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CHAPTER 1

Introduction

1.1. A case study

Suppose that you are a quality engineer in a software firm. Your responsibil-
ity is to use statistical techniques for lowering the cost of design and production
while maintaining customer satisfaction. What would you do if confronted with
the following challenge? A competitor improves its product while simultaneously
reducing the price. Your job is to identify components in your company’s software
production process which can be changed to reduce the production time and lower
the price, while making the product more robust [Madhav, 2004]. You are required
to carry out a series of experiments, in which a range of parameters, called factors,
can be varied. The outcome of these experiments will be used to decide which
strategy should be followed in the future. To be precise, you will perform experi-
ments and measure some quantitative outcomes, called responses, when values of
the factors are varied. Each experiment is also called an experimental run, or just
a run. In each run, the factors are set to specific values from a certain finite set of
settings or levels, and the responses are recorded.

Identifying important factors and the number of levels. The board wants to study as
many parameters as possible within a limited budget. They have identified 8 factors
that could affect the outcome. The factors and their levels are described in Table
1.1, where # stands for the number of levels of each factor. An initial investigation
indicates that employees should have at least one year of experience, and that
there is a great difference between an employee with three years experience and
one with five years. We choose 5 levels for years of experience, which we call factor
A. Factor B is the programming language that our software is written in. Of the

Level
Factor Description # 0 1 2 3 4

A years of experience 5 1 3 5 7 9
B programming languages 4 C++ Java Perl XML
C applications 2 scientific business
D operating systems 2 Windows Linux
E interviewing customers 2 no yes
F weekly bonus policy 2 no yes
G teamwork training 2 no yes
H overwork policy 2 no yes
Table 1.1. Eight factors, the number of levels and the level meanings

1



2 1. INTRODUCTION

many languages used in the market nowadays, we choose 4 which are appropriate
for large applications.

Although there are many different applications of software (factor C), we can
classify them into two major categories: scientific applications and business ap-
plications (such as finance, accountancy, and tax). For the former, the software
developers require a fair knowledge of exact sciences like mathematics or physics,
but relatively little knowledge of the particular customers. On the other hand, for
the latter, the clients have specific requirements, which we need to know before
designing, implementing and testing the software. We use two popular operating
systems, Windows and Linux, for factor D. Whether we interview the customers
is factor E – as mentioned, we expect this to interact with factor C. The factors
F,G,H are self-explanatory, and each clearly has two levels.

Conflicting demands. Selecting the right combinations of levels in these factors is
crucial. The total number of possible combinations is 5 · 4 · 26 = 1280. But the
experiments are costly and the board has decided that the budget allows for only
100 experiments.

A known model. Let N be the number of experimental runs in the experiment; each
run will be assigned to a particular combination of factor levels. Let M := 5 · 4 · 26

denote the number of possible level combinations of the factors A,B,C,D,E, F,G
and H. We restrict ourselves to studying only one response, Y , the number of
failures (errors or crashes) occurring in a week. To minimize the average number
of failures in new products, we study the combined influence of the factors using
linear regression models. In these models, we make a distinction between main
effects , two-factor interactions, and higher-order interactions. The main effect of
a factor models the average change in the response when the setting of that factor
is changed. A model containing just the main effects takes the form

Y = θ0 +

4
∑

i=1

θAi
ai +

3
∑

j=1

θBj
bj + θCc + . . . + θHh + ǫ,(1.1.1)

where ǫ is a random error term, a = 0, 1, 2, 3, 4, b = 0, 1, 2, 3, and c, d, e, f, g, h =
0 or 1, and the parameters θ∗ are the regression coefficients. In particular, θ0, the
number of failures when all factors are set to the values 0, is called the intercept
of the model. These coefficients are estimated by taking linear combinations of the
responses.

Two-factor interactions, or two-interactions, model changes in the main effects
of a factor due to a change in the setting of another factor. To study the activity
of all two-interactions simultaneously, we may want to augment Model (1.1.1) by
adding

4
∑

i=1

3
∑

j=1

θAiBj
aibj +

4
∑

i=1

θAiCaic + . . . +
4
∑

i=1

θAiHaih +

3
∑

j=1

θBjCbjc + . . . +
3
∑

j=1

θBjHbjh + θCD cd + . . . + θGHgh.

(1.1.2)

We can also define higher-order interactions but these are usually considered unim-
portant.
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The total number of intercept, main effect and two interaction parameters is

1 +
8
∑

i=1

(si − 1) +
8
∑

i,j=1
i<j

(si − 1)(sj − 1).

This formula shows that we need 83 parameters up to two-factor interactions to
model the combined influences of the factors. In fact, only some of the two-factor
interactions turn out to be important, so we need even fewer than 83 parameters.
This is in contrast with a model including interactions up to order 8, which needs
1280 parameters.

A suggested fractional factorial design. The full factorial design of the eight factors
described above is the Cartesian product {0, 1, . . . , 4}×{0, 1, . . . , 3}×{0, 1}6. Using
this design, we are able to estimate all interactions, but performing all 1280 runs
exceeds the firm’s budget. Instead we use a fractional factorial design, that is, a
subset of elements in the full factorial design. We want to choose a fractional design
that still allows us to estimate the main effects and some of the two-interactions.
If we want to measure simultaneously all effects up to 2-interactions of the above
8 factors, an 83 run fractional design would be needed. Constructing an 83 run
design is possible, and could be found with trial-and-error algorithms. But it lacks
some attractive features such as balance, which is discussed below. An algebraic
approach can also be used to construct such a design, but it is infeasible for large
run size designs; for more details see Section 2.7.

A workable solution is the 80 run experimental design presented in Table 1.2.
This allows us to estimate the main effect of each factor and some of their pairwise
interactions. The construction of this design is presented in Chapter 6. Note
that the responses Y have been computed by simulation, not by conducting actual
experiments.

A nice property of the design. A notable property of the array in Table 1.2 is that it
has strength 3. That is, if we choose any 3 columns in the table and go down we find
that every triple of symbols in those columns appears the same number of times.
This property is also called 3-balance or 3-orthogonality; and the array (fractional
design) itself is called a strength 3 orthogonal array or a 3-balanced fractional design.

By Hedayat et al. [1999, Theorem 11.3], a strength 3 design allows us to mea-
sure all the main effects and some of the two-interactions. We could, in fact,
investigate all main effects and all two-interactions of the abovementioned eight
factors by using an 160 run strength 3 orthogonal array; see Hedayat et al. [1999,
Section 11.4] for a detailed explanation. But the board would have to increase the
current budget by at least 60 percent if we use an 160 run orthogonal array. If
we insist in estimating all main effects and all two-interactions with a 80 run or-
thogonal array, then we can study the non-binary factors A and B and four binary
factors only.

Using the fractional factorial design in Table 1.2, we can study the 2-interactions.
In particular, we analyze:

(1) the main effect of the factors A, B and G (these are typically important
for large projects, since, for instance, A largely determines wage expenses
and B influences the cost of post-sale maintenance);

(2) the interaction between the pairs of factors A and B, B and G, and C
and E; and
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run A B C D E F G H Y run A B C D E F G H Y

5 4 2 2 2 2 2 2 5 4 2 2 2 2 2 2

1 0 0 0 0 0 0 0 0 25 41 2 2 0 0 1 1 0 0 12
2 0 0 1 0 1 0 1 0 15 42 2 2 1 0 0 0 1 1 6
3 0 0 1 1 0 1 0 1 15 43 2 2 1 1 1 1 1 0 12
4 0 0 0 1 1 1 1 1 15 44 2 2 0 1 0 0 0 1 15
5 0 1 0 0 0 0 0 1 5 45 2 3 0 0 1 0 0 0 12
6 0 1 1 0 1 1 1 0 15 46 2 3 1 0 0 0 1 0 15
7 0 1 1 1 0 1 0 0 10 47 2 3 1 1 1 1 1 1 0
8 0 1 0 1 1 0 1 1 15 48 2 3 0 1 0 1 0 1 21
9 0 2 0 0 0 1 1 1 25 49 3 0 0 0 0 1 1 0 4
10 0 2 1 0 1 1 0 1 30 50 3 0 1 0 1 1 1 1 4
11 0 2 1 1 0 0 1 0 20 51 3 0 1 1 1 0 0 0 4
12 0 2 0 1 1 0 0 0 10 52 3 0 0 1 0 0 0 1 8
13 0 3 0 0 0 1 1 0 15 53 3 1 0 0 1 1 0 0 8
14 0 3 1 0 1 0 0 1 30 54 3 1 1 0 0 0 1 0 8
15 0 3 1 1 0 0 1 1 30 55 3 1 1 1 0 0 1 1 0
16 0 3 0 1 1 1 0 0 10 56 3 1 0 1 1 1 0 1 2
17 1 0 0 0 0 0 0 1 20 57 3 2 0 0 0 0 0 0 4
18 1 0 1 0 1 1 0 0 4 58 3 2 1 0 1 0 0 1 6
19 1 0 1 1 0 1 1 1 4 59 3 2 1 1 1 1 1 0 14
20 1 0 0 1 1 0 1 0 8 60 3 2 0 1 0 1 1 1 6
21 1 1 0 0 1 0 1 0 0 61 3 3 0 0 1 0 1 1 14
22 1 1 1 0 0 1 1 1 16 62 3 3 1 0 0 1 0 1 8
23 1 1 1 1 1 0 0 1 4 63 3 3 1 1 0 1 0 0 4
24 1 1 0 1 0 1 0 0 20 64 3 3 0 1 1 0 1 0 0
25 1 2 0 0 0 1 1 0 24 65 4 0 0 0 1 1 0 1 2
26 1 2 1 0 1 0 1 1 28 66 4 0 1 0 0 0 1 1 4
27 1 2 1 1 0 0 0 0 16 67 4 0 1 1 0 0 1 0 4
28 1 2 0 1 1 1 0 1 24 68 4 0 0 1 1 1 0 0 0
29 1 3 0 0 1 1 0 1 0 69 4 1 0 0 0 0 0 1 2
30 1 3 1 0 0 0 0 0 12 70 4 1 1 0 1 0 0 0 1
31 1 3 1 1 1 1 1 0 12 71 4 1 1 1 1 1 1 1 2
32 1 3 0 1 0 0 1 1 8 72 4 1 0 1 0 1 1 0 4
33 2 0 0 0 1 0 1 1 12 73 4 2 0 0 1 0 1 0 5
34 2 0 1 0 0 1 0 0 12 74 4 2 1 0 0 1 0 0 6
35 2 0 1 1 1 0 0 1 6 75 4 2 1 1 0 1 0 1 6
36 2 0 0 1 0 1 1 0 3 76 4 2 0 1 1 0 1 1 6
37 2 1 0 0 1 1 1 1 6 77 4 3 0 0 0 1 1 1 3
38 2 1 1 0 0 1 0 1 0 78 4 3 1 0 1 1 1 0 6
39 2 1 1 1 1 0 0 0 15 79 4 3 1 1 1 0 0 1 7
40 2 1 0 1 0 0 1 0 6 80 4 3 0 1 0 0 0 0 8

Table 1.2. A mixed orthogonal design with 3 distinct sections

(3) which runs result in the most reliable software product.

Analyzing the experimental outcomes. Given factors W and X, let Y (W = k)
denote the mean of the responses for the runs having factor W set to level k and
let Y (W = k,X = l) the mean of the responses for all runs with W = k and X = l.
We could now estimate parameters of (1.1.1) together with augmented parameters
(1.1.2) using these means, but it is easier to work with the means themselves. Table



1.2. THE SCOPE AND STRUCTURE OF THIS THESIS 5

k 0 0 0 0 1 1 1 1 2 2
l 0 1 2 3 0 1 2 3 0 1

Y (A = k,B = l) 17 11 21 21 9 10 23 8 8 6

k 2 2 3 3 3 3 4 4 4 4
l 2 3 0 1 2 3 0 1 2 3

Y (A = k,B = l) 11 1 5 4 7 6 2 2 5 6
Table 1.3. Combined influence of A and B

i 0 0 1 1 2 2 3 3
j 0 1 0 1 0 1 0 1

Y (B = i, G = j) 9 6 13 10 7 7 14 11
Table 1.4. Combined influence of B and G

i 0 0 1 1
j 0 1 0 1

Y (C = i, E = j) 11 8 10 11
Table 1.5. Combined influence of C and E

1.3 and Figure 1.1 indicate a strong interaction between A and B; eg,

Y (A = 1, B = 2) − Y (A = 2, B = 2) = 23 − 11 = 12 = 5 + 7 = 5 + (8 − 1)

= 5 + (Y (A = 1, B = 3) − Y (A = 2, B = 3)) .

Since the interaction between A and B is rather strong, we only look at their
combined influence. However, we see that the years of experience are crucial for
reducing the failures, no matter which language was used, eg, Y (A = 4) = 4.
Looking at Tables 1.3 and Figure 1.1, we find that the good responses are given by
A = 4 and B = 1 (runs 69, 70, 71, 72 in Table 1.2). On the other hand, Table 1.4
and Figure 1.2 show that there is no strong interaction between the programming
language used (B) and the choice of whether to attend teamwork training classes
(G). Therefore, the effect of G can be modeled with just its main effects. It models
the overall change in the number of failures if G is changed from setting 1 to setting
0. In the example, the overall change is 404 − 394 = 10 failures; so we set G = 1,
which is slightly better G = 0. Hence, the best responses are given by A = 4, B = 1
and G = 1, that is we choose the runs 71, 72 in Table 1.2. Besides, as we expected,
Table 1.5 and Figure 1.3 tell us that there is an interaction between the application
chosen (C) and interviewing customers (E). This needs further investigation. The
binary factors D,F,H do not strongly affect the outcome, so their levels can be set
such that the budget is minimized.

1.2. The scope and structure of this thesis

The goal of this thesis is twofold: to find designs of strength 3, allowing the
study of many factors and their interactions; and to select designs which are appro-
priate for practical problems. We consider all our designs to be qualitative, in the
sense that there is no order relationship or a measure of distance among the levels.

In Chapter 2, we review the algebraic and statistical fundamentals for con-
structing fractional factorial designs with algebraic geometry. We discuss two basic
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Figure 1.1. Years-Languages interaction

problems: finding the estimators of a design and constructing a design with given
run size and set of estimators.

Chapter 3 presents some constructions of orthogonal arrays of strength 3. We
describe tools for constructing a single array with a given parameter set.

In Chapter 4, we discuss the problem of enumerating all isomorphism classes
of orthogonal arrays of strength 3 with given parameters.

We discuss, in Chapter 5, statistical criteria for selecting orthogonal arrays that
are suitable for particular applications. Often there are many isomorphism classes
of arrays having very distinct statistical features, so we would like to select the best
arrays for a particular purpose.

Chapter 6 applies the techniques of Chapters 3 and 4, to enumerate many
isomorphism classes of orthogonal arrays of strength 3 with run size at most 100.
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CHAPTER 2

Some basic problems in design of experiments

2.1. Introduction

In this chapter, we present methods for investigating designs using algebraic
geometry. We show how to find the estimable interactions of a given design. Con-
versely, we show how to construct a fractional design with a given set of estimable
interactions.

In Section 2.2, we review the Gröbner basis methods which we require. These
methods have been described in Pistone et al. [2001]. Finding estimable inter-
actions given a design is reviewed in Section 2.3. Section 2.4 presents a use of
multiplication matrices to find a design with given estimable interactions. In Sec-
tion 2.5, we present a necessary and sufficient condition for obtaining t-balanced
designs, for positive integers t. Implementation issues are discussed in 2.6, and
finally, Section 2.7 closes this chapter with some remarks. For basic notation, see
Appendix B.

2.2. Gröbner bases

In this section, we consider all our factor sets Qi to be subsets of Q.

An algebraic setting. Let V be a subset of Q
d

and let P = Q[x] = Q[x1, . . . , xd].
The set of all polynomials f ∈ P which are zero on all points of V forms an ideal
of P . This is called the vanishing ideal of V in P and is denoted I(V ). The
Hilbert Basis Theorem [Kreuzer and Robbiano, 2000] says that this ideal has a
finite generating set. Conversely, for a subset J of P , the zero set of J is defined as

Z(J) =
{

(p1, . . . , pd) ∈ Q
d

: f(p1, . . . , pd) = 0 for all f ∈ J
}

.

For a single polynomial f , we denote Z({f}) by Z(f). For instance, the zero set

Z(J) of J = {x1−p1, . . . , xd−pd} consists of the single point p = (p1, . . . , pd) ∈ Q
d
.

Let D := Q1 × . . .×Qd be the full factorial design in d factors Q1, Q2, . . . , Qd,
and suppose that Qi = {ai1, . . . , airi

} ⊆ Q. Write fi for the polynomial

fi(xr) = (xr − ai1) . . . (xr − airi
) for i = 1, . . . , d.

The polynomials f1, . . . , fd are called the canonical polynomials of D. Then D is
the zero set of {f1, . . . , fd}. So D is also the zero set of the vanishing ideal I(D)
generated by f1, . . . , fd. We call I(D) the defining ideal or the design ideal of D.

We now show that the design ideal I(D) is the intersection of the vanishing
ideals of the single points in D, ie, I(D) =

⋂

p∈D I(p). Each single point p =

(p1, . . . , pd) corresponds to the variety defined by the ideal
(

(x1−p1), . . . , (xd−pd)
)

.
We know that finite unions of varieties correspond to finite intersections of ideals.
The conclusion follows. Algorithms to compute I(D) can be found in Pistone et al.
[2001, Section 3.2].

9
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A term order on x∗ is a total order, denoted by <, such that for all u, v, w ∈
x∗, u < v implies uw < vw; and 1 < u for every u ∈ x∗, u 6= 1. For any term xα

in x∗, put deg(xα) = α1 + . . .+αd, called the total degree of xα. Some useful term
orders are:

Lexicographical order: xα < xβ if there exists an i = 1, . . . , d such that

α1 = β1, . . . , αi−1 = βi−1, αi < βi

(ie, the left-most nonzero entry in α − β is negative).
Degree reverse lexicographical order: xα < xβ if deg(xα) < deg(xβ),

or deg(xα) = deg(xβ) and there exists i = 1, . . . , d such that

αd = βd, . . . , αi+1 = βi+1, αi > βi

(ie, the right-most nonzero entry in α − β is positive).

The second order is also called graded reverse lexicographical order. For instance,
for d = 5, in the latter order we have x5 < x4 < x3 < x2 < x1, and x1x4 < x2x3.
Furthermore, if each indeterminate xi is assigned a positive integer weight, then the
degree reverse lexicographical order is now called the weighted reverse lexicographic
order . This order is used in Section 2.6. For example, in this case, if let [1, 2, 2, 2, 2]
be the weight vector for x1, x2, x3, x4, x5, then we have x1 < x5 < x4 < x3 < x2.

A monomial is a product of a term and a scalar. The support of a polynomial g,
denoted Supp(g), is the set of terms of g with nonzero coefficients. For a polynomial
g ∈ P , let LM(g) be the leading monomial with respect to a fixed term order < on
x∗; that means it is the monomial whose term is maximal in Supp(g) with respect
to <. The coefficient of LM(g), denoted by LC(g), is called the leading coefficient of
g; the leading term of g is LT(g) := LM(g)/LC(g), [Kreuzer and Robbiano, 2000,
Definition 15.2]. Let J be a non-zero ideal of k[x]. Denote by LT(J) the set of
leading terms of elements of the ideal J with respect to <, and (LT(J)) the leading
term ideal generated by such leading terms. For example, with the lexicographical
term-order,

LT(I(D)) = {xr1
1 , . . . , xrd

d }.
A finite subset B of the ring k[x] is called a Gröbner basis if LT(B) = LT((B))

[Cohen et al., 1999, Section 3, Chapter 1]. If J = (B), we say that B is a Gröbner
basis of J . For any ideal J of k[x], the Buchberger algorithm returns a Gröbner ba-
sis of J , [Kreuzer and Robbiano, 2000, Theorem 2.5.5]. For more details on Gröbner
base and their computation, see Cohen et al. [1999] or Kreuzer and Robbiano [2000].

Fix a term ordering and let B = {g1, . . . , gs} be a Gröbner basis of J . We say
that B is a reduced Gröbner basis of J if the following conditions are satisfied:

• LC(gi) = 1, for i = 1, . . . , s.
• {LT(g1), . . . ,LT(gs)} is a minimal system of generators of LT(J) as a

monoid.
• Supp(gi − LT(gi)) ∩ LT(M) = ∅ for i = 1, . . . , s.

An ideal can have several Gröbner bases, but only one reduced Gröbner basis
[Cohen et al., 1999, Theorem 3.16, page 14]. We need the following lemma about
the relationship between the set of leading terms of an ideal over the rationals Q

and over the algebraic closure.

Lemma 1. [Kreuzer and Robbiano, 2000, Lemma 2.4.16] Let J be an ideal of
Q[x] and J = JQ[x], the ideal of Q[x] generated by the elements of J . Then, a
Gröbner basis of J is also a Gröbner basis of J . In particular, we have LT(J) =
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LT(J). Moreover, the reduced Gröbner basis of J is also the reduced Gröbner basis
of J .

For a ring R, an R-module J is a commutative group (J,+) with an operation
R×J → J, (r,m) 7→ rm (called scalar multiplication) such that 1m = m for m ∈ J ,
and such that the associative and distributive laws are satisfied. A commutative
subgroup N ⊆ J is called an R-submodule if we have R · N ⊆ N .

Theorem 2. [Kreuzer and Robbiano, 2000, Theorem 1.5.7] Let J ⊆ k[x]r be a
k[x]-submodule, and let B = x∗ \ LT(J). Then the residue classes of the elements
of B form a basis of the k-vector space k[x]r/J .

When r = 1, the submodule J is a k[x]-ideal, and the residue classes of the
elements of B form a basis of the k-vector space k[x]/M . Let J be an ideal of k[x].
Then J is called maximal if the only ideal properly containing J is k[x]; and if J
is generated by a single element in k[x], it is called a principal ideal . Every ideal
in the ring k[xi] is principal [Kreuzer and Robbiano, 2000, page 19].

Theorem 3. [Kreuzer and Robbiano, 2000, Theorem 2.6.6(a)] Let J be a max-
imal ideal of k[x]. Then the intersection J ∩ k[xi] is a non-zero ideal for every
i = 1, . . . , d.

Corollary 4. Let k be an algebraically closed field and J a maximal ideal in
k[x]. Then there exist elements p1, . . . , pd in k such that

J = (x1 − p1, . . . , xd − pd).

Proof. The previous theorem supplies non-zero polynomials f1, . . . , fd ∈ J
such that fi ∈ k[xi] for i = 1, . . . , d. Because k is an algebraically closed field, every
polynomial fi factorizes completely into linear factors. Since J is a maximal ideal,
it contains one of the linear factors of each fi, say xi − pi. So J must contain the
ideal K = (x1 − p1, . . . , xd − pd). But K is maximal, hence J = K. �

Some other concepts are needed before introducing three basic problems in
designs of experiments. A fraction of a full design D is a subset F consisting
of elements of D. Note that in this section we only consider fractions without
replications, but see Cohen et al. [2001] for an approach dealing with replications.
The defining ideal of F is the vanishing ideal I(F ). Each equation of the form
f(x1, . . . , xd) = 0 with f ∈ I(F ) is called a confounding equation. Note that
I(D) ⊆ I(F ) if F ⊆ D. Any set of polynomials that, together with the ideal I(D)
of the design D, generates the ideal I(F ), is called a set of defining equations of F
in D. The indicator function IF of a fractional design F is the function from D to
{0, 1} such that

IF (A) =

{

1 if A ∈ F,
0 if A 6∈ F.

For each fraction F ⊆ D, {IF } is the set of defining equations of F . In the
remaining subsections, we fix F := [p1, . . . ,pN ] a fraction of D with N = |F | ≤ M ,
where M = r1r2 . . . rd. Observe that I(D) is the ideal generated by the canonical
polynomials f1, . . . , fd. Follow Kreuzer and Robbiano [2000, Theorem 2.4.13], there
exists a unique reduced Gröbner basis of I(F ), denoted g1, . . . , gl. We have
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Theorem 5. [Cox et al., 1998] Let k be an algebraically closed field, let V be
the affine variety with ideal I ⊆ k[x], and let G be a Gröbner basis of I. The
following statements are equivalent:

• V is finite;
• there is αi > 0 and g ∈ G such that xαi

i = LT (g), for each i = 1, . . . , d;
• the k-vector space k[x]/I is finite-dimensional.

By this theorem, the polynomials gj can be written in the form

gj(x1, . . . , xd) = xαj − sj(x1, . . . , xd).

Define the set

(2.2.1) Est(F ) =

{

xα : xα 6∈
(

LT(I(F ))
)

}

,

called the standard basis of F with respect to the term order <. A set E ⊆ x∗

is an order ideal of monomials if, for each u ∈ E and v ∈ x∗ such that v divides
u, we have v ∈ E. For example, {1, x1, x2, x1x2} is an order ideal. Note that the
standard basis Est(F ) of F is an order ideal.

Since each polynomial f in k[x] can be reduced to a minimal form modulo I(F )
by using

xαj ≡ sj(x1, . . . , xd),

f can be written as a unique linear combination of elements of Est(F ) modulo I(F ).
This polynomial is called the normal form of f and denoted NFF (f). Denote by

Est(F ) the set of residue classes of terms in Est(F ) in the space Q[x]/ I(F ). As a

result, from Theorem 2, Est(F ) is a basis of the quotient space Q[x]/ I(F ).
A response f is a rational-valued function defined on F . We denote by L(F )

the vector space of all responses defined on F . Hence, Q[x]/ I(F ) is an algebraic
representation on the space L(F ),

(2.2.2) L(F ) ∼=
{

∑

xα∈Est(F )

θα xα : θα is a rational number

}

,

where xα is the image of xα in Q[x]/ I(F ). We denote by Xi the ith projection
function, mapping a run p = (p1, . . . , pd) to pi. We identify Xi with the ith factor
Qi. Interaction terms are defined as functions

Xα1
1 Xα2

2 . . . Xαd

d : F → Q, p 7→ pα = pα1
1 pα2

2 · · · pαd

d

where 0 ≤ αi ≤ ri − 1, for i = 1, . . . , d.

We write Xα for Xα1
1 Xα2

2 . . . Xαd

d , with α = (α1, . . . , αd). The term Xα has
order l if the d-tuple α has exactly l non-zero components. A term Xα of order
l (1 ≤ l ≤ d) is called an l-factor effect [Galetto et al., 2003]. A one-factor effect
is just a power of a single factor, called the main effect of that factor; while the
term ‘interaction’ is used frequently for at least two factors. Notice that in the non-
binary case (ie, at least a factor Qi has more than 2 levels for some i = 1, . . . , d),

the order l of a term Xα differs from its total degree
∑d

i=1 αi. For instance, when
d = 3, suppose that F has a ternary factor Q1, and two binary factors Q2, Q3. The
main effect of Q1 then is a pair of terms X1, X

2
1 ; the main effect of Q2 and Q3 are

X2 and X3 respectively. The 2-factor effect or 2-factor interaction between the first
and the second factor includes terms X1X2, X

2
1X2.
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Regression analysis. We aim to discover how the variables x = (x1, . . . , xd) (called
independent variables or regressors) affect the response variable Y . A regression
model is defined by

Y (x) = f(x,θ) + ǫ(x),

in which f(.,θ) ∈ L(F ), the vector θ consists of q parameters that determine
the model, and ǫ(x) is a random variable for all x ∈ F called the error . For
F = [p1, . . . ,pN ], ǫi := ǫ(pi) is the error caused when conducting the experimental
run pi. To estimate parameters of θ := [θ1, . . . , θq] we assume our model satisfies
the Gauss-Markov conditions:

E(ǫi) = 0 for all i,

Var(ǫi) = c for all i,

E(ǫiǫj) = 0 when i 6= j = 1, . . . , n,

where c is a rational constant, E is the expectation, and Var is the variance.

Linear (regression) models are models such that f(x,θ) is a linear function of the
components of the parameter vector θ, that is

(2.2.3) Y (x) =

q
∑

j=1

θj .pj(x) + ǫ(x),

where pj are elements of L(F ), and ǫ satisfies the Gauss-Markov conditions. Now
suppose that we have observations Y1, . . . YN corresponding to runs p1, . . . ,pN . Let
f(x,θ) =

∑

α θα.Xα be a linear model of F such that Xα ∈ x∗. Let

S(f) := Supp(f) =
{

Xα1 , . . . ,Xαr
}

,

r := |S(f)|, and L := {α1, . . . ,αr}.
The N × r-matrix

(2.2.4) Z = Z(S(f), F ) =
[

Zij

]

=
[

Xαj (pi)
]

whose element Zij is the evaluation of Xαj at the ith run pi = (pi1, pi2, . . . , pid),
is called the design matrix of F . The corresponding model is now

(2.2.5) Y (x) =
∑

α∈L

θα.Xα(x) + ǫ(x),

and so in vector notation:

(2.2.6) Y = Zθ + ǫ,

where Y = (Y1, . . . YN ) is the vector of responses. The linear model (2.2.5) is
identifiable by a fraction F if the functions Xα (α ∈ L) are linearly independent
elements of L(F ). The corresponding terms Xα then, are called estimable terms.
We can also say (2.2.5) is identifiable if rank(Z) = r, ie, by taking f(pi,θ) equal to
Yi at the runs pi ∈ F , we can uniquely determine its coefficients θα. Recall from
(2.2.1) that

Est(F ) =

{

xα : xα 6∈
(

LT(I(F ))
)

}

.

We employ the following theorems, summarizing known results, (cf. Cohen et al.
[2001, Theorem 6], or Pistone et al. [2000, Theorem 2.5]).

Theorem 6. If S(f) is a subset of Est(F ), then Model (2.2.5) is identifiable.
The set Est(F ) has exactly N elements, and r ≤ |Est(F )| = |F | = N .
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Theorem 7. Let F be a fraction and let f(x,θ) be a linear model supported
by F . Let S(f) be the support and Z be the design matrix of F , respectively. Then
the following conditions are equivalent

• f(x) is identifiable by F .
• rank(Z) = r,
• S(f) is a set of linearly independent functions on F .

These results will be used in Sections 2.3, 2.4, and 2.5, where the following
three problems will be discussed:

(1) compute Est(F ) for a given fractional design F ;
(2) the inverse problem of Problem (1), that is given an order ideal E, con-

struct a fraction F such that E = Est(F );
(3) given an order ideal E, construct a t-balanced fraction F such that E =

Est(F ).

The solution of the first problem will be reviewed in the next subsection. The last
two problems require more ingredients to solve, so we postpone the discussion until
Subsections 2.4 and 2.5, respectively.

2.3. Determining all estimable terms of a model

Let F = {p1, . . . ,pN} be a fractional design and Z its design matrix (Definition
(2.2.4)). We compute the set Est(F ) with given a term order <. Why do we need
to know the standard basis Est(F )? Firstly, because the space L(F ) of all responses

on F is generated by the set Est(F ) (see Equation (2.2.2)). Secondly, to find an
identifiable linear model f of a fraction F , we should choose the support S(f) of
f such that S(f) ⊆ Est(F ) or, better, S(f) = Est(F ), by Theorem 6. In this
section, we only consider saturated designs, ie, we let S(f) = Est(F ). In this case,
Z is a square matrix. Denote by K an extension of k. We use Theorem 7 and the
following to compute all estimable terms of Model 2.2.5.

Theorem 8. [Pistone et al., 2001, Theorem 26] Z is non-singular (so Z has full
rank). Moreover, if f : F → K is a response mapping and Y =

(

f(p1), . . . , f(pN )
)

is the vector of responses (observed values), we calculate vector θ of coefficients of
f by θ = [θα] = Z−1 · Y. And we have

(2.3.1) f(x) =
∑

xα∈Est(F )

θα · xα.

For instance, if < is the degree reverse lexicographical order and the fraction
F is an OA(24; 31 · 24; 3):





0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1
0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1





T

,

the estimable terms of F are

Est(F ) = [1, x5, x4, x3, x2, x1, x4x5, x3x5, x2x5, x1x5, x3x4, x2x4, x1x4, x2x3, x1x3,

x1x2, x
2
1, x3x4x5, x2x4x5, x1x4x5, x2x3x5, x1x3x5, x1x2x5, x

2
1x5].
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2.4. Constructing a fraction with given estimable terms

Let D be a full factorial design, let C= {f1, . . . , fd} be the set of canonical
polynomials of D. The set

O(D) = {xα1
1 xα2

2 . . . xαd

d : αi = 0, 1, . . . , ri − 1, i = 1, . . . , d}
is called the complete set of estimable terms of D. Note that O(D) depends only
on the type of D (not on the ordering). For instance, if D = {−1, 1}3, then

O(D) = {1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}.
Suppose that E = {t1, . . . , tµ} is a fixed order ideal contained in O(D). We compute

a fraction F of D, such that E = Est(F ), that is, E is a basis of R = Q[x]/ I(F ) as
a Q-vector space.

We need the Finiteness Criterion below [Kreuzer and Robbiano, 2000, Propo-
sition 3.7.1] and the concept of border basis to solve this problem. Let J be an
ideal of k[x]. The set

√
J = {r ∈ k[x] : ri ∈ J for some i ≥ 0}

is an ideal in k[x], called the radical of J . If J =
√

J then J is called a radical
ideal .

Lemma 9. Let k be an algebraically closed field and let J be a proper ideal of
k[x]. Then I(Z(J)) =

√
J .

Proposition 10 (Finiteness Criterion). Let K = (f1, . . . , fs) be a proper ideal
of k[x]. Then the following conditions are equivalent.

