spaces up
to order eight for scalars and order six for tensors; and (iii) discuss the design of an
algorithm for expressing an arbitrary element of the space in terms of its basis.”

Many of the indicial calculation packages mentioned in Sect. 4, with varying
approaches, were applied to this problem: for example the rule-based methods of
MathTensor (Christensen 1998), and the brute force approach of Invar (Martín-García
et al. 2007, 2008 {Mathematica and Maple}).

In Invar, a list of scalar polynomial invariants (SPIs) of the Riemann tensor was first
generated and then the relations between them following from (1), the second Bianchi
identity, and dimensional and signature dependent identities were found by exhaustion.
Dimensional identities arise from the syzygies explored in the four-dimensional case
by Harvey (1995) {Stensor} (see also Hörnfeldt 1990): a more extended study of
syzygies was made by Carminati and Lim (see Lim and Carminati 2007), who used
graph-theoretic methods. In Invar, the resulting relations are tabulated in a database,
available as the supplementary material to program ADZK at [C71], which Invar can
search to express any given monomial in terms of a base of all the monomials.

An algorithmic method of expressing SPIs in terms of a basis, and more generally
of writing multiterm expressions in terms of a basis, is described in Green et al. (2005),
Appendix A, using Young tableaux methods.

Balfagón and Jaén (2000) used the indicial capabilities of TTC to check and correct
earlier work finding all possible superenergy tensors, i.e. four-index divergence-free
tensors quadratic in the Riemann tensor: a uniqueness property of the Bel–Robinson
tensor is proved. Subsequently García-Parrado Gómez-Lobo (2008) {xAct} used indi-
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cial computing in studying the Bel-Robinson tensor’s dynamics, treated by making a
3+1 split into parts analogous to those which arise for an electromagnetic field obeying
Maxwell’s equations, and later (García-Parrado Gómez-Lobo 2014 {xAct}) found a
new formulation of a conservation law for it.

In a series of papers, (Lie) symmetries and related concepts for wave equations of
various spins have been studied, in particular on vacuum Petrov type D backgrounds,
using xAct. Andersson et al. (2014) treated the conformal wave, Dirac–Weyl and
Maxwell equations on a general spacetime using the NP formalism, while Aksteiner
and Bäckdahl (2016) studied (Lie) symmetries of the system of differential equations
for spin 1 and spin 2 fields on a vacuum type D background, confirming earlier results
and finding new operators, using the GHP formalism. (There are quite a number
of packages for finding such symmetries which have been applied in GR: some are
mentioned elsewhere in this review.) The identities and operators found are relevant to
separability of the equations, conservation laws and decay rates of test or perturbative
fields (Aksteiner et al. 2017).

Cadabra is cited in ten or more papers per year, many in areas related to quantum
gravity: examples are given by Buchel et al. (2008) and Butter et al. (2017). A full list
can be obtained via [C56].

8.1.2 Alternative gravity theories

An early use of CA in GR was to analyse alternative classical gravity theories, e.g.
Pavelle (1978) {Macsyma}. Pavelle (1979) describes finding conserved quantities for
higher-order gravity Lagrangians (see also Sect. 6.4.3).

A number of authors have used CA in studying theories with torsion and/or non-
metricity. Petti (2016) {Macsyma} discussed derivations of Einstein–Cartan theory
from general relativity, extending ideas first put forward in Petti (1986). The exten-
sion of component calculations from (pseudo-)Riemannian spacetimes to spacetimes
with torsion, such as those in Einstein–Cartan theory, was carried out in Sheep/Classi
and used in studies of classification and equivalence of solutions (Rebouças and Åman
1987; Fonseca Neto et al. 1992, 1996). Reduce and EXCALC were used in a series
of investigations of Poincaré gauge theory: see McCrea’s contribution in MacCallum
et al. (1994) and Baekler et al. (1988), for example.

Magnano et al. (1990) {Stensor} studied the general dynamics of higher-derivative
gravity theories and Capozziello and Stabile (2009) {PROCRUSTES} the Newtonian
limit of fourth-order theories arising from quadratic Lagrangians.

A number of modern systems (for example, Sheep) allow the user to set the dimen-
sion, which could be more or less than 4, and may also go beyond Riemannian
spacetimes of higher dimension by enabling calculations on the auxiliary fields arising
in alternative theories of gravity (alternative, that is, to general relativity) or unified
theories. Some of the systems enable Kaluza–Klein splitting or can handle quantum
gravity in higher dimensions.

For examples of work in 3 (i.e. 2+1) dimensions see Barrow et al. (1986) {Sheep}
and Krongos and Torre (2017) {Differential Geometry}. Examples of use in higher-
dimensional theories (i.e. higher than 4) are given by De Rop and Demaret (1988),
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Demaret et al. (1990) and Socorro et al. (1998) {Excalc}; Caprasse et al. (1991) cited
above; Shaker-Jomaa (1985) {Sheep} and Birkandan (2008).

Anderson et al. (2015) {DifferentialGeometry} studied the holonomy of ambient
metrics: for a given metric g0(x i ) in dimension d, these are Ricci-flat metrics of
dimension (d + 2) of the form

g̃ = dt d(ρt) + t2g
(

x i , ρ

)

, (35)

where g(x i , ρ) → g0(x i ) as ρ → 0, which are Ricci-flat. A large class with holonomy
equal to the exceptional non-compact Lie group G2 were found, and the examples
include conformal pp-waves.

Farina Busto (1988) {Reduce, Sheep} studied quadratic Lagrangians in a D+d+1-
dimensional space. A C++ program not listed above was created for five-dimensional
braneworld theory by Martin et al. (2005).

Sorkin’s work on causal set theory has already been mentioned, see Sect. 7.2.
A Finsler space package is listed above (see Sect. 6.2): for an application see

Antonelli et al. (2003). Other applications of CA to Finsler spaces have been reported
by d’Inverno (1980), Rutz (1998) {Reduce} and García-Parrado Gómez-Lobo and
Minguzzi (2016) {xAct}.

8.1.3 Quantum GR

Hartley et al. (1991) {Reduce} gave a rather general discussion of using CA for
constrained dynamical systems following Dirac’s approach, of relevance to canonical
approaches to quantum gravity.