(a) Z(K) is finite.
(b) K is contained in only finitely maximal ideals of k[x].
(c) For every i = 1, . . . , d, there exists an αi ≥ 0 such that xαi

i ∈ LT(K).
(d) x∗ \ LT(K) is finite.
(e) k[x]/K is a finite dimensional k-vector space.
(f) K ∩ k[xi] 6= (0) for i = 1, . . . , d.

We write P = k[x] and P = k[x] and use them interchangeably from now.

Proof. Firstly, we show that (a) =⇒ (b), that is the number of maximal ideals
J containing K is finite if Z(K) is finite. From Corollary 4, every maximal ideal J
of P is of the form

J = (x1 − p1, . . . , xd − pd)

with p1, . . . , pd ∈ k. Consider the substitution homomorphism φ : P → k defined
by xi 7→ pi for i = 1, . . . , d. Since J contains K, each polynomial in K has the

pattern f =
∑d

i=1 hi.(xi − pi), hi ∈ P . That is, f lies in the kernel of φ, or
(p1, . . . , pd) ∈ Z(K). Since Z(K) is finite, there are a finite number of possibilities
for (p1, . . . , pd), and hence for J . We have shown (a) =⇒ (b).

Next, we consider (b) =⇒ (c). Let J1, . . . , Jt be the maximal ideals of P
containing K. Due to Corollary 4, there are tuples (pi1, . . . , pid) such that Ji =
(x1 − pi1, . . . , xd − pid) for i = 1, . . . , t. Since K ⊆ Ji, every polynomial f ∈ K can

be written as f =
∑d

j=1 hj .(xj − pij), hj ∈ P , and so each tuple (pi1, . . . , pid) is in

Z(K). For j = 1, . . . , d, put gj =
∏t

i=1(xj − pij) ∈ k[xj ]; then gj vanishes on every
solution of Z(K), that is, gj belongs to vanishing ideal I(Z(K)). Using Theorem 9,
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there exists an integer αj ≥ 0 such that g
αj

j ∈ K, which implies x
t.αj

j ∈ LT(K.P ).

From Lemma 1, we have x
t.αj

j ∈ LT(K.P ) = LT(K).

(c) =⇒ (d) is true since every term of sufficiently high degree is divisible by

one of the terms x
t.αj

j , for j = 1, . . . , d.

The implication (d) =⇒ (e) is a consequence of Theorem 2.
Next we consider (e) =⇒ (f). Indeed, if the space P/K has finite dimension

over k, the residue classes 1+K,xi+K,x2
i +K, . . . are k-linearly dependent, for each

i = 1, . . . , d. Hence there are non-zero polynomials gi ∈ K ∩ k[xi] for i = 1, . . . , d.
Finally, we prove (f) =⇒ (a). We show that there are finitely many p =

(p1, . . . , pd) ∈ Z(K). For i = 1, . . . , d, there exists non-zero polynomials gi ∈
K ∩ k[xi], so gi ∈ K ∩ k[x]. Since p ∈ Z(K), we get gi(p) = 0, that is, the ith
component pi of p must be a solution of the polynomial gi, for every i = 1, . . . , d.
As a result, the number of solutions p is at most deg(g1) · · · deg(gm). �

An ideal I = (f1, . . . , fs) is called zero-dimensional if it satisfies the equivalent
conditions of Proposition 10. Let I be a zero-dimensional proper ideal in P = k[x],
let π : k[x] → k[x]/I be the canonical surjection, and let µ = dimk(k[x]/I) < ∞.
Let E = {h1, . . . , hµ} be a set of polynomials such that E = {h1, . . . , hµ} is a
basis for k[x]/I as a k-vector space. We denote by V(E) the k-vector space of k[x]
generated by E. We consider three linear maps

NFE,I : k[x] → V(E), ν : V(E) → kµ, and NFVE,I : k[x] → kµ

defined by

NFE,I(f) =

µ
∑

i=1

aihi, ν
(

µ
∑

i=1

aihi

)

=

µ
∑

i=1

aiei, and NFVE,I = ν ◦ NFE,I ,

where e1, . . . , eµ are the standard basis vectors of kµ and the ai are defined by

π(f) =
∑µ

i=1 aihi. The polynomial NFE,I(f) is called the normal form of f with
respect to E and I; the vector NFVE,I(f) is called the normal form vector of f
with respect to E and I.

Multiplication matrices and the border basis. The concepts and results in this
section are from Caboara and Robbiano [2001]. These authors define the concept
of border basis G of an ideal E and relate it to the matrices associated with the left
multiplication by xi, for i = 1, . . . , d. They then prove that the ideal I generated
by G is zero dimensional (ie, the zero set Z(I) is finite or dimk(k[x]/I) < ∞), if the
left multiplication matrices are pairwise commuting. Then Z(I) is the set of runs
of a fraction F such that Est(F ) = E. These notions will be used in Theorem 14.
Denote by Matµ(k) the ring of square matrices of degree µ with entries in k. We
view kµ as a space of column vectors.

Proposition 11. Let φ : P → kµ be a surjective k-linear map such that
I = Ker(φ) is a proper ideal in P and let ω = φ(1), viewed as column vector.

(a) The ideal I is zero dimensional. Moreover, if we pick E = {h1, . . . , hµ}
such that φ(hi) = ei for i = 1, . . . , µ, then φ = NFVE,I .

(b) There exists a unique n-tuple of pairwise commuting matrices M1, . . . ,Md

in Matµ(k) such that φ(xif) = Mi φ(f) for all f ∈ P and i = 1, . . . , d.
(c) φ(f)= f(M1, . . . ,Md)ω for all f ∈ P .



2.4. CONSTRUCTING A FRACTION WITH GIVEN ESTIMABLE TERMS 17

Proof. (a) Since the space P/I is finite dimensional I is zero dimensional. If
we let f ∈ P , we get f ∈ P/I, so f =

∑µ
i=1 aihi + g, where g ∈ I. Hence,

φ(f) =

µ
∑

i=1

aiφ(hi) + φ(g) =

µ
∑

i=1

aiφ(hi) =

µ
∑

i=1

aiei.

So φ = NFVE,I by definition.
(b) We construct the matrices Mi in Matµ(k). Since φ : P → kµ is surjective,

there exist polynomials h1, . . . , hµ ∈ P such that φ(hk) = ek, for k = 1, . . . , µ. We
define Mi to be the µ×µ matrix whose columns are the vectors φ(xih1), . . . , φ(xihµ).
We need to prove that the Mi are well-defined and unique by selecting other polyno-
mials l1, . . . , lµ ∈ P such that φ(lk) = ek, and then checking that φ(xihk) = φ(xilk)
for all i and k. This is clear because φ(hk−lk) = 0 so hk−lk ∈ I and xi (hk−lk) ∈ I.
Next we check that φ(xif) = Mi φ(f) for f ∈ P . Using the sum decomposition of
f given in (a), since

φ(f) =

µ
∑

k=1

akek,

we have f −∑µ
k=1 akhk ∈ I, and so xif −∑µ

k=1 akxihk ∈ I. Hence,

φ(xif) = φ

(

µ
∑

k=1

akxihk

)

=

µ
∑

k=1

akφ(xihk) =

µ
∑

k=1

akMiek = Mi φ(f)

since Miek is the k-th column of Mi. Finally we prove that the matrices Mi are
pairwise commuting. Since Mjek = φ(xjhk), we get

MiMjek = φ(xixjhk) = φ(xjxihk) = MjMiek,

and so MiMj = MjMi.
(c) Since φ is linear, we only need to prove the formula for f = Xα =

xα1
1 . . . xαd

d . If f(x) = 1 the formula is correct since φ(1) = ω. We continue by
induction on the total degree

∑

i αi. Without loss of generality we can assume that

α1 > 0. Put g = xα1−1
1 . . . xαd

d . By the inductive assumption and Part (b) we have

φ(f) = φ(x1g) = M1φ(g) = M1g(M1, . . . ,Md)ω

= M1M
a1−1
1 Ma2

2 · · ·Mad

d ω = f(M1, . . . ,Md)ω.

The proof is complete. �

The matrices M1, . . . ,Md are called the multiplication matrices of φ.

Theorem 12 (Converse of Proposition 11). Let ω ∈ kµ be a non-zero vector
and let M1, . . . ,Md be pairwise commuting matrices in Matµ(k). Then,

(1) there is a unique k-linear map φ : P → kµ such that
(a) φ(1) = ω, and
(b) φ(xif) = Mi φ(f), for all f ∈ P and i = 1, . . . , d;

(2) the kernel of φ is a zero-dimensional ideal;
(3) if φ is surjective and I = Ker(φ), then for every E = {h1, . . . , hµ}

such that φ(hi) = ei we have φ = NFVE,I . In this case, the matrices
M1, . . . ,Md are the multiplication matrices of NFVE,I .
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Proof. In Caboara and Robbiano [2001, Theorem 2.9], proofs of the first and
the third items were given. We prove the second item. First, we show that Ker(φ)
is an ideal. Let f ∈ Ker(φ) and g ∈ P . By linearity, we can assume that g is a
term, and using Item (1)(b), we can assume that g is an indeterminate, say xi.
Then φ(xif) = Mi · φ(f) = 0. Hence xif ∈ Ker(φ). Of course f + g ∈ Ker(φ)
if f, g ∈ Ker(φ) since φ is k-linear. Hence Ker(φ) is an ideal. It is a proper ideal
since φ(1) = ω 6= 0. It is zero-dimensional because the space P/Ker(φ) is a finite
dimensional k-vector space. �

Suppose that E = {t1, . . . , tµ} is an order ideal. Define

E+ = {xi t : t ∈ E, i = 1, . . . , d, and xit 6∈ E}.
This set is finite since E is finite and the number of indeterminates is finite.

Proposition 13. Let I be a proper ideal in P , let E = {t1, . . . , tµ} be an

order ideal such that E = {t1, . . . , tµ} is a basis of P/I as k-vector space, and let
E+ = {b1, . . . , bv}. Then there exists unique ajl ∈ k (l = 1, . . . , µ) with

(2.4.1) gj = bj −
µ
∑

l=1

ajltl ∈ I, for each j = 1, . . . , v.

Moreover, the ideal I is generated by g1, . . . , gv.

Proof. We have P = V(E) ⊕ I, so every polynomial f in P can be written
uniquely as f = h + g where h ∈ V(E) and g ∈ I. We can write

(2.4.2) bj =

µ
∑

l=1

ajltl + gj ,

where ajl ∈ Q and gj ∈ I. The constants ajl are unique because {t1, . . . , tµ} is a
basis of P/I.

Let J be the ideal generated by {g1, . . . , gv}. We show that I = J . Since

gj = bj −
µ
∑

l=1

ajltl ∈ I

we have J ⊆ I. We only need that I ⊆ J , or equivalently that P = V(E) + J .
We prove this for f ∈ V(E) ⊕ I by induction on deg(f) = d. If d = 0, then
1 ∈ E ⊆ V(E), so f ∈ V(E). Let f be a term of total degree d > 0. Then there
exists an indeterminate xi and a term t of degree d − 1 such that f = xi.t. The
term t must have the decomposition t =

∑µ
l=1 ajltl + g, with g ∈ J . As a result

f = xi.t =

µ
∑

l=1

ajlxi tl + xi g.

If every xi tl ∈ E, the proof is finished. If there exist some xi tl 6∈ E, that is
xi tl = bj ∈ E+, then xi · tl = bj ∈ V(E)+J , by (2.4.2). The proof is complete. �

A pair (g, t) is a marked polynomial if g is a non-zero polynomial and t is in
Supp(g). We also say that g is marked at t. Let G = [g1, . . . , gv] be a sequence
of non-zero polynomials and let T = [t1, . . . , tv] be a sequence of terms. If (g1, t1),
. . ., (gv, tv) are marked polynomials, we say G is marked by T . Denote by G =
[g1, . . . , gv] a sequence of polynomials marked by the corresponding elements of E+
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in the order given by <. Then the pair (G,E+) is called the border basis of I with
respect to E.

Constructing matrices associated with the border basis (G,E+). Let E = {t1, . . . , tµ}
be an order ideal and let E+ = {b1, . . . , bv}. From (2.4.1), G = {g1, . . . , gv}
consists of polynomials marked by the corresponding elements of E+ such that
Supp(gk − bk) ⊆ E for k = 1, . . . , v. We construct matrices M1, . . . ,Md ∈ Matµ(k)
as follows:

• If xitj = tl ∈ E, then the j-th column of Mi is el

• If xitj ∈ E+ then there exists a k ∈ { 1, . . . , v} such that xitj = bk. Then
the j-column of Mi contains the coefficients of t1, . . . , tµ in the represen-
tation of the polynomial bk − gk as a linear combination of the elements
in E.

The matrices M1, . . . ,Md constructed above are called the matrices associated to
(G,E+).

Theorem 14. [Caboara and Robbiano, 2001] Let E = {t1, . . . , tµ} be an order
ideal and let E+ = {b1, . . . , bv}. Furthermore, let G = [g1, . . . , gv] be polynomials
marked by the corresponding elements of E+ such that Supp(gk − bk) ⊆ E for
k = 1, . . . , v. Let I be an ideal generated by G. Then (G,E+) is the border basis of
I with respect to E if and only if the associated matrices M1, . . . ,Md are pairwise
commuting. In this case

(1) The ideal I is zero dimensional and dimk(P/I) = µ.
(2) The tuple E is a basis of P/I as a k-vector space,
(3) The matrices M1, . . . ,Md are the multiplication matrices of NFVE,I .

Proof. =⇒): Let M1, . . . ,Md be the matrices associated with (G,E+). If
the pair (G,E+) is the border basis of I with respect to E, then E is a basis of
P/I. Then (1) and (2) follow immediately. In addition, from the definition of
normal form, we can define NFVE,I : P → kv with NFVE,I(1) = e1. Applying
Proposition 11, we get a unique d-tuple of multiplication matrices N1, . . . , Nd of
NFVE,I that are pairwise commuting such that

NFVE,I(xif) = Ni · NFVE,I(f)

for all f ∈ P and i = 1, . . . , d. From the definition of Ni, the j-th column of Ni is

Ni · ej = Ni · NFVE,I(tj) = NFVE,I(xitj).

Meanwhile, NFVE,I(xitj) is the j-th column of matrix Mi, that is Ni = Mi. Hence
M1, . . . ,Md commute pairwise and (3) is true.

⇐=): Since E is an order ideal, we have 1 ∈ E and we can assume that t1 = 1.
From the definition of a border basis we need to show that the set E = {t1, . . . , tµ}
is a basis of P/I as a k-vector space. Set ω = e1; since the matrices M1, . . . ,Md

are pairwise commuting, by Theorem 12, there exists a k-linear map φ : P → kµ

such that
φ(1) = φ(t1) = ω and φ(xif) = Mi φ(f)

for all f ∈ P , i = 1, . . . , d. We need to show that φ is surjective (in order to use
the third statement in Theorem 12), or to show that φ(tl) = el for l = 1, . . . , µ.

The claim is true when l = 1 by construction. So let tl 6= 1, that is deg(tl) > 0,
and use induction on degree. We may write tl = xk tj for some indeterminate
xk and some term tj ∈ E, since E is an order ideal. Then φ(tl) = φ(xk tj) =
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Mkφ(tj) = Mkej (using the inductive assumption). But Mkej is in fact the j-th
column of Mk. But this is el thanks to the definition of Mk. Therefore φ(tl) = el,
so E is a basis of P/I, where I = (G). From Proposition 13, (G,E+) is the border
basis of I with respect to E. �

If E = {t1, . . . , tµ} is given, then E+ can be computed. We know that 1 ∈ E

and we can assume t1 = 1. Considering E as a basis, we can compute the space
P/I. From this, we extract I = (f1, . . . , fl). Then the fraction F which we want
is the zero set of I (in other words, F is the algebraic variety determined by the
ideal I). That means a solution of the inverse problem (Problem (2)) is obtained.
Proposition 13 shows that, given E, the ideal I such that E is a basis of P/I
corresponds to the border basis G = {g1, . . . , gv} marked by {b1, . . . , bv}. To find
G, we need the following lemma [Caboara and Robbiano, 2001, Lemma 4.5].

Lemma 15. Let D be a full factorial design, let I(D) = (f1, . . . , fd) be the
defining ideal in P of D. Let I be a proper ideal of k[x] containing I(D). We have:
I is a radical ideal and it defines a fraction F of D. Moreover I can be generated
by polynomials in k[x] and every border basis of I is contained in k[x].

Recall that D is a full factorial design and C is the set of canonical polynomials,
The following algorithm [Caboara and Robbiano, 2001, Theorem 4.6], together with
Proposition 10 and the above lemma, determines the border basis G of an order
ideal E.

Algorithm 1 Compute fractional design with given order ideal

Input: D and an order ideal E = {t1, . . . , tµ} ⊆ O(D).

Output: A fraction F such that E is a basis of the ring
Q[x]/ I(F ) = P/ I(F ) as a Q-vector space.

function Compute-border-basis-G(D, E )
(1) Split the set E+ into two subsets E+

1 , E+
2 , where

E+
1 = E+ ∩ {xr1

1 , . . . , xrd

d } and E+
2 = E+ \ E+

1

(2) Decompose C into two subsets

C1 = {fi : xri

i ∈ E+} and C2 = C \ C1,

where fi is marked by xri

i for every fi ∈ C1

(3i) Let ν = |E+
2 |, and for every terms bj ∈ E+

2 let gj = bj −
∑µ

l=1 ajltl
⊲ gj ∈ Q[A][x1, .., xd], where A := {ajl : j = 1, . . . , ν, l = 1, . . . , µ}

(3ii) Let G2 := {gj : j = 1, . . . , ν} and let G = C1 ∪ G2

⊲ note that |G2| = |E2|, |C1| = |E1|, so |G| = |E| = µ
(4) Construct M1, . . . ,Md ∈ Matµ(Q), the matrices associated to (G,E+)
(5) Impose that M1, . . . ,Md are pairwise commuting
(6) Let ω = (1, 0, . . . , 0)T and impose that the equations

fi(M1, . . . ,Md) · ω = (0, 0, . . . , 0)T hold for every fi ∈ C2

(7) Let I(E) be the set of all polynomials arising from (5) and (6), and
⊲ I(E) ⊂ Q[A]

(8) Compute the zeros Z(I(E)); substitute ajl back to G,
then the runs of F are Z((G)).

end function
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The ideal I(E) is a zero-dimensional ideal in Q[A] and each solution in Z(I(E))
corresponds to an ideal I = (G). Each ideal I determines uniquely a fraction F
such that Est(F ) = E. Therefore, the problem of making a fraction with given
estimable terms is solved.

2.5. Construction of strength t fractions

Recall that a fraction F is said to be t-balanced if, for each choice of t coordi-
nates (columns) from F , each combination of coordinate values from those columns
occurs equally often. The following result combines the Gröbner basis method with
multiplication matrices to make balanced fractions. This method is due to Arjeh
Cohen.

The characteristic polynomial of a left multiplication matrix . Let F be a fraction
with d factors x1, . . . , xd, considered as a finite subset of kd. Let M = xα =
xα1

1 xα2
2 . . . xαd

d be a term of the ring P = k[x]. With respect to the standard basis,
let LM be the matrix determining the left multiplication of M on the space L(F )
of all k-valued functions on F . Then LM represents a linear transformation of that
space.

Theorem 16. Suppose that F has no repeated runs. The characteristic poly-
nomial of LM is

∏

p=(p1,...,pd)∈F

(X − pα1
1 pα2

2 · · · pαd

d ).

Proof. We denote by N the number of runs of F . Let p = (p1, . . . , pd) be a
run in F . The vanishing ideal of p is

(2.5.1) I(p) = (x1 − p1, . . . , xd − pd).

The vanishing ideal of the fraction F is

(2.5.2) I(F ) =
⋂

p∈F

I(p).

Applying the Chinese Remainder Theorem for ideals in the ring P , since F has no
repeated runs, we decompose the algebra P/ I(F ) as:

(2.5.3) P/ I(F ) =
⊕

p∈F

P/ I(p).

A standard result [Pistone et al., 2001, Theorem 14] tells us that each P/ I(p) is
isomorphic to k[p] = k (see Pistone et al. [2001, Definition 19] for the definition of
k[p]). Hence, P/ I(F ) is isomorphic to the algebra kn. From Equation (2.5.1), we
have xαi

i = pαi

i in P/ I(p), for all i = 1, . . . , d. Hence, for each v ∈ P/ I(p) and
i = 1, . . . , d,

(xαi

i − pαi

i ) v = 0,

so
Lαi

xi
(v) = Lxi

αi (v) = xαi

i .v = pαi

i v.

Hence v is an eigenvector of Lαi
xi

= (Lxi
)αi with eigenvalue pαi

i . If we choose a term
M = xα1

1 xα2
2 . . . xαd

d , then the left multiplication matrix by M is given by

LM = Lx1
α1 ...x

αd
d

= Lα1
x1

. . . Lαd
xd

,

and
LM (v) = pα1

1 pα2
2 · · · pαd

d v.
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Therefore, v is an eigenvector of LM with eigenvalue pα1
1 pα2

2 · · · pαd

d . In other words,
the N subalgebras P/ I(p) are eigenspaces for LM , with corresponding eigenvalues
pα1
1 pα2

2 · · · pαd

d . The theorem is now proved. �

A necessary condition for the existence of balanced fractions. From the above the-
orem, the trace of LM is

∑

p∈F

pα1
1 pα2

2 · · · pαd

d .

We use this result to seek balanced fractions F . If F is a 1-balanced fraction, then
the size of F must be a multiple of the number of levels of each of the factors which
form F . If F is a 2-balanced fraction, then the size of F must be a multiple of the
products of each pair of levels, and so on.

Corollary 17. Let F be a t-balanced fraction of a design D in kd. Assume
that factor xi has levels 0, 1, . . . , si − 1.

(a) If t ≥ 1 and αi ∈ {0, 1, . . . , si − 1}, then Lxi
αi has trace

N

si

si−1
∑

l=0

lαi .

In particular, Lxi
has trace |F |(si − 1)/2.

(b) If t ≥ 2, αi ∈ {0, 1, . . . , si − 1} and αj ∈ {0, 1, . . . , sj − 1}, then Lxi
αixj

αj

has trace

N

sisj

si−1
∑

l=0

lαi

sj−1
∑

m=0

mαj .

Proof. For each factor i, the number λi = |F |/si must be a positive integer.
The fraction F can be decomposed into λi blocks F1, . . . , Fλi

each with si runs such
that their ith coordinates are 0, 1, . . . si − 1. Hence

∑

p∈Fl

pαi

i =

si−1
∑

l=0

lαi , for every l = 1, . . . , λi,

and (a) is proved. By considering the designs combined by each pair of two factors
i, j as a full design, applying a similar argument, we get (b). �

2.6. Implementation issues

This section studies the power of the Gröbner basis method and multiplication
matrices for finding estimable terms given a design, and for the inverse problem
of making fractional designs and t-balanced designs with given estimable terms.
We implemented the algorithms of the previous sections in the computer algebra
package Singular, version 3.0.0 [SINGULAR research group, 2005]. We wish to de-
termine how large a design the Gröbner basis machinery can handle. We write dp
for the degree reverse lexicographical order, where x1 > x2 > . . . > xd (Defini-
tion 2.2); and wp for the weighted degree reverse lexicographical order. If we use
wp, then we need a weight vector. For instance, with the weight vector [1, 2, 2, 2, 2],
and d = 5, we have x2 > x3 > x4 > x5 > x1. We will see later that there is
a close relationship between the variable’s weight and the corresponding factor’s
significance.
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Finding estimable terms given a design. We compute the defining ideal of a strength
3 fraction to find its estimable terms. Given a term ordering and a strength 3
fraction F , we compute Est(F ), defined by (2.2.1), from which we extract the
number of terms representing main effects (ME) and the number of 2-interactions.
We record whether we obtain all main effects (y) or not (n). Results are shown in
the 3rd, 4th, and 5th columns of Table 2.1. The last column presents computing
time, and the second one shows the term ordering used. The 1st column gives the
parameters of the form [N ; sa1

1 · sa2
2 · · · sam

m ], where N is the run size, s1 > s2 >
· · · > sm are the levels of the factors, and a1, a2, . . . , am their multiplicities.

Table 2.1: Computing estimable terms given a fractional design

Parameters Ordering #ME #2-ints. All MEs? Time (sec)

[16; 4 · 23] dp 5 7 n 0
[16; 4 · 23] wp, [1, 2, 2, 2] 6 9 y 0

[40; 5 · 26] dp 8 21 n 3
[40; 5 · 26] wp,[1, 2, 2, 2, 2, 2, 2] 10 27 y 21
[48; 3 · 29] dp 11 36 y 10
[48; 3 · 29] wp,[1, 2, 2, 2, 3, 3, 3, 3, 3, 3] 11 35 y 5

[54; 35 · 2] dp 11 27 y 20
[54; 35 · 2] wp, [2, 2, 2, 2, 2, 1] 11 27 y 22
[54; 35 · 2] wp, [1, 1, 1, 1, 1, 3] 11 30 y 35

[64; 44 · 26] dp 14 41 n 50
[64; 44 · 26] wp,[1, 1, 2, 2, 2, 2, 2, 3, 3, 3] 16 42 n 13471
[64; 44 · 26] wp,[1, 1, 1, 1, 2, 2, 2, 2, 2, 2] 18 41 y 103072
[72; 32 · 28] dp 12 33 y 15

[72; 32 · 28] wp,[1, 1, 2, 2, 2, 2, 2, 2, 2, 2] 12 38 y 157
[72; 32 · 28] wp,[2, 2, 1, 1, 1, 1, 1, 1, 1, 1] 11 30 n 7
[80; 5 · 4 · 26] dp 10 32 n 115
[80; 5 · 4 · 26] wp,[1, 2, 3, 3, 3, 3, 3, 3] 13 49 y 6110

[81; 9 · 34] dp 11 36 n 609
[81; 9 · 34] wp,[1, 2, 2, 2, 2] 14 43 n 66617
[88; 11 · 26] dp 10 31 n 15

[88; 11 · 26] wp,[1, 3, 3, 3, 3, 3, 3] 14 41 n 705
[96; 8 · 3 · 24] dp 9 31 n 6
[96; 8 · 3 · 24] wp,[1, 2, 3, 3, 3, 3] 13 44 y 2192
[96; 6 · 42 · 26] dp 12 39 n 1978

[96; 6 · 42 · 26] wp,[1, 2, 2, 3, 3, 3, 3, 3, 3] 17 60 y 20172
[96; 42 · 3 · 27] dp 13 47 n 4740
[96; 42 · 3 · 27] wp,[1, 1, 2, 3, 3, 3, 3, 3, 3, 3] 15 62 y 18900

A few things to notice from this experiment are: 1) if we use dp, we often do
not obtain all components of the main effect of the largest-level factor; 2) choosing
the ordering wp with small weights for factors having a large number of levels gives
the highest number of main effects and two-interactions; 3) to get all 2-interactions
of a specific factor with the other factors, we should use wp and assign weight 1 to
this factor, and assign larger weights to the others.

For example, with input OA(16; 4 · 23; 3), using dp we get estimable terms

1, x4, x3, x2, x1, x
2
1, x3x4, x2x4, x1x4, x2x3, x1x3, x1x2, x

2
1x4;

and using wp with the weight vector [1, 4, 4, 4], we obtain the following terms:

1, x1, x
2
1, x

3
1, x4, x3, x2, x1x4, x1x3, x1x2, x

2
1x4, x

2
1x3, x

2
1x2, x

3
1x4, x

3
1x3, x

3
1x2.
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Finding a balanced design given estimable terms. In this section, we compute and
compare the constructions of five relatively small fractional designs, when given an
order ideal Est(Fi) and a term ordering. This requires Algorithm 2.4 and Corollary
17. The largest run size of a strength 3 OA that we have been able to construct is
16. Each order ideal consists of all main effects and some 2-interactions. We use dp
for the first two (pure) fractional designs, and wp for the remaining designs. This is
because the last two designs are mixed, and we want to estimate all two-interactions
involving a unique factor in each design. By assigning the smallest weight to this
unique factor (having the largest number of levels) we push terms involving this
factor to the start of the set of estimable terms Est(F ), and the other 2-interactions
(not involving this factor) are pushed out of Est(F ). We construct:

A strength 2 design. Using dp, input Est(F1) = [1, x3, x2, x1].

A strength 3 pure (symmetric) design. Using dp, and with input

Est(F2) = [1, x4, x3, x2, x1, x3x4, x2x4, x1x4].

A strength 2 mixed design. Using wp, with the weight vector [1, 2, 2, 2, 2], and with

Est(F3) = [1, x1, x5, x4, x3, x2, x
2
1, x

3
1].

A strength 3 mixed design. Using wp, with the weight vector [1, 2, 2, 2], and input

Est(F4) = [1, x1, x4, x3, x2, x
2
1, x1x4, x1x3, x1x2, x

3
1,

x3x4, x2x4, x2x3, x
2
1x4, x

2
1x3, x

2
1x2].

Since x1 is the unique non-binary factor in the last two designs, we want to
know all its interactions with the binary ones, together with all main effects, and
with as many other two-interactions as possible.

In Table 2.2, the first column specifies the parameters of a design, given in
the pattern [run size; design type; strength]; the second column indicates which
term order we use in the Gröbner basis computation. The 3rd column shows the
number of new variables in the list A = {ajl}, found from Step (3); and the next
column gives the pair of number of terms in the border basis E+ and in E+

2 , found
from Step (1) of Algorithm 1, Section 2.4. The 5th column shows the total number
of polynomials (in terms of variables ajl) of the system, Gb say. The number of
non-factorizable polynomials #Red(Gb), say, obtained by reducing Gb recursively
is in the 6th column, and in the final column we show the number of solutions, ie,
|Z(Gb)|.

Table 2.2: Computing fractional designs given a set of estimable terms

Design type Ordering #A [#E+, #E+
2 ] #Gb #Red(Gb) #Z(Gb)

[4; 23; 2] dp 12 [6, 3] 45 0 1

[8; 24; 3] dp 96 [16,12] 338 0 1

[8; 4 · 24; 2] wp, [1, 2, 2, 2, 2] 144 [23,18] 593 502 1

[16; 4 · 23; 3] wp, [1, 2, 2, 2] 352 [26,22] 1140 824 1

[24; 3 · 24; 3] wp, [1, 2, 2, 2, 2] 1104 [51,46] NA NA NA
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The computation was carried out on a 2.8 GHz PC with 2 GB memory. For
each case, we list a solution. If the defining ideal is not too large, we list the ideal
also. If the PC runs out of memory, we write NA.

F1 = OA(4; 23; 2) =









0 0 0
1 0 1
0 1 1
1 1 0









F2 = OA(8; 24; 3) =









1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 0









T

with the defining ideal I(F2)

x2
4 − x4, x

2
3 − x3, x

2
2 − x2, x

2
1 − x1,

2x2x3 − 2x1x4 + x1 − x2 − x3 + x4,

2x1x3 − 2x2x4 − x1 + x2 − x3 + x4,

2x1x2 − 2x3x4 − x1 − x2 + x3 + x4.

F3 = OA(8; 4 · 24; 2) =













0 1 2 3 0 1 2 3
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1













T

F4 = OA(16; 4·23; 3) =









0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1









T

As can be seen from Table 2.2, the number of reduced polynomials increases strongly
with run sizes. For this reason, a trial with a 24 run design ran out of memory. We
conclude the method is computationally too intensive to construct larger designs.

2.7. Conclusion

In summary, we see that the methods of Gröbner basis and multiplication ma-
trices are good for making small fractional designs and balanced fractional designs.
The computation is not very efficient when the input size increases, and it soon
becomes infeasible. The largest example that can be constructed with this tool is
OA(16; 4 · 23; 3). So, for N ≥ 24, we need to find more efficient ways to construct
fractional designs and t-balanced fractional designs. That will be the theme of the
next two chapters.





CHAPTER 3

Constructing strength 3 orthogonal arrays

3.1. Introduction

This chapter presents methods for making strength 3 orthogonal arrays (OAs).
We recall a basic fact concerning the minimal run size of a given type of OA in
Section 3.2. The basic constructions are discussed in Section 3.3. In Section 3.4,
we use the Fano plane to make a particular type of OA. In Section 3.5, we present
an arithmetic approach in which we realize a new column as a linear functional of
the known columns. An interpretation of strength 3 OAs as Latin squares will be
employed in Section 3.6. Finding disjoint sub-arrays by computing orbits will be
discussed in Section 3.7. Notice that these constructions only give some extensions,
they do not find all extensions of a given array. The methods for finding all non-
isomorphic extensions will be discussed in Chapter 4.

3.2. Background

Recall that a mixed orthogonal array with m distinct levels is denoted by
OA(N ; r1 · r2 · · · rd; t) where the ri can be identical for distinct indices; or by
OA(N ; sa1

1 · sa2
2 · · · sam

m ; t) when the si are distinct, cf. Appendix B. We need the
following well-known result, called the generalized Rao bound for mixed orthogonal
arrays (see Rao [1947], also Hedayat et al. [1999, Theorem 9.4]).

Theorem 18. Let d ≥ t ≥ 1 and assume an OA(N ; r1 · r2 · · · rd; t) exists.

• If t is even, then

N ≥
t/2
∑

j=0

∑

|K|=j
K⊆{1,...,d}

∏

i∈K

(ri − 1).

• If t is odd, then a lower bound for N is found by applying the above bound
to the derived design OA(N/r1; r2 · r2 · · · rd; t− 1), where r1 is the largest
among the rj. That is

N ≥ r1

(t−1)/2
∑

j=0

∑

|K|=j
K⊆{2,...,d}

∏

i∈K

(ri − 1).