Christensen (1998) {MathTensor} reported work to support DeWitt’s approach to
quantum field theory in curved spacetime, which required calculation to high orders
of the behaviour of the geodesic interval σ as σ → 0. This was also addressed by
Rodionov and Taranov (1987, 1988a) {Reduce} and by Fulling (1991) who used
bespoke C programs.

Capper and Dulwich (1983) used SCHOONSCHIP to study off-shell quantum
gravity, while van de Ven (1992) {FORM} computed two-loop terms. Álvarez et al.
(2015) {xAct} also considered loop corrections, in another context. One of the authors
(Herrero-Valea, private communication) commented that “In general, computing loop
corrections in quantum gravity requires to handle tensorial extensions with up to eight
indices and internal symmetries”.

Gies et al. (2015) {xTras} analysed “a two-parameter class of covariant gauge
conditions, the role of momentum-dependent field rescalings and a class of field
parametrizations.” This involved the York decomposition of the 3+1 formalism and
“extensive tensor calculus”.

Einhorn and Jones (2015) {xTras} showed that for quantum field theories involv-
ing gravity that are classically scale-invariant, “gravitational radiative corrections are
crucial in the determination of the nature of the vacuum state in such theories, which
are renormalizable, technically natural, and can be asymptotically free in all dimen-
sionless couplings.” xTras was also used in studies of higher-spin fields in an (A)dS
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background: Boulanger et al. (2013) studied the uniqueness of such theories and Joung
and Taronna (2014) cubic interactions in them.

A number of investigations in supergravity, superstrings and supersymmetric field
theories have been made using CA. See for example dos Santos (1989), Grimm and
Kuhnelt (1980), Amerighi et al. (1986), Hughes and King (1987), dos Santos and
Srivastava (1989), Gray et al. (2012) {Stensor, Reduce, EDC} and Cecchini and Tarlini
(1990) using Lisp, and papers listed at [C56]. There are also specialized packages for
this application not listed earlier: e.g. Kreuzberger et al. (1990), Lucic (1995), Krivonos
and Thielemans (1996), Gray et al. (2009) and Gurin (1989) used SCHOONSCHIP.

An application to four-dimensional conformal gravity theories was reported by
Irakleidou et al. (2015) {xAct and RTGC}.

Dunajski et al. (2013) used DifferentialGeometry in lifting solutions of
Euclidean Einstein–Maxwell equations with non zero cosmological constant to solu-
tions of eleven-dimensional supergravity theory with nonzero fluxes.

Demichev and Rodionov (1985) {TAVI} studied higher-dimensional theories of
Kaluza–Klein type, giving as an example the standard model of the electroweak inter-
action and noting the potential application to extended supergravity. See also Demichev
and Rodionov (1986). Gibbons et al. (2011) {EDC} found new metrics on compact
simple group manifolds.

Gusynin and Kornyak (1999) studied heat kernels and DeWitt–Seeley–Gilkey coef-
ficients, using a program in C. Foakes and Mohammedi (1988) {Stensor} calculated
three-loop terms in a nonlinear sigma model, a calculation where, with advanced sub-
stitutions and simplification of expressions with many contracted Riemann products,
a result with a few terms could be found (Lars Hörnfeldt, private communication).

8.2 Approximation and numerical schemes

There are quite a number of approximation schemes of importance in GR: the post-
Newtonian scheme for celestial mechanics and two-body problems including black
hole mergers; expansions at asymptotic infinity and their use for gravitational radia-
tion; weak-field approximations; Taylor series for the metric; the velocity-dominated
approximation near the big bang; and perturbations of the metric in cosmology with
implications for large scale structure.

8.2.1 Expansion approximations

The Sheep power series module TPS, written by Matthew Piper, provided the basis for
an implementation of the double series approximation (Piper 1997a, b), an expansion in
two parameters describing characteristic mass and length scales originally introduced
by Bonnor. This was used in investigations of interactions in gravitational wave-tails
(Bonnor and Piper 1998) and of the recoil effects of radiation on the “gravitational
wave rocket” (Bonnor and Piper 1997).

PROCRUSTES in Maple and EFTtoPNG in Mathematica® enable post-Newtonian
approximations to be calculated (not only in general relativity: see Capozziello and
Stabile 2009). Klioner (1998) {EinS} showed how CA could be used to determine a
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local reference system for the Earth in the Parametrized Post-Newtonian framework,
which is key to the analysis of solar system tests of gravity theories.

A number of papers have used xAct to study post-Newtonian effects (see the ‘Arti-
cles’ tab of [C38]). Recent examples are given by Bernard et al. (2017) where the
dynamics of compact binary systems were studied up to 4th post-Newtonian order
in harmonic coordinates and Marchand et al. (2016) where non-linear backscatter in
gravitational wave tails was calculated to 4.5th post-Newtonian order and compared
with black hole perturbation calculations.

Poisson and Douçot (2017) studied tidal currents in rotating neutron stars in a post-
Newtonian setting. Poisson has said that the use of GRtensorIII was essential in the
work.

In general relativity and other GR research, the asymptotic behaviour of spacetime
at large distances may be of physical importance (e.g. in studying energy loss by
radiation). Expansion in multipole moments for stationary axisymmetric metrics was
studied in several papers (Koppel and Ikhermann 1988; Fodor et al. 1989 {Reduce}).
ALAM was used for the power series expansion of the Bondi metric (d’Inverno 1983)
to 8th order in the luminosity variable. The expansion of this metric in the more general
“polyhomogeneous” case was carried out in Chruściel et al. (1995) {Sheep}.

Following that work, Chruściel et al. (1998) {Sheep} proved the uniqueness of
the Trautman–Bondi energy, even in the polyhomogenous case, among functionals
within a natural class that are monotonic in time for all solutions of the vacuum
Einstein equations admitting a smooth “piece” of conformal null infinity J( that have
passive BMS invariance.

In a series of papers Valiente Kroon used Maple to study expansions near null and
spatial infinity, finding obstructions to the smoothness of null infinity and prompt-
ing the conjecture that this requires Schwarzschildian initial data near infinity in
an appropriate sense (see e.g. Valiente Kroon 2005); most recently, this work has
yielded candidate solutions which lack the well-known peeling property (Gasperin
and Valiente Kroon 2017 {xAct}). Another set of papers by Valiente Kroon and col-
laborators has focused on the characterization of initial data giving rise to (e.g.) the
Schwarzschild and Kerr solutions: see e.g. Bäckdahl and Valiente Kroon (2010) and
García-Parrado Gómez-Lobo (2016) {xAct}.

The generalization of the asymptotic techniques to spacetimes with a positive cos-
mological constant has been studied and applied to compute radiation from a binary
system in such a background (Bonga and Hazboun 2017 {DifferentialGeometry}).

An early example of CA for an approximation scheme was Synge’s method (Åman
1977, 1982 {Sheep}). The approximation is a weak field expansion in the magnitude of
the energy-momentum. The CA calculation discovered an error in the hand calculation
of McCrea (1973).

CA has also been used to produce Taylor series expansions for the metric, an idea
proposed by Penrose and described in Penrose and Rindler (1984). The expansion
in Riemann normal coordinates has been done with a special FORTRAN program
(Yamashita 1984). A spinorial version of such series, applied to expansion of the Weyl
tensor about the apex of a light cone, was introduced by Frauendiener and Sparling
(1993): they call it the “non-commutative Newman–Penrose formalism”, but do not
mention an implementation.
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Holmes et al. (1990) {Sheep} is the only example of CA applied specifically to the
velocity-dominated approximation that I know of. Jakubi (1998) {Maple} computed
power-series expansions of homogeneous cosmological models for use at very early
or very late times.

Cusin et al. (2017) {xAct} computed the power spectrum of the vorticity and rota-
tional velocity to second order in perturbations of a dark matter fluid with non-zero
velocity dispersion.

8.2.2 Perturbations and stability

Perturbation theory is a natural area of application (and its methods overlap with the
expansions just discussed). CA has been applied to studying pulsations and their sta-
bility from a very early stage. Frick (1977a) reported a perturbation calculation using
Levy’s metric for slowly pulsating axisymmetric systems (Levy 1968), implemented
by truncated power series in Sheep. CA was used to study the stability of Melvin’s uni-
verse (Safko 1968) and in studies of slowly rotating stars by Thorne and Campolattaro
(1967) and Hartle (1967) (as a check on hand calculations). It has recently been used
in new studies of the same problem (Reina and Vera 2015 {Reduce}). The perturbed
matching technique used there has also been applied to the I-Love-Q relations for
neutron star binaries, resolving some discrepancies in earlier calculations (Reina et al.
2017 {Reduce}).

The xPert and Harmonics modules of xAct, still then in development, were used
in Brizuela et al. (2006) to study a problem similar to that treated in Reina and Vera
(2015), that of perturbations to second order of a spherical spacetime.

Another recent example of CA for perturbation theory is given by Fodor et al.
(2010) {Maple, Mathematica}: here spherically symmetric almost periodic long-living
localized objects, called oscillatons, formed by a self-gravitating massive real scalar
field, were studied. Expansion in terms of the amplitude parameter was made as high
as 6-th order.

Rostworowski used Mathematica to study nonlinear gravitational waves arising
in a Regge–Wheeler perturbation expansion of the Einstein equations around some
symmetric exact solution (Rostworowski 2017b), and applied the concepts in particular
to asymptotically Anti-de Sitter vacua (Rostworowski 2017a), carrying the expansion
to third order and obtaining evidence for the existence of time-periodic solutions.

A somewhat similar use of an expansion scheme appears in Martinon et al. (2017)
{Maple, Mathematica}, where periodic localized configurations formed by gravita-
tional waves were studied. “Going to higher order in the expansion is necessary in
order to decide which of the large number of linear solutions correspond to valid
nonlinear solutions of the system.”

Lake (1998) mentions some work of Davies on black hole perturbations, allowing
the “second order Zerilli function” to be computed, but I have not found a write-up of
this.

Unruh (1998) {GRtensorII} applied CA to long wavelength cosmological pertur-
bations, clarifying some earlier work and the then current disagreements. Malik and
Wands (2009), in a detailed review of cosmological perturbations, used GRtensorII
and Cadabra. Pitrou et al. (2013) have developed and applied a Mathematica® module
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within xAct, xPand, to carry out perturbations of homogeneous cosmological mod-
els. A number of papers have made use of this module, for example to study the HI
brightness temperature up to third order (Umeh 2017).

Lagos et al. (2016) developed a new module xIST, on xAct, which provides a frame-
work for linearized perturbations of spatially homogeneous and isotropic cosmologies
in scalar-tensor theories, and applied it. This was an example of a general method for
such perturbations, which was also applied to vector-tensor theories.

Sedin (2016) {RTGC} studied the stability of discrete cosmologies.

8.2.3 Interfacing to numerical work

CA programs can interact with numerical programs in three main ways; they can be
used to replace a numerical program or part thereof, to analyse a numerical program,
or to generate a numerical program.

The first of these is valuable not only when the algebra program can give a complete
rather than approximate solution, but also when it can give an exact answer to a part
of a problem which is numerically ill-conditioned or where it can avoid repetition
of a slower numerical calculation (e.g. Autin and Bengtsson 1989). I do not know
any direct examples in GR, although analytic solutions have long been used to test
numerical schemes (see e.g. Centrella et al. 1986), which is in a way the same issue.

Algebraic analysis of numerical schemes can tackle various aspects. It can enable
one to discover instabilities (e.g. the problems shown by Eastwood and Arter 1986 were
found using Macsyma) or perform error estimates (see Mrozek 1996 and the special
issue of J. Symb. Comput. vol. 24) or grid generation. Exact solutions of problems to
be tackled numerically can be important in testing codes.

Gundlach and Martín-García (2004) {xAct} considered two variants of the ADM
formalism that admitted a complete set of characteristic variables and a conserved
energy that can be expressed in terms of the characteristic variables, the BSSN and
NOR formalisms. They showed the systems were symmetric hyperbolic and proposed
a family of constraint-preserving boundary conditions that is applicable if the boundary
is smooth with tangential shift. In a subsequent paper (Gundlach and Martín-García
2006 {xAct}) they found when the formalisms are equivalent and proposed a modifi-
cation to BSSN to ensure it was always strongly hyperbolic.

Okounkova et al. (2017) {xAct} used CA to perform calculations leading to their
numerical simulations of binary black hole mergers in gravity theories which have
general relativity as a limit (applied to Chern-Simons theory in this case).