In particular, when t = 2, the run size N is bounded below by

N ≥ 1 +
d
∑

i=1

(ri − 1).

Another bound is given by Delsarte. The values of the Delsarte bound are de-
termined for mixed OA(N ; 3b · 2a; t) [Hedayat et al., 1999, Table 9.7, page 203].

27
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From now on we take as our level sets Qi := Zri
, for i = 1, 2, . . . d and for

Zri
= {0, 1, 2, . . . , ri − 1}, the ring of integers modulo ri.

3.3. Basic constructions

Trivial designs. A trivial design is a multiple of a full factorial design, (cf. Appendix

B). It has strength 3 provided d ≥ 3. If
∏d

i=1 ri divides N , a trivial design exists.

Split . Given an OA(N ;uv · r1 · r2 · · · rd; t), an OA(N ;u · v · r1 · r2 · · · rd; t) can be
made by replacing the symbols in Zuv by those of Zu × Zv. In particular, a 4-level
column can be split into two 2-level columns, and a 6-level column can be split into
a 2-level and a 3-level column.

Concatenation. Consider orthogonal arrays F1 and F2 with the same design type

(cf. Appendix B). The concatenated array
[

F1

F2

]

(found by putting them on top

of each other, without changing symbols in any columns) is an OA with the same
type. If F1 and F2 both have strength t, then the concatenated array also has
strength t. That is, given an OA(N ′; r1 · r2 · · · rd; t) and an OA(N ′′; r1 · r2 · · · rd; t),
we can construct an OA(N ′ + N ′′; r1 · r2 · · · rd; t).

Hadamard construction. A Hadamard matrix Hn of order n is a n×n matrix with
entries in {−1, 1} whose rows are mutually orthogonal with respect to the standard
inner product in Rn. More formally, let V := {−1, 1}n, then

Hn := [v1, v2, . . . , vn] ∈ V n such that vi · vj = 0 if i 6= j; and vi · vj = n if i = j.

It is well known that if a Hadamard matrix Hn exists then n = 1, 2, or n is divisible
by 4. Conversely, there is the famous Hadamard conjecture, saying that there
exists an Hn for every n divisible by 4. This conjecture has not been proved or
disproved yet. The case H428 was found recently [Kharaghani and Tayfeh-Rezaie,
2004] leaving the smallest unknown order as 668.

Construction of Hadamard matrices of order n, where n ≤ 664. Sloane [2005]
supplies a list of Hadamard matrices with order at most 256 and the one with
order 428. We have provided an online service to compute a Hadamard matrix
Hn, for each positive multiple n of 4 which is at most 428. We employ 16 methods,
reviewed in Table 3.1 below. Except for cases where the tensor method or the Paley
methods, return the answer, we list in the fourth column orders where the method
works. The third gives the constraints, and the second column of the table either
shows employed tools or lists the requirements of the derived parameter q. Above
428, we implemented a construction of H596 using Spence’s method (cf. Spence
[1977b,a, 1975a]), a construction of H604 using Yamada’s method [Yamada, 1989],
and a construction of H612 using Turyn’s method [Turyn, 1972].

The remaining cases up to 668 are n = 452, 476, 508, 532, 652; and we have
not implemented yet the next three cases. A construction of H452 can be found
in [Goethals and Seidel, 1967]; a H508 was constructed using Williamson array
based supplementary different sets, for more details see Seberry [1999] and Doković
[1993a]; and a H652 was constructed in Doković [1992a]. The list is now shrunk
down to n = 476, 532.
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Table 3.1: Methods for computing Hadamard matrices

Construction Description Constraint Orders

Baumert-Hall Baumert Hall units 156 [Baumert and Hall, 1965a]

Doković Williamson-type mat. n = 4q 28, 52, 92, 116, 124,

172, 204, 244, 252

Ehlich need a skew Hm+1 n = (m − 1)2 324

m − 2 is a prime power

Golay T-sequences, T-matrices n = 4q 260 [Kounias et al., 1991]

require q − 1 = 2k

Kharaghani T-sequences 428

Miyamoto C-matrices n = 4q 452, 508, 604

q is a prime power

need a Hq−1

Paley 1 require a skew H(q+3)/2), n = q + 1

q is a prime power

and q mod 4 = 3

Paley 2 symmetric conference mat. n = 2q + 2

q is a prime power

and q mod = 1

Sawade Goethals-Seidel array n = 4v 268 [Sawade, 1985]

Spence 1 use relative difference sets n = 4q 356, 404, 436, 596, 772, 964

q is an old prime power [Elliott and Butson, 1966]

Spence 2 planar difference sets n = 4v 292 [Spence, 1975b]

q and v are prime powers v = q2 + q + 1

tensor A ⊗ B is a Hadamard (n mod 8) = 0

if A, B are Hadamard mat. or n = 4

Turyn1 T-sequences n = 4q 236 [Turyn, 1974]

and Baumert Hall units

Turyn2 q is a prime power, q mod = 1 n = 6(q + 1) 372, 612, 732, 756

Turyn-Hedayat Turyn-Hedayat array n = 4q 188

Yamada q is a prime power n = 4(q + 2) 412 Yamada [1986]

q mod 8 = 5,

need a skew H(q+3)/2
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Use of Hadamard matrices to construct strength 3 orthogonal arrays A Hadamard
matrix of order n can be transformed to an OA(n; 2n−1; 2). This is called a Placket-
Burmann-type design. Furthermore, we have

Lemma 19. [Hedayat et al., 1999, Theorem 7.5] If H is a Hadamard ma-

trix of order n written with 1,−1-entries, then
»

H
−H

–

is an orthogonal array

OA(2n; 2n; 3); where −H is the OA of strength 2 obtained by reversing signs. Con-
versely, every OA(2n; 2n; 3) is (equivalent to one) found this way.

Multiplication Given an array f := OA(N ; r1 · r2 · · · rd; t), we can construct an
OA(sN ; sr1 · r2 · · · rd; t) for any positive integer s by concatenating s copies of f ,
changing the symbols in the first column so that they are distinct, and keeping
identical the other columns.

Note that multiplying essentially is concatenating, but we use only one compo-
nent array to build up a larger array and we change symbols in one column. For in-
stance, arrays OA(sN ; s ·2a; 3) can be obtained, from s copies of an OA(N ; 2a; 3) =
OA(N ; 1 · 2a; 3), where a ≤ N/2. An OA(24; 3 · 24; 3) is found in this way; ar-
rays OA(8s; 2s · 23; 3) are found from OA(8; 24; 3) = OA(8; 2 · 23; 3): we obtain
OA(16; 4 · 23; 3) from two OA(8; 2 · 23; 3); and we get OA(24; 6 · 23; 3) from three
OA(8; 2 · 23; 3).

Juxtaposition. Juxtaposing is a combination of concatenating and multiplying.
Let F1, F2 be orthogonal arrays with the strength t, and with the same number
of columns. If the Fi have identical symbol sets on every column but the first,
their juxtaposition array is built by putting them on top of each another, with
disjoint symbol sets in the first column and identical symbol sets in the remaining
columns. Formally, given an OA(N ′; s′ · r2 · · · rd; t) and an OA(N ′′; s′′ · r2 · · · rd; t)
we can construct an OA(N ′ + N ′′; s′ + s′′ · r2 · · · rd; t) by juxtaposing. In this
way one obtains, for instance, an OA(56; 7 · 2a; 3) from an OA(40; 5 · 2a; 3) and an
OA(16; 2a+1; 3) for a ≤ 6.

This construction can be generalized naturally for a finite set of orthogonal
arrays.

Quasi-multiplication. Quasi-multiplying is a mixture of the multiplying and jux-
taposing. We construct OA(N ; s2

1 · 2a; 3) where N = s2
12

3 and 2 divides s1. Let
n := N/s1 and suppose that an array f = OA(n, s1 ·2a, 2) exists. We make (s1−1)
arrays OA(n, s1 ·2a, 2) by cyclically taking modulo s1 for the s1-column, and modulo
2 for the 2-columns, ie,:

fi = [(A + i) mod s1 | (B + i) mod 2 ], for 1 ≤ i ≤ s1 − 1,

where A is the s1-column and B is the second part consisting the binary columns.
Then the array

F :=





















0 f
1 f1

. . .
j fj

. . .
s1 − 2 fs1−2

s1 − 1 fs1−1
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Figure 3.1. Fano plane

is an OA(N ; s2
1 · 2a; 3), where j is a length n constant vector with entries j ∈

{0, 1, . . . , s1−1}. For example, OA(64; 42 ·212; 3) exists since OA(16; 4 ·212; 2) exists
(the latter is found using the method of contractive replacement [Hedayat et al.,
1999, Section 9.3]). We find OA(96; 42 · 220; 3) using OA(24; 4 · 220; 2) that exists
thank to the method of different schemes[Wu et al., 1992]; and OA(144; 62 · 213; 3)
exists since OA(24; 6 · 213; 2) exists. For more details see Section 6.3.

Linear codes. A [n, k, d]q code is a linear code of word length n, dimension k, and
minimum distance d. The code words of the dual code (that has dimension n − k)
form an OA(N ; qn; d − 1) with N = qn−k [Hedayat et al., 1999, Theorem 4.6]. In
particular, the [6, 3, 4]4 hexacode gives an OA(64; 46; 3).

3.4. X construction

This construction is originally from Brouwer et al. [2005]. Recall that a finite
projective plane of order n, denoted PG(n, 2), is defined as a set of n2 + n + 1
points with the properties that: i) Any two points determine a line, ii) any two
lines determine a point, iii) every point has lines on it, and iv) every line contains
points. The Fano plane, Figure 3.1, is the order 2 finite projective plane PG(2, 2).

Applying the Rao bound to the derived designs of an array OA(N ; s · 2a; 3)
with run size N = 8s, we find a ≤ 7. For even s, we have already found these with
Construction (M), but for odd s there is no system with a = 7. Indeed, all s derived
designs are essentially Fano planes, and have 7 triples of columns where half of the
combinations of triples occur twice and half of the combinations occur not at all.
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We need a matching, where each time 000 occurs twice in one Fano plane, it occurs
not at all in some other Fano plane. But 7s is odd, and no such matching exists.

On the other hand, such designs exist with a = 6 when s is at least 5. Indeed,
juxtaposing an array OA(8s; s · 26; 3) and an OA(16; 27; 3) we get one with the
run size N = 8(s + 2), the design type (s + 2) · 26, so it suffices to do the case
s = 5, N = 40. We need five designs on 8 rows and six columns. Make them by
fixing the first column and cyclically permuting the remaining five, starting from
the binary matrix:

M =

























0 0 0 0 0 1
1 1 1 0 0 1
1 0 0 0 1 0
0 1 1 0 1 0
0 0 1 1 0 0
1 1 0 1 0 0
1 0 1 1 1 1
0 1 0 1 1 1

























and let Mi (0 ≤ i ≤ 4) be the matrix obtained from M by fixing the first column
and cyclically permuting the remaining five i times. Let Ni be the matrix obtained
from Mi by adding a constant column of all i’s. An OA(40; 5 · 26; 3) is made by
concatenating the Ni.

3.5. Arithmetic construction

Introduction. The method described in this section constructs extensions of a full
factorial design. Suppose that d ≥ 3, r1 ≥ r2 ≥ . . . ≥ rd, and s are natural

numbers at least 2, and at least one ri is a multiple of s. Write D :=
∏d

i=1 Qi

for the full design and let Si be the ith column of D. Let [D|X1|X2| . . . |Xl] =
OA(N ; r1 · r2 · · · rd · sl; 3) be a putative orthogonal array that is extended from D
by l factors X1, X2, . . . , Xl and that has the run size N = r1r2 . . . rd. The notation
(a, b) ∈ [Si, Sj ] means (a, b) ∈ Qi × Qj , and [Si, Sj , Sk] stands for the sub-array
OA(N ; ri · rj · rk; 3).

First we consider l = 1 and let X := X1. Denote by u := (u1, u2, . . . , ud) an
arbitrary run of the design D. Since the columns S1, S2, · · · , Sd form the full design
D of N runs, X is determined uniquely by a function

fX : D → Zs, u 7→ fX(u).

We call fX the defining function of the column X. The problem of finding the
maximum number l of columns Xi such that an array OA(N ; r1 · r2 · · · rd · sl; 3)
exists is reduced to: determine all distinct functions fXi

such that Xi is orthogonal
to any pair of columns of D, ie, the extended array [D|Xi] exists; and then find
conditions such that column Xi is orthogonal to the array [D|X1| . . . |Xi−1], for
i = 2, . . . , l, l > 1. The following method is generalized from the Construction (X6)
in Brouwer et al. [2005].

The construction. For a column X, let f = fX be the defining function. We
characterize f such that [D|X] is a strength 3 orthogonal array with d+1 columns.
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Conditions on f . Put K := {1, 2, . . . , d}. For i, j ∈ K, let

(3.5.1) Qi,j :=
∏

l∈K\{i,j}

Ql, nij :=
N

rirj
, qij :=

nij

s
;

and, for each (a, b) ∈ [Si, Sj ], let

Qij(a, b) := {u = (u1, u2, . . . , ud) ∈ D : ui = a and uj = b}
Define fab

ij to be the restriction of f to Qij(a, b), considered as a function of the
d − 2 variables

yij := (u1, . . . , ui−1, ui+1, . . . , uj−1, uj+1, . . . ud).

Lemma 20. If fab
ij is a qij-to-one mapping for all i, j ∈ K, a ∈ Zri

, b ∈ Zrj
,

then [D|X] is a strength 3 orthogonal array.

Proof. If the three columns chosen from [D|X] are all Si, then they are ob-
viously orthogonal. Otherwise, a triple (a, b, c) ∈ [Si, Sj , X] occurs with frequency

| (fab
ij )−1(c)| = qij .

Since this number is independent of a, b, c the conclusion follows. �

A specific f . Knowing the requirement for the existence of f , we now construct a
specific function f . Put n := lcm(r1, r2, . . . , rd). Since s is a divisor of ri for some
i ∈ K, s is a divisor of n. Define a uniform partition A0, A1, . . . , As−1 of Zn by

Ap :=

{

z ∈ Zn :

⌊

zs

n

⌋

= p

}

,

for p = 0, . . . , s − 1. That is

A0 :=

{

0, 1, . . . ,
n

s
− 1

}

,

A1 :=

{

n

s
,
n

s
+ 1, . . . , 2

n

s
− 1

}

,

. . .

As−1 :=

{

n − n

s
, . . . , n − 1

}

.

(3.5.2)

In the special case of s = 2, write A = A0, B = A1 = Zn \ A. We define the
partition function by

(3.5.3) g : Zn → Zs, g(z) := p when z ∈ Ap.

We remark that D can be identified with ZN . For h : D → Zn, define

hab
ij : Qij(a, b) → Zn,

hab
ij (yij) := h(u1, . . . , ui−1, a, ui+1, . . . , uj−1, b, uj+1, . . . ud),

(3.5.4)

for i, j ∈ K and (a, b) ∈ [Si, Sj ]. Let h have the property that the number of
yij ∈ Qij(a, b) with hab

ij (yij) ∈ Ap is the same for all p. This property is referred
to as the uniform scattering condition.

The scattering coefficient of a pair of columns. The scattering coefficient of the
level pair (a, b) ∈ [Si, Sj ] and Ap is defined as

sab
ij (Ap) := |{y ∈ Qij(a, b) : hab

ij (y) ∈ Ap}|.
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If the uniform scattering property is satisfied then sab
ij (Ap) is independent of the

choice of (a, b) ∈ [Si, Sj ] and p ∈ {0, 1, . . . s − 1}. We write sij for that constant,
and call it the scattering coefficient of the columns [Si, Sj ] in Zn.

Example 3.1. Consider an array OA(96; 3 · 4 · 4 · 2 · 2l; 3), ie, d = 4, s1 = 3,
s2 = s3 = 4, s4 = 2 and s = 2. Then N = 96, D = Z3 × Z4 × Z4 × Z2,
n := lcm(s1, s2, s3, s4) = 12, A = {0, 1, 2, 3, 4, 5}, B = {6, 7, 8, 9, 10, 11}. Let
i = 1, j = 4, then Q14 = Z4 × Z4 = {(0, 0), (0, 1), . . . , (3, 3)}, n14 = 96/(3 · 2) = 16,
q14 = 16/2 = 8. If we define h(u) = 3u1 + 3u2 + 2u3 + 6u4 (mod 12), then
h00

14 = 3u2 + 2u3 (mod 12), and the values of h00
14 with multiplicities are

h00
14 = {02, 1, 2, 32, 4, 5, 62, 7, 8, 92, 10, 11}.

Hence s00
14(A) = 8 = s00

14(B), ie, the scattering coefficient of the pair (0, 0) ∈ [S1, S4]
is 8. It can be checked that the scattering coefficient s14 of the columns [S1, S4] in
Z12 is 8 as well.

The defining function f : D → Zs of a column X can then be realized as a
composition f = g ◦ h, as follows:

Lemma 21. If h : D → Zn satisfies the scattering condition, g : Zn → Zs is
the partition function, and f = g ◦ h, then [D|X] is a strength 3 orthogonal array.

Proof. Since |hab
ij (Qi,j)| = nij by (3.5.1); then sab

ij (Ap) = qij elements for
p = 0, . . . , s − 1. That means the scattering coefficient sij of the columns [Si, Sj ]
in Zn is qij . Because f := g ◦ h, from (3.5.3), fab

ij is a qij-to-one mapping. Now we
see that the hypothesis of Lemma 20 is satisfied. �

Hence, if one can find a function h satisfying the uniform scattering condition,
then an s-level X can be defined such that the orthogonal array [D|X] exists.

A particular class of functions h. Note that if d = 3 and nij = s, then qij = 1.
That is hi,j is a one-to-one mapping from Ql to Zn, for l ∈ K \ {i, j}. This means
that Sl corresponds one-to-one with the column X. Prompted by this special case,
and referring to decomposition (3.5.2) for d ≥ 3, a natural candidate of function
h : D → Zn is a linear functional in d variables

h(u) = c1u1 + c2u2 + . . . + cdud (mod n),

where ci ∈ Z×
n for i = 1, . . . d.

(3.5.5)

In this case, finding h is reduced to finding a vector c = (c1, c2, . . . , cd) ∈ Zk
n.

Example 3.2. Consider an array OA(64; 44 · 26; 3). Here d = 3, s1 = s2 =
s3 = 4, s = 2, n = lcm(4, 4, 4) = 4, D = Z4 × Z4 × Z4 ≡ Z64, A := {0, 1} and
B := Z4 \ A = {2, 3}. Let h : D → Zn be defined by

h(u) = u1 + 2u2 + 3u3 mod 4.

For i = 1, j = 2, Q12 = Z4, n12 = 64
16 = 4, q12 = 4

2 = 2. Then

h00
12(Z4) = {0, 3, 2, 1} = A ∪ B;

h32
12(Z4) = {3, 2, 1, 0} = A ∪ B.

The same decomposition of hab
12(Z4) can be found for the other level pairs (a, b) in

S1, S2. The scattering coefficient of the columns S1, S2 in Z12 is s12 = 1 + 1 = q12.



3.6. LATIN SQUARES METHOD 35

Also Q13 = Z4, n13 = 64
16 = 4, q13 = 4

2 = 2. For (a, b) = (0, 0), (1, 3), (2, 1), we get

h00
13(Z4) = {0, 2, 0, 2} = [02, 10, 22, 30],

h13
13(Z4) = {2, 0, 2, 0} = [02, 10, 22, 30],

h21
13(Z4) = {1, 3, 1, 3} = [00, 12, 20, 32] . . .

The scattering coefficient of the columns S1, S3 in Z12 is s13 = 0 + 2 = q13 . . . In
this example, the condition of Lemma 21 is fulfilled, therefore a binary column S
exists, and it is orthogonal to D = OA(64; 43; 3).

See Section 6.3 for more applications of this method.

3.6. Latin squares method

We describe a geometric method to construct orthogonal arrays OA(96; 6 · 42 ·
2a; 3) for a ≤ 5 and OA(80; 5 · 4 · 2a; 3) for a ≤ 6 in this section. Recall that if
f is an orthogonal array, [f |S] stands for an orthogonal array made by appending
a column S to f , and having the same strength as f . Recall from Section 3.3

that,
[

F
F1

]

denotes the concatenation of two orthogonal arrays F and F1. The

Hamming distance between two vectors of the same length is the number of unequal
coordinates.

Construction of Da = OA(96; 6 · 42 · 2a; 3) for a ≤ 5. We suppose

Da = [Z|X|Y |S1| · · · |Sa]

where Z is the 6-factor, X and Y are the 4-factors, and Si (1 ≤ i ≤ a) are the binary
factors. The notation (x, y, s1) means coordinates of a run in columns XY S1. We
fix f = OA(16; 42; 2) to be the trivial design. If Da exists, decomposing it at the
column Z gives us 6 derived designs of the form OA(16; 42 · 2a; 2).

Appending a single column to f . The full design f = OA(16; 42; 2) is the set
{0, 1, 2, 3}2, ie, each row of f corresponds to an element (i, j) ∈ (Z4)

2. We identify
f with the positions in a 4× 4 matrix J . So the rows of J correspond to the levels
of X and the columns of J correspond to the levels of Y . Now let S be a binary
column to be appended to f to form a strength 2 array OA(16; 42 · 2; 2). This is
equivalent to assigning a symbol 0 to exactly 2 entries in each column and each
row of J ; and assigning a symbol 1 to the remaining entries. Such a matrix indeed
represents a strength 2 array since, for each (x, y) ∈ XY , there are exactly two
pairs (x, 0) (resp. (x, 1)) in XS and exactly two pairs (y, 0) (resp. (y, 1)) in Y S.
The (0, 1)-matrices of this form are also called grids. For example, consider the
grid

(3.6.1) g =









0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0









.

The corresponding orthogonal array of 16 runs is found by concatenating rows to
form a length-16 vector V , and appending it to f . In this example:

[X|Y |V ] =





0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0





T

.
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a1 =

2

6

6

4

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

3

7

7

5

, a2 =

2

6

6

4

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

3

7

7

5

, a3 =

2

6

6

4

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

3

7

7

5

,

a4 =

2

6

6

4

1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1

3

7

7

5

, a5 =

2

6

6

4

1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0

3

7

7

5

, a6 =

2

6

6

4

1 0 0 1
0 1 1 0
1 0 0 1
0 1 1 0

3

7

7

5

,

a7 =

2

6

6

4

1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

3

7

7

5

, a8 =

2

6

6

4

0 0 1 1
1 1 0 0
1 1 0 0
0 0 1 1

3

7

7

5

, a9 =

2

6

6

4

0 1 0 1
1 0 1 0
1 0 1 0
0 1 0 1

3

7

7

5

.

Figure 3.2. Grids of class A

Remark 3.1. We identify the grid g with the corresponding length-16 vector V
and identify [f |g] with the corresponding array [f |V ] = [X|Y |V ] = OA(16; 42 ·2; 2).

For any grid g, its complement grid , denoted gc, is defined by

(gc)ij := (gij + 1) mod 2.

Similarly we define the complement of a vector in {0, 1}4.
An isomorphism class of grids is a minimal set of grids closed under permuting

rows and permuting columns. By computing the orbit space of grids under the
action of the full group of row and column permutations as in Section 4.2, we find
that there are only 2 isomorphism classes of grids. These classes can be character-
ized by Hamming distances. Let class A consist of grids such that the Hamming
distances between the columns are 0 or 4, and let class B consist of grids such that
the Hamming distances between the columns are 2 or 4. The grid given by (3.6.1)
is a representative of A and b1 below is a representative of B. Every g ∈ A has
exactly one of the vectors

u := [0110]T , v := [0101]T , w := [0011]T

as a column. Indeed, to make sure that the Hamming distances between the columns
are 0 and 4, each grid in A must be built by a pair of complement columns like
[u|uc|u|uc]. Each vector occurs in

(

4
2

)

= 6 grids, and when this vector is fixed there
are 3 choices for the index of the column in which the vector is being repeated.
So we get 18 grids for this class. In Figure 3.2 we list nine grids a1 to a9; now
A = {a1, . . . , a9, a

c
1, . . . , a

c
9}.

The second class, B, consists of grids with the Hamming distances between
columns of 2 or 4. Each grid in B has exactly two of the vectors u, v, w as columns;
and there are 24 grids corresponding to each such pair. Therefore, B has

(

3
2

)

·24 = 72
distinct isomorphic grids. A representative with the pair {v, w} is

(3.6.2) b1 =









0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0









In summary, we find 90 grids with which we can make length-16 binary vectors in
OA(16; 42 · 2; 2).
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Appending a pair of columns to f . Let G := A∪B, and let g, h ∈ G. The superim-
posed grid of g, h, denoted g ∗h, is the 4×4-matrix with entries in {0, 1, 2, 3} where
(g ∗ h)ij has binary expansion gij , hij . Note that this operation is not symmetric.

By Remark 3.1, for the first binary factor we can choose a grid g1 ∈ G to
form an array [X|Y |V1] = OA(16; 42 · 2; 2). Any candidate for the second length-16
column V2 must be orthogonal to V1. That means when choosing another grid, g2

say, and building the superimposed grid g1 ∗ g2, each pair 00, 01, 10 and 11 has to
appear exactly 4 times in the array [X|Y |V1|V2] := OA(16; 42 ·2 ·2; 2). Equivalently,
each symbol 0, 1, 2, 3 must appear 4 times in g1 ∗ g2. For example,

a1 ∗ a2 =









1 3 2 0
3 1 0 2
2 0 1 3
0 2 3 1









satisfies this condition, so we get an array [X|Y |V1|V2] = OA(16; 42 · 2 · 2; 2):

[X|Y |V1|V2] =









0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1









T

.

Remark 3.2. We identify the superimposed grid g1∗g2 with the corresponding
pair of length-16 vectors V1, V2; and identify [f |g1|g2] with the corresponding array
[X|Y |V1|V2] = OA(16; 42 · 2 · 2; 2).

The grids g ∗ h, g ∗ hc, gc ∗ h and gc ∗ hc are called the derived grids of g and
h. We put

Der(g, h) := {g ∗ h, gc ∗ h, g ∗ hc, gc ∗ hc}.
Latin squares are n× n matrices whose entries are the symbols 0, 1, . . . , n− 1 such
that each symbol occurs exactly once in every row and every column.

Lemma 22. g ∗ h is a Latin square if and only if the other derived grids are.

Proof. Consider any symbol i (0 ≤ i ≤ 3) in the grid g ∗ h. This symbol
turns into the symbol (i + 2)mod 4 in gc ∗ h, and into the symbol (3 − i)mod 4
in gc ∗ hc. In addition, g ∗ hc is the complement of gc ∗ h, in the sense that
g ∗ hc ∋ 0 = 00 ⇐⇒ 11 = 3 ∈ gc ∗ h, and g ∗ hc ∋ 1 = 01 ⇐⇒ 10 = 2 ∈ gc ∗ h.
Hence, the number of symbol 0 (1, 2 and 3) in each row and each column of g ∗ hc,
gc ∗h and gc ∗hc is exactly 1 if and only if it is for g ∗h. The conclusion follows. �

Now we confine ourselves to using A only. Table 3.2 describes whether the
superimposed grids in A are Latin squares or not. Note that for each fixed grid
g ∈ A, there are exactly 4 grids h ∈ A such that g ∗ h is a Latin square, and
there are 4 grids h ∈ A such that g ∗ h is not a Latin square. For instance, grids
h ∈ {a5, a6, a8, a9} do not form Latin squares when superimposing with a1. Take
h = a5; then their derived grids are given in Figure 3.3.

Constructing D1 = OA(96; 6 · 42 · 2; 3) by concatenating six OA(16; 42 · 2; 2). If
D1 = [Z|X|Y |S] then each (x, y, 0) and each (x, y, 1) must appear exactly 3 times
for 0 ≤ x, y ≤ 3.

Let F1 := [f |g] be an OA(16; 42 · 2; 2) and denote F c
1 := [f |gc] for g ∈ A. Each

triple (x, y, 0) and (x, y, 1) appears exactly once in the concatenation array
[

F1

F c
1

]

.
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Grids a1 a2 a3 a4 a5 a6 a7 a8 a9

a1 yes yes yes yes
a2 yes yes yes yes
a3 yes yes yes yes
a4 yes yes yes yes
a5 yes yes yes yes
a6 yes yes yes yes
a7 yes yes yes yes
a8 yes yes yes yes
a9 yes yes yes yes

Table 3.2. The pairs whose superimposed grids form Latin squares

a1 ∗ a5 =

2

6

6

4

1 2 2 1
3 0 0 3
2 1 1 2
0 3 3 0

3

7

7

5

, a
c
1 ∗ a5 =

2

6

6

4

3 0 0 3
1 2 2 1
0 3 3 0
2 1 1 2

3

7

7

5

,

a1 ∗ a
c
5 =

2

6

6

4

0 3 3 0
2 1 1 2
3 0 0 3
1 2 2 1

3

7

7

5

, a
c
1 ∗ a

c
5 =

2

6

6

4

2 1 1 2
0 3 3 0
1 2 2 1
3 0 0 3

3

7

7

5

.

Figure 3.3. Derived grids Der(a1, a5)

Remark 3.3. Evidently, if we use one of the three alternatives below:

(i) a pair (F1, F
c
1 ) three times, ie, the column S in the array D1 has the form

[g, gc, g, gc, g, gc] (after reordering the grids); or
(ii) two distinct complement pairs (one is replicated twice), ie, S is of the form

[g, gc, g, gc, h, hc]; in which h 6= g, gc;
(iii) three distinct complement pairs, ie, [g, gc, h, hc, k, kc] in which h 6= g, gc

and k 6= g, gc, h, hc

to build the binary column of D1, then D1 is an array as required.

For example, the superimposed grid

a2 ∗ ac
2 =









2 2 1 1
2 1 2 1
1 2 1 2
1 1 2 2









indicates that each triple (x, y, 0) and (x, y, 1) occurs exactly once in 32 runs of
[

f |a2

f |ac
2

]

for all 0 ≤ x, y ≤ 3. A good column S could then be [a2, a
c
2, a3, a

c
3, a4, a

c
4]

T .

From this point, let J be the all-one square matrix of order 4. We have the
converse of the statement in Remark 3.3:

Lemma 23. Let g0, . . . , g5 ∈ A. Then

D1 =





0T 1T 2T 3T 4T 5T

fT fT fT fT fT fT

gT
0 gT

1 gT
2 gT

3 gT
4 gT

5





T
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is an OA(96; 6 · 42 · 2; 3) if and only if g0, . . . , g5 form three complementary pairs,
ie, they can be reordered so that g3 = gc

0, g4 = gc
1 and g5 = gc

2.

Proof. Write D1 = [Z|X|Y |S]. Clearly the triples (Z,X, S), (Z, Y, S) and
(Z,X, Y ) are orthogonal. We prove that (X,Y, S) are orthogonal in three steps.

If six grids in S do not make any complementary pair, that is

S = [g1, h1, g2, h2, g3, h3]

such that there is no complement pair u, uc ∈ S for any u ∈ {gi, hi, g
c
i , h

c
i} ⊆ A;

then D1 can not have strength 3. In this case, no pair from the six grids results in
a superimposed grid solely consisting of the symbols 1 and 2.

Now suppose that there is only one complementary superimposed grid (ie, two
grids g, h have no complement pairs) in S, that is

S = [g, h, g1, h1, a, ac]

where there is no complement pair u, uc ∈ S for any u ∈ {g, h, g1, h1}, and
a, g, g1, h, h1 ∈ A. Since a, ac contributes one triple (x, y, 0) (and (x, y, 1)) for
any pair xy ∈ XY , if the four grids {g, h, g1, h1} contribute less than or more than
two triplets (x, y, 0), (or less than or more than two triplets (x, y, 1)) for some co-
ordinates xy, then we have a contradiction. We consider three cases: two identical
pairs, one identical pair and no identical pairs at all. Note that

• for every g ∈ G, g ∗ g only contains the symbols 0 and 3;
• since all grids in G are distinct, we have

g ∗ g + h ∗ h = 3J ⇐⇒ h = gc.

First of all, the superimposed grid g ∗ g consists only of symbols 0 and 3
for every g ∈ G, since g is a 0, 1-grid. Secondly, when h = gc, evidently
we have

g ∗ g + h ∗ h = g ∗ g + gc ∗ gc = 3J,

since
g ∗ g ∋ 0 ≡ 00 ⇐⇒ 11 ≡ 3 ∈ gc ∗ gc,

and
g ∗ g ∋ 3 ≡ 11 ⇐⇒ 00 ≡ 0 ∈ gc ∗ gc.

To see the ‘only if’ part (the necessity condition), suppose that g∗g+h∗h =
3J and h 6= gc, then there exist 0 ≤ x, y ≤ 3 such that g[x, y] = h[x, y] = 0
(in grids), and (g ∗ g)[x, y] = 0 (in the superimposed grid). That means
(h ∗ h)[x, y] = 0, contradiction.