Generation of numerical code by CA systems has focussed on the production, via
templates and algebraic generation of formulae, of FORTRAN or C programs. At
the simplest level one can generate assignment statements for the target language. A
second level is program templates. The third is optimization of the resulting code (as in
the SCOPE package of Reduce) by use of intermediate expressions and common sub-
expression searches. Finally, good programs can come close to real code generation
including automatic type declarations, selection of numerical algorithms (Dewar 1992)
and the other features mentioned above in combination (Cook 1992; Borst et al. 1994).
Kranc (see above) is the principal current example known to me of such programs in
GR.
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8.3 Exact solutions

CA systems and packages, particularly the ones of component calculus type, have
perhaps most frequently been used in gravity theory for exact solutions, not only for
checking them, but also finding them, and giving unique characterizations.

8.3.1 Checking solutions and computing their properties

The simplest and perhaps most common use of CA for exact solutions is to check
correctness, not only for vacuum solutions but for non-vacua where the matter field
equations and their properties come into play. To do so one might need facilities to
implement coordinate or tetrad changes or for changing the sign conventions. This use
of CA in GR is very common but frequently not acknowledged. Some early examples
appear in d’Inverno and Russell-Clark (1971) and Gibbons and Russell-Clark (1973),
and d’Inverno (1980) lists many more. Recent texts on exact solutions have used CA in
their preparatory work, e.g. Krasiński (1997) {Ortocartan} and Stephani et al. (2003)
{Classi}.

One interesting development in this area is the advent of online databases of solu-
tions. Databases of the solutions in the first edition of Stephani et al. (2003), aimed
at providing the classifying information needed to resolve the equivalence problem as
described in Sect. 8.3.3 below, were prepared by Skea and colleagues using methods
provided in Sheep and Maple (MacCallum et al. 1994; Pollney et al. 2000a; d’Inverno
1998) [C73], and in a different form by Lake and colleagues (Ishak and Lake 2002)
[C74] using GRTensorII (see Sect. 6.2.2). A majority of the solutions in Stephani et al.
(2003) had been checked using Classi, but the files were not brought to a form fit to
make public. More recently Ian Anderson and Charles Torre (private communication)
have checked all those solutions using DifferentialGeometry (see Sect. 6.2):
a first version of their database is included in the Maple physics package and the
full set will be posted at [C20].

Although some packages described above offer little more than the basic calcula-
tion of the curvature from the metric in a coordinate basis, the “metric application”
(d’Inverno 1983), many also offer calculations in frames (mostly orthonormal or NP)
or spinors.

Having obtained the curvature, one may want to study its structure, for example
calculating the Petrov type of the Weyl tensor, first done using LAM (d’Inverno and
Russell-Clark 1971), or the Plebanski–Petrov or Segre type of the Ricci tensor (Joly
and MacCallum 1990; Seixas 1991). Variants of the original algorithms, aimed at
improved efficiency, have been discussed in several subsequent papers (see Hon 1975;
Letniowski and McLenaghan 1988; Åman et al. 1991; Piper 1997b; Pollney et al.
2000c; Zakhary et al. 2003; Zakhary and Carminati 2004 {Reduce,Maple,Classi} and
references therein).

Methods for finding and working with Killing, homothetic or other symmetries have
been used in a number of papers. CA can check (Joly 1987 {Sheep}) or find a metric’s
isometry group (Karlhede and MacCallum 1982; Araujo and Skea 1988a, b; Araujo
et al. 1992; Grebot and Wolf 1994 {Sheep, Reduce}) and other symmetries such as
homothety (McIntosh and Steele 1991; Koutras and Skea 1998; Vaz and Collinson
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1993 {Sheep, Reduce}) or conformal motions. Some applications are described in
McLenaghan and van den Bergh (1993) {Maple}, O’Connor and Prince (1998) and
Hickman and Yazdan (2017) {Dimsym, Exterior} and in the next subsection. See also
Sect. 8.3.3.

The CRACK package (distributed with Reduce), which was written to handle over-
determined systems of partial differential equations, can be used to investigate the
existence of symmetries and various other problems giving similar systems of equa-
tions (Grebot and Wolf 1994; Wolf 1996, 1998). There are quite a number of other
packages addressing similar problems, and able to find symmetries of differential
equations and systems, but no recent comprehensive review of them that I know of.
Others used in examples in this review are Dimsym in Reduce and Exterior in Maple.

The physical interpretation of solutions is very important and can also be aided by
CA, see e.g. Delgaty and Lake (1998) {GRtensorII}.

Properties of fields in spacetime have also been studied using CA. McLenaghan
and collaborators used Maple’s NP packages and Gröbner bases to characterize those
spacetimes in which scalar, neutrino and Maxwell fields obey Huygens’ principle: see
for example McLenaghan’s article in MacCallum et al. (1994) and McLenaghan and
Sasse (1996).

One can use CA to study curves within the metric, e.g. obtain the geodesic equations
(and perhaps try to solve them if the system has a good differential equations solver).
Prince and Sherring constructed Reduce and EXCALC programs to investigate the
symmetries of geodesics and of the tangent bundles in Lagrangian mechanics (Prince
1988a, b; Prince and Sherring 1988a, b).

Using invariants calculated by CA to locate and characterize singularities and hori-
zons has been discussed quite often. Gibbons and Russell-Clark (1973) found a naked
singularity, but no horizon, in the Tomimatsu-Sato solution. Karlhede et al. (1982)
{Sheep} showed that a certain Riemann invariant located the Schwarzschild horizon;
Skea (1986) then showed the same invariant did not characterize other horizons. Mac-
Callum (2006) {Classi} offered an improved criterion and considered further cases.
More recently, both scalar polynomial and Cartan invariants, as defined in e.g. Mac-
Callum (2015), have been used (Abdelqader and Lake 2015; Page and Shoom 2015;
Brooks et al. 2018 {GRTensorII, Sheep, Reduce}): the last of these papers considers
some five-dimensional examples.

These techniques also apply to manifolds of other dimensions or signatures. For
examples see the work of Birkandan (2008) in Euclidean signature and Heinicke and
Hehl (2015) {Reduce}.

GHP was used (Vu and Carminati 2003) in a study of the shear-free conjecture.
The conjecture, supported by the large range of more special sets of conditions for
which it has been proved, is that a general shearfree perfect fluid will have either zero
expansion or zero vorticity. CAMAL (Collins and Wainwright 1983) and Maple’s
forms package have also been used in studies of this problem (Lang 1993), most
recently addressed in a series of papers by Carminati, Huf, Karamian, Vu and van
den Bergh in various combinations (see e.g. Carminati 2015; Huf and Carminati 2018
{TensorPack}).

The embedding problem (see Stephani et al. 2003, Chapt. 37) has also been
approached using CA (Roque and dos Santos 1991 {Reduce}).
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8.3.2 Finding new solutions

Most systems providing the metric application can also be used as a workpad to explore
hypotheses on the metric or the curvature: for examples see Czapor (1995) and Bradley
and Sviestins (1984) {tensor in Maple, Reduce}. An amusing possibility is described
in Hoenselaers and Skea (1989) {Sheep}. (I have found a couple more solutions by
similar happy accidents: it appears this is especially easy to do when the particular
field equations have linearity properties.)

Two more serious systematic ways of finding new solutions have been used. One
is to invert the unique characterizations provided by the equivalence problem (the
next section outlines the problem and work on it): see Karlhede and Lindström (1983)
and Bradley and Karlhede (1990) {Sheep}. The other is to carry out one or other of
the generating techniques, in particular those available for solutions with two com-
muting Killing vectors (for which see Stephani et al. 2003, Chapt. 34); for examples,
see Hoenselaers (1981, 1982b), Chen et al. (1983), Moussiaux and Tombal (1983),
Bradley and Curir (1989) and Bradley et al. (1991) {POLYNOM, muLISP, Reduce,
Sheep}.

In a series of papers Hennig found new solutions in the Gowdy-symmetric class by
applying Sibgatullin’s generation method, e.g. Beyer and Hennig (2014) and Hennig
(2016): he commented (private communication) that “the final results could only be
obtained with an appropriate combination of Maple and Mathematica, which both have
their advantages and disadvantages.” These solutions include some with the “spikes”
of interest in studies of cosmological singularities. Another recent example is given
in Gregoris et al. (2017) {Maple}, where solutions with intersecting “spikes” were
generated.

Finding solutions with given symmetries provides another class of applications.
Bona (1988) {SMP} found all those dust metrics with certain symmetries which
admitted an invariant conformal vector and McIntosh and Steele (1991) {Excalc}
found all vacuum Bianchi I metrics with a homothety. Other examples are given by
McLenaghan and van den Bergh (1993) {Sheep} and Seixas (1992b) {Sheep}.

8.3.3 Characterizing metrics and the equivalence problem

CA in GR has been used extensively in finding invariant characterizations of metrics.
For example, Wainwright (1977) and Szafron and Wainwright (1977) applied the NP
programs in CAMAL to study the Szekeres solutions and their generalization. More
complete characterizations are used in resolving the equivalence problem.

The equivalence problem is that of identifying (regions of) two geometries that are
locally isometric but expressed in different coordinates. Its resolution has been a driver
for CA in GR from early on. We now have a well-defined procedure which (for suitably
smooth regions) can be used to study the problem by computing a set of quantities
uniquely characterizing the manifold (locally) and then comparing characterizations.
However, because the comparison step of that procedure would require determination
of the compatibility of sets of equations, it remains formally undecidable as a result of
the no-go theorems on simplification (Buchberger and Loos 1983). Further arguments
for undecidability were given by Kreinovich (1991).
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Nevertheless, for practical examples the procedure can be completed. The Classi
branch of Sheep was designed for this process (see Åman and Karlhede 1980, 1981)
and it was, for example, highly effective in preparing Stephani et al. (2003). Chap-
ter 9 of Stephani et al. (2003) sets out the procedure. For details of implementations
see the first article in MacCallum et al. (1994) {Classi} and Pollney et al. (2000a)
{GRtensorII}. Apart from these two programs I am not aware of any that systemati-
cally compute and record all the necessary quantities. The Classi version is formulated
using the NP spinor formalism, and requires the computation of the Cartan invariants
of each spacetime: these uniquely determine the spacetime, locally, and comparing
values for apparently different solutions gives the way to resolve equivalence. For
examples of classification see Pollney et al. (2000c), [C73] and [C74].

Certain families of solutions present special difficulties for this process, notably
the infinite set of solutions, with indefinitely many terms in the metrics, which can
in principle be obtained by generating techniques. This difficulty can be made less
severe (Seixas 1992a {Classi}) by exploiting the factorizations available in many
cases (Hoenselaers and Perjés 1990; Hoenselaers 1997) to reduce the sizes of the
computations. Other practical difficulties are discussed by Pollney et al. (2000a, b).

More recently it has been argued (Coley et al. 2009) that SPIs also provide sufficient
information to characterize spacetimes locally, unless the spacetime is a member of
Kundt’s class or its higher-dimensional counterparts, for which the Cartan invariants
can continue to be used. The result implies that programs, such as those discussed
above, that systematically calculate SPIs can be useful in this context as well. To
discuss this conclusion and its implications fully would take us too far afield: see
MacCallum (2015) for a review. Many of the papers cited in that review and in its
forthcoming extended version use CA to compute invariants.

The methods for the equivalence problem have had a number of consequences. For
example they can be used in invariantly defining limits of families of spacetimes (Paiva
et al. 1993), in studying junction conditions (Cox 2003 {Classi}) and in the methods
for finding the symmetry of solutions mentioned above.

These ideas can be carried over to alternative signatures (Karlhede 1986a), to
other theories using connections and curvatures, i.e. general gauge theories (Karl-
hede 1986b), and to higher-dimensional theories (McNutt et al. 2017; Brooks et al.
2018), although in the last of these cases one may encounter problems in the frame fix-
ing needed for canonical forms of the Cartan invariants, due to the absence of solutions
in radicals or other convenient closed forms for quintics and higher degree equations.

9 Concluding remarks

To make enough use of each of the systems and packages listed above to enable one
to make comprehensive comparisons would be a Herculean task. Moreover it would
inevitably be subject to the cautionary notes and possible biases stated in Sect. 1.4.
I have not attempted it, confining myself to checking what seemed to me the most
important special purpose systems and packages for general purpose systems. My
choice of examples, and my comments on systems and packages, are thus unlikely to be
unbiased. (I shall be glad to receive, for inclusion in later versions of this Living Review,
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information on points misrepresented, systems overlooked, and other suggestions that
might counteract any resulting imbalances.) Reader, beware!