If there are two distinct identical pairs, g, g and h, h where h 6= g, gc ∈ G, the sums
g ∗ g + h ∗ h always differ from the constant matrix 3J , contradiction. Indeed, if
there exist 0 ≤ x, y ≤ 3 such that (g ∗g)[x, y], (h∗h)[x, y] = 0 or 3 and (g ∗g)[x, y]+
(h ∗ h)[x, y] ∈ {0, 6} then |{xy0}| = 1 + 4 > 3 or |{xy1}| = 1 + 4 > 3 in the whole
fraction, contradiction. Similarly, if there is only one identical pair, then g1 6= h1.
The superimposed grid g ∗ g only consists of 0 and 3, meanwhile g1 ∗ h1 has all
symbols 0, 1, 2, 3; they do not match with each other. (Indeed, if so, there exist
0 ≤, x, y ≤ 3 such that (g ∗ g)[x, y] = 0 (or 3) and (g1 ∗ h1)[x, y] = 1 (or 2), so the
triple (x, y, 0) (or (x, y, 1)) occurs 4 times in the whole fraction). After all, if all of
the grids {g, h, g1, h1} are distinct and if they do not make complementary pairs,
the pairs g ∗ h and g1 ∗ h1 consist of the symbols 0, 1, 2, 3. We want that their sum
equals 3J . By computer search, there is no match between the four.
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Lastly, suppose there are two complementary superimposed grids (ie, only one
grid g has no complementary pair) in column S,

S = [g, h, a, ac, b, bc],

with a, b, g, h ∈ A and h 6= gc. Looking at the superimposed grids comprised by
grids in S, we see that (a, ac), (b, bc) contribute to D1 two triplets (x, y, 0) and
(x, y, 1) for any pair xy ∈ XY . If h = g then the superimposed grid g ∗ g consists
only of the symbols 0 and 3; if h 6= g then the grid g ∗ h always has an entry 0 or 3
(symbol 0 stands for the pair 00, and symbol 3 stands for the pair 11). That means
on the whole, |{xy0}| ≥ 4 or |{xy1}| ≥ 4, contradiction. �

Constructing an OA(96; 6 · 42 · 2 · 2; 3) by concatenating six OA(16; 42 · 2 · 2; 2).
Let D2 = OA(96; 6 · 42 · 2 · 2; 3) = [Z|X|Y |S1|S2]. Using the above lemma to form
columns S1, S2, we obtain orthogonalities between S1 and S2 with XY independent,
but we do not assure that column X (and Y ) are orthogonal to the pair S1S2 in D2.
We now find (geometrical) requirements for the orthogonalities between columns
X,S1, S2 and between Y, S1, S2.

Let F2 := OA(16; 42 ·22; 2) = [f |g1|g2] be the array with two appended columns
which are determined by grids g1, g2. Now F2 to be embedded in the 3-dimensional
space ZXY must be composed of two grids [f |g1] and [f |g2] that satisfy Lemma
23. Then D2 has strength 3 if and only if the sub-arrays (X,S1, S2) and (Y, S1, S2)
have strength 3. In other words, for each 0 ≤ i, j ≤ 3, the intersections of D2 with
planes X = i and Y = j must have exactly 6 points 00, 01, 10, 11 (that means the
number of symbols 0,1,2 and 3 in each column and each row from 6 superimposed
grids is 6).

If we can choose grids forming columns S1, S2 such that the six superimposed
grids are Latin squares, then we are done. For example, from Table 3.2, we might
choose S1 = [a1, a1, a1, a

c
1, a

c
1, a

c
1], and S2 = [a2, a

c
2, a3, a

c
3, a4, a

c
4]. How about the

converse statement? What happens if some parts of S1, S2 do not intersect to give
a Latin square? We now determined the patterns of the two S1, S2. To prove the
next proposition, we need the lemma below.

Lemma 24. The number of symbol i (0 ≤ i ≤ 3) in each column and in each
row of derived grids Der(g ∗ h) is always 4, for any pair g 6= h ∈ A.

This is obvious by an argument similar to Lemma 22.

Proposition 25. Let S1 = [g0, . . . , g5] and S2 = [h0, . . . , h5] with gi, hi ∈ A.
The triples (X,S1, S2) and (Y, S1, S2) are orthogonal if and only if one of the fol-
lowing conditions is satisfied:

(1) all six superimposed grids gi ∗ hi (i = 0, . . . 5) are Latin squares; or
(2) four superimposed grids are Latin squares, and two remaining superim-

posed grids are of the form

[a ∗ b, ac ∗ b] or [a ∗ b, a ∗ bc]

where a, b ∈ A; or
(3) only two superimposed grids are Latin squares, and the remaining four

superimposed grids are
(i) Der(a, b) for some a, b ∈ A;
(ii) a ∗ b, a ∗ bc, d ∗ e, d ∗ ec, for a, b, d, e ∈ G, a 6= b, bc; and d 6= e, ec; or
(iii) grids that sum to 6J .
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Proof. The ‘if’ part is clear for the first case. The second case follows from the
fact that if a superimposed grid a ∗ b is not a Latin square then it has precisely two
rows, say y1, y2, (or two columns, not both) in which the symbol 0 (or 1,2,3) occurs
twice. Then ac ∗ bc has symbol 0 in those rows as well. As a result |{y100}| =
|{y200}| = 8. If we use grid ac ∗ b (or a ∗ bc), then the symbol 0 occurs twice
in complement rows of {y1, y2} in the grid [f |ac|b] (or [f |a|bc]). That is, Y is
orthogonal to the pair S1S2. If so, in a ∗ b, the symbol 0 still distributes uniformly
over 4 columns. So column X is orthogonal to the pair of columns S1S2.

Case (3i) is clear by Lemma 24. For instance

S1 = [a3, a
c
3, a3, a

c
3, a9, a

c
9], and S2 = [a7, a7, a

c
7, a

c
7, a6, a

c
6]

are good pairs, because a6 ∗ a9 and ac
6 ∗ ac

9 are Latin squares. If Case (3ii) occurs,
using the same argument as in the second case, two superimposed grids a ∗ b and
a∗bc supply two 0 (and two 1, 2, 3) in each row and column of grids. The conclusion
follows. Since there are only three ways of writing the number 6 as a sum of four
numbers 0,1,2,3: 6 = 0 + 0 + 3 + 3 = 1 + 2 + 0 + 3 = 1 + 2 + 1 + 2; if Case (3iii)
happens, then the symbol 0 (1,2,3) appears exactly 4 times in four non-Latin square
grids. The orthogonality of (X,S1, S2) and (Y, S1, S2) follows (⋄).

The ‘only if’ part is proved follows. Let n12 be the number of Latin squares
comprised of components of the columns S1, S2. Suppose that n12 ≤ 5. By the
above reasoning n12 6= 5. If n12 = 4 then we get (2). If n12 = 3, that is we have
three Latin squares, the remaining superimposed grids, say g3∗h3, g4∗h4 and g5∗h5

are not. Since g3 ∗ h3 is not a Latin square, it either has precisely two rows, say
y1, y2, or has two columns in which symbol 0 (or 1,2,3) occurs twice. Then in grid
g4 ∗h4 (or g5 ∗h5) we must see two 0s at rows y3, y4; otherwise the symbol 0 already
occurs 3+2+2 = 7 times in row y1 or row y2, contradiction. Therefore, (using only
five superimposed grids) symbol 0 already occurs 3 + 2 = 5 times at every row and
column, and the last superimposed grid g5 ∗h5 (or g4 ∗h4) contributes two more 0s
to some row (or column), contradiction.

Now we consider n12 = 2. By similar reasoning as above, we get two 0s in every
row and every column from two Latin square grids. Suppose that the remaining
four grids g2 ∗h2, g3 ∗h3, g4 ∗h4 and g5 ∗h5 are not Latin squares. If g3 ∗h3 = g2 ∗hc

2

or g3 ∗h3 = gc
2 ∗h2, we get 4 symbols 0 in every row and in every column. It follows

that g4 ∗ h4 and g5 ∗ h5 must be one of the forms in case (2). We have obtained
Case (3ii). If these four grids do not have pattern (3i) or (3ii), they must be of the
pattern (3iii), by using (⋄). �

From Table 3.2, we see that the derived grids of the triple a1, a2, a3 form Latin
squares, and so do those of the triple a4, a6, a8, and a5, a7, a9. These are all pos-
sibilities composed from 9 grids. Furthermore, none of these triples is extendable.

Find conditions for appending the third binary column S3. Let

D3 = OA(96; 6 · 42 · 23; 3) = [Z|X|Y |S1|S2|S3]

be a putative array formed by 6 arrays [f |g1|g2|g3] where g1, g2, g3 are selected as
above. We embed grids into the 5-dimensional space XY S1S2S3. Then D3 has
strength 3 if and only if it satisfies: for each triple ijk ∈ [S1S2S3], the intersections
of D3 with hyperplanes S1 = i, S2 = j, S3 = k have exactly 12 points.
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We code combinations 000, . . . 111 by symbols 0, 1, 2, 3, 4, 5, 6, 7. Then this con-
dition is read off when we put 3 grids [f |g1], [f |g2] and [f |g3] together. That is
we superimpose three grids g1, g2, g3 ∈ G into a triple superimposed grid (or triple
grid) consisting of symbols 0 to 7. We get 6 triple grids with 3 columns. For every
i ∈ {0, . . . , 7}, if the total number of symbols i from these grids are 12, then we are
done. Now by exhaustive search, we find:

Proposition 26. An orthogonal array OA(96; 6 · 42 · 25; 3) exists.

The five binary columns building up this array are:

S1 S2 S3 S4 S5

a1 a2 a7 a3 a4

ac
1 ac

2 a7 ac
3 ac

4

a1 a2 ac
7 a6 a9

a1 ac
2 ac

7 ac
6 ac

9

ac
1 a2 a6 ac

9 a4

ac
1 ac

2 ac
6 a9 a4

Construction of Da = OA(80; 5·4·2a; 3), a ≤ 6. We encode of orthogonality between
columns as slightly differently from the previous section. We use the rectangular
discrete cube {0, 1, 2, 3}× {0, 1}2, project the cube onto a plane, and generate 0, 1-
grids and their derived grids. Then we try to match as many grids as possible.

View an orthogonal array in 3-dimensional space. We suppose

Da = OA(80; 5 · 4 · 2a; 3) = [Z|X|Y |W |S1| · · · |Sa]

where the factor Z has five levels, X has four levels, and Y,W, Si have two levels
each. The full design f := OA(16; 4 · 22; 2) is the discrete box or parallelotope
{0, 1, 2, 3} × {0, 1}2. By mapping f (in the 3-dimensional space XY W ) onto the
plane XY , we identify f with the positions in a 4×4 matrix J , in which the columns
represent levels 0, 1, 2, 3 of X and the rows represent levels 0,1 of Y,W . Note that,
in this encoding, we attach the levels of the unique 4-level factor X to columns, not
rows; we reserve the rows for the binary factors Y and W . Denote J(i) for the ith
row of J , let Y0, Y1,W0,W1 be sub-grids of J determined by:

Y0 = {J(1), J(4)},
Y1 = {J(2), J(3)},

W0 = {J(3), J(4)},
W1 = {J(1), J(2)}.

(3.6.3)

These sub-grids represent the levels of the factors Y and W .

Determine the feasible grids for the third binary column in OA(16; 4 ·22 ·2; 2). Let S
be a binary column to be added to f = OA(16; 4·22; 2) to form an OA(16; 4·22 ·2; 2).

Remark 3.4. Adding S is equivalent to assigning the symbol 0 to exactly 2
points in every column of f such that the number of symbols 0 in each sub-grid
Y0, Y1,W0,W1 is precisely 4. These points are xyw0 ∈ XY WS, and the remaining
points represent xyw1 ∈ XY WS (where 0 ≤ x ≤ 3, 0 ≤ y, w ≤ 1) in the resulting
array which is denoted by [f |S].
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We find 5 non-isomorphic series of grids to be used for building an OA(16; 4·22 ·
2; 2). The general method for obtaining these classes will be detailed in Section 4.2.
The first two classes A and B are described in the construction of OA(96; 6·42 ·25; 3).
The third, fourth and fifth, denoted by C,D,E, consist of 6, 144 and 24 isomorphic
grids; but in fact, only 2, 48 and 8 isomorphic grids in C,D,E respectively satisfy
Remark 3.4. We list here 3 representatives c1, d1, e1 for the last three classes C,D
and E.

c1 =

2

6

6

4

1 1 1 1
0 0 0 0
1 1 1 1
0 0 0 0

3

7

7

5

, d1 =

2

6

6

4

1 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0

3

7

7

5

, e1 =

2

6

6

4

0 0 0 1
1 1 1 0
0 0 0 1
1 1 1 0

3

7

7

5

,

Let G := A ∪ B ∪ C ∪ D ∪ E be the set of all 148 (=18+72+2+48+8) grids.

Form conditions on F := [f |S] such that 5 copies of F form an orthogonal array
D = OA(80; 5 · 4 · 22 · 2; 3).

Condition 1. A putative fraction D must satisfy:

(i) each triple xys, xws appears exactly 5 times; and moreover,
(ii) each triple yws appears exactly 10 times in D,

for all 0 ≤ x ≤ 3, 0 ≤ y, w ≤ 1, and s ∈ {0, 1}.
For any grid g ∈ G, let Y0(g), Y1(g),W0(g),W1(g) be the corresponding sub-

grids (defined in (3.6.3)); let Y0(D), Y1(D), W0(D), W1(D) be the union of 5 sub-
grids extracted from component grids of D. Each of the triples xys, xws occurs 5
times in D if and only if the intersections of the plane {X = j} with Y0(D), Y1(D),
W0(D), or W1(D) consists of five symbol 0 and 1 for all 0 ≤ j ≤ 3. Using the grid
a7 ∈ A, and applying the column permutations (1, 3) and (1, 3)(2, 4) to a7, we get

a7 =

2

6

6

4

1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

3

7

7

5

, a7b =

2

6

6

4

0 1 1 0
1 0 0 1
0 1 1 0
1 0 0 1

3

7

7

5

, a7c =

2

6

6

4

0 0 1 1
1 1 0 0
0 0 1 1
1 1 0 0

3

7

7

5

Lemma 27. Let S = [a, b, c, d, e]T be a candidate binary column (of D) where
a, b, c, d, e ∈ G.

(1) If there are two complement pairs of grids in S then the fifth grid must be
a7, a7b or a7c.

(2) If there is only one complement pair in S, say S = [a, ac, c, d, e]T then the
intersections of {X = j}, for 0 ≤ j ≤ 3, with grids Yi(c) ∪ Yi(d) ∪ Yi(e),
Wi(c) ∪ Wi(d) ∪ Wi(e), for 0 ≤ i ≤ 1, must contain exactly three symbols
0.

Proof. For any grid g ∈ G, and for each {X = j}, there are precisely two 0s
from the complement pair g, gc contributing to Y0(D), Y1(D), W0(D), W1(D). If
we use two pairs a, ac and b, bc then only one 0 need be found from the fifth grid.
Only grids a7, a7b or a7c have the property that every column {X = j} intersects
with Y0, Y1,W0,W1 at one 0 simultaneously, for 0 ≤ j ≤ 3. The second statement
is evident. �
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Furthermore, triplets yw0 and yw1 have to occur 10 times in D. In our setting,
pairs yw ∈ Y W can be identified with rows of the grid. In more detail,

(Y = 0 and W = 0) ⇐⇒ Y0 ∩ W0 = J(4),

(Y = 0 and W = 1) ⇐⇒ Y0 ∩ W1 = J(1),

(Y = 1 and W = 0) ⇐⇒ Y1 ∩ W0 = J(3),

(Y = 1 and W = 1) ⇐⇒ Y1 ∩ W1 = J(2).

If we use the pair X,Xc in column S, then since every grid g ∈A∪B has two 0s in
every row, Condition 1(ii) is fulfilled.

Build up conditions such that 5 copies of F = [f |S1|S2] form an array D =
OA(80; 5 · 4 · 22 · 2 · 2; 3)

Condition 2. Now, a putative fraction D must satisfy: for all 0 ≤ x ≤ 3 and
0 ≤ y, w ≤ 1,

(i) each triple xs1s2 ∈ XS1S2 occurs 5 times in D,
(ii) each triple ys2s2 ∈ Y S1S2 and each triple ws2s2 ∈ WS1S2 appears 10

times in D, where s1, s2 ∈ {0, 1}.
Suppose that two putative binary columns have patterns

S1 = [a1, . . . , a5], S2 = [b1, . . . , b5] where ai, bi ∈ G.

For each pair ai, bi ∈ (S1, S2), let di be their superimposed grid, ai ∗ bi, and let
di(j) be the j-th column of this grid, where 1 ≤ i ≤ 5, 0 ≤ j ≤ 3. Recall that
the symbols 0, 1, 2, 3 in di denote pairs 00, 01, 10, 11 in S1S2. Then Condition 2(i)
means: for each j = 0, . . . , 3, the total number of symbols 0 (and 1,2,3 as well) in
the union

⋃

1≤i≤5 di(j) is exactly 5.
We call an order n grid a columnar Latin square of order n if it each of symbol

1, 2, . . . n occurs once in each column. It is obvious that a Latin square is also a
columnar Latin square. Notice that when every superimposed grid di is a columnar
Latin square then Condition 2(i) is satisfied. Denote by Y0(di), Y1(di), W0(di),
W1(di) the sub-grids extracted from di, then Condition 2(ii) says that the number
of symbols 0 (1,2,3) in the unions

⋃

1≤i≤5 Ys(di) and
⋃

1≤i≤5 Ws(di) is 10 for s = 0, 1.
We have

Lemma 28. Let S1 = [a1, . . . , a5] and S2 = [b1, . . . , b5] (where ai, bi ∈ G,
i = 1, . . . 5) be two columns to be appended to f = OA(16; 4 · 2 · 2; 2). Column X is
orthogonal to the pair S1S2 if one of the following conditions is satisfied

(1) all of the five superimposed grids di are columnar Latin squares; or
(2) three of the di are columnar Latin squares and the remaining two (non

columnar Latin squares) are of the form g ∗ h, g ∗ hc or g ∗ h, hc ∗ g; or
(3) only one superimposed grid di is a columnar Latin square and the remain-

ing four are of the form g ∗ h, g ∗ hc or g ∗ h, hc ∗ g, where g, h ∈ G.

Proof. The implication ‘Item (1) is fulfilled implies X is orthogonal to the
pair S1S2’ is obvious. If Item (2) is satisfied, we consider two pairs being of the
form g ∗ h, g ∗ hc, where neither g ∗ h nor g ∗ hc is a columnar Latin square. Each
column of g ∗ h has two symbols, i, j, say, each symbol occurs exactly twice. Since
each column of gc ∗ h consists of symbols (i + 2)mod 4 and (j + 2)mod 4 occuring
exactly twice; every symbol in each column of g ∗ hc appears twice too, (see the
proof of Lemma 22). The same argument is applied for columns of hc ∗ g.
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Hence each symbol occurs 5 times in
⋃

1≤i≤5 di(j), and 10 times in
⋃

1≤i≤5 Ys(di)

and
⋃

1≤i≤5 Ws(di). The orthogonality between X and S1S2 follows then. The last
implication is correct by similar reasoning. �

Applying this reasoning, we get

Proposition 29. An orthogonal array F := OA(80; 5 · 4 · 26; 3) exists.

Denote

b2 =









0 1 1 0
1 0 0 1
0 0 1 1
1 1 0 0









which is obtained from grid b1 (as in (3.6.2)) by applying the column permutation
(3, 4) to bc

1, then the row permutation (1, 3, 4) to the resuting grid. Let b3 := bp
2

where p is the row permutation (1, 2), let b4 := bq
3 where q is the row permutation

(1, 4, 2, 3), and let b5 := br
4 where r is the row permutation (3, 4). The four binary

columns extending an OA(80; 5 · 4 · 22; 3) to F are determined by:

S1 S2 S3 S4

cc
1 a4 ac

2 a8

ac
3 cc

1 b2 a2

c1 ac
3 b3 b4

a9 c1 a2 b5

ac
9 ac

4 a8 ac
2

3.7. Decomposing arrays using row orbits

This construction uses the concept of the automorphism group of an array,
which is introduced later in Section 4.2.

Denote an arbitrary array OA(N ; r1 ·r2 · · · rd; t) by F . Decompose F into sub-arrays
F0, F1, . . . , Fs−1 each having N/s runs. If each of these sub-arrays has strength t−1,
then











0 F0

1 F1

...
...

s − 1 Fs−1











is an OA(N ; s · r1 · r2 · · · rd; t). Note that if F0, . . . , Fs−2 have strength t − 1, then
Fs−1 must also have strength t − 1. In particular, when s = 2, if we can ensure
that F0 is an OA(N/2; r1 · r2 · · · rd; t − 1), then the complementary array F1 of F0

in F is obviously an OA(N/2; r1 · r2 · · · rd; t − 1) too.
The automorphism group Aut(F ) of F is the set of all products of row per-

mutations, symbol permutations, and column permutations among factors of equal
level that preserve F . (Section 4.2 in the next chapter will clarify this concept). To
limit the search space for all possible sub-arrays F0 we can use subgroups of F .
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Use of a specific subgroup. Now suppose that F = OA(N ; r1 · r2 · · · rd; 3). Let H
be a subgroup of Aut(F ), and let L be the set of all rows of F . We decompose L
into the Aut(F )-orbits, denoted by O1, O2, . . . , Ol:

(3.7.1) L =

l
⋃

j=1

Oj .

Let y := [y1, . . . , yl] be a list of representatives of these orbits, ie, yj ∈ Oj =
Orbit(Aut(F ), yj). We compute the images Orbit(H, yj) of these representatives
under the action of H. Put

(3.7.2) F0 :=

l
⋃

j=1

Orbit(H, yj) ⊆ F

If F0 is OA(N/2, r1 · r2 · · · rd, 2) then we can extend F by a binary factor having
value 0 on F0 and value 1 on the other runs.

An application. This method works for OA(54; 35; 3). In total, there are 4 non-
isomorphic arrays of this series which we denote by I, II, III, and IV, using the
notation of Hedayat et al. [1997]. Applying formulas (3.7.1) and (3.7.2) respectively
for array III, with H the commutator subgroup of Aut(F ), we find that the sub-
array F0 is an OA(27; 35; 2). More precisely, in this case, Aut(F ) is a permutation
group of size 144 with 5 generators, and H is a permutation group of size 18. The
rows of F are partitioned into 2 parts, with particular representatives y1, y2 of the
Aut(F )-orbit. Then Orbit(H, y1) has 9 runs, Orbit(H, y2) has 18 runs. And by

inspection, F0 is an orthogonal array OA(27; 35; 2) indeed. The array G =
[

F0| 0
F1| 1

]

is the new array OA(54; 35 · 2; 3), where F1 = F \ F0, and 0,1 are constant vectors
of length 27.

3.8. Conclusion

The methods that we have discussed are based only on the definition of orthog-
onal arrays, and employ some extra assumptions. For instance, we use the linearity
assumption in the arithmetic construction of Section 3.5.

Using extra assumptions narrows down the solution set. Another drawback
of the methods discussed is that they are combinatorial, mainly based on counting
symbols. That means they depend on particular parameter sets. This fact limits the
possibility of generalization to other cases. When they work, we get an extension,
but we don’t know how many extensions can be formed. We need some good ways
to find all extensions. These will be discussed in the next chapter.



CHAPTER 4

Enumerating strength 3 orthogonal arrays

4.1. Introduction

This chapter is devoted to finding all isomorphism classes of strength 3 orthog-
onal array (OAs) with a given parameter set (levels) and run size. In Section 4.2,
we use group theory to define the full group of fraction transformations and com-
pute the automorphism group of an orthogonal array. By translating orthogonal
arrays to their corresponding colored graphs, we find canonical orthogonal arrays
in Section 4.3. That settles the problem of computing representatives of isomor-
phism classes provided we know all orthogonal arrays with given levels and run size.
Another way of enumerating strength 3 OAs which have two distinct levels by back-
track search is discussed in Section 4.4. Finally, in Section 4.5, we use integer linear
programming methods combined with canonical fractions to list all non-isomorphic
extensions of a strength 3 OA.

4.2. The automorphism group of a fraction

This section is organized as follows: First we provide a general combinatorial
setting for the remaining sections. We define the underlying set of a fractional
factorial design and show how to use it to encode a fraction. The full group of
fraction transformations G and the automorphism group of a fraction F are then
described. Finally we provide a scheme for computing G and Aut(F ).

Combinatorial setting. Let X be the set of all structures of a particular type built
on an underlying set T . For example, X could be all the graphs with vertex set
T . The subgroup G := G(T ) ≤ Sym(T ) which acts naturally on X is called the
(full) group of transformations of X. Two elements A and B of X are isomorphic if
they are in the same G-orbit , that is, there exists a permutation g in G such that
A = Bg. The automorphism group of S ∈ X is defined as

Aut(S ) := {g ∈ G : Sg = S}.(4.2.1)

The number of distinct objects isomorphic to a structure S is the length of the
G-orbit of S. By Lagrange’s theorem [Nathanson, 2000], this number is:

|G|
|Aut(S)| .

Example 4.1. Let V = T be a set of size N . Then the set of undirected,
finite graphs with vertex set V can be defined as the collection of subsets E of

(

V
2

)

.
Each subset E represents the edges of a particular graph. We define the full group
G := Sym(V ), and define Eg by the usual convention that if an edge e := {u, v} ∈ E
then the edge eg := {ug, vg} ∈ Eg for any g ∈ G. The automorphism group of a
particular graph X = (V,E) is Aut(X) := {g ∈ Sym(V ) : Eg = E}.

47
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Example 4.2. Let P = T be a finite set of points, v := |P |. Let k ≤ v, and

let B ⊆
(

P
k

)

be a collection of subsets of P of size k. A pair X = (P,B) is called a
t-(v, k, λ) block design if every set of t points in P is contained in exactly λ elements
of B. Let X be the set of all t-(v, k, λ) block designs defined on P . We define the
full group of block design transformations by G := Sym(P ), and the action of G
on X by Xg := (P,Bg) for g ∈ G, where Bg := {Bg : B ∈ B}. The automorphism
group of a particular block design X = (P,B) is

Aut(X) := {g ∈ G : Bg = B}.

Example 4.3. Let N be 1, 2 or a positive multiple of 4 and let

T := {1, 2, . . . , N} × {1, 2, . . . , N} × {−1, 1}.
A Hadamard matrix of order N is HN := [v1, v2, . . . , vN ] in TN such that vi ·vj = 0
if i 6= j; and vi · vj = N if i = j. Let X be the set of all Hadamard matrices X of
order N . The full group G is a direct product

SymN ×SymN ×Sym({−1,+1})
where the first component acts on the rows, the second acts on the columns and
the last component acts entrywise on the matrix. The last component is called the
symbol change group. The automorphism group of a particular Hadamard matrix
X ∈ X is Aut(X) := {g ∈ G : Xg = X}

Let U = r1 · r2 · · · rd = sa1
1 · sa2

2 · sa3
3 · · · sam

m be a design type, (as described in
Appendix B). Let F(U,N) be the set of all fractional factorial designs (fractions)
having design type U and run size N . Write F for F(U,N) if no ambiguity occurs.
We now define the underlying set T and construct the full group G. We divide the
columns into sections corresponding to the distinct level sizes s1, . . . , sm. So the
ith section consists of the ai columns with si levels, and d = a1 + a2 + · · · + am.
For instance, a Placket-Burmann design with N = 8 runs (m = 1) is represented
by U = sa1

1 = 27. Thus we have one section, and d = 7.
We may view F ∈ F as an N × d-matrix. The set {1, 2, . . . , d} has a partition

into sections

J1 = [1, . . . , a1],

J2 = [a1 + 1, . . . , a1 + a2],

...

Jk = [a1 + · · · + ak−1 + 1, . . . , a1 + · · · + ak],

...

Jm = [a1 + · · · + am−1 + 1, . . . , a1 + · · · + am = d].

(4.2.2)

Let Qk := {1, 2, . . . , sk} for k = 1, . . . ,m. Define

D : {1, . . . , N} × {1, . . . , d} → {Q1, Q2, . . . , Qm},
(i, j) 7→ Qk if there exists k such that j ∈ Jk.

Notice that D is a surjection but not an injection. We can code all possibilities
for the (i, j)-entry of F by triplets [i, j, s], where i ∈ IN , j ∈ [1, 2, . . . , d], and
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s ∈ D(i, j). For a fixed set F of fractions, the underlying set or the look-up table
T of F , uniquely determined by the run size N and the type U , is
(4.2.3)

T = T (U,N) :=
{

[i, j, s] : i ∈ {1, . . . , N}, j ∈ {1, . . . , d}, and s ∈ D(i, j)
}

.

Encoding of fractions. We view a fraction F ∈ F as an N×d matrix with (i, j)-entry
F [i, j]. Then F is encoded by

(4.2.4) S(F ) =
{

[i, j, F [i, j]] : i = 1 . . . N, j = 1 . . . d
}

.

S is a map F → P(T ), since S(F ) ⊂ T and each F has a unique image S(F ),
called the encoding map. This is an injective mapping, but not surjective. Note
that |S(F )| = Nd for all fractions F ∈ F . Let

Ai :=
{

[i, j, s] : j ∈ {1, . . . , d} and s ∈ D(i, j)
}

.

Then the image of F in P(T ) is

S(F) =
{

K ⊆ T : |K ∩ Ai| = d, [i, j, s1], [i, j, s2] ∈ K implies s1 = s2, and

[i, j1, s], [i, j2, s] ∈ K implies j1 = j2, for i = 1, . . . , N, for j = 1, . . . , d
}

.

(4.2.5)

Moreover,

|T | = N

m
∑

i=1

si.ai and

|F| =

m
∏

i=1

(sai

i )N .

For example, let U = 23 · 31 and N = 12. Then d = 4 and the possibilities for the
(12, 2)-entry (of an arbitrary F ) are 1 and 2 so the corresponding triplets in T are
[12, 2, 1] or [12, 2, 2]. But the possible triples for the (1, 4)-entry are [1, 4, 1], [1, 4, 2]
or [1, 4, 3]. Hence |T | = 12 · (2 · 3 + 3 · 1) = 108.

The full group G of fraction transformations. Let x = [i, j, s] ∈ T , where i =
1, . . . , N , j = 1, . . . , d, and s ∈ Qk if j ∈ Jk. To avoid confusion, we use index k
when indicating the section and index j when indicating the column.

The row permutation group of F , is defined to be R := SymN acting on F by

(4.2.6) xr := xφR(r) = [ir, j, s].

The column permutation group of section k, for each k = 1, . . . ,m, is Ck := Sym(Jk)
(where Jk is given in (4.2.2)). The column permutation group C is C :=

∏m
k=1 Ck.

This group acts on F by the column exchange action φC : C → Sym(T ), defined
by

(4.2.7) xc := xφC(c) = [i, jck , s],

where x = [i, j, s], j ∈ Qk and c = c1c2 . . . ck . . . cm ∈ C :=
∏m

k=1 Sym(Jk).

The level permutation group of column j is determined by

Lk,j := Symsk
, for j ∈ Jk
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acting on the symbols of the jth column. The level permutation group of section k
is then defined by

Lk :=
∏

j∈Jk

Lk,j = (Symsk
)ak .

Now Lk acts on F by the level exchange action φLk
: Lk → Sym(T ) defined by

(4.2.8) xl := xφLk
(l) = [i, j, sl] = [i, j, slj ]

where l = l1l2 . . . lj . . . ld ∈ L :=
∏m

k=1 Lk.

The group L switches levels of all columns of F , and we write L =
∏d

j=1 Sym(rj)
if we want to separate the action on each column.

For instance, the column permutation group C2 permutes columns in the second
section, the group L3,2 exchanges levels of the second column in the third section
and so forth.

Lemma 30. The groups R,C and L act faithfully on T .

Proof. We show that, for instance, Ker(φR) = {idR}. For all x = [i, j, s] ∈ T ,
r ∈ R = SymN , we have:

φR(r) = id ∈ Sym(T)) ⇐⇒ ∀x,xφR(r) = x ⇐⇒ [ir, j, s] = [i, j, s] ⇐⇒ r = idR.

The last implication is true since only idR satisfies ir = i for all i ∈ {1, . . . , N}. �

Corollary 31. We have

R ≃ φR(R) ≤ Sym(T ),

C ≃ φC(C) ≤ Sym(T ),

L ≃ φL(L) ≤ Sym(T ).

The full group G of fraction transformations is defined by

(4.2.9) G := φR(R) × φC(C) × φL(L) ≤ Sym(T ).

This group then acts naturally on F via π : G → Sym(F) defined by

F g := Fπ(g) = S−1
(

S(F )g
)

, ∀g ∈ G, ∀F ∈ F .

The newly defined group G is indeed a permutation group acting on the space F
of fractions of given type U and run size N . The following lemma shows that π is
well-defined.

Lemma 32. The homomorphism π is a group action. That is, for any permu-
tations g, h ∈ G, and any fraction F ∈ F , we have:

F gh = (F g)h.
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Proof. First we show that the function π is well defined. Let S(F ) =: K be
a subset of S(F). We have

Kg = S(F )g ∈ S(F)

for all F ∈ F and g ∈ φR(R), since Kg =
{

[ig, j, s]
}

∈ S(F) as g is a bijection and

K :=
{

[i, j, s]
}

fullfils Conditions (4.2.5). For all g ∈ φC(C) and g ∈ φL(L), we
also have S(F )g ∈ S(F); so S(F )g is in the image of S for all g ∈ G. Therefore,
F g = S−1

(

S(F )g
)

∈ F is well defined. Secondly, we have

(F g)h =
(

S−1(S(F )g)
)h

= S−1
(

S(S−1(S(F )g))h
)

= S−1
(

(S(F )g)h
)

= S−1
(

S(F )gh
)

= F gh.

�

Relations between the three types of permutation and the structure of G.

Definition 33. The full automorphism group of a fraction F ∈ F is the
normalizer of F in the group G, ie,

Aut(F ) := {g ∈ G : F g = F}.(4.2.10)

Any subgroup H ≤ Aut(F ) is called a group of automorphisms of F .

By (4.2.9), the full group G is generated by the isomorphism images of the
row, column and level permutation groups in Sym(T ). But the structure of G
has not yet been determined. To describe it, we need to know the relationship
between the three types of permutations. It is clear that the column permutations
c ∈ C :=

∏m
k=1 Ck and the level permutations l ∈ L :=

∏m
k=1 Lk act independently

on distinct sections. As expected for isomorphisms, they preserve the strength
of a fraction. Therefore there are obvious commutation relations between these
permutations described as follows:

Proposition 34 (Properties of G).

(1) Column-Column relation. Column permutations in distinct sections com-
mute, ie,

[Ck, Ch] = 1

for all k 6= h.
(2) Level-Level relation. Level permutations of columns in distinct sections

commute, ie,

[Lk, Lh] = 1

for k 6= h.
(3) Row-Column relation. Row permutations commute with column permuta-

tions, ie,

[R,C] = 1.

(4) Row-Level relation. Row permutations commute with level permutations,
ie,

[R,L] = 1.
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(5) Column-Level relation. Let c ∈ C be a column permutation and let l =
l1 · · · ld be a level permutation. Then c commutes with l if, and only if,
li = lj whenever i and j are in the same cycle of c. So the subgroup
generated by column permutations in section k and level permutations in
that section is a wreath product

Symsk
≀Ck = Lk ⋊ Symak

.

Proof. Items 1 to 2 are obviously true. Item 3 is easily proved by observing
that a vertical move of an entry followed by a horizontal move gives the same result
as the same moves in the reverse order. Item 4 is true as well, since we get the same
fraction if we permute rows first, then switch levels of any column j in any section
k, or do it the other way round. That means r.lkj = lkj .r; this implies r.lk = lk.r.

To see the correctness of the last item, first let column permutation c = (i, j)
be a transposition inside a section. Let li, lj , lp be level permutations on columns
i, j, p such that p 6= i and p 6= j, (p may belong to the same section as i, j or another
section). Then

c.li 6= li.c and c.lj 6= lj .c,(4.2.11)

but

c.li = lj .c and c.lj = li.c.(4.2.12)

However,

(4.2.13) c.li.lj = lj .c.lj = lj .li.c = li.lj .c,

and of course
c.lp = lp.c for all p 6= i, j

then
c.li.lj .lp = li.lj .c.lp = li.lj .lp.c

Item 5 now follows from equations (4.2.13) and (4.2). �

To summarize, from equations (1), (2), (3) and (4), we see that G is nearly
a direct product of symmetric groups and a wreath product of symmetric groups.
More precisely, the full group

G := R × (L ⋊ C)

where R := SymN is the row permutation group, L and C the level and column
permutation groups of D, and L ⋊ C :=

∏m
k=1 Symsk

≀Symak
.

Remark 4.1. When applying permutations to a particular fraction F , we apply
the level permutations L to all sections first, next we permute the columns in the
sections independently, and finally we permute the rows.

Example 4.4. Suppose a fraction has 2 sections, the first with 6 columns, the
second with 3. Let c = c1.c2 = (1, 2)(7, 9), then

c.lp = lp.c ∀p 6∈ {1, 2, 7, 9}.
If p ∈ {1, 2, 7, 9}, for instance p = 7, then

c.lp = c.l7 = c1.c2.l7 = c1.l9.c2 = l9.c1.c2 = l9.c,

and
c.l7.l9 = c1.c2.l7.l9 = c1.l9.c2.l9 = l9.c1.c2.l9 =
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= l9.c1.l7.c2 = l9.l7.c1.c2 = l7.l9.c.

However,

c.l1.l7 = c1.c2.l1.l7 = l2.l9.c1.c2 = l2.l9.c.

In the case of three level permutations acting on 3 columns appearing in c

c.l1.l7.l9 = c.l7.l9.l1 = l7.l9.c.l1 = l7.l9.l2.c = l2.l7.l9.c.

From Proposition 34 we have

Corollary 35. |G| = N ! a1! · · · am! (s1!)
a1 · · · (sm!)am .

Determining the full group G and the automorphism group Aut(F ). By combining
(4.2.3), (4.2.4), and (4.2.9), we now can find an image F g of a fraction F and
compute its automorphism group. To determine the full group G, we calculate the
lookup table T ; compute the groups R,C,L of row, column, and level permutations;
find the homomorphism images φR(R), φC(C), and φL(L) of these groups in the
symmetric group on |T | points; and form the full permutation group G as a group
generated by the generators of these images. Then G ≤ Sym({1, 2, . . . , |T |}) and G
acts on S(F).

For any permutation g ∈ G and any fraction F ∈ F , we find F g, the image of F
by encoding F by the subset S(F ) ⊆ T ; identifying the index set f ⊂ {1, 2, . . . , |T |}
corresponding to S(F ); then F g := S−1(fg).

The automorphism group Aut(F ), by Definition 33 is:

Aut(F ) := {g ∈ G : f g = f }.
Hence, Problem 1 stated at the beginning of this section is now solved. We can
also compute the automorphism group Aut(F ) by using the automorphism group
of its canonical graph. This will be discussed in Section 4.3.

Testing isomorphism of N -fractions and enumerating isomorphism classes. Given
fractions F,K ∈ F with the size of G small, we compute the G-orbit of F . Then
F is isomorphic to K if and only if F is an element in the G-orbit of K. If the size
of G is large, another solution may be translating fractions into canonical graphs,
then reducing the isomorphism test to checking the equality of their corresponding
graphs; section 4.3 explains this approach. We may also solve the enumeration
problem, for small run size designs, by exhaustively making all of non-isomorphic
lexicographically-least designs, which is detailed in Section 4.4.

Implementation in GAP. First of all, the homomorphism images φR(R), φC(C),
and φL(L) are found with the GAP command Action(G, T, action-type). Now
the full automorphism group of a specific fraction F is computed with the GAP
command Stabilizer(G, f, OnSets), where f ⊆ {1, . . . , |T |} is the index set of
the coding image S(F ) ⊆ T of F .

Example 4.5. For a 4-runs fraction of a full 24-design,

F :=









1 1 1 1
1 2 1 2
1 1 2 2
1 2 2 1
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we have R = Sym4, C = Sym4, L = (Sym2)
4; and the generators of the homomor-

phism images φR(R), φC(C), φL(L) in Sym({1, 2, . . . , |T |}) are

φR(R) : (1, 9, 17, 25)(2, 10, 18, 26)(3, 11, 19, 27)(4, 12, 20, 28)

(5, 13, 21, 29)(6, 14, 22, 30)(7, 15, 23, 31)(8, 16, 24, 32),

(1, 9)(2, 10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)(8, 16).

φC(C) : (1, 3, 5, 7)(2, 4, 6, 8)(9, 11, 13, 15)(10, 12, 14, 16)(17, 19, 21, 23)

(18, 20, 22, 24)(25, 27, 29, 31)(26, 28, 30, 32),

(1, 3)(2, 4)(9, 11)(10, 12)(17, 19)(18, 20)(25, 27)(26, 28).

φL(L) : (1, 2)(9, 10)(17, 18)(25, 26).

Here |T | = 32 and

T = { [1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 2, 2], [1, 3, 1], [1, 3, 2], [1, 4, 1], [1, 4, 2],

[2, 1, 1], [2, 1, 2], [2, 2, 1], [2, 2, 2], [2, 3, 1], [2, 3, 2], [2, 4, 1], [2, 4, 2],

[3, 1, 1], [3, 1, 2], [3, 2, 1], [3, 2, 2], [3, 3, 1], [3, 3, 2], [3, 4, 1], [3, 4, 2],

[4, 1, 1], [4, 1, 2], [4, 2, 1], [4, 2, 2], [4, 3, 1], [4, 3, 2], [4, 4, 1], [4, 4, 2] }.
Then G is a permutation group of order 9216 with a generating set consisting of
the union of the generators for φR(R), φC(C), φL(L). Although φL(L) has order 2,
the wreath product

φL(L) ≀ φC(C) = Sym2 ≀Sym4

= L ⋊ C = (Sym2 ×Sym2 ×Sym2 ×Sym2) ⋊ Sym4

contributes 24 · 24 to the order of G. Furthermore,

S(F ) =
{

[1, 1, 1], [1, 2, 1], [1, 3, 1], [1, 4, 1], [2, 1, 1], [2, 2, 2], [2, 3, 1], [2, 4, 2],

[3, 1, 1], [3, 2, 1], [3, 3, 2], [3, 4, 2], [4, 1, 1], [4, 2, 2], [4, 3, 2], [4, 4, 1]
}

.

The index set of the coding image S(F ) in T is

f = {1, 3, 5, 7, 9, 12, 13, 16, 17, 19, 22, 24, 25, 28, 30, 31},
and Aut(F ) is a permutation group of size 24 with 3 generators

g1 = (3, 5)(4, 6)(9, 17)(10, 18)(11, 21)(12, 22)(13, 19)(14, 20)(15, 23)

(16, 24)(27, 29)(28, 30),

g2 = (3, 5, 7)(4, 6, 8)(9, 25, 17)(10, 26, 18)(11, 29, 23)(12, 30, 24)(13, 31, 19)

(14, 32, 20)(15, 27, 21)(16, 28, 22),

g3 = (1, 9, 17)(2, 10, 18)(3, 13, 24)(4, 14, 23)(5, 16, 19)(6, 15, 20)(7, 12, 22)

(8, 11, 21)(27, 29, 32)(28, 30, 31).

The first generator of Aut(F ), for example, is composed of the level, the column
and the row permutations, respectively

l = [(), (), (), ()], c = (2, 3), and r = (2, 3).

The last generator of Aut(F ), is composed of the permutations

l = [(), (), (1, 2), (1, 2)], c = (2, 3, 4), and r = (1, 2, 3)
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respectively. The number of distinct fractions isomorphic to F , by the Orbit The-
orem, is

|G|/|Aut(F )| = 9216/24 = 384.

The group Aut(F ) induces a group of permutations on rows of F , so we can talk
about the Aut(F )-orbits on rows as well.

4.3. Enumeration of arrays using canonical graphs

We now introduce the concept of canonical arrays, then use it to classify non-
isomorphic fractions of given design type and run size. The idea is to encode an
array as a colored graph, then use the software package nauty [McKay, 2004] to
find the canonical labeling graph of the colored graph and decode the result to a
fraction. Testing isomorphism between orthogonal arrays is then reduced to testing
isomorphism between their colored graphs. More precisely, first we describe a way
to translate an array to a graph and show how to color that graph. Then we present
a method to get back (demerge) an array from a colored graph. Next we find the
canonical graph of a colored graph using nauty. We close this section by computing
the canonical orthogonal array of a given orthogonal array.

The graph of an orthogonal array . An orthogonal array D is viewed as a set R of
d-tuples v = (p1, . . . , pd), where pi ∈ Qi for level sets Q1, . . . , Qd. So each d-tuple
from R represents a row of D. A (undirected) graph G = (V,E) is constructed
from this OA as

(4.3.1) V = R ∪ S ∪ C;

where R is the set of row-vertices (one vertex per row), S :=
⋃d

i=1 Qi is the set of lev-
els (symbols) per column (one vertex per level per column), and C := {x1, . . . , xd}
is the set of columns (one vertex for each column). In total we have

|V | = |R| +
(

d
∑

i

|Qi|
)

+ d = N +

d
∑

i

ri + d

vertices. The edge set is

(4.3.2) E = E1 ∪ E2 ⊆ (R × S) ∪ (S × C)

in which

E1 :=
⋃

1≤i≤d

{

{v, pi} : v = (p1, . . . , pd) ∈ R and pi ∈ Qi

}

, and

E2 :=
⋃

1≤i≤d

{

{s, xi} : s ∈ Qi

}

.

So

|E| = d|R| +
d
∑

i

|Qi| = dN +

d
∑

i

ri.

Since R,S,C are cocliques (ie, vertices in each set are not adjacent with each other),
G is a tripartite graph with the vertex partition R ∪ S ∪ C. Let nS := |S| be the
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number of symbols, and N = |R| the run size of D. The adjacency matrix A of G
has the following pattern:

A =

[ 0 RS 0
SR 0 SC
0 CS 0

]

where RS is the N × nS-adjacency matrix formed by the row-symbol adjacency,
SR = RST (the transpose of RS), CS is the d × nS adjacency matrix formed by
the column-symbol adjacency, and SC = CST . We call a vertex with valency i an
i-vertex , and write V (x) for the neighbors of a vertex x ∈ V .

Coloring the graph G. To use nauty, we need to number the vertices of G. We
number the row-vertices R first, then the symbol-vertices S and finally the column-
vertices C. We color the resulting graph G by the following coloring rules:

all vertices of R have color A; here A is called the row color;
all vertices of S have color B; here B is called the symbol color;
x1, . . . , xd have the same color if and only if the corresponding level sets
have the same cardinality: color(xi) = color(xj) ⇐⇒ |Qi| = |Qj |.

Recall that F = FU,N is the class of all mixed orthogonal arrays of strength t ≥ 1,
of type U = sa1

1 · sa2
2 · · · sam

m and run size N . If the array D ∈ F , then the set of
column-vertices C is a disjoint union of color classes C1, . . . , Cm, called the column-
color classes, and the total number of colors of G is 2 + m. Also note that each
row-vertex is adjacent to precisely d symbol-vertices, and each symbol-vertex is
adjacent to exactly one column-vertex. Remark that the partition (R,S,C) is not
a color partition, and d =

∑m
i=1 |Ci|. Recall that nS = |S|. We write

f :=

[

[1, . . . , N ], [N + 1, . . . , N + nS ],(4.3.3)

[N + nS + 1, . . . , N + nS + a1], . . . , [N + nS + 1 +

m−1
∑

i=1

ai, . . . , |V |]
]

for the color partition (determining row, symbol and column-vertices, respectively);
and denote the colored graph just obtained by GD.

Example 4.6. Let D be the OA(4; 23; 2)








0 0 0
1 0 1
0 1 1
1 1 0









.

Then N = 4, nS = 6, d = 3, m = 1, the vertices

V := R ∪ S ∪ C = {1, 2, 3, 4} ∪ {5, 6, 7, 8, 9, 10} ∪ {11, 12, 13},
and the sizes of color classes are [4, 6, 3] with the partition

f :=
{

{1, 2, 3, 4}, {5, 6, 7, 8, 9, 10}, {11, 12, 13}
}

.

Example 4.7. Let D be the OA(6; 31 · 22; 1)




0 0 1 1 2 2
0 1 1 0 0 1
1 0 0 1 1 0





T

.
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Then N = 6, nS = 7, d = 3, m = 2, and the vertices

V = R ∪ S ∪ C = {1, 2, . . . , 6, 7, . . . 13, 14, 15, 16}.
The color classes have sizes 6, 7, 1, 2, with corresponding vertices

f :=
{

{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12, 13}, {14}, {15, 16}
}

.

The symbol permutation (0,1) on column 2 of array D is performed by its cor-
responding permutation pS = (10, 11) on symbol-vertices 10, 11 of the colored
graph GD. Switching columns 2 and 3 of D has counterpart pC = (15, 16) on
column-vertices. And permuting rows 1 and 2 can be done by the permutations on
row-vertices pR = (1, 2).

Denoting G the set of all colored graphs, we define the map

Φ : FU,N → G, D 7→ Φ(D) = GD,

taking an array D to the corresponding colored graph GD described above.

Lemma 36. Φ is an injection.

Proof. Notice that the numbering of vertices of GD does not depend on D
but on the design type U and the run size N . So if F 6= D are two distinct arrays,
then they must differ at some entry [i, j], hence their adjacencies are different. �

Now we characterize more clearly the image Φ(FU,N ) ⊆ G. We write v(u) for
the valency of a vertex u ∈ V . Recall that S = Q1 ∪Q2 ∪ . . .∪Qd, where |Qi| = ri

for i = 1, . . . , d; and C = C1 ∪ . . . ∪ Cm, where |Ck| = ak, for k = 1, . . . ,m.

Lemma 37. Let D be an orthogonal array with factors Qi and with run size N .
Then

(1) GD is tripartite with the vertex partition (R,S,C) given by (4.3.1) and
with |R| = N , |S| =

∑m
k=1 aksk, |C| =

∑m
k=1 ak.

(2) Every vertex r ∈ R has valency d.
(3) The valency of a column-vertex c in C is sk, where k is the unique element

of {1, . . . ,m} such that c ∈ Ck.
(4) The valency of a symbol-vertex: if s ∈ S then there is a unique c ∈ Ck

such that {s, c} ∈ E for some k ∈ {1, . . . ,m}; then

v(s) =
N

v(c)
+ 1 =

N

sk
+ 1

[ since t ≥ 1, there are exactly N
sk

rows in array D which have symbol s

in column c ].
(5) Relationship between R and C: if r ∈ R, and c ∈ C, there exists a unique

shortest path of length 2 from r to c through a vertex in S.

Definition 38.

(i) Given parameters U,N , the colored graphs which satisfy properties (1)−(5)
of Lemma 37 are called the colored graphs of type U,N . They form a
subset of G, written GU,N .

(ii) By Lemma 37(1), vertices of R, S, C in a graph in GU,N are called the
row-vertices, the symbol-vertices and the column-vertices respectively.
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Demerging a colored graph g ∈ GU,N . What we want to do now is, firstly, to find the
column-vertex set C of g. It may happen that some vertices have the same valency
even if they belong to distinct colors (row and column colors, for instance). This
can usually be solved by computing the intersection of their neighbor sets. More
precisely,

Lemma 39. Suppose that N
sk

∈ N for all k ∈ {1, . . . ,m}, in which case N
sk

> 1
for at least one number k. Then, a subset C of the vertex set V of a graph g
in GU,N is the column-vertex set if and only if the valencies of vertices in C are
{s1, s2, . . . , sm} and their neighbor sets are mutually disjoint subsets of V .

Proof. The ‘if’ is clear by the definition of column-vertex set. Indeed, suppose
that C is the column-vertex set of g, for any pair c1 6= c2 ∈ C, we need only
check that their neighbors are disjoint, ie, V (c1) ∩ V (c2) = ∅. If there is a vertex
s ∈ V (c1) ∩ V (c2), then s 6∈ R since g is tripartite, so s ∈ S; Lemma 37(4) implies
a contradiction.

Now consider the ‘only if’ part. Let C be a set of vertices such that their
valencies are s1, s2, . . . , sm and their neighbors are mutually disjoint subsets. First
they can’t be symbol vertices (having nonempty intersections). If there is least one
number N

sk
> 1, then the neighbors of some pair of row vertices must intersect in a

nonempty set. Therefore, C consists only of column vertices. �

Example 4.8. The example below is a strength 1 array F := OA(4; 44; 1)








0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3









in which N
s1

= 1. The row and column vertices of the colored graph GF are not
distinguishable. We will see later that this kind of array requires a subtle treatment
to demerge the colored graph.

Proposition 40 (Constructing an array from a colored graph). Given param-
eters U = sa1

1 · sa2
2 · · · sam

m and run size N , such that N
sk

∈ N for all k ∈ {1, . . . ,m},
and such that there is at least one k for which N

sk
> 1, we have

Φ(FU,N ) = GU,N .

Proof. We pick a colored graph g ∈ GU,N . Then g fulfills properties (1)− (5)
of Lemma 37. We construct an array Fg ∈ FU,N such that Φ(Fg) = g. The process
of constructing Fg starts from column-vertices, then locates symbol-vertices, and
finally determines row-vertices.

Suppose that g = (V,E). We collect vertices in V that have valencies s1, s2,
. . . , sm such that their neighbors are mutually disjoint subsets of V . From Lemma
39, these vertices are uniquely determined and they form column vertices of g. Let
C be the set of these column-vertices. For each c ∈ C, we track its neighbors by
property 3 of Lemma 37. That is, if c ∈ Ck for some k = 1, . . . ,m, then c is adjacent
with vertices V (c) := {v1, . . . , vsk

}; where vi ∈ V \ (C ∪R) since g is tripartite and
satisfies properties (3) and (5) of Lemma 37. So vi are symbol-vertices.

Having obtained symbol-vertices V (c) = {vi}, we determine the neighbors of
each vi. Only one of them is c, the rest must be the row-vertices, and there are
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precisely N
sk

such vertices, by properties (4) and (5) of Lemma 37. Each of those
row-vertices consist of the same symbol vi on column c. In this way we can locate
all row-vertices together with their neighbors.

Obtaining all row-vertices, we can form the array Fg provided that the neigh-
bors of column-vertices in C have to be numbered increasingly. Hence, g = Φ(Fg)
is in Φ(FU,N ), and GU,N ⊆ Φ(FU,N ).

On the other hand, by Definition 38(i), it is clear that Φ(FU,N ) ⊆ GU,N . Hence,
Φ(FU,N ) = GU,N . �

Corollary 41. Provided that N
sk

∈ Z× for all k ∈ {1, . . . ,m}, and that there

is at least a number N
sk

> 1, with Lemma 36, we have the mapping Φ is a bijection
between the set FU,N of fractions of type U,N and the set GU,N of colored graphs
of type U,N .

The inverse mapping Φ−1 from GU,N to FU,N is called the demerging mapping
of GU,N . Any orthogonal array D ∈ FU,N of strength t ≥ 2 is determined uniquely

by its companion graph GD ∈ GU,N . Indeed, if strength t ≥ 2 then N
sisk

≥ 1 for all

i, k = 1, . . . ,m. So N
sk

> 1 for k = 1, . . . ,m.

Lemma 42. Let GF , GD be the two colored graphs which are formed by two
fractions F,D ∈ F = FU,N . Then F and D are isomorphic arrays if and only if
GF and GD are isomorphic graphs.

Proof. If F and D are isomorphic arrays then D = F p for some permutation
p. Now p is a product of a row permutation pr, a symbol permutation ps and a
column permutation pc. These permutations induce permutations pR, pS and pC

respectively on the disjoint sets R, S and C of vertices. Putting p∗ = pR pS pC , we

have Gp∗

F = Φ(F p) = Φ(D) = GD. It follows that GF , and GD are two isomorphic
graphs.

The ‘only if’ part can be seen as follows. If GF and GD are isomorphic graphs,
we can find a permutation q on vertices (of GF ) such that GD = Gq

F . Now since
GF , GD ∈ GU,N , the graphs GF , GD satisfy all the conditions in Lemma 37. So they
are tripartite and q is a color-preserving permutation. This permutation therefore
can be factored as a product of three permutations qR, qS , qC which act on row,
symbol and column vertices of GF independently. Since the numbering of vertices
in GF and GD are the same, the triple qR, qS , qC induce row, symbol and column
permutations qr, qs, qc acting on F . The composed map qr qs qc takes F to D. �

Example 4.9. We construct an OA(6; 3·22; 1) from the colored graph described
by Figure 4.1. Here m = 2, d = 3, s1 = 3, s2 = 2, the column vertex set C =
{14, 15, 16} since their neighbor sets {7, 8, 9}, {10, 12}, and {11, 13} are mutually
disjoint. Vertices 1, 2, . . . 6, for instance, also have valency 3, but they cannot
represent the first column-vertex (3-level column) since their neighbors are not
disjoint. Now the first column-vertex is 14, its neighbor V (14) = {7, 8, 9} (represent
levels 0,1,2 in column 1) lead us to row-vertices 1,2; 3,5 and 4,6 respectively. The
symbol vertices are [[7, 8, 9], [10, 12], [11, 13]]; those correspond to levels 0,1,2 in
column 1, levels 0,1 in column 2 and levels 0,1 in column 3 of F . The array
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Table 4.1. A counterexample in constructing OA from colored graph

1 : 5 9 13 17
2 : 6 10 14 18
3 : 7 11 15 19
4 : 8 12 16 20
5 : 1 21
6 : 2 21
7 : 3 21
8 : 4 21
9 : 1 22
10 : 2 22
11 : 3 22
12 : 4 22
13 : 1 23
14 : 2 23
15 : 3 23
16 : 4 23
17 : 1 24
18 : 2 24
19 : 3 24
20 : 4 24
21 : 5 6 7 8
22 : 9 10 11 12
23 : 13 14 15 16
24 : 17 18 19 20

obtained is

F =

















0 0 0
0 1 1
1 0 0
2 0 0
1 1 1
2 1 1

















Example 4.10 (counterexample, cf. Example 4.8). We wish to construct an
OA(4; 44; 1) from the colored graph with adjacencies as in Table 4.1. Notice that
N
s1

= 4/4 = 1, so we cannot distinguish between column-vertices and row-vertices.

In other words, there are two candidate sets for column-vertices, {21, 22, 23, 24}
and {1, 2, 3, 4}. If we choose the first candidate to be column vertex set, then
the latter will be row vertex set, and vice versa. Hence, the partition (R,S,C) is
not determined uniquely by the colored graph. If we take {21, 22, 23, 24} as the
column-vertices, and take the partition

f =
{

{1, 2, 3, 4}, {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {21, 22, 23, 24}
}

then the result obtained is the array in Example 4.8.
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Figure 4.1. The colored graph of a 6 runs OA
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Finding the canonical graph. For any colored graph G, denote by canon(G) the
canonical labeling graph computed using nauty. It consists of a vertex relabeling
permutation, p, say and new adjacencies. Hence, canon(G) is determined fully by
these adjacencies.

The vertex-relabeling p is of the form

p = pR pS pC1
pC2

· · · pCm
,

where pR, pS , pC1
, pC2

, . . . , pCm
are permutations on the subsets R,S,C1, C2, . . . , Cm

respectively. Indeed this fact follows from the requirement of preserving m+2 color
classes that we input to the nauty computation.

Let GF := Φ(F ) and GD := Φ(D) be the colored graphs of arrays F and D
respectively. As a result of Lemma 42, we have

Corollary 43. F and D are isomorphic arrays ⇐⇒ canon(GF ) = canon(GD).

Notice that if G ∈ GU,N then canon(G) ∈ GU,N . Let D∗ be the canonical labeling
orthogonal array of an orthogonal array D. Then GD ∈ GU,N , and GD∗ ∈ GU,N .
Now D∗ can be constructed using the scheme below:

D → GD → canon(GD) → D∗,

in which the first arrow represents the mapping Φ. The third arrow computing D∗,
is done by the demerging map Φ−1. For orthogonal arrays of strength t ≥ 2, the
canonical array D∗ is uniquely determined by canon(GD).

Computing canonical orthogonal array D∗. We may build the orthogonal array
D∗ from the adjacencies of the graph canon(GD) that came from nauty. Since
the relabeling permutation p preserves color classes, we do not need to rearrange
vertices in the canonical graph canon(GD). We can apply the demerging scheme
(using the demerging mapping). But if we list adjacencies of vertices in GD in the
order: rows R, symbols S, columns C, then we can also do the following:

• Locate column-vertices: Column-vertices in canon(G), denoted by Cv,
occupy rows from N + nS + 1 to n := |V | of B;

• specify row-vertices: row-vertices occupy rows from 1 to N ;
• from row-vertices we are able to build up the array D∗ row by row by

tracking the symbol-vertices which are listed in the corresponding row.
Notice that levels of each column must be numbered in the decreasing
order, but not necessarily between columns.

Example 4.11. Let D be an OA(16; 41 · 22; 2).

D =





0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1





T

Then N = 16, nS = 8, d = 3, m = 2, the vertices

V = R ∪ S ∪ C =
{

{1, 2, . . . , 15, 16}, {17, . . . 20, 21, 22, 23, 24}, {25, 26, 27}
}

.

The color classes have sizes 16, 8, 1, 2, with the corresponding vertices

f :=
{

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16},
{17, 18, 19, 20, 21, 22, 23, 24}, {25}, {26, 27}

}

.
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The relabeling permutation is

p = (2, 3)(6, 9, 7, 13, 14, 8)(10, 11, 15, 12)(22, 23, 24),

the column vertices Cv = [25, 26, 27], and the symbol-vertices

Sv =
[

[17, 18, 19, 20], [21, 22], [23, 24]
]

.

For the row u = [17, 22, 24], we refer to symbol-vertices, ie, symbols 0 in column 1,
symbol 1 in column 2, and symbol 1 in column 3. We get back its companion run
[0, 1, 1] ∈ D∗. The new adjacencies of the canonical graph are given in Table 4.2.

Table 4.2. Adjacency relations of a colored graph

17 21 22
17 22 24
17 21 23
17 23 24
18 21 22
19 21 22
20 21 22
18 21 23
18 22 24
19 22 24
20 22 24
19 21 23
20 21 23
18 23 24
19 23 24
20 23 24
1 2 3 4 25
5 8 9 14 25
6 10 12 15 25
7 11 13 16 25
1 3 5 6 7 8 12 13 26
1 2 5 6 7 9 10 11 27
3 4 8 12 13 14 15 16 27
2 4 9 10 11 14 15 16 26
17 18 19 20
21 24
22 23
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4.4. Finding lexicographically-least OA(N ; sa
1 · sb

2; t)

In this part, we consider a specific class of designs F having two sections. That
means its design type is U = sa

1 ·sb
2, and its fractions F have run size N for suitable

N . Recall that for 1 ≤ j ≤ a + b =: d, rj is the number of symbols of the jth
column. That is rj = s1 for 1 ≤ j ≤ a, and rj = s2 for a + 1 ≤ j ≤ a + b. Recall
that p = (p1, p2 . . . pj , . . . , pd) is an arbitrary run in F , and that G is the full group
of fraction transformations. We fix the notation G,U,N, FG,F , R,C, L,m, d, rj for
the remainder of this section. Here FG is the G-orbit of a fraction F .

Definition 44 (Column lexicographically-least fractions).

• For two vectors u and v of length N , we say u is lexicographically less
than v, written u < v, if there exists an index j = 1, . . . , N − 1 such that
u[i] = v[i] for all 1 ≤ i ≤ j and u[j + 1] < v[j + 1].

• Let F = [c1, . . . , cd], F ′ = [c′1, . . . , c
′
d] be any pair of fractions where ci, c

′
i

are columns. We say F is column-lexicographically less than F ′, written
F < F ′, if and only if there exists an index j ∈ {1, . . . , d − 1} such that
ci = c′i for all 1 ≤ i ≤ j and cj+1 < c′j+1 lexicographically.

• Fix F ∈ F . The fraction F0 which is smallest with respect to the column-
lexicographical ordering in the orbit FH for some subgroup H of G is called
the H-lexicographically-least fraction, denoted LLFH(F ).

• If H is a subset of G then LLFH(F ) is defined to be the smallest fraction
(with respect to the column-lexicographical ordering) in the image set {Fh :
h ∈ H}.

• We call the G-lexicographically-least fraction of F its lexicographical-least
fraction, and denote it by NF(F ).

We use a backtrack search to list all fractions NF(F ) ∈ F . We start with a
description of the problem in graph language and we conclude with an algorithm
which is presented by a pseudo-pascal description.

Definition 45.

(1) For 1 ≤ i ≤ N , 1 ≤ j ≤ d, denote by Fij the subset of entries of a putative
fraction F consisting of j−1 columns completely made, and column j built
only to row i. We call it a partial fraction up to the jth column and up to
the ith row. For convenience, let F0,0 be the empty fraction.

(2) A full-partial fraction, denoted Fj, of a putative fraction F , is a partial
fraction FN,j. So the first j columns have been built, for j = 1, 2, . . . , d.

(3) In a partial fraction Fij, a hth row Fij [h,−] = (p1, p2, . . . , pj), for h =
1, . . . , i, is called a partial row, where 1 ≤ pl ≤ rl for l = 1, . . . , j.

Notice that FN,j has strength min(j, t). So Fd is the fraction that we want to
make. We visualize each partial fraction Fij by a vertically colored leaf, (ie, a leaf
composed of N stripes, colored up to ith stripe) in the jth layer of a rooted tree,
denoted by T . The depth of T equals to the number of columns d. So the root
of T is F00, and full-partial fractions Fj are leaves of T at the layer for which the
distance from the root is j.

For example, let U := 41 · 23, N = 16; i = 5, j = 4. Then F54 is given below,
where the symbol x indicates symbols that have not yet been found. A partial row
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in F54 is F54[3,−] = 0101.

F54 =









0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 x x x x x x x x x x x









T

The basic idea is to extend column by column from full-partial fractions having
j − 1 columns (ie, completely colored leaves in a built (j − 1)th layer of the search
tree), for each j = t + 1, . . . , d. Each column is built by adding symbols one by one
and counting corresponding frequencies. Whenever a symbol is added, a (partial)
row is formed. During this process, looking at a particular leaf Fij of a jth layer
(being built), two possibilities occur:

(1) the orthogonality (strength 3 condition) is violated, because some t-tuples
have exceeded the allowed frequency for some i < N ; then the whole
subtree from that leaf is discarded;

(2) the number of (partial) rows i reach the run size N , that is N stripes of
that leaf have been fully colored. We start to build a new column (or re-
turn that leaf) if the current full-partial fraction is already lexicographical-
least. Otherwise, the whole subtree from that leaf is discarded.

The problem now is reduced to determining all fully colored leaves which have
distance d from the root.

Remark 4.2. Up to the first t columns, T has only one leaf for each layer.

Example 4.12. Find F = OA(16; 41 · 23; 3). In the first four layers, including
the root, of the tree T , there is only one leaf. Let us build F step by step.
Layer 0: F0,0 = [].
Layers 1,2,3: Columns 1,2,3 are made trivially.
Layer 4: A (4,2,2)-triple occurs once, and a (2,2,2)-triple occurs twice, so there is
only one possibility for building the leaf F16,4 in this layer. This gives a unique
solution for this design, given by (4.4.1).

(4.4.1) F =









0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1









T

This example reveals that there are two possibilities in making Fij .