That said, I shall offer some guidance.
If a new user of CA in GR seeks facilities suitable for his or her problem, a first

place to look is in those fully-featured systems which offer both indicial and component
calculation. That those are also the most frequently referenced in Sect. 8 may not be
just a reflection of a personal bias, although they are the ones I do use, or would use,
myself. Currently I would consider the following as being in that category: xAct in
Mathematica® (see Sects. 6.3 and 6.3.4), the combined Reduce/Sheep versions (see
Sects. 3.1.4 and 7.4) and Cadabra (see Sect. 7.1).

If one does not need indicial tensor calculations, the more fully-featured component
calculators, notably the physics and DifferentialGeometry packages of Maple (see
Sect. 6.2), GRTensorII and III, and ccgrg, should be considered.

However, it may be that none of these is right for other users. In particular a simple
and easy-to-learn system with more limited features, one of the many listed above,
may be more suitable. Additionally, one should beware of the syndrome that “if your
only tool is a hammer, all problems look like nails”. I again emphasize that there is no

best system; see Sect. 1.4.
A second approach to choice is to look in Sect. 8 to see if an application listed there

is close to what one wishes to do. If so, the software used for that application may be
the best choice.

As well as the capabilities of systems and packages, choice may be influenced by
cost, by available hardware, by operating systems and other software, by the effort
involved in learning the system, or by prior familiarity with a suitable underlying CA
system. The cost factor may incline a new user towards one of the free systems which
already have substantial facilities for CA in GR such as Reduce, Sheep, or the newer
Cadabra or Redberry, or to a system for which he or she is covered by an institutional
site licence.

There may be some more ambitious researchers who want to write a new CA for
GR package. My initial reaction would be: don’t do it. But it could be that those
researchers have ideas for structuring a package which really differ from what has
been done before, or that they really need facilities not available in current CA for GR
or minor extensions thereof. (Given the large number of existing packages, checking
that a facility is really unavailable may take some time!). If I were to embark on such an
effort myself, I would try to work either by adding to an existing package, preferably a
free one, which has a reasonable size user community so that there is some resilience
if bugs or other difficulties are encountered, or, if I needed to write a more extensive
and independent package, to do so within an existing free general purpose system (so
that as wide a community as possible could use my work). Axiom or Sage could be
suitable, for example.
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A Index of systems and packages

See Table 2.

Table 2 An alphabetical list of the packages and systems listed in Sects. 3, 6 and 7, stating in which
(sub)section(s) further information about the package can be found. It is intended to assist readers of Sect. 8
who wish to find out more about a package used in an application

Package Section Package Section

ALAM 1.3 GRworkbench 6.3/6.3.3

atensor (Maxima) 6.1 itensor 6.1

atensor (Reduce) 6.4 Kranc 6.3

atlas2 (Maple) 6.2 LUCY 6.2.2

atlas2 (Mathematica®) 6.3 Macsyma 3.1.1

Axiom 3.2.1 Maple 3.1.2

bianchi 6.2.2 Mapletensor 6.2.2

BOLTZ (see EVOL) 6.3 Mathematica 3.1.3

Cadabra 7.1 MathGR 6.3

CAMAL 1.3 MathTensor 6.3

Canon 6.2 Maxima 3.1.1

CANTENS 6.4.2 muMATH/muLISP 3.3

Cartan (Maple) 6.2.2 MuPAD 3.2.3

cartan (Maxima) 6.1 muTENSOR 6

CARTAN (Mathematica®) 6.3.2 NP/NPspinor/NPtools 6.2.2
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Table 2 continued

Package Section Package Section

ccgrg 6.3 ORTHOFRAME/oframe 6.2.2

Classi 7.4 ORT(H)OCARTAN 7.3

ctensor 6.1 POLYNOM 7.5.1

Debever 6.2.2 Poset library 7.2

Derive 3.3 PROCRUSTES 6.2.2

Differential Forms 6.3.2 Redberry 3.2.4

DifferentialGeometry 6.2 REDTEN 6.4

diffgeo 6.3 Reduce 3.1.4

diffgeom 3.2.5 RGTC 6.3

difforms 6.2.2 Ricci (Lee) 6.3

Dimsym 6.4 Ricci (Aguirregabiria) 6.3

dummy 6.4 RicciR 6.4

EDC/super EDC 6.3 Riegeom 6.2.2

eds 6.4 Riemann (Maple) 6.2

EFTofPNG 6.3 RIEMANN (MuMATH) 3.3

EinS 6.3 RTENSOR 6.4.2

EinsteinTensor 6.3.2 Sage/SageManifolds 3.2.5

excalc 6.4/6.4.3 Sheep 7.4

EVOL 6.3.2 SMP 3.3

Exterior 6.2 Stensor 7.4

Finsler 6.2 susy2 6.4

fjeforms 6.2.2 Symbolic C++ 3.2.6

FORM 3.2.2 TAVI 6.4

FORMAC 3.3 Tensign 7.5.2

forms 6.2.2 Tensor (Maple) 6.2.2

GENRE 6.4.2 Tensor (sympy) 3.2.5

GEOCALC 6.1.2 TensorA 3.2.5

geodesicCOMMENTED 6.3 Tensorcalc, see Riemann 6.2

GREAT 6.3.2 TensoriaCalc 6.3

GRG3.2 6.4 Tensorial 6.3.2

GRLIB 6.4.2 TensorPack 6.2

grt 6.3.2 Tensors 6.3.2

GRTensorII 6.2.2 Tetrad 6.3

GRTensorIII 6.2 TTC 6.3.2

GRtensorM 6.3 xAct 6.3/6.3.4

xPand/xPerm/xPert/xTras 6.3.4
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B Systems providing extended facilities

This appendix provides a cross-reference for packages or systems that embody some
of the specific calculation techniques not available in the majority of other packages. In
addition those described in Sect. 9 as fully-featured will provide many if not all of these:
for example DifferentialGeometry provides an integrated set of facilities cov-
ering most of the features listed below. Packages known to be no longer available
are omitted here but “earlier” programs that can still be obtained and may be usable
are included. The list has been developed from the package descriptions given above
or personal knowledge and is therefore highly likely to be incomplete. Appendix A
provides a guide to finding the fuller information on availability of specific packages
given in Sects. 6 and 7.