(i) At each layer j = t + 1, . . . , d and at each (partial) row i, there exists a
unique symbol for entry F [i, j] (as in previous example). In this case we
get a unique solution.

(ii) There exist at least two symbols for entry F [i, j], for some j ∈ {t+1, . . . , d}
and some i ∈ {2, . . . , N}.

Furthermore, at some layer, a leaf can be split several times.

Definition 46. Let ni,j ≥ 1 be the number of symbols that can be plugged into
position F [i, j], and let Xi,j = {x1, x2, . . . , xni,j

} be the set of these symbols, for
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1 ≤ i ≤ N , 1 ≤ j ≤ d. At the first jth layer of the tree T such that there exist a
row-index i and ni,j ≥ 2, we create a stack

Branches(T ) :=

[

J := [(i, xl); j] : xl ∈ Xi,j

]

.

We call (i, j) a branching point, and each J ∈ Branches(T ) a branching leaf at
layer j having symbol xl at row i.

Branches(T ) is declared globally to store branching leaves during depth-first
search. The general strategy is: if we find a branching point, then we add branch-
ing leaves to the stack, and follow one of these ramifying leaves. Then either new
branching points are found and their branching leaves are updated into Branches(T );
or rows can be formed without extending Branches(T ) until the whole column has
been built. More clearly, during branching at layer j on each leaf J := [(i, xl); j],
if we detect another row-index i2 such that ni2,j ≥ 2, then we replace J in
Branches(T ) by ni2,j new branching leaves of the form [(i, xl), (i2, yk); j] where
yk ∈ Xi2,j . . . Whenever a leaf Fj in layer j is fully colored, we call that leaf in-
spected . Then we delete the corresponding branching leaf in Branches(T ) (not in
tree T ), and start forming column j + 1 from Fj . Hence Branches(T ) can consist
of branching leaves on distinct layers.

At the first t layers (see Remark 4.2) where branching happens at row i, we
initialize

Branches(T ) :=

[

J =
[

(i, xl); j
]

: xl ∈ Xi,j and 1 ≤ j ≤ t

]

.

From then, the stack Branches(T ) may be updated several times: adding new
branching leaves (simultaneously with dropping out their father-leaf), and/or delet-
ing its last entry whenever that leaf was inspected. We continue like that until
Branches(T ) is empty, then all branching points in the search tree have been in-
spected already. Furthermore, if all fully colored leaves in layer d are lexicographi-
cally least in their isomorphic class, then they form the set of all solutions that we
want. Indeed, we have

Proposition 47. For j = t + 1, . . . , d, a fully colored leaf FN,j in the layer j
is lex-least in its isomorphic class, if we follow the two following operations during
constructing F [−, j]:

1. For any pair of adjacent partial rows, u and v, say, of FN,j, where the
jth column F [−, j] has not been formed yet from row v, we choose v[j] ∈
{v[j − 1], . . . , rj} if u[k] = v[k] for all 1 ≤ k ≤ j − 1, otherwise we choose
v[j] ∈ {1, . . . , rj}.

2. When column F [−, j] is formed completely, ie, FN,j is made, we permute
this column with each of the previous columns (with the same number of
levels) and sort rows of the resulting fraction.
If the sorted fraction is lexicographically less than FN,j then we discard
FN,j, (subtree from that leaf has no descendant on layer d); otherwise we
accept FN,j.

Proof. Operation 1. makes sure that column F [−, j] is lex least in all candi-
dates for column j up to row and level permutations. Then Operation 2. assures
that FN,j which passed through the test of permuting columns and rows is really
the smallest in its its isomorphic class. �
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If employ these operations, we have

Corollary 48.

1. A solution FN,d, ie, a fully-colored leaf at layer d in T , is the lexicograph-
ically least fraction in its isomorphic class.

2. The set of all fully-colored leaves at layer d in the search tree T gives us
all non-isomorphic fractions.

Proof. Using Proposition 47 with j = d tells us that Assertion 1. is correct.
Now suppose that there are two distinct fully-colored leaves at layer d in T , say F,K,
which are isomorphic, and F < K. It implies that there is a non-trivial permutation
p such that Kp = F . By Assertion 1., K < Kp, so F < Kp, contradiction.
Assertion 2. follows. �

To formulate the backtrack algorithm computing all non-isomorphic fractions
we use the procedure EXTEND-COLUMN below that extends a column from a fully
determined fraction.

Algorithm 2 Backtrack algorithm extends a column

Input: Fj−1 a fully-colored leaf in layer j − 1 and
Branches(T ), the global stack of branching points.

Output: A fully-colored leaf Fj in layer j.

function Extend-column(Fj−1, Branches(T )))
2:

Compute ni,j ,
4: ⊲ # symbols which can be plugged into F [i, j], Definition 46

if ∃i : ni,j ≥ 2 then

6: ⊲ detect feasible branching points
split the leaf Fj−1 into ni,j branches

8: ⊲ where the newly-formed leaves are different only at entry F [i, j]
add to Branches(T ) leaves J = [(i, xl); j] in which xl ∈ Xi,j

10: else

form a unique leaf F [i, j] at layer j
12: end if

⊲ depth-first form column j
14: repeat

build up (rows of) each of leaves in layer j from the row i + 1
16:

update Branches(T ) during the process
18: until i = N ,

⊲ a fully-colored leaf Fj in the layer j has been made
20: Return Fj

⊲ see Definition 45(2)
22: end function

Using this procedure we extend the tree T from a fully-colored leaf, until the
number of columns j meets d. We record that solution, go back to the nearest
branching point of that solution (ie, its parent), and try its next sibling. These
tasks are described in the following algorithm LEX-LEAST-FRACTIONs.
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Algorithm 3 Backtrack algorithm computes all non-isomorphic fractions

Input: Design type U , run size N , and strength t.
Output: All non-isomorphic fractions NF(F ) ∈ F .

function Lex-Least-Fractions(U , N , t)
2:

Initialize a rooted tree T having t + 1 layers,
4: ⊲ each layer has only one leaf

Let Ft denote the leaf at layer (t + 1)
6: ⊲ it has t columns

Let j := t + 1;Branches(T ) := [] (global variable); K := Ft;
8:

while Branches(T ) 6= [ ] or j < d do

10:

Compute K := EXTEND-COLUMN(K,Branches(T ))
12:

if K is at distance d to root of T then

14: record K as a solution on T ;
end if

16:

end while

18:

Return all leaves at layer d of the tree T .
20: end function

Note that this algorithm could be generalized to more than two section frac-
tions. However, our C code [Brouwer, 2003] presently deals with two section frac-
tions only.

4.5. Use of integer linear programming and symmetry

In this section, we formulate necessary algebraic conditions for the existence of
a new factor X in the extension problem of orthogonal arrays.

An algebraic formulation of the problem. Let F = OA(N ; r1 ·r2 · · · rd; 3) be a known
array having columns S1, . . . , Sd, in which Si has ri levels (i = 1, . . . , d). An s-level
factor X is orthogonal to a known factor Si, denoted as X ⊥ Si, if the frequency of
every symbol pair (a, x) ∈ [Si, X] in OA(N ; r1 · · · rd · s; 3) is N/(ris). We say X is
orthogonal to a pair of known factors Si, Sj , written X ⊥ [Si, Sj ], if the frequency of
all tuples (a, b, x) ∈ [Si, Sj , X] is N/(rirjs). Extending F by X means constructing
an OA(N ; r1 · · · rd · s; 3), denoted by [F |X]. By the definition of orthogonal arrays,
[F |X] exists if and only if X is orthogonal to any pair of columns of F .

Observation 1 (Transformation rules). We can find a set of necessary con-
straints P for the existence of [F |X] in terms of polynomials in the coordinate
indeterminates of X by: a) calculating frequencies of 3-tuples, locating positions of
symbol pairs of (Si, Sj); and b) equating the sums of coordinate indeterminates of
X (corresponding to these positions) to the product of those frequencies with the

constant 0 + 1 + 2 + . . . + s − 1 = s(s−1)
2 .
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The number of equations of the system P then is
∑d

i6=j rirj , since each pair of

factors (Si, Sj) can be coded by a new factor having rirj levels. When s = 2, the
constraints P are in fact the sufficient conditions for the existence of X.

Example 4.13. Let F = OA(16; 4 · 22; 3) = [S1|S2|S3]:

F =





0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1





T

.

We form a set of constraints P for the extension of F to D = [F |X] = OA(16; 4 ·
23; 3), where X := [x1, x2, . . . , x16] is a binary factor (xi = 0, 1). First of all, the

system P of linear equations for computing X has
∑3

i6=j rirj = 2(4 · 2) + 2 · 2 =

16 + 4 = 20 equations. The frequency of each tuple (a, b, x) in S1 × S2 × X and
S1 × S3 × X is λ = 1; that of each tuple (b, c, x) ∈ S2 × S3 × X is µ = 2. The
pair [S1, S2] is coded by an 8-level factor, Y , say; and the pair [S2, S3] by a 4-
level factor, Z, say. The positions of the pair [0, 0] ∈ S1 × S2 are 1,2; . . ., of
[3, 1] ∈ S1 × S2 are 15,16. The positions of the pair [1, 1] ∈ S2 × S3 are 4,8,12,16
. . . Step a) of Observation 1 is applied. In Step b), the sums of coordinates of
X corresponding to the Y symbols and the Z symbols must equal a multiple of
the appropriate frequencies. That means: X ⊥ [S1, S2] iff X ⊥ Y iff x1 + x2 =
x3 + x4 = . . . = x15 + x16 = λ · (0 + 1) = 1, . . . and X ⊥ [S2, S3] iff X ⊥ Z iff
x1 + x5 + x9 + x13 = . . . = x4 + x8 + x12 + x16 = µ · (0 + 1) = 2. One solution of P
is given in the last row of the matrix below:









0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3









Remark 4.3. Although the constancy of frequencies is a necessary and suffi-
cient condition (by definition) for the existence of X, we observe that the linear
constraints P found using rules of Observation 1 forms a set of necessary conditions.

For instance, appending a blocking factor X (see the definition in Section 5.4)
with 4 levels to an array OA(16; 4 · 23; 3) means constructing an OA(16; 4 · 23 · 4; 2).
We have s = 4, X is orthogonal to S1 if and only if each pair (a, x) ∈ [S1, X] occurs
once ( 16

4·4 = 1). This implies that x1 + x2 + x3 + x4 = 1 · (0 + 1 + 2 + 3) = 6,
xi ∈ { 0, 1, 2, 3}. Of the two possibilities [0, 1, 2, 3] and [0, 3, 0, 3] only the first is
valid, the second is discarded since the frequencies of 0 and 3 are 2 in OA(16; 4·4; 2),
which is prohibited.

Generic approach solves the extension problem using canonical orthogonal arrays.

We now consider extending strength 3 OAs. Let m1 :=
∑d

i6=j rirj be the number
of equations in P . Then the system P of linear equations with integer coefficients
can be described by the matrix equation

AX = b,

in which A ∈ Matm1,N (N), b ∈ Nm1 , and

(4.5.1) X = (x1, . . . , xN ) ∈ {0, 1, . . . , s − 1}N ⊆ NN

is a variable vector. The vector b is formed by counting frequencies of triples
involving two known columns in F and the unknown column X as in Observation
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1. Since each orthogonal array is isomorphic to an array having the first row zero,
we let x1 = 0 throughout. By Gaussian elimination, we get the reduced system

(4.5.2) M X = c,

in which M ∈ Matm,N (Z), c ∈ Zm, and X = (0, x2, . . . , xN ) ∈ ZN .
Our general approach to solving the extension problem consists of iterations of

the following 3 steps:

(1) build the system (4.5.2) using Observation 1;
(2) find all solution vectors X = (x1, . . . , xN ) in { 0, 1, 2, . . . , s − 1 }N ;
(3) collect non-isomorphic, canonical orthogonal arrays of the set of all arrays

[F |X] into a set L; if L is empty, conclude F has no extension; otherwise
go back to Step 1 for each array in L until the number of factors meets
the number of columns required.

The first step is already done. The method to solve the last step was given in
Section 4.3. What we need to find in Step 2, in fact, are the non-isomorphic vectors
X (under row-index permutations) in the whole solution set. We show how to find
them in the next sections. We then discuss how to combine the automorphism group
Aut(F ) of F in finding non-isomorphic vectors X. Notice that, when extending
OAs, the group size tends to grow proportionally with the number of solutions.

Another backtrack approach. The system P described by (4.5.2) can be solved
over N≥0 by depth-first branching at the variables xi (i = 2, . . . , N). If P has
no solution, then F is not extendable; we try another array having the same pa-
rameters as F but not isomorphic to F . We identify P with its polynomials, ie,
P = { f1, f2, . . . , fm }, in which the fi are linear polynomials in the indeterminates
x2, . . . , xN . In particular, when the xis are binary, we can use the following fact.

Lemma 49 (Finding binary solutions of an integral polynomial). Let f be an
arbitrary polynomial in P , and put the polynomial p = f mod 2. Denote by Vf , Vp

the sets of indeterminates occurring in f and p, respectively. Put C = Vf \ Vp,
nf = |Vf |, np = |Vp|, nC = |C|. We denote the set of solutions of the equation
f = 0 by Sf , and the set of solutions of the equation p = 0 mod 2 by Sp. Let Si

p be
the solution set of the equation p = i for i = 0, . . . , np. Then Sf ⊆ Sp, and Sp is
a disjoint union of

np

2 sets Si
p, for odd (even) integers i = 0, . . . , np if the constant

coefficient of f is odd (even). Moreover, the maximum number of solutions of f = 0
is 2nf−1.

Proof. The first statement is clear. The last follows from the fact that each
set Si

p is precisely the vectors having weight i in the Hamming space H(np, 2). �

With this approach, the problem of enumeration of strength 3 OAs can be
solved if there are few arrays having one column less. But if N is large, and the
system P is symmetric, the branching approach is not strong enough, since there
are many isomorphic vector solutions X in each extension. The next subsection
deals with these difficulties.

Using the automorphism group to prune the solution set . Suppose that there ex-
ists D := [F |X] = OA(N ; r1 · · · rd · s; t), an extension of a known array F =
OA(N ; r1 · · · rd; t) by a column X having s levels, where t ≥ 2. Let g ∈ Aut(F ).
Then g induces a permutation g1 in the full group GD of D. Let gR be the row
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permutation component of g, then gR is also the row permutation component of g1.
[Recall from Formula (4.2.9) and Definition 33 that any permutation g acting on F
has the decomposition g = gR gC gS where gC and gS are the column and symbol
permutations acting on F , respectively].

Lemma 50. For g ∈ Aut(F ), g induces g1 ∈ GD and generates the image Dg1

which is isomorphic to D.

Proof. We have

(4.5.3) Dg1 = [F |X]g1 = [F g|XgR ] = [F |XgR ]

since g fixes F , and since only the component gR really acts on the column X by
moving its coordinates. �

Fix IN := [1, 2, . . . , N ] the row-index list of F , and recall that r1 ≥ r2 ≥ . . . ≥
rd. We explicitly distinguish IN with {1, 2, . . . , N} for this section.

Localizing the formation of vector solutions X. Let G := Row(Aut(F )) be the
group of all row permutations gR extracted from the group Aut(F ). We call G
the row permutation group of F . Then G acts naturally on indices of the vector
X = [x1, x2, . . . , xN ]. By convention, we say a row permutation gR ∈ G acts fixed-
point free, or globally on X if it moves every indices. Otherwise, we say that gR

acts locally .

The first step is to localize the formation of a vector X of the form (4.5.1)
by taking the derived designs of strength t − 1. We get the r1 derived designs
F1, . . . , Fr1

, each of which is an OA(r−1
1 N ; r2 · · · rd; t − 1). Clearly, if a solution

vector X exists, then it is formed by r1 sub-vectors ui of length N
r1

:

(4.5.4) X = [u1;u2; . . . ;ur1
], where ui =

(

x (i−1)N

r1
+1

, . . . , x iN
r1

)

.

Denote by Vi the set of all sub-vectors ui which can be added to the ith derived
design Fi to form an OA(r−1

1 N ; r2 · · · rd · s; t − 1). Let V = V1 × V2 × . . . × Vr1

(the Cartesian product) and let τ := Syms be the group of symbol permutations
acting on the coordinates of X. A simple way to find all non-isomorphic solution
vectors X ∈ V is: find all candidate sub-vectors ui ∈ Vi, i = 1, . . . , r1; discard
(prune) them as many as possible by using subgroups of G; plug those uis together,
then find the representatives of the G × τ -orbits in V . By recursion, the process
of building X can be brought back to strength 1 derived designs. We can prune
the solution set, denoted Z(P ), from those smallest sub-designs by finding some
subgroups of G acting on strength 1 derived designs. Those subgroups must have
the property that they act separately on the row-index sets corresponding to the
derived designs.

Permutation subgroups associated with the derived designs. Recall that we view
F ∈ F as an N × d-matrix with the [l, j]-entry is written as F [l, j]. For each
derived design Fi with respect to the first column of F , the row-index set of Fi,
denoted by RowInd(Fi) for 1 ≤ i ≤ r1, is defined as

RowInd(Fi) :=
{

l ∈ {1, 2, . . . , N} : F [l, 1] = i
}

.
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Define the stabilizer in G of Fi by

NG(Fi) := Normalizer
(

G,RowInd(Fi)
)

=
{

h ∈ G : RowInd(Fi)
h = RowInd(Fi)

}

.
(4.5.5)

In this way, we find r1 subgroups of G corresponding to the derived designs Fi.
But it can happen that RowInd(Fl)

h 6= RowInd(Fl) for some h ∈ NG(Fi) and
0 ≤ l 6= i ≤ r1 − 1. To make sure that the row permutations act independently on
the Fi, we define the group of row permutations acting locally on each Fi as:

(4.5.6) L(Fi) := Centralizer
(

NG(Fi), J(Fi)
)

,

where J(Fi) := IN \ RowInd(Fi) is the sublist of IN consisting of elements not in
RowInd(Fi). The group L(Fi) acts on the row-indices of Fi and fixes pointwise
any row-index outside Fi. We call these subgroups Li (of G) the row permutation
subgroups associated with strength 2 derived designs . These subgroups can be
determined further as follows.

For an integer m = 1, . . . , t − 1 and for j = 1, 2, . . . m, denote by

(4.5.7) Fi1,...,im
= OA

(

N

r1r2 · · · rm
; rm+1 · · · rd; t − m

)

the derived designs of F taken with respect to symbols i1, . . . , im, where symbol ij
in column j and ij = 1, . . . , rj . Define the row-index set of Fi1,...,im

by

(4.5.8) RowInd(Fi1,...,im
) :=

m
⋂

j=1

{

l ∈ {1, 2, . . . , N} : F [l, j] = ij
}

.

Let J(Fi1,...,im
) := IN \ RowInd(Fi1,...,im

). We define,

NG(Fi1,...,im
) := Normalizer

(

G,RowInd(Fi1,...,im
)
)

,

L(Fi1,...,im
) := Centralizer

(

NG(Fi1,...,im
), J(Fi)

)

, for 1 ≤ ij ≤ rj .

Definition 51. L(Fi1,...,im
) is called the subgroup associated with the derived

design Fi1,...,im
, for 1 ≤ ij ≤ rj, j = 1, 2, . . . m. We say L(Fi1,...,im

) acts locally
on the derived design Fi1,...,im

, and write Li1,...im
:= L(Fi1,...,im

) if no ambiguity
occurs.

For t = 3, we compute these subgroups for m = 1 and m = 2. For m = 1,
we have s1 subgroups L(Fi) acting locally on strength 2 derived designs; and for
m = 2, we have s1s2 subgroups L(Fi,j) acting locally on strength 1 derived designs.

Using the subgroups Li1,...,im
. Recall that Z(P ) is the set of all solutions X. From

(4.5.3), the vector Xg can be pruned from Z(P ), for any solution X and any per-
mutation g ∈ Aut(F ). This follows from the fact that Dg is an isomorphic ar-
ray of D = [F |X]. For a fixed m-tuple of symbols i1, . . . , im, let Vi1,...,im

be the
set of solutions of Fi1,...,im

(being an OA((r1r2 · · · rm)−1N ; rm+1 · · · rd; t − m)) for
1 ≤ m ≤ t − 1. For any sub-vector u ∈ Vi1,...,im

, from (4.5.8) and (4.5.4), let

I(u) := RowInd(Fi1,...,im
); J(u) := IN \ I(u); and

Z(u) :=
{

(xj) : j ∈ J(u) and ∃X ∈ Z(P ) such that X[I(u)] = u
}

,

here X[I(u)] := (xi : i ∈ I(u)). For instance, if m = 1 and u ∈ V1 then

Z(u) =
{

[u2; . . . ;ur1
] : X = [u;u2; . . . ;ur1

] ∈ Z(P )
}

.
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Proposition 52. For any pair of sub-vectors u, v ∈ Vi1,...,im
, if v = ugR for

some gR ∈ Li1,...,im
, we have Z(u) = Z(v).

We prove this proposition in the next two lemmas. In Lemma 53, without loss
of generality, it suffices to give the proof for the first strength 2 derived array. The
induction step will be presented in Lemma 55.

Lemma 53 (Case m = 1).
Let u1 and v1 be two arbitrary sub-solutions in V1, ie, they form strength 2 OAs

[F1|u1] and [F1|v1] of the form OA(r−1
1 N ; r2 · · · rd · s; 2). Let

ZX(u1) =
{

[u2; . . . ;ur1
] : X = [u1;u2; . . . ;ur1

] ∈ Z(P )
}

,

ZY (v1) =
{

[v2; . . . ; vr1
] : Y = [v1; v2; . . . ; vr1

] ∈ Z(P )
}

.

Suppose that there exists a nontrivial subgroup, say L(F1), and if v1 = uh
1 for some

h ∈ L1, we have ZX(u1) = ZY (v1).

Proof. Pick up a nontrivial permutation h in L(F1). Then it acts locally on
RowInd(F1). By symmetry, we only check that ZX(u1) ⊆ ZY (v1). We choose any
sub-vector u∗ := [u2; . . . ;ur1

] ∈ ZX(u1), then X = [u1;u2; . . . ;ur1
] is in Z(P ). We

view h ∈ Aut(F ), so

Dh = [F |X]h =
[

Fh|Xh
]

=
[

F |Xh
]

=
[

F | [u1;u2; . . . ;ur1
]h
]

=
[

F | [uh
1 ;u2; . . . ;ur1

]
]

=
[

F | [v1;u2; . . . ;ur1
]
]

.

This implies that [v1;u2; . . . ;ur1
] is a solution, hence u∗ ∈ ZY (v1). �

Corollary 54. We can wipe out all solutions Y = [v1; v2; . . . ; vr1
] ∈ Z(P ) if

v1 ∈ uL1
1 , the L1- orbit of u1 in V1. In other words, if V1 6= ∅, then it suffices to

find the first sub-vector of vector X by selecting |V1|/|L1| representatives u1 from
the L1- orbits in V1.

Furthermore, the above proof is independent of the original choice of derived
design. Hence it can be done simultaneously at all solution sets V1, V2, . . . , Vr1

,
using the subgroups L1, . . . , Lr1

.

We call this procedure the local pruning process using strength 2 derived de-
signs. Notice that we can use the row orbits of G when G is very large. These
subgroups can be defined similarly, just replace the derived designs by the G-row
orbits in the set of rows of F .

Next, if t ≥ 3 we extend the proof of Proposition 52 for 2 ≤ m ≤ t − 1.

Lemma 55 (Case m > 1). For any pair of sub-vectors u, v ∈ Vi1,i2 , if v = ugR

for some gR ∈ Li1,i2 , we have Z(u) = Z(v).

Proof. We prove this result for t = 3 and m = 2 only. For arbitrary t > 3,
and m > 2, the proof is a straightforward generalization. Similar to the proof of
Lemma 53, without loss of generality, we consider the first derived design F1 =
OA(n; r2 · · · rd; 2) where n = N/r1. Taking derived designs of F1 with respect to
the second column (having r2 levels), we get r2 strength 1 arrays, denoted by

f1 := F1,1, f2 := F1,2, . . . , fr2
:= F1,r2

,

each is an OA(r−1
2 n; r3 · · · rd; 1). Any element u1 in V1 can be written as

u1 = [u1,1;u1,2; . . . ;u1,r2
],
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a concatenation of r2 sub-vectors u1,j of length n
r2

, where

u1,j =

(

x (j−1)n

r2
+1

, . . . , x jn
r2

)

for j = 1, . . . , r2.

From (4.5.8) and Definition 51, we know L(fj) := Centralizer
(

NG(fj), J(fj)
)

consists of row permutations acting locally on

RowInd(fj) =

{

(j − 1)n

r2
+ 1, . . . ,

jn

r2

}

, for each j = 1, . . . , r2.

That means the subgroup L(fj) fixes J(fj) = [1, . . . , N ] \ RowInd(fj) pointwise.
Because V1 is the Cartesian product of the subsets V1,j := {u1,j }, we prune V1,j

by using L(fj), for j = 1, . . . , r2.
We start with j = 1. Let u1,1 and v1,1 be two arbitrary sub-vectors in V1,1 (ie,

they can be used to make strength 1 arrays [f1|u1,1] and [f1|v1,1] being of the form

OA(r−1
2 n; r3 · · · rd · s; 1). Let

ZX(u1,1) :=

{

[

[u1,2; . . . ;u1,r2
];u2; . . . ;ur1

]

: X = [u1;u2; . . . ;ur1
] ∈ Z(P )

}

,

ZY (v1,1) :=

{

[

[v1,2; . . . ; v1,r2
]; v2; . . . ; vr1

]

: Y = [v1; v2; . . . ; vr1
] ∈ Z(P )

}

,

where v1 = [v1,1; v1,2; . . . ; v1,r2
] ∈ V1. We prove that if v1,1 = uh

1,1 for some
h ∈ L(f1), then we have ZX(u1,1) = ZY (v1,1). In fact, we only need to have
ZX(u1,1) ⊆ ZY (v1,1). Let any sub-vector

u∗ :=
[

[u1,2; . . . ;u1,r2
];u2; . . . ;ur1

]

∈ ZX(u1,1),

and h ∈ L(f1). Then we have X = [u1;u2; . . . ;ur1
] ∈ Z(P ), and

Dh = [F |X]h = Fh|Xh = F |Xh = F | [uh
1 ;u2; . . . ;ur1

]

= F |
[

[uh
1,1;u1,2; . . . ;u1,r2

];u2; . . . ;ur1

]

= F |
[

[v1,1;u1,2; . . . ;u1,r2
];u2; . . . ;ur1

]

.

Hence, Y =
[

[v1,1;u1,2; . . . ;u1,r2
];u2; . . . ;ur1

]

is a solution vector and u∗ ∈ ZY (v1,1).
In F1, the choice of fj does not affect to the proof, so the pruning process can be
applied at the same time for all fj , j = 1, . . . , r2. �

Operations on derived designs. Recall from (4.5.7) that the symbols i1, . . . , im
(where 1 ≤ ij ≤ rj) indicate the derived design having symbol ij in column j, for
j = 1, . . . ,m. Let

(4.5.9) σ := G × τ

be the direct product of G and τ , where τ := Sym(s) is the group acting on the
symbols of column X.

We consider each derived design as an agent that receives data from its lower
strength derived designs, make some appropriate operations, then pass the result
to its parent design. Notice that strength 1 and strength t designs require special
operations. Recall from Definition 51 that Li1,...,im

are the subgroups associated
with the derived designs Fi1,...,im

having strength t−m. When m = t−1, we write
Li1,...,it−1

for the subgroup associated with the strength 1 derived design Fi1,...,it−1
.

The agents of derived designs can be described as follows.
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(1) At designs Fi1,...,it−1
(Initial step when m = t − 1):

Input: Fi1,...,it−1
;

Operation: form Vi1,...,it−1
, the set of all strength 1 vectors of length

(r1r2 · · · rt−1)
−1N) being appended to Fi1,...,it−1

, compute Li1,...,it−1
,

and find the representatives of Li1,...,it−1
- orbits in the set Vi1,...,it−1

;
Output: these representatives, ie, solutions of Fi1,...,it−1

.

(2) At strength k derived designs (1 < k ≤ t − 1): let m := t − k, we have
Input: the vector solutions (of length (r1r2 · · · rm·rm+1)

−1N) of strength
k − 1 sub-designs; and Li1,...,im

;
Operation: form sub-vector solutions (of length (r1r2 · · · rm)−1N) of

Fi1,...,im
, prune these solutions by Li1,...,im

;
Output: representatives of the Li1,...,im

- orbits in the set Vi1,...,im
.

(3) At the (global) design F :
Input: the sub-vectors from strength t − 1 derived designs;
Operation: find the representatives of σ-orbits in the Cartesian prod-

uct V = V1 × V2 × . . . × Vr1
, where Vi had been already pruned by

the subgroup Li (i = 1, 2, . . . ,m);
Output: solution vectors X which are non-isomorphic up to σ = G×τ ,

defined in (4.5.9).

We propose the following three-step procedure:

function Pruning-uses-symmetry(F , d)
Input: F is a strength t design; d is the number of columns required
Output: All non-isomorphic extensions of F

⋄ Step 1: Local pruning at strength k derived designs.
1a) Find sub-vectors of Fi1,...,im

, for m := t − k, and k = 1, . . . , t − 1,
1b) prune these sub-vectors locally and simultaneously by using Li1,...,im

,
1c) concatenate these sub-vectors to get sub-vectors in Vi1,...,im−1

.
⊲ For strength t = 3, in Step 1), we form subvectors

⊲ ui,j ∈ Vi,j simultaneously at the r1r2 sets Vi,j , then
⊲ concatenate ui,j (1 ≤ i ≤ r1, 1 ≤ j ≤ r2) to get ui ∈ Vi.

⋄ Step 2: Pruning at strength t design F .
2a) Select the representative vectors X from the σ-orbits of V ,

⊲ V consists of vectors of length N , being
⊲ formed by sub-vectors found from Step 1

2b) append vectors X to F to get strength t orthogonal arrays [F |X],
2c) compute and store their canonical arrays into a list Lf , return Lf .

⋄ Step 3: Repeating step.
if #current columns < d then

Call PRUNING-USES-SYMMETRY( f, d ) for each f ∈ Lf
else

Return Lf
end if

end function
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Example 4.14. Let U :=
[

[3, 1], [2, 3]
]

, F = OA(24; 3.23; 3),

F =

[

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1

]T

.

Aut(F ) has order 12288. Compute G = Row(Aut(F )), and update it by G =
Stabilizer(G, [1]), which is a permutation group of size 768. The three strength
2 derived designs give 8, 8, and 16 candidates respectively, so we have to check
8.8.16 = |V | = 1024 possibilities.

The row permutation subgroups of the three strength 2 derived designs are

L0 = [(), (7, 8), (5, 6), (5, 6)(7, 8), (3, 4), (3, 4)(7, 8), (3, 4)(5, 6), (3, 4)(5, 6)(7, 8)],

L1 = [()], and

L2 = [(), (23, 24), (21, 22), (21, 22)(23, 24), (19, 20), (19, 20)(23, 24),

(19, 20)(21, 22), (19, 20)(21, 22)(23, 24), (17, 18), (17, 18)(23, 24), (17, 18)(21, 22),

(17, 18)(21, 22)(23, 24), (17, 18)(19, 20), (17, 18)(19, 20)(23, 24),

(17, 18)(19, 20)(21, 22), (17, 18)(19, 20)(21, 22)(23, 24)]

with corresponding orders 8,1,16. And the subspaces are pruned to 1,8, and 1
vectors respectively. That is we need to check 8 cases now.

Observe that Aut(F ) decomposes the rows of F into row-orbits O1, . . . , Ol. If
Aut(F ) acts intransitively on the rows of F , then l > 1. For each of the orbits
Oj , let RowInd(Oj) ⊆ {1, . . . , N} be the row indices of Oj in F . We can define
the normalizers and the centralizers of Oj as in (4.5.5) and in (4.5.6). But the
subgroups found in this way help reducing isomorphic vectors only when the group
G has very large size. This is not the case when arrays have many columns.

A mixed approach using linear algebra and symmetries. Recall that the extension
of an orthogonal array F with run size N to a new array [F |X] is reduced to solving
a linear system P having matrix form (4.5.2):

M.X = c.

Recall that G = Row(Aut(F )) is the group of all row permutations induced by
the automorphism group Aut(F ), and that Z(P ) is the set of solutions of (4.5.2)
over the set { 0, 1, . . . , s − 1 } as a subset of N. Denote by QN the vector space of
dimension N over the rationals. For any solution X, we view X ∈ S, where S is
the solution set of (4.5.2) over Q. The set S in fact is an affine space in QN ; and
Z(P ) = S ∩ { 0, 1, . . . , s − 1 }N . Moreover, Z(P ) is a subset of

⋂

g∈G Sg. Indeed,

since Z(P )g = Z(P ) for all g ∈ G, we have Z(P ) ⊆ Sg, for all g ∈ G. We call the
intersection

⋂

g∈G Sg the G-invariant core of Z(P ), (by definition it is the maximal

G-invariant subset of S). The G-invariant core
⋂

g∈G Sg of Z(P ) is still an affine
space since the image Sg of S is an affine space, and intersecting two affine spaces
results in again an affine space. The idea is that even though S has large dimension,
it is likely that the G-invariant core of Z(P ) could have smaller dimension.

Example 4.15. Consider extending array OA(72; 6·3·22; 3) to OA(72; 6·3·23; 3).
The solution space has dimension 36, using G we can reduce it to dimension 20.

Computing the G-invariant core of the solution set Z(P ). First we compute the
intersection of two affine spaces. We identify S with the pair [v,B], where v is a
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specific vector in S and B is a basis of S (over Q). Let n := N− rank(M) be the
dimension of S, then |B| = n, and

(4.5.10) S = v + 〈B〉 = v +
∑

i=1..n

biBi, where indeterminates bi ∈ Q.

Observation 2. Let p ∈ G, the affine image Sp can be determined by the
vector vp and the basis Bp := {up : u ∈ B}. In other words,

(4.5.11) Sp = vp + 〈Bp〉 = vp +
∑

i=1..n

ciB
p
i , where ci ∈ Q.

Moreover, S ∩ Sp 6= ∅ if and only the system

vp − v =
∑

i=1..n

biBi −
∑

i=1..n

ciB
p
i

=
[

B1|B2| . . . |Bn| − Bp
1 | − Bp

2 | . . . | − Bp
n

]

[b1, . . . , bn, c1, . . . , cn]t

has solution b1, . . . , bn, c1, . . . , cn.

Hence, if S ∩ Sp 6= ∅, its basis and specific vector can be found by substituting
b1, . . . , bn back into (4.5.10), (or c1, . . . , cn into (4.5.11)). We prune the integral
solution set Z(P ) by computing its G-invariant core. Let H be a set of generators
of G. We compute

⋂

g∈G Sg using the following procedure.

Algorithm 4 Computing G-invariant core

Input: the affine solution space S of (4.5.2), and the generators H;
Output: the affine space

⋂

g∈G Sg.

function Find-G-invariant-core(S, H )
2: Set Y := S;

repeat

4: W := Y ;
update Y :=

⋂

g∈H Y g ∩ Y ;
6: until Y = W ;

return Y .
8: end function

Proof. Let Y0 be the output of the procedure, we show that Y0 =
⋂

g∈G Sg.

The space Y0 has property Y0 =
⋂

g∈H Y g
0 ∩ Y0. Therefore, Y0 = Y p

0 for all p ∈ H.

Since any permutation g ∈ G is a product of p ∈ H, Y0 = Y g
0 . �

Having obtained the G-invariant core Y0 =: [u,C] of Z(P ), we update S := Y0,
and update the dimension n to a possibly smaller dimension n := n0 = dim(Y0).
The integral vector solution X (viewed as column vector) now is computed by:

(4.5.12) XT = (0, x2, x3, . . . , xN )T = u +
∑

i=1..n

yiC[i],

where pivotal variables yi ∈ Z. Hence, solving P in terms of indeterminates
(xj) ∈ { 0, 1, . . . , s−1 }N (j = 1, . . . , N) is reduced to finding all integral (pivotal)
tuples (yi) ∈ Zn (i = 1, . . . , n) such that each coordinate xj is in { 0, 1, . . . , s− 1 }.

Although very often n < N , this approach is useful if a few more inequalities
would be found and used to delete out some (not all) isomorphic vectors in each
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isomorphic class retaining the non-isomorphic vectors. From that point, the search
for non-isomorphic vectors becomes feasible.

Imposing extra constraints on the system. For each generator p of G such that at
least one of its cycles has even length, we extract those even length cycles into a set
K. We do not use odd length cycles of p. Then, for each h ∈ K, we form an extra
inequality whose left hand side is the sum of X’s coordinates with odd indices, and
the right hand side is the sum of X’s coordinates with even indices of the cycles in
h. In more details, we have

Lemma 56. If K 6= [], for each h ∈ K having the form

h =
∏

i

(i1, i2)
∏

j

(j1, j2, j3, j4) . . .

where 1 ≤ i1 6= i2 6= j1 6= j2 6= j3 6= j4, . . . ≤ N , we can add the following inequality

(4.5.13) xi1 + xj1 + xj3 + . . . ≤ xi2 + xj2 + xj4 + . . .

into the original system P without missing any non-isomorphic vector solution X.

Proof. Suppose h =
∏

i(i1, i2)
∏

j(j1, j2, j3, j4) . . . ∈ K, and

Z = [z1, z2, z3, . . . , zN ] is a solution so that

zi1 + zj1 + zj3 + · · · ≥ zi2 + zj2 + zj4 + · · ·
We prove that Z is isomorphic with a solution X = [x1, x2, x3, . . . , xN ] which fulfills

xi1 + xj1 + xj3 + · · · ≤ xi2 + xj2 + xj4 + · · ·
The vector X := Zh indeed satisfies Condition (4.5.13). �

For example, let h = (1, 2)(7, 8, 9, 10)(13, 16) be a permutation in K, (h−1 =
(1, 2)(7, 10, 9, 8)(13, 16)), we can impose the following inequality

x1 + x7 + x9 + x13 ≤ x2 + x8 + x10 + x16

on the original system P . Indeed, suppose that Z = [z1, z2, z3, . . . , z16] is a solution,
and

(∗) . . . z1 + z7 + z9 + z13 ≥ z2 + z8 + z10 + z16.

The image

X = (xi) = Zh = (zih−1 ) = (z2, z1, z3, z4, z5, z6, z10, z7, z8, z9, z11, z12, z16, z14, z15, z13);

satisfies the constraint (4.5.13), since (*) means

x2 + x8 + x10 + x16 ≥ x1 + x9 + x7 + x13.

Finding pivotal variables yi such that X ∈ { 0, 1, . . . , s − 1 }N . Having obtained
Formula (4.5.12) of X, and found extra inequalities (using Lemma 56), we now find
integral (pivotal) tuples (yi) ∈ Zn by a recursive procedure. Let ExtraS be the
set of these extra inequalities, and let Y be the set of coordinates of X in terms of
(yi)i=1,...,n. We split Y into 3 subsets:

Y1 := { monomials},
Y2 := { monomials with constant, and be grouped with respect to yi},
Y3 := { polynomials with at least two indeterminates yi}.

(4.5.14)
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For t = 3 we cut vector X into r1r2 sub-vectors

LX :=

[

(

x1, . . . , x N
r1r2

)

, . . . ,
(

x (r1r2−1)N

r1r2

, . . . , xN

)

]

;

for t = 2 we cut vector X into r1 sub-vectors

LX :=

[

(

x1, . . . , x N
r1

)

, . . . ,
(

x (r1−1)N

r1

, . . . , xN

)

]

.

We use ExtraS and LX as certificates to prune vector solutions during the search.
That is, whenever we find a sub-vector (or partial vector) by using Y , we substitute
it into ExtraS to check whether ExtraS ≤ 0 (ie, each polynomial p in ExtraS
must be less than or equal 0), and to LX to see whether all of its components have
strength 1. Note that components in LX are still considered valid when they depend
on variables yi; the same reasoning is applied for non-positiveness of polynomials
in ExtraS. If all conditions are all right, we enlarge the sub-vector (in all feasible
possibilities) until the length of vectors equals to n. Then the column vector X is
found back by (4.5.12). A combination of depth-first and breath-first schemes to
find all solutions (yi) ∈ Zn is presented in the following algorithm.

Algorithm 5 Recursive computing of (yi) ∈ Zn

Input: Y ; ExtraS and LX

Output: All vectors (yi)i=1,...,n ∈ Zn

function Compute-pivotals(Y , ExtraS, LX )
2: repeat

split Y = Y1 ∪ Y2 ∪ Y3 by (4.5.14),
4:

form all partial vectors by making the hypercube from variables of Y1,
6:

prune them using ExtraS ≤ 0, and LX ;
8:

substitute each valid partial vector back to Y ,
10: until Y1 = ∅; ⊲ only keep intermediate valid nodes in the search tree;

12: ⋄ Since Y = Y2 ∪ Y3,
extend the valid partial vectors made above by all possible vectors of Y2

14:

16: collect the full vector solutions whose lengths equal n
⋄ always certificate newly extended nodes using ExtraS and LX

18:

return the representatives in the σ := G × τ -orbits (4.5.9) of Z(P ).
20: end function

Example 4.16. Extending F = OA(16; 23; 3) to [F X] = OA(16; 23 ·4; 3). Here
N = 16, the group of row permutations G has size 768, generated by the following
permutations:

[

(15, 16), (13, 14), (11, 12), (9, 10), (7, 8), (5, 6), (3, 4), (3, 6)(4, 5)

(9, 10)(11, 14)(12, 13), (3, 10, 5, 4, 9, 6)(7, 11, 14)(8, 12, 13)
]

,
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from which we find 169 extra inequalities . After reducing the affine solution space
by these symmetries, we get an 8-dimensional G-core S, and the solution vector
X ∈ {0, 1, 2, 3}16 in terms of (yi) ∈ Z8 (n = 8) is

X = (xj) =(0, y1 + 6, y2 + 6,−y1 − y2 − 6, y3,−y1 − y3, y4, y1 − y4 + 6,

y5,−y1 − y5, y6 + 6, y1 − y6, y7 + 6, y1 − y7, y8,−y1 − y8)

We want to find all (y1, . . . , y8) ∈ Z8 such that X ∈ { 0, 1, 2, 3 }16 by splitting

Y = {y1 + 2, y2 + 2,−y1 − y2 − 2, y3,−y1 − y3, y4, y1 − y4 + 2, y5,−y1 − y5, y6 + 2,

y1 − y6, y7 + 2, y1 − y7, y8,−y1 − y8}
into Y1 = {y3, y4, y5, y8}; Y2 =

{

[y1 + 6], [y6 + 6, y2 + 6], [y7 + 6]
}

; and

Y3 = {−y1 − y8,−y1 − y5,−y1 − y3,−y1 − y2 − 6, y1 − y7, y1 − y6, y1 − y4 + 6}.
We form all partial solutions from Y1, pruning at each those sub-vectors (having
length 4) by using 169 inequalities of ExtraS, and by employing the fact that each
of the four vectors (0, y1 + 6, y2 + 6,−y1 − y2 − 6), (y3,−y1 − y3, y4, y1 − y4 + 6),
(y5,−y1 − y5, y6 + 6, y1 − y6), and (y7 + 6, y1 − y7, y8,−y1 − y8) has strength 1.
At each iteration, when ever Y1 = ∅, we generate all valid partial solutions from
Y2, concatenate them with partial solutions of y3, y4, y5, y8, and prune again. This
results in 35 vectors; of these only one vector forms an OA(16; 23 · 4; 3).

4.6. Conclusion

The main concern of this chapter is generating strength 3 fractions. The con-
cepts of transformations of fractions and the automorphism group of a fraction
introduced in Section 4.2 play a vital role. To distinguish two non-isomorphic frac-
tions, for instance, we can compute their automorphism groups and compare the
orders. But that is not strong enough to discriminate them. The canonical array
of an orthogonal array then can be found using the canonical labeling graph of its
companion colored graph. This technique was discussed in Section 4.3.

Formulating the column extension of a 3-balanced array in terms of a linear
system with integer coefficients, and employing the row symmetries of the auto-
morphism group are alternatives to approach the problem. This is the theme of
Section 4.5. Combining these together with computing canonical arrays, we solved
the problem of making 3-balanced arrays in this chapter. Furthermore, in the spe-
cial case of two section arrays, the algorithm Lex-Least-Fractions in Section 4.4
generates all non-isomorphic fractions faster than the combined approaches above.
Together, all of the methods help in listing all non-isomorphic fractions of strength
3. But we postpone the listing until Chapter 6. Instead, in the next chapter, we
show how to pick the ‘good’ design out of a set of non-isomorphic designs. This
becomes necessary and interesting when there are several non-isomorphic ones.



CHAPTER 5

Selecting strength 3 orthogonal arrays

5.1. Introduction

In the early stages of industrial experimentation, scientists may want to detect
what factors affect the properties of some product or process. Frequently, there is
an extensive list of candidate factors, of which only a few turn out to be active.
When interactions between the active factors can be considered negligible, it makes
sense to estimate the main effects with an orthogonal array (OA) of strength 2. In
arrays with t = 2, for any factor A, all possible levels of any other factor appear
equally often at each of the levels of A. As a consequence, the main effect of any
factor can be deduced from the corresponding set of si means of the experimental
results. This property follows only if interactions are indeed negligible. Otherwise,
the mean of the first level of A, say, could be distorted by a particular combination
of two other factors, and it is hard to disentangle the main effects from the 2-factor
interactions.

OAs with t = 3 and N ≤ 100 can be used fruitfully if there are substantial
interactions between the experimental factors, while their identity is not known
in advance. Contrary to the t = 2 case, the estimates of the main effects are not
distorted by interactions between other factors. However, the main effect of a factor
involved in interactions depends on the identity of the other factors in the array.
If factor A interacts with factor X, the main effect of A obviously depends on the
inclusion of X in the array. So, for a practical investigation, we would want to
include a fairly complete list of factors that could interact.

With an OA of t = 3, estimates of interaction components can be affected by
the presence of other interaction components. Indeed, such an OA does not have
every level pair of factors appearing equally often against every pair of settings of
two other factors. In addition, the degrees of freedom available for the estimation of
interaction components may not be sufficient to estimate them all simultaneously.
So there could be a problem of interpreting an active interaction component.

For the specific case of the 24-run array constructed by folding over a 12-run
Plackett-Burman scheme (Plackett and Burman [1946]), Miller and Sitter [2001]
studied a way out of the above problem. They proposed a two-stage approach to
detect active main effects and interactions. First, activity of the main effects is
detected by standard methods. The strength of the array ensures that important
main effects will not be extinguished by one or more interactions. The second stage
uses all-possible-subsets methods to discriminate between models containing active
and those containing inactive interactions. The two-stage approach is generalizable
to any orthogonal array of strength 3.

There is much literature on constructing OAs with t = 2; see Wu and Hamada
[2000], Hedayat et al. [1999], and the references therein contained. Indeed, Sloane’s

81
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web site gives a table of all orthogonal arrays with t = 2 and N ≤ 100; see Sloane
[2005]. The large amount of literature will partly be due to the popularity of the
designs advocated by Taguchi [1959, 1987], where interactions not of direct interest
are assumed absent. An appealing aspect of these designs is their run-size economy.
For example, in the Taguchi L16, one can investigate the main effects of 15 two-level
factors in just 16 runs.

The OAs with t = 3 have received much less attention in the literature than
have those with t = 2. Exceptions are the regular prime-level designs of reso-
lution IV (see, eg, Wu and Hamada [2000]). The purpose of this chapter is to
study the selection of non-regular OAs with t = 3 for practical experimentation.
In Brouwer et al. [2005], results were presented for all mixed arrays with t = 3
and N ≤ 64. The selection issue in the present chapter is exemplified with 3a · 2b

arrays, extending the run-size limit to N ≤ 72. The rest of the chapter is orga-
nized as follows. In Section 5.2, we apply the algorithm LEX-LEAST-FRACTIONS

from Section 4.4 to obtain sets of all non-isomorphic OA(48; 3 ·29; 3), OA(54; 35; 3),
OA(54; 35 · 2; 3). The number of distinct arrays were found to be 3, 4, 4. For series
OA(72; 32 · 27; 3) and OA(72; 32 · 28; 3), the numbers of distinct arrays are at least
1304, and 379, respectively. The four non-isomorphic OA(54; 35; 3) were obtained
earlier by Hedayat et al. [1997]. However, these authors did not consider the se-
lection issue. In Section 5.3, we turn to the selection problem. We present some
simple criteria, and we use these to study the aforementioned sets. In Section 5.4,
we develop some methodology of blocking a strength 3 OA and we explore our
designs of special interest as to their capability for blocking. A brief discussion
concludes the chapter.

5.2. Enumeration

Using the algorithm LEX-LEAST-FRACTIONS we obtain all non-isomorphic array
OA(N ; 3a · 2b; 3)s. Henceforth, we will use the notation N.a.b.z to denote the zth
array in a set of OA(N ; 3a · 2b; 3)s. Table 5.1 gives minimum run sizes for all cases
with t = 3, a + b ≤ 10, and N ≤ 100.

Designs with a = 0 correspond with two-level designs. Those with up to 8
factors can be constructed using regular design theory. The designs with 9 and
10 factors, respectively, can be obtained by deleting columns from the folded-over
12-run Plackett-Burman design. In fact, there can be a folded-over design with
N = 24 and t = 3 for up to 12 factors.

Designs with b = 0 are three-level designs. Those with 3, 4, and 6–10 factors can
be constructed using regular design theory [Wu and Hamada, 2000]. Hedayat et al.
[1997] give 4 non-isomorphic 54-run designs with 5 three-level factors, and show that
these are the only ones. These are of special interest here as the problem of selecting
one of them for practical use has not yet been addressed. To emphasize the special
interest, we mark the corresponding entries in Table 5.1 with a bold typeface.

Of the 19 pairs (a, b) in the table for which a ≥ 1 and b ≥ 1, 13 can be derived
from those with either a − 1 three-level factors or b − 1 two-level factors. Of the
six remaining ones, the (a, b) pairs (1,9), (5,1), (2,7), and (2,8) are also marked as
special interest designs. We will see later that designs (2,6) and (2,5) may well be
constructed by deleting columns from certain (2,7) arrays. For this reason, they
are not marked in the present table.
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Table 5.1. Min. run sizes of 3a · 2b arrays with a+ b ≤ 10, and
N ≤ 100

b a
0 1 2 3 4 5 6 – 10

0 - - - 27 27 54 81
1 - - 18 54 54 54

2 - 12 36
3 8 24 72
4 8 24 72
5 16 48 72
6 16 48 72
7 16 48 72

8 16 48 72

9 24 48

10 24

NOTE: bold-faced entries indicate designs of special interest.

Using the above algorithm, we obtained 3 non-isomorphic OA(48; 3 · 29; 3),
and four OA(54; 35 · 2; 3); these are given in the Appendix. There are at least 1304
distinct OA(72; 32 ·27; 3), and at least 379 distinct OA(72; 32 ·28; 3). For the current
study, we use the first 1304 distinct OAs of the series OA(72; 32 · 27; 3), and use
the first 379 distinct OAs of the series OA(72; 32 · 28; 3). Selected examples are
given in Appendix A; the full lists are electronically available at Nguyen [2005].
The construction of mixed two-and-three level designs was attempted earlier by
Connor and Young [1961]. The run-sizes of each of the designs, together with the
strength t of the designs when viewed as orthogonal arrays, is given in Table 5.2.

All of the designs permit simultaneous estimation of all the main effects and
all the interactions. The table shows that for many cases this comes at the cost
of run-size or strength. We believe that our mixed designs of special interest give
a useful alternative with smaller run-sizes or greater strength. In particular, our
OA(48; 3 · 29; 3) and our OA(54; 35; 3) series have smaller run sizes. Further, as
we will see later, a few of our OA(72; 32 · 27; 3) arrays have all their interactions
estimable, while they also have smaller run-size and greater strength.

5.3. Selection

Orthogonal arrays of strength 3 can be used in practice for collecting data to
identify active main effects in the presence of strong interactions, and to identify
some, or possibly all, active two-factor interactions. The identification can be
carried out by comparing the fit of statistical models to the data. We propose
a model building approach for strength 3 arrays that consists of two stages; it is
adapted from Miller and Sitter [2001]. In the first stage, only the main effects are
considered. Assuming that interactions involving 3 or more factors are negligible,
many of the arrays under study have degrees of freedom left to estimate random
error; some of them even have error degrees of freedom from duplicate runs. These
can be used to test the statistical significance of the main effects. If there are
insufficient degrees of freedom for random error, we may judge the main effects
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Table 5.2. 3a · 2b arrays from Connor and Young

a b N t a b N t
1 4 36 1 4 3 162 1

5 48 3 4 162 1
6 48 3 5 216 1
7 96 3 6 324 1
8 96 3 5 1 162 4
9 128 0 2 162 1

2 3 36 2 3 216 2
4 72 3 4 324 1
5 72 2 5 432 2
6 96 1 6 1 243 0
7 144 2 2 486 1
8 144 3 3 486 1

3 2 54 1 4 486 1
3 72 2 7 1 243 0
4 108 1 2 486 1
5 144 2 3 486 1
6 288 2 8 1 243 0
7 432 2 2 486 1

4 1 81 0 9 1 243 0
2 162 1

with a robust estimate of the standard error constructed from the main effects
themselves (Lenth [1989], Schoen and Kaul [2000], Loeppky and Sitter [2002]).

For the second stage in the model building process, we construct the set of
all components of the two-factor interactions. We then use all-possible-subsets
procedures [Miller and Sitter, 2001] to look at the best few models consisting of
all main effects and k two-factor interactions, for a range of values of k. When
considering an interaction, we want to include all of its components. We presuppose
that an experimenter cannot specify in advance which subset of all the possible
interactions contain the active ones. Thus, he would want to be able to entertain
as many models as are possible. We will now discuss various criteria that might be
used to quantify the model-building potential of an array and thus will help with
the selection of an array for practical use.

Rank of selected model matrices. Consider an OA(N ; r1 · r2 · · · rd; 3), F , say. Call
the columns in F original columns. Replace any original column of ri levels with
ri − 1 orthogonal columns, and call these the main effect columns. Add to the
left a column 1 and call the matrix of the new set of columns M1. As the arrays
are orthogonal, we know that M1 has full rank. Construct the p-extended model
matrix Mp by extending M1 with columns formed by the entry-wise products of
2, . . . , p of the main effect columns for p = 2, . . . , d . Do not form products of main
effect columns obtained from the same original column.



5.3. SELECTION 85

We propose to characterize the non-isomorphic arrays OA(N ; r1 · r2 · · · rd; 3)
for given values of N and r1, r2, . . . , rd by the following rank-based quantities:

n2 = r(M2) − r(M1), n+ = r(Md) − r(M2), and npe = N − r(Md).

Quantity n2 corresponds to the maximum number of estimable components of 2-
factor interactions in a model based on the array. This quantity may be refined
further by looking at the ranks for meaningful subsets of the 2-factor interactions.
For example, one could be specifically interested in interactions among 2-level fac-
tors. In addition, we quantify with n+ the additional higher-order interaction
components that are estimable. Finally, in some arrays there are duplicate runs;
npe gives the number of degrees of freedom obtained from such runs. In general, we
would prefer arrays with large n2. Table 5.3 shows rank-based characteristics of the
48-run and 54-run designs of special interest. It is remarkable that 54.5.0.4 has al-
most all its interaction components estimable. For the sets of 1304 OA(72; 32 ·27; 3)
and 379 OA(72; 32 · 28; 3), Table 5.4 shows the distribution of the distinct values of
n2. The total number of 2-factor interaction-components is 53 and 64, respectively.
Interestingly, there are 4 non-isomorphic OA(72; 32 ·27; 3) arrays that have all com-
ponents of 2-factor interaction estimable. In view of the strength of the arrays, the
interaction estimates must be correlated.

Table 5.3. Rank-based characteristics for arrays of special interest

OA(48; 3 · 29; 3) 54.5.0.1 54.5.0.2 54.5.0.3 54.5.0.4 OA(54; 35 · 2; 3)
n2 36 31 36 35 39 41

(n2) (18) (9) (4) (5) (1) (9)
n+ 0 10 6 8 4 1
npe 0 2 1 0 0 0

NOTE: Bracketed figures bear on non-estimable components of 2-factor interactions.

Minimum forbidden sub-configurations. Consider a model M containing all compo-
nents of k 2-factor interactions. The set of all these components is called a minimum
forbidden sub-configuration (MFS) if

(1) M contains at least 1 non-estimable component.
(2) Deleting all components of any of the k 2-factor interactions would result

in an estimable model.

Augmentation of M with other interactions also results in a model that is
not fully estimable. For an orthogonal array of strength 3, the set of all MFS for
k = 1, 2, . . . ,

(

n
2

)

permit an assessment of models that can be estimated with the
particular array. The set can be found by calculating the ranks of sub-matrices
of M2 \ M1, the 2-extended model after excluding the columns of the 1-extended
model. We excluded main effects from consideration, because they are orthogonal
to the 2-factor interactions. Thus, the non-estimability of 2-factor interactions is
solely due to the structure of the space spanning the corresponding components.

To explore the set of MFS, we used graphs with the factors as nodes and the
(non-estimable) interactions as edges. We also tabulated numbers of MFS according
to the number of si × sj interactions in the sub-configuration.

Estimation Capacity. Consider, for some strength 3 OA with n columns, all
(

c
v

)

v-interaction models with c =
(

n
2

)

. The estimation capacity for v two-factor inter-
actions, denoted ECv, is defined as the fraction of these models that are estimable
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Table 5.4. Values for n2 for OA(72; 32 · 27; 3)s and OA(72; 32 · 28; 3)s

n2 OA(72; 32 · 27; 3) OA(72; 32 · 28; 3)
37 2 1
38 28 9
39 304 266
40 4 2
41 15 3
42 202 39
43 2 0
44 24 0
45 89 0
46 47 1
47 121 31
48 416 16
49 5 2
50 13 6
51 7 0
52 21 2
53 4 0
54 0 1

[Cheng et al., 1999]. We can compare orthogonal arrays by making tables of ECv

for v = 1, 2, . . . , c. For mixed arrays, it is useful to classify the results in more detail
according to the number of si × sj interactions in the model.

Extensions of resolution and aberration to non-regular arrays. Xu and Wu [2001]
propose the concept of generalized word-length pattern (GWLP) to classify sym-
metrical as well as asymmetrical orthogonal arrays. The GLWP of an array is
calculated as follows. First, replace each s-level column in an array with s − 1
columns orthogonal to each other and to the vector of ones. Second, normalize the
columns such that they all have squared length N . Third, define p-factor interac-
tions as products between p main effect columns. Finally, define Ap with

(5.3.1) Ap = N−2

np
∑

k=1

∣

∣

∣

∣

∣

N
∑

i=1

x
(q)
ik

∣

∣

∣

∣

∣

2

.

The GWLP is the vector (A1, A2, . . . , An). For all designs, the Aj are independent
of the choice of orthonormal contrasts [Dey and Mukerjee, 1999].

Resolution is defined as the smallest p such that Ap > 0. Designs with a high
resolution are preferable to those with a low resolution. To discriminate among
several maximum resolution designs, Xu and Wu use a generalized aberration (GA)
criterion as follows. Consider designs D1 and D2, say. D1 is said to have less
aberration than D2 is there exists a p, 1 ≤ p ≤ n, such that Ap(D1) < Ap(D2) and
Aj(D1) = Aj(D2) for j = 1, . . . , p − 1. D1 is said to have generalized minimum
aberration, denoted GMA, if there is no other design with less aberration than D1.

Xu and Wu [2001] motivate the use of the GA criterion by proving that mini-
mization of this criterion sequentially minimizes the contamination of non-negligible
j-factor interactions on the estimation of main effects for j = 2, . . . , e, where e
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equals the number of factors for symmetrical designs and the strength for asym-
metrical designs. This implies that a minimum GA array with t = 3 has minimum
contamination of its main effect estimates with 3-factor interactions. Note that min-
imization of GA also minimizes the sum of squared correlations among two-factor
interaction components. Using the criterion to judge the first 1304 OA(72; 32 ·27; 3),
we find that array OA(72; 32 · 27; 3) no. 588 with A4 = 4.525 is the single GMA
array. The rank for the 2fi columns, however, is 51, which is 3 less than the maxi-
mum. So we would miss the maximum rank arrays if we would rely on GA alone.
Thus, for t = 3, we would also want to consider rank-based characteristics.

The approach of Xu and Wu [2001] generalizes the concept of resolution and
aberration to non-regular designs. However, the resolution is still an integer num-
ber. Deng and Tang [2002] define a generalized resolution in the context of their
study of Hadamard matrices D of strength 2. The generalized resolution of D is
defined as

(5.3.2) R(D) = r +

[

1 − max
|s|=r

Jr(s)/N

]

In their notation, Jr(s)/N is the absolute value of the element-wise sum of the
product of a subset s of r columns of an array, |s| is the size of the subset, and r
is the smallest integer such that max|s|=r Jr(s) > 0. J4(s)/N can be interpreted
as the correlation between the two-factor interactions i1, i2 and s − {i1, i2}, where
{i1, i2} ⊂ s. For t = 3, r = 4. If there are two interaction components fully aliased,
they will have J4(s)/N = 1, and the generalized resolution will be exactly 4. In
our set of 1304 non-isomorphic arrays, 1098 arrays have a Hadamard part with
resolution 4.667; for the remaining 206 arrays, the resolution is 4.444. There are
arrays with resolution 4.667 that have the rank of the 2 × 2 interaction part as
low as 11. On the other hand, some arrays with resolution 4.444 have a maximum
rank for the estimation of 2 × 2 interactions. This demonstrates that generalized
resolution as defined by Deng and Tang [2002] must not be used as the sole criterion
to discriminate among resolution 4 designs.

Orthogonality of subspaces. In an sa
i sb

j array, the spaces spanned by si × sj , si × si,
and sj ×sj interactions may of may not be orthogonal to each other. If they are, we
can build models by considering the subspaces one at a time. This decreases com-
putational effort and increases interpretability of interaction effects. We checked
the orthogonality of subspaces in our sets of OA(72; 32 · 27; 3) and OA(72; 32 · 28; 3)
arrays. All of the arrays had the 3 × 3 interaction space orthogonal to the 2 × 3
interaction space. The set with 7 two-level factors had 441 arrays with the 2 × 2
interactions orthogonal to the 2 × 3 interactions. For the set with 8 two-level fac-
tors, this number was 314. These arrays thus have the attractive property that the
2 × 3 interactions are orthogonal to all remaining interactions.

Discussion. In our definitions of MFS and EC, we consider estimability of models
M containing all components of k 2-factor interactions. If an array has at least
one factor at more than two levels, we could also consider models for which some of
the individual interaction components are estimable. We prefer the former option,
because the designs considered here will be mainly used for categorical factors. It
is unlikely that an interaction between such factors can be modeled using a subset
of the interaction components.
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Our preference for models containing full sets of interaction components only
applies to irregular designs - as are the designs of special interest considered here.
For regular designs, components of an interaction are defined by modular arith-
metic (see, eg, Wu and Hamada [2000]). While it remains unlikely that an inter-
action between categorical factors can be fully modeled using only one component,
the components form mutually orthogonal sets whose activity can be judged by
standard methods.

The weighing of the multiple criteria to judge the quality of an OA will very
much depend on the practical context of the experiment. We should want to restrict
attention to the arrays that have good combined properties regarding these criteria.
Following Sun et al. [1997], we discard inadmissible arrays. Let c be the number of
criteria studied. An array is inadmissible according to c criteria if there is another
array that is strictly better according to at least one of these c criteria and equally
good according to the remaining criteria. Otherwise, the array is called admissible
according to these c criteria.

Detailed results. A major issue in comparing non-isomorphic arrays concerns the
computational feasibility of the criteria. This depends on the number of non-
isomorphic arrays as well as on the number of possible interaction models. For the
four OA(54; 35; 3) arrays, the total number of k-interaction models, k = 0, . . . , 10
is 210. Extension of the arrays with an additional two-level factor gives a total of
215 models to consider. These quantities as well within what can be done on a fast
PC. This permits the study of MFS and EC criteria. However, our OA(48; 3 · 29; 3)
and our sets of 72-run arrays just have too many factors to permit all possible
models to be considered. Thus it is not feasible to study all MFS. For the first
1304 OA(72; 32 · 27; 3), we tabulated ranks of selected sub-matrices. For the four
OA(48; 3 · 29; 3) and the first 379 OA(72; 32 · 28; 3), we considered the EC of 1000
randomly selected models with k1 2 × 2 and k2 2 × 3 interactions and all feasible
combinations of k1 and k2. For the first OA(72; 32 · 28; 3) set, we also considered
for every configuration of 2× 2 and 2× 3 interactions models that either did or did
not include the single 3 × 3 interaction. The results were tabulated according to
the included numbers of interactions of each type.

OA(54; 35; 3). Our study of the arrays 54.5.0.1 and 54.5.0.2 is based on the original
arrays of Hedayat et al. [1997]. For the study of arrays 54.5.0.3 and 54.5.0.4, we
used our lexicographical minimal arrays because of representational convenience:
these arrays are extended with a two-level factor in Table A.2. Table 5.5 shows
EC, expressed as a percentage of the total number of k-interaction models, and the
values of A4. The arrays 54.5.0.1 and 54.5.0.2 have identical estimation capacities
and A4 values. Also, the non-estimable models in either of the arrays have exactly
the same specifications. There are 25 MFS, all having 6 interaction terms. They
fall apart into two classes, whose graph representations are given as Figure 5.1. The
first class of MFS consists of the 15 possible models whose graph representation
is isomorphic to the left graph in the figure; the second class consists of the 10
possible models whose graph is isomorphic to the right graph in the figure.

The graphs in Figure 5.1 do not match the following specifications: (1) models
containing at most 5 interactions; (2) models containing interactions among 4 out
of the 5 factors only; (3) models containing interactions between any factor and at
most 2 of the other factors.
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Table 5.5. EC and A4-values of OA(54; 35; 3)s

k I = 54.5.0.1 II = 54.5.0.2 III = 54.5.0.3 IV = 54.5.0.4
1 100 100 100 100
2 100 100 97.8 100
3 100 100 93.3 100
4 100 100 86.7 99.5
5 100 100 77.8 97.6
6 88.1 88.1 64.8 92.9
7 0 0 40.0 83.3
8 0 0 0 66.7
9 0 0 0 40.0
10 0 0 0 0
A4 3.056 3.056 3 3

So it would seem save to use I or II to estimate the parameters for these models.
However, estimability of all models containing k interactions does not guarantee
that we can distinguish between these models. This is because several models may
lead to the same set of fitted values [Miller and Sitter, 2001]. Srivastava [1975]
studies conditions for which one can identify the true model from all the models
containing main effects and k interactions. Assuming observations without error,
he showed that a necessary and sufficient condition (of this identification) is the
estimability of all models containing 2k interactions. (His actual formulation was
more general. Here we apply his results to strength 3 arrays assuming that we
always want to estimate all the main effects.) A design that fulfills the condition is
said to be strongly resolvable with resolving power k.