One can assume that all the component calculators enable exact calculation of
curvature from a metric in a coordinate basis, and provide, or could easily be adapted
to provide, the geodesic equations. Many also offer Petrov classification of the Weyl
tensor and Segre classification of the Ricci tensor in general relativity. So here I give
only pointers to systems which have implemented further methods: the selection of
these methods is a personal one.

General tetrad methods are supported by ctensor in Maxima; Tetrad in Mathematica
and Classi. Orthonormal tetrad methods are or were provided by ORTHOFRAME/-
oframe in Maple; Tensorial in Mathematica®; GRLIB in Reduce; Classi and
ORTOCARTAN. The Newman–Penrose formalism has been implemented in a variety
of systems and packages. See Campbell and Wainwright (1977), Esteban and Ramos
(1990) and Birkandan (2008); GRtensorII and GRtensorIII, NP, NPspinor and NPtools
in Maple; RTGC and xAct in Mathematica®; GENRE, GRG3.2 and GRLIB in Reduce;
and Classi. The GHP (Geroch et al. 1973) formalism, which has a close relation to the
NP formalism (see Stephani et al. 2003, Chapt. 7), has been implemented (see Carmi-
nati and Vu (2001), Vu and Carminati (2003) {GHP} and Aksteiner and Bäckdahl
(2016) {xAct}), but I am not aware of any implementation of Held’s generalization
of GHP.

GRtensorII in Maple was the basis for a junction conditions package (Musgrave
and Lake 1996, 1997), also supported by GRTensorIII.

Ashtekar variables were implemented by Giannopoulos and Daftardar (1992)
{Reduce}.

Clifford algebra manipulation is supplied by SymbolicC++, atensor and GEOCALC
in Maxima, and LUCY in Maple. Grassmannians can be treated by atensor in Maxima;
see also under diffgeo in Mathematica® and Hartmann and Davis (1989).

It seems probable that a number of the packages provide facilities available in
dimensions other than 4 and other signatures, and allow objects bearing more than one
type of index, but this is not always clearly stated. For example, Sheep has an internal
variable DEFAULTDIMENSION!*. Two packages, Park’s “Indicial Notebooks” in
Mathematica® and Sheep’s Stensor, specifically mention Kaluza–Klein type splits.
TAVI provided Yang–Mills type fields. Birkandan (2008) discusses instanton fields.

Differential form computations are supported by cartan in Maxima; Differential
Forms, EDC, MathTensor and RTGC in Mathematica®; and eds, excalc and GRG3.2
in Reduce.
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Treatment of symmetries has been discussed in Sect. 8.3.1.
Unusual aspects of geodesic calculations are supported by geodesicCOMMENTED

and GRworkbench in Mathematica®. The first allows one to consider whether a set of
equations represent the geodesics of a metric, and the second, and some other more
numerical packages listed in Sect. 6.3.3, enable numerical integration and visualization
of geodesics.

Power series and other expansion methods were provided by: ALAM (d’Inverno
1975, 1980); in Jakubi (1998) and Piper (1997b) {Sheep}; and by EFTtoPNG, PRO-
CRUSTES, xPert and xPand. See also Holmes et al. (1990) for the velocity-dominated
approximation and Chruściel et al. (1995) for asymptotically flat spacetimes.

The indicial tensor packages past and present, in the order in which they appear
in Sects. 6 and 7, are: itensor for Macsyma/Maxima; Canon (Manssur and Por-
tugal 2004), Riemann (Portugal and Sautú 1997), TensorPack (Huf and Carminati
2015), Mapletensor (Kavian et al. 1996) and Riegeom (Portugal 2000) in Maple; EinS
(Klioner 1998), MathGR (Wang 2013), MathTensor (Parker and Christensen 1994),
Ricci, TTC (Balfagón and Jaén 1998, 1999), and xAct in Mathematica®; atensor (Ilyin
and Kryukov 1994), dummy (Dresse 1993a, b), CANTENS, RicciR (Kadlecsik 1992)
and Rtensor (Rodionov and Taranov 1988a, b, 1989) in Reduce; and the standalone
systems Cadabra (Peeters 2007a, b) and Stensor in Sheep (MacCallum et al. 1994),
which was also adapted for Macsyma. Excalc and REDTEN in Reduce and GRTen-
sorII in Maple, and possibly others, have some indicial capabilities. Some have been
described in more detail above, but I do not know in all cases what methods they use.

Some of these packages use one another. For example, CANTENS uses dummy,
and the xPerm module in xAct has, as well as the Mathematica® code, a faster imple-
mentation in C which (Martín-García 2008) the author has made available to other
packages: it is used by Cadabra (see Sect. 7.1).

Functional differentiation was first implemented in Macsyma’s itensor, then
called ITMS (Bogen and Pavelle 1977), allowing derivation of the field equations
from alternative Lagrangians, and in LAM (d’Inverno 1975, 1980). It is available in
excalc.

Facilities of use in quantum field theory or quantum gravity are provided by Math-
Tensor in Mathematica®; susy2 in Reduce; FORM; and Stensor, and by some special
programs for quantum field theory.

C URLs referenced in the text

General purpose systems

1 Macsyma for PCs running Windows XP or earlier:
http://www.symbolics-dks.com/

2 Maxima: http://maxima.sourceforge.net
3 Maple (from Maplesoft): http://www.maplesoft.com/products/maple/
4 Mathematica® (from Wolfram Research):

http://www.wolfram.com/mathematica/
5 Wolfram|Alpha: https://www.wolframalpha.com/
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6 Reduce: http://www.reduce-algebra.com/
7 SageMath: http://www.sagemath.org
8 Axiom: http://www.axiom-developer.org/
9 FriCAS: http://fricas.sourceforge.net

10 Open Axiom: http://open-axiom.org
11 Aldor: http://www.aldor.org/
12 FORM: https://www.nikhef.nl/~form
13 MuPAD, within MATLAB: http://www.mathworks.com/products/symbolic/
14 Redberry: http://redberry.cc

Note: The country code for this site is assigned to the Cocos (Keeling) Islands but it
is also used by the unrecognised Turkish Republic of Northern Cyprus. Wikipedia
says that the top-level domain (TLD) was marketed ‘to become the “second largest
TLD registry in the United States second only to Verisign” according to Brian
Cartmell, founder and CEO of eNIC’.

15 SymbolicC++: http://issc.uj.ac.za/symbolic/symbolic.html
16 Xcas: http://www-fourier.ujf-grenoble.fr/~parisse/giac.html

Maple packages

17 Maple physics package webinar: http://connect.physicsworld.com/applying-
the-power-of-computer-algebra-to-theoretical-physics/2003844.article#webinar

18 Worksheet for the above webinar: http://www.mapleprimes.com/posts/203574-
Computer-Algebra-In-Theoretical-Physics

19 atlas2 for Maple: http://digi-area.com/Maple/atlas/
20 DifferentialGeometry: http://digitalcommons.usu.edu/dg/
21 Exterior:

http://www.math.canterbury.ac.nz/~m.hickman/Exterior/Exterior.shtml
22 GRTensorIII: https://github.com/grtensor/grtensor
23 TensorPack: http://www.bach2roq.com/science/maths/GR/TensorPack.html
24 GRTensorII: http://grtensor.phy.queensu.ca/

Mathematica® packages

25 atlas2 for Mathematica: http://digi-area.com/Mathematica/atlas/
26 ccgrg in Mathematica: http://library.wolfram.com/infocenter/MathSource/8848/

Written by Andrzej Woszczyna, Wojciech Czaja, Krzysztof Głód, Zdzisław Golda,
Radosław Kycia, Andrzej Odrzywołek, Piotr Plaszczyk, Lech Sokołowski, and
Sebastian Szybka.

27 diffgeo: http://people.brandeis.edu/~headrick/Mathematica/index.html
28 EDC: http://www.inp.demokritos.gr/~sbonano/EDC/
29 EFTofPNG: https://sites.google.com/view/levim/public-code
30 EinS: http://rcswww.urz.tu-dresden.de/~klioner/eins.html
31 Kranc: http://kranccode.org/
32 MathGR: https://github.com/tririver/MathGR
33 Ricci (Lee): http://www.math.washington.edu/~lee/Ricci/ Written by John M. Lee

with Dale Lear, John Roth, Lee Nave and Larry Peterson.
34 Ricci (Aguirregabiria): see Tetrad below.
35 RTGC: http://www.inp.demokritos.gr/~sbonano/RGTC/
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36 TensoriaCalc: http://www.stargazing.net/yizen/Tensoria.html
37 Tetrad: http://tp.lc.ehu.es/jma/math.html
38 xAct: http://www.xact.es
39 FeynCalc: http://feyncalc.github.io

A package by Rolf Mertig, Frederik Orellana and Vladyslav Shtabovenko, primar-
ily for Feynman diagrams.

40 Park’s Indicial Notebooks:
http://library.wolfram.com/infocenter/MathSource/755/

Earlier Mathematica packages

41 Differential Forms: http://library.wolfram.com/infocenter/MathSource/482/
42 GREAT: http://library.wolfram.com/infocenter/MathSource/4781/
43 EinsteinTensor: http://library.wolfram.com/infocenter/Demos/162/
44 grt: http://www.vaudrevange.com/pascal/grt/
45 Tensorial: http://jfgouyet.fr/Tensorial/IndexT.html
46 Tensors: http://personales.unican.es/castie/tensors/

Reduce packages

47 Dimsym:
http://www.latrobe.edu.au/mathematics-and-statistics/research/geometric-and-al
gebraic-techniques-for-differential-equations/dimsym

48 RicciR: http://www.kfki.hu/~kadlec/sw/riccir/riccir.tar.gz
49 Redten: http://www.utsc.utoronto.ca/~harper/redten.html
50 GRG 3.2: http://www.maths.qmul.ac.uk/~mm/grg3.2/
51 GRLIB: http://www.maths.qmul.ac.uk/~mm/grlib/

Sage packages

52 SageManifolds: http://sagemanifolds.obspm.fr/
53 TensorA: http://www.stat.boogaart.de/tensorA/
54 diffgeom: http://docs.sympy.org/latest/modules/diffgeom.html
55 Tensor (Sympy):

http://docs.sympy.org/latest/modules/tensor/index.html

Standalone packages for CA in GR

56 Cadabra: http://cadabra.science
57 ccgrg in Python: https://pypi.python.org/pypi/GraviPy/0.1.0
58 Sheep: http://www.maths.qmul.ac.uk/~mm/shp/
59 Posets in elisp: http://www.perimeterinstitute.ca/personal/rsorkin/lisp.library/

Bibliographic and other documentation

60 Macsyma history: https://en.wikipedia.org/wiki/Macsyma
61 Beebe’s bibliographies: http://ftp.math.utah.edu/~beebe/bibliographies.html
62 swMATH: http://www.swMATH.org
63 Maple book list: http://www.maplesoft.com/books/
64 Mathematica book list: http://www.wolfram.com/books/
65 Wolfram Language and System Documentation Center:

http://reference.wolfram.com/language/
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66 xAct and xTensor bibliography: http://www.xact.es/articles.html
67 Reduce history: http://reduce-algebra.com/reduce40.pdf
68 Reduce Documentation: http://www.reduce-algebra.com/documentation.html

Other information

69 CA conferences: http://www.sigsam.org/Resources/ConferenceSeries.html
70 Cython: http://cython.org/
71 CPC program library: http://www.cpc.cs.qub.ac.uk

Due to changes in publishing arrangements for the parent journal, this URL and
the location of the programs are due to change at the end of 2018. The site says old
programs will be moved to join those published since 2016 which are in Elsevier’s
Mendeley Data library at
https://data.mendeley.com/datasets/journals/00104655

72 EinsteinToolkit: http://einsteintoolkit.org/
73 Exact solutions database (Sheep, Maple):

http://www.personal.soton.ac.uk/rdi/database/index.html
74 Exact solutions database (GRTensorII): http://grdb.org

Note: The server for this experienced a disk crash in September 2017 and the
rebuild was still in progress at the time of writing this review.

75 GraviPy: https://pypi.python.org/pypi/GraviPy. Lead author W. Czaja.
76 Gyoto: http://gyoto.obspm.fr/index.html
77 MathML specification: https://www.w3.org/TR/2014/REC-MathML3-20140410/
78 OpenMath: http://www.openmath.org
79 School Mathematics Project: http://www.smpmaths.org.uk/,
80 Wikipedia comparisons page:

https://en.wikipedia.org/wiki/List_of_computer_algebra_systems
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