We conclude that arrays I and II permit identification of any model with two
interactions, provided that these are sufficiently large as compared with experi-
mental error. The arrays can also be used to identify models with more than 2
interactions, but additional experimentation may be required to identify the true
model; see Miller and Sitter [2001] for further argumentation. We note finally that
I is inadmissible if n2 is used as a criterion additional to k or A4; see Table 5.3.

Figure 5.1. Minimum forbidden sub-configurations in array I, II
of OA(54; 35; 3)

There are a total of 5 MFS in array III; see Figure 5.2. One MFS has 2
interactions; the remaining 4 contain 6 interactions. Thus, the array is inadmissible
if k, A4, and n2 are used as criteria.
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Figure 5.2. Minimum forbidden sub-configurations in array III of OA(54; 35; 3)
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Figure 5.3. Minimum forbidden sub-configurations in array IV of OA(54; 35; 3)

The EC results of array IV, finally, are fully explainable by a single MFS, which
is shown in Figure 5.3. It contains the interactions PQ, QT, TP and RS. If we can
assume absence of any of these interactions, the remaining interactions can all be
estimated. This leads us to prefer 54.5.0.4 in general. We prefer 54.5.0.2 if the
following three conditions apply simultaneously: first, it is not possible to appoint
some interaction as negligible; second, additional experimentation is not feasible;
third, there are at most 2 active interactions. Note that selection on the basis of
A4 alone would leave the matter undecided between 54.5.0.4 and 54.5.0.3.

OA(54; 35 · 2; 3). Arrays 54.5.1.1 and 54.5.1.2 are non-isomorphic extensions of
54.5.0.3; 54.5.1.3 and 54.5.1.4 were obtained by extending 54.5.0.4. All arrays have
an A4 of 5.667. In Table 5.6, we give the numbers of MFS according to the number
of 3 × 3 interactions (rows) and 2 × 3 interactions (columns). The results in the
Table lead us to prefer 54.5.1.3, because it has a total of two 4-interaction MFS,
as opposed to one 2-factor interaction MFS for 54.5.1.1 and 54.5.1.2, and four 4-
interaction MFS for 54.5.1.4. The MFS of 54.5.1.3 that has 2 interactions of each
type consists of {RS,RT,AP,AQ}, with A denoting the two-level factor. The 2
MFS with three 3×3 interactions and two 2×2 interactions contain {AP,AQ} and
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either {PQ,RS, ST} or {PQ,RT, ST}. Combining this result with the MFS with
four 3 × 3 interactions of Figure 5.1, if one can point out an unlikely interaction
of either type, we can assign the factors in such a way that the array is strongly
resolvable with resolving power 4. A table with detailed results on all MFS of the
4 arrays is available upon request.

OA(48; 3 ·29; 3). We checked the EC for sets of 1000 randomly selected models with
k1 2× 2 interactions, k2 2× 3 interactions and all feasible values of k1 and k2. The
results are summarized below.

Array EC.. EC.0 n2(.0) A4

1 447 665 28 8.222
2 403 598 28 8.222
3 549 733 33 8.556

The EC results are expressed as the number of estimable models among the 1000
selected ones. The characteristics shown are the mean EC over all 37 × 10 (k1, k2)
pairs, the mean EC over all 37 (k1, 0) pairs, and the n2 value when the 2 × 3
interactions are not considered. The results clearly let us to discard arrays 1 and
2 as inadmissible under these criteria. However, 48.1.9.1 is admissible if A4 is used
as an additional criterion.

Table 5.6. Numbers of MFS in OA(54; 35 · 2; 3)s

54.5.1.1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
4 0 18 0 0 0
0 0 0 0 0 0

54.5.1.2
0 0 0 0 0 0
0 0 0 0 0 0
1 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
4 0 16 0 0 0
0 0 0 0 0 0

54.5.1.3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 2 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 3 0 0 0
0 0 3 6 0 -
0 3 0 - - -

54.5.1.4
0 0 0 0 0 0
0 0 0 0 0 0
0 0 3 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 3 0 0 0
0 0 3 6 0 -
0 3 0 - - -

OA(72; 32 ·27; 3). We studied the list of OA(72; 32 ·27; 3) arrays using the following
criteria for selecting OAs

(1) the rank of the matrix with all components of the 2-factor interactions,
n2(...),
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(2) the rank of the interaction matrix excluding the components of the 3 × 3
interaction, n2(..0),

(3) the rank of the matrix of just the 2 × 2 interactions, n2(.00),
(4) the rank of just the 2 × 3 interactions, n2(0.0),
(5) the value of A4 (the fourth component of GWLP given in (5.3.1)), and
(6) the orthogonality of the 2 × 3 interactions to the remaining interactions,

respectively. We also included
(7) the minimum decrease in n2 in case the design was to be blocked in 6

blocks, df6, and
(8) the minimum decrease for the 12 blocks case, df12.

A full discussion of the blocking issue is given in Section 5.4. Under the aforemen-
tioned criteria, only 17 of the designs are admissible. Properties of the admissible
designs are give in Table 5.7. We noted earlier the existence of 4 arrays with the

Table 5.7. Admissibility among the first 1304 OA(72; 32 · 27; 3)s

Array n2(...) n2(..0) n2(.00) n2(0.0) A4 df6 df12

178 51 48 21 27 5.17 3 -
552 46 42 16 26 5.50 3 5
588 51 47 21 26 4.53 3 -
822 45 41 16 27 5.83 3 9
824 45 41 16 27 5.83 3 9
1024 51 47 21 28 5.53 3 -
1078 53 49 21 28 5.15 - -
1079 53 49 21 28 5.15 - -
1080 53 49 21 28 5.15 - -
1081 53 49 21 28 5.15 - -
1157 47 43 20 28 5.44 4 10
1187 48 46 21 28 4.98 5 11
1189 48 46 21 28 4.98 5 11
1230 52 48 21 28 5.13 4 -
1253 52 48 21 28 5.13 4 -
1294 48 46 21 28 5.25 4 11
1296 45 41 16 27 5.67 3 10

NOTES: Array numbers printed in bold have 2 × 3 interactions

orthogonal to all remaining interactions

maximum possible value of n2(...). For these arrays we calculated a determinant

D as D = |X′X|1/53
/72, where X is the 72 × 53 matrix of all 53 components of

the two-factor interactions, normalized to squared length 72. The values of D are
0.5393, 0.5391, 0.5393, and 0.5406 for the arrays 1078, 1079, 1080, and 1081, re-
spectively. Thus, array 1081 is slightly better than the three other arrays. The
remaining 13 arrays are all worse in their rank-based criteria, but better in either
the blocking, the contamination or the orthogonality criteria. There are three pairs
of equally good arrays. Finally, the arrays with the space of the 2 × 3 interac-
tions orthogonal to the remaining interactions do not have a full rank of the 2 × 3
interaction matrix.
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The list of admissible arrays reduces the problem of choosing from 1304 arrays
to the problem of choosing from 17 arrays. If no blocking is required, we would
generally suggest array 1081; it is given in Table A.3. A possible disadvantage of this
array is a slightly more pronounced correlation between the two-factor interactions
as exhibited by larger A4 values and the 2 × 3 subspace being in-orthogonal to
the other interactions. However, we would take this risk and solve ambiguities
by follow-up experimentation, as this permits all subsets of the interactions to be
studied. We note that the best arrays according to the EC criterion cannot be
blocked in 6 or 12 blocks. There are several arrays that permit an arrangement in
6 blocks with 48 remaining degrees of freedom to estimate interactions. As regards
arrangements in 12 blocks, array 552, given in full in Table A.3, is the best option
in view of the 41 remaining degrees of freedom for the interactions.

If there are less than seven 2-level factors required, we would suggest omitting
columns from array 1081. However, it may be possible that there are maximum-
rank OA(72; 32 ·2a; 3) with a = 5 or 6 that have better values of the model matrix’s
determinant, and full series of these arrays are required to pick up the best one.

OA(72; 32 · 28; 3). We studied the OA(72; 32 · 28; 3) using criteria (1) up to (8) from
the study of the OA(72; 32 · 27; 3). As there were no arrays with a full rank of the
interaction sub-matrix (n2 = 64), it is of interest to include further criteria based
on a more detailed assessment of the estimation capacity. So we also included

(9) the mean estimation capacity over all models with 0 up to 45 two-factor
interactions, EC(...),

(10) the mean estimation capacity of the interaction models excluding the com-
ponents of the 3 × 3 interaction, EC(..0),

(11) the mean estimation capacity of models involving just the 2 × 2 interac-
tions, EC(.00),

(12) the mean estimation capacity of just the 2 × 3 interactions, EC(0.0),
(13) the maximum number of 2× 2 interactions for which all 1000 models not

containing any other interaction are estimable, and
(14) the corresponding value for the 2 × 3 interactions.

Under these criteria, 36 OA(72; 32 · 28; 3) are admissible. Properties of the admis-
sible designs are give in Tables 5.8 and 5.9. We would generally prefer array 379
if no blocking is required, see Table A.3. Its estimation capacities are superior to
those of the remaining arrays. The remaining arrays are also admissible because
they either have orthogonal 2 × 3 subspaces or have larger values of m(2×3). How-
ever, the EC value for ten 2 × 3 interactions in arrays 379 is 993. So we do not
expect problems here. As in the previous case, the best array according to the EC
criterion cannot be blocked in 6 or 12 blocks. The arrays 19, 95, 104, 130, and
246 permit an arrangement in 6 blocks with 45 remaining degrees of freedom to
estimate interactions. Arrays 264 and 280 give a 12-block arrangements with 33
degrees of freedom left for the interactions; the latter array is given in Table A.3.

5.4. Blocking

Methodology. Randomization of the runs of an OA protects the effect-estimates
against contamination with unknown sources of extraneous variation. However, if
these sources are known, one tries to block the experimental runs into groups to
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Table 5.8. Selected OA(72; 32 · 28; 3)s: rank and estimation capacities

Array n2(...) n2(..0) n2(.00) n2(0.0) EC(...) EC(..0) EC(.00) EC(0.0)

19 48 44 18 26 382 382 493 772
68 39 35 11 24 287 287 384 747
70 39 35 11 24 290 290 384 756
84 39 35 11 24 287 287 385 745
95 48 44 18 26 373 373 495 751
104 48 44 18 26 360 360 496 728
118 42 38 14 24 338 338 472 717
130 48 44 18 26 360 360 494 729
138 39 35 11 24 288 288 385 749
157 39 35 11 24 286 286 384 744
177 42 38 14 24 351 351 472 744
180 39 35 11 24 290 290 384 755
183 39 35 11 24 289 289 383 754
195 39 35 11 24 290 290 383 755
199 39 35 11 24 288 288 385 748
236 47 44 19 25 429 431 592 731
239 48 44 18 26 384 384 493 778
241 52 50 24 26 525 527 667 791
246 48 44 18 26 360 360 495 728
253 39 35 11 24 289 289 383 753
264 42 38 14 24 346 346 474 734
272 39 35 11 24 287 287 385 748
273 39 35 11 24 288 288 384 753
274 39 35 11 24 288 288 384 750
277 39 35 11 24 282 282 386 736
278 39 35 11 24 278 278 384 722
280 42 38 14 24 342 342 471 727
286 39 35 11 24 288 288 385 749
297 39 35 11 24 289 289 384 753
347 39 35 11 24 288 288 383 751
374 47 44 19 28 516 516 611 855
375 47 44 19 28 516 517 611 855
376 47 44 19 28 516 516 608 856
377 47 44 19 28 516 516 610 855
378 42 38 14 25 350 350 472 746
379 54 51 28 30 814 815 1000 837

NOTES: Admissibility arrays based on the first 379 cases. EC based on 1000 randomly selected

models for each of k1 2 × 2 and k2 2 × 3 interactions. Array numbers printed in bold have 2 × 3

interactions orthogonal to all remaining interactions

eliminate the variation without biasing the effect-estimates. In fact, blocking is a
classical device treated in all the standard textbooks, such as the one by Box et al.
[1978]. Most of the theory on blocking concentrates on regular designs (see, eg,
Sun et al. [1997], Sitter et al. [1997], and Cheng and Wu [2002]). The main concern
is to construct a blocking factor whose main effect is orthogonal to all the main
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Table 5.9. Selected OA(72; 32 · 28; 3)s: further properties

Array m(2×2) m(2×3) A4 df6 df12

19 6 7 10.94 3 -
68 5 9 14.89 3 -
70 6 9 15.11 3 -
84 6 8 15.11 3 -
95 7 7 10.94 3 -
104 7 4 10.83 3 -
118 7 8 14.64 3 -
130 8 4 11.27 3 -
138 6 9 15.67 3 -
157 7 8 15.22 3 -
177 6 9 13.09 3 -
180 5 10 15.33 - -
183 7 10 14.89 - -
195 5 10 14.44 - -
199 5 10 15.33 3 -
236 9 7 12.48 - -
239 7 9 10.72 - -
241 8 8 10.23 - -
246 6 4 10.83 3 -
253 6 9 15.33 3 9
264 5 7 14.09 3 9
272 6 8 15.00 3 9
273 6 9 15.33 3 9
274 6 9 15.00 3 9
277 6 5 15.33 3 9
278 6 6 14.67 3 9
280 7 5 13.09 3 9
286 6 9 15.22 3 -
297 6 10 14.67 3 -
347 5 10 14.67 3 9
374 7 11 13.49 - -
375 6 10 13.10 - -
376 7 10 13.49 - -
377 8 10 13.10 - -
378 6 8 14.83 5 -
379 28 8 11.28 - -

NOTES: Admissibility arrays based on the first 379 cases. EC based on 1000 randomly selected

models for each of k1 2 × 2 and k2 2 × 3 interactions. Array numbers printed in bold have 2 × 3

interactions orthogonal to all remaining interactions

effects of the experimental factors, and also orthogonal to as many of the 2-factor
interactions as is possible. In this section, we give some blocking methodology for
orthogonal arrays of strength t, and apply the methodology to the arrays of special
interest. We start with the following.



96 5. SELECTING STRENGTH 3 ORTHOGONAL ARRAYS

Definition 57. An orthogonally blocked orthogonal array OAB(N ; r1 · · · rd; b;
t1, t2), t1 ≥ t2, is an OA(N ; r1 · · · rd; t1) with an additional column B containing b
symbols such that the resulting array is an OA(N ; r1 · · · rd, b; t2).

It follows immediately from the definition that the block size in such an array
must be divisible by lcm(r1, . . . , rd). If t1 = t2, the problem of finding factor B is
equivalent to finding an additional treatment factor while maintaining the strength
of the array. If t1 > t2, a new class of problems emerges. For arrays with t1 = 3
and t2 = 2, we propose to search for blocking factors in 2 stages. First, we search
for basic blocking factors (BBFs) defined by the following procedure.

(1) Include in the set of BBFs all s-level components of 2-factor interactions
between s-level factors, calculated by modular arithmetic, for all distinct
values of s present in the array.

(2) Augment the set of BBFs with factors from the orthogonal array that are
not used as treatment factors.

(3) For each p-tuple of s-level factors and each distinct value of s in the ar-
ray, use modular arithmetic to calculate s-level potential blocking factors
(PBFs). Here, p = 3, . . . , ks, and ks is the maximum value of p for which
components of the p-factor interaction are still estimable after allowing
for all interactions of order up to p − 1.

(4) Discard PBFs that are not orthogonal to all the main effects.
(5) Discard PBFs of order p > 2 if they are fully aliased with components of

interactions of order up to p − 1.
(6) Augment the set of BBFs with the PBFs not discarded in the previous

steps.

The numbers of levels of the BBFs are a subset from those of the original factors
in the array. In the second stage of the search for blocking factors, we construct
compound blocking factors (CBFs) with levels outside this subset. To do so, we
combine two ore more BBFs by the method of grouping [Wu, 1989] and check
whether the resulting factor is orthogonal to the main effects. As a special case, we
can always construct 4-level blocking arrangements in arrays with more than two
binary factors by using any pair of interactions that share a common factor.

To illustrate the construction of the set of BBFs, consider array 54.5.1.1. There
are a total of 10 2-factor interactions of 4 degrees of freedom each. Each interaction
can be decomposed into 2 orthogonal components X + aY = c (mod 3); a = 1, 2.
Thus, after step 1 of the procedure, there are a total of 20 3-level factors in the
set of BBFs. Further, the two-level factor of the array need not be used. If this
is indeed the case, the array of the treatment factors is equivalent to 54.5.0.3, and
the two-level factor is added to the set of BBFs; see step 2 of the procedure. The
space spanned by the 3-factor interactions has 8 degrees of freedom (see Table 5.3).
There are a total of 10 possible 3-factor interactions. Each of these consists of 4
orthogonal components of the type X+aY +bZ = c (mod 3); a, b = 1, 2. Thus, step
3 results in a total of 40 PBFs of order 3. We discarded 22 of these because they
were not orthogonal to the main effects (step 4). In step 5, a further 6 components
were discarded because they were fully aliased with 2-factor interactions. The set
{PQ2T, PQ2T 2, PRT, PRT 2, PST, PST 2, QRT,QRT 2, QST,QST 2, RS2T,RS2T 2}
remains. This set is joined with the 2-factor components and the two-level factor
to arrive at the final set of BBFs.
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To construct a 6-level CBF, we check all possible ways to group the two-level
BBF with a 3-level BBF. The BBFs PQ2T, PQ2T 2, PQ,RS, PT 2, QT 2, RS2, com-
bined with the two-level factor, give orthogonal blocking with a drop in n2 of 0, 0,
2, 2, 2, 2, and 3, respectively.

Any BBF or CBF can be used to block the array orthogonally to the main
effects. Among equally-leveled blocking factors, we prefer the one that causes the
lowest possible drop in n2, and, if possible, is orthogonal to the 2-factor interactions.
In the 6-level blocking case, we clearly would prefer using PQ2T or PQ2T 2.

The procedure could be refined by decomposing any factor whose number of lev-
els is not a prime into prime-leveled pseudo-factors, and using these to define PBFs.
For example, a 4-level factor can be decomposed in 3 single-degree-of-freedom
pseudo-factors. For our designs of special interest, this is clearly not applicable.

Results. OA(48; 3 · 29; 3). For these arrays, block sizes have to be a multiple of 6.
Thus, we want to search for 2×24, 4×12, or 8×6 arrangements. All PBFs of order
3 and higher are fully aliased with the 2-factor interactions. For arrays 48.1.9.1 and
48.1.9.2, the 4-level CBFs can only be constructed by grouping pairs of interactions
sharing a common factor. There were no 8-blocks arrangements found for these
arrays. For array 48.1.9.3, there are 9 additional ways to create an arrangement in
4 blocks. These are defined by any pair of interactions not sharing a common factor
from {B,C,D, J}, or from {B,C,E,G}, or from {B,C, F,H}. The array further
has 48 different ways to create 8 blocks of 6 units each. These are given by taking
3 independent interactions from any single set from the above sets of factors.

OA(54; 35; 3) and OA(54; 35 · 2; 3). The arrays 54.5.0.1 and 54.5.0.2 cannot be ex-
tended to an OA(54; 35·2; 3). So it is not possible to construct an OAB(N ; 35; 2; 3, 3)
from these arrays. We found an OAB(N ; 35; 2; 3, 2) by exploiting the fact that the
arrays have index 2. For the first 3 factors in the first block, we wrote down a
complete 33. For each run in the second block, the factor levels of the first three
factors were chosen complementary to those in the first block. The settings of the
remaining 2 factors were added in such a way that each run indeed occurred in the
35 array. By counting frequencies and exchanging runs, we arrived at the arrange-
ments given in Table 5.10; these do not cause a drop in n2. There were no BBFs
consisting of higher-order interaction components. The set of BBFs, including the
heuristically found two-level BBF, could not be combined to a multi-level blocking
arrangement.

Table 5.11 gives recommended blocking arrangements for 54.5.1.1 up to 54.5.1.4,
and for their parental OA(54; 35; 3) arrays. Here, factor A denotes the two-level
factor. If A is used as a treatment factor, potential blocks have 6 or 18 runs. These
cases are labeled — 1. The Table shows that there is no appreciable difference in
arrays 1–4 regarding the impact of the blocking on estimability of 2-factor inter-
actions. We conclude that array 54.5.1.3 remains the preferred array if blocking is
called for.

If A is not employed as a treatment factor, blocks may have 3, 6, 9, or 18
runs. The corresponding rows in the table are labeled — 0. The table shows that
our generally recommended 54.5.0.4 cannot be arranged in 18 blocks of 3 runs. So
for this case we have to resort to 54.5.1.2, using factor A as a BBF. This revokes
the previous judgment of inadmissibility for the 18-block case. In all other blocked
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Table 5.10. Orthogonal blocking of 54.5.0.1 and 54.5.0.2 in 2 blocks

54.5.0.1 54.5.0.2
block 1 block 2 block 1 block 2

0 0 0 1 1 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 2 0 2 0 0 1 1 1 0 0 2 1 2
0 0 2 2 0 0 0 1 1 0 0 0 2 2 1 0 0 1 2 2
0 1 0 0 1 0 2 0 0 2 0 1 0 1 2 0 2 0 1 1
0 1 1 0 0 0 2 2 0 0 0 1 1 0 2 0 2 2 0 2
0 1 2 2 1 0 2 1 1 2 0 1 2 2 0 0 2 1 0 1
0 2 0 2 0 0 1 0 1 0 0 2 0 2 2 0 1 0 2 1
0 2 1 2 1 0 1 2 1 2 0 2 1 2 0 0 1 2 0 1
0 2 2 1 1 0 1 1 2 2 0 2 2 1 0 0 1 1 1 0
1 0 0 0 1 2 0 0 0 2 1 0 0 1 1 2 0 0 1 2
1 0 1 2 2 2 0 2 1 1 1 0 1 2 0 2 0 2 0 2
1 0 2 1 2 2 0 1 2 1 1 0 2 0 1 2 0 1 1 0
1 1 0 2 2 2 2 0 1 1 1 1 0 2 0 2 2 0 2 0
1 1 1 1 1 2 2 2 2 2 1 1 1 0 0 2 2 2 2 2
1 1 2 0 2 2 2 1 0 1 1 1 2 1 2 2 2 1 0 0
1 2 0 1 2 2 1 0 2 1 1 2 0 0 2 2 1 0 1 0
1 2 1 0 2 2 1 2 0 1 1 2 1 1 2 2 1 2 0 0
1 2 2 0 1 2 1 1 0 2 1 2 2 0 0 2 1 1 2 1
2 0 0 2 0 1 0 0 1 0 2 0 0 2 1 1 0 0 2 2
2 0 1 1 2 1 0 2 2 1 2 0 1 0 1 1 0 2 1 0
2 0 2 0 0 1 0 1 0 0 2 0 2 2 0 1 0 1 0 2
2 1 0 1 2 1 2 0 2 1 2 1 0 0 2 1 2 0 1 0
2 1 1 2 0 1 2 2 1 0 2 1 1 2 2 1 2 2 2 1
2 1 2 1 0 1 2 1 2 0 2 1 2 1 1 1 2 1 2 1
2 2 0 0 0 1 1 0 0 0 2 2 0 0 1 1 1 0 0 1
2 2 1 1 0 1 1 2 2 0 2 2 1 1 2 1 1 2 2 2
2 2 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1

cases, the arrays derived from 54.5.0.4 have more degrees of freedom available to
estimate interactions.

OA(72; 32 · 27; 3) and OA(72; 32 · 28; 3). The 72-run arrays can potentially be
blocked in 2, 3, 4, 6, or 12 blocks. There were no higher-order interactions among
two-level factors that were orthogonal to all the main effects. This is an interesting
observation, because there exist three 72.2.12, and the additional main effects in
these arrays must somehow employ the higher-order interaction space of arrays
with less two-level factors. Clearly, our approach does not result in all possible
blocking arrangements. A more complete enumeration of blocking arrangements
would be quite interesting. However, we believe that such an enumeration would
be computationally much more cumbersome than our present approach.

We enumerated the blocking arrangements for the series of OA(72; 32 · 27; 3)
and OA(72; 32 · 28; 3) arrays employing just their 2-factor interaction components.
The arrangements in 2, 3 and 4 blocks can be constructed trivially from the BBFs.
In many arrays, the BBFs could not be combined to a 6-level or a 12-level CBF.
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Table 5.11. Selected blocking arrangements for OA(54; 35 · 2; 3)s

Arrangement 54.5.1.1 54.5.1.2 54.5.1.3, 54.5.1.4
BBFs ∆n2 BBFs ∆n2 BBFs ∆n2

2 × 27 | 0 A 0 A 0 A 0
3 × 18 | 0 PQ2T 0 PQ2T 0 PRS 2

| 1 2fi 2 2fi 2 2fi 2
6 × 9 | 0 A,PQ2T 0 A,PQ2T 2 A,PQ 2
9 × 6 | 0 PQ2T, PQ 6 PQ2T, PQ 6 PRT 2, PT 8

| 1 PQ2T, PQ 8 PQ2T, PQ 8 PRT 2, PT 8
18 × 3 | 0 - - A,PQ2, PR2 15 - -

For arrays that did allow for such CBFs, we searched for the CBF that minimized
the drop in degrees of freedom for the 2-factor interaction space. This gives us the
two additional properties to list the admissible designs of the Tables 5.7, 5.8 and
5.9.

5.5. Conclusion

This chapter featured selection of an orthogonal array from a set of non-
isomorphic OA(N ; r1 · r2 · · · rd; 3) to use as an experimental design. We proposed
methodology to reduce to much smaller sets of admissible arrays. Finally, we ad-
dressed the question of how to group the runs of an array in equally sized blocks.
For this purpose, we defined orthogonally blocked orthogonal arrays (OABs) and we
studied OAB(N ; r1 · · · , rd; b; 3, 2) by exploiting components of 2-factor interactions.

Using an algorithm to generate series of arrays gives little information on suc-
cinct ways to construct individual arrays. Knowledge of an explicit construction
method may well lead to more insight into the best way to analyze the results of
an experiment. We would therefore welcome a more extensive study of the arrays
developed. As the set of two-level factors in many of the arrays developed here
could be subsets of Hadamard matrices, we would particularly welcome further
elucidation of the relation of the present arrays with these matrices.





CHAPTER 6

A collection of strength 3 orthogonal arrays

6.1. Introduction

This chapter is organized as follows. Section 6.2 recalls known results and
presents parameters of strength 3 orthogonal arrays (OAs) with 8 ≤ N ≤ 100.
Section 6.3 presents the construction of OAs with 72 ≤ N ≤ 100. Finally, we use
the methods of Chapter 4 to obtain a table of many isomorphism classes of OAs
with run size at most 100 in Section 6.4. For convenience, we abbreviate methods
used for constructing and enumerating orthogonal arrays. The abbreviations are
listed in Table 6.1. It is also convenience to use abbreviations for specific lower
bounds and for particular nonexistence proofs. These too are listed in Table 6.1.

Notation Name Reference

(A) Arithmetic 3.5
(B) Backtrack search for sa

1sb
2 OAs 4.4

(C) Colored graphs 4.3
(Con) Concatenation 3.3
(D) Decomposing sub-arrays 3.7
(La) Latin squares 3.6
(H) Hadamard construction 3.3
(I) Integer linear programming (ILP) 4.5
(IS) ILP with symmetry 4.5
(J) and (L) Juxtaposition and Linear code 3.3
(M) and (O) Multiplication and Even sum ,,
(O’), (Br) Brouwer [2004]
(Q) Quasi-multiplication 3.3
(S) and (T) Split and Trivial design ,,
(X), (X6) Brouwer et al. [2005]
(X3), (X4), (X5) explicit constructions ,,
(X1), (X7), (***) mixed additive codes ,,
(35) Hedayat et al. [1997]
(Rao) the generalized Rao bound Rao [1947]
(Del) the Delsarte bound Delsarte [1973]
(Div) the divisibility condition
(5.1) 6 ∃OA(24; 3 · 25; 3), Sec. 5.1 Brouwer et al. [2005]
(5.9) 6 ∃OA(64; 45 · 23; 3), Sec. 5.9 ,,
(5.10) 6 ∃OA(64; 43 · 29; 3), Sec. 5.10 ,,

Table 6.1. An overview of constructions, lower bounds on run sizes

101
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6.2. Parameter sets of OAs with run size 8 ≤ N ≤ 100

The divisibility condition for the run size of an orthogonal array F gives a
necessary condition for the existence of F in terms of its parameters.

Lemma 58. In an OA(N ; r1 · r2 · · · rd; t), the run size N must be divisible by
the least common multiple (lcm) of all numbers

∏

i∈I ri where |I| = t.

Proof. This says that the t times derived design has an integral run size. �

For example, in an OA(N ; 35 ·2; 3), N must be a multiple of lcm(3·3·3, 2·3·3) = 54.
By this criterion, there is no strength 3 OA with N greater 64 and less than 72.

In Brouwer et al. [2005], we constructed all orthogonal arrays of strength 3 with
run sizes N at most 64. The main result of that paper is

Theorem 59. For every set of parameters N, r1, r2, . . . , rd and N ≤ 64 such
that an orthogonal array OA(N ; r1 ·r2 · · · rd; 3) exists, we construct at least one such
array. More precisely, if d = 3 such an array is trivial, and if d > 3 a construction
is presented or a proof of nonexistence is given.

The result is presented in Table 6.2.

Table 6.2: Parameters of OAs of strength 3 with N ≤ 64

N Type Existence Construction Nonexistence

8 2a a ≤ 4 (H)
16 2a · 4 a ≤ 3 (M)
16 2a a ≤ 8 (H)
24 2a · 6 a ≤ 3 (M)
24 2a · 3 a ≤ 4 (M) a = 5
24 2a a ≤ 12 (H)
27 3b b ≤ 4 (L) b = 5
32 2a · 8 a ≤ 3 (M)
32 2a · 42 a ≤ 4 (X1)
32 2a · 4 a ≤ 7 (M)
32 2a a ≤ 16 (H)
36 22 · 32 (T)
40 2a · 10 a ≤ 3 (M)
40 2a · 5 a ≤ 6 (X) a = 7
40 2a a ≤ 20 (H)
48 2a · 12 a ≤ 3 (M)
48 2a · 4 · 6 a ≤ 2 (M) a = 3
48 2a · 6 a ≤ 7 (M)
48 2a · 3 · 4 a ≤ 4 (X3) a = 5
48 2a · 4 a ≤ 11 (M)
48 2a · 3 a ≤ 9 (X4) a = 10
48 2a a ≤ 24 (H)
54 3b · 6 b ≤ 3 (M) b = 4
54 2a · 3b a ≤ 1, b ≤ 5 (X5) (a, b) = (0, 6)
56 2a · 14 a ≤ 3 (M)
56 2a · 7 a ≤ 6 (J) a = 7

continued on next page
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Table 6.2 (continued)
N Type Existence Construction Nonexistence

56 2a a ≤ 28 (H)
60 22 · 3 · 5 (T)
64 2a · 16 a ≤ 3 (M)
64 2a · 4 · 8 a ≤ 4 (M)
64 2a · 8 a ≤ 7 (M)
64 4c c ≤ 6 (L)
64 2a · 45 a ≤ 2 (S) a = 3
64 2a · 44 a ≤ 6 (X6)
64 2a · 43 a ≤ 8 (S) a = 9
64 2a · 42 a ≤ 12 (X7) or (Q)
64 2a · 4 a ≤ 15 (M)
64 2a a ≤ 32 (H)

Lemma 60. The following are the only nontrivial parameter sets for mixed
orthogonal arrays of strength 3 and run size at most 100 allowed by (Div), (Rao),
and (Del).

OA(4m; 2a; 3) 4 ≤ a ≤ 2m, m even, 2 ≤ m ≤ 24,
OA(4m;m · 23; 3) m even, 2 ≤ m ≤ 24,
OA(8m;m · 2a; 3) 3 ≤ a ≤ 7, 3 ≤ m ≤ 12,
OA(8m;m · 4 · 2a; 3) 2 ≤ a ≤ 4, m even, 4 ≤ m ≤ 12,
OA(9m;m · 3b; 3) 3 ≤ b ≤ 4, m = 3, 6, 9,
OA(36; 32 · 2a; 3) 1 ≤ a ≤ 2,
OA(48; 3 · 2a; 3) 3 ≤ a ≤ 15,
OA(48; 4 · 3 · 2a; 3) 2 ≤ a ≤ 9,
OA(48; 4 · 2a; 3) 3 ≤ a ≤ 11,
OA(54; 3b · 2a; 3) a = 0, 1, b ≥ 1, a + b ≥ 4, a + 2b ≤ 19,
OA(60; 5 · 3 · 2a; 3) a = 2,
OA(64; 4c · 2a; 3) a ≥ 0, c ≥ 1, a + c ≥ 4, a + 3c ≤ 18,
OA(72; 62 · 2a; 3) 1 ≤ a ≤ 6,
OA(72; 6 · 3b · 2a; 3) 0 ≤ b ≤ 1, 1 ≤ a ≤ 11,
OA(72; 4 · 32 · 2a; 3) a = 1,
OA(72; 3b · 2a; 3) 1 ≤ b ≤ 2, 1 ≤ a ≤ 23,
OA(80; 5 · 4b · 2a; 3) 0 ≤ b ≤ 1, 1 ≤ a ≤ 15,
OA(80; 4 · 2a; 3) 2 ≤ a ≤ 19,
OA(81; 9 · 3b; 3) b ≤ 4,
OA(81; 3b; 3) 3 ≤ b ≤ 14,
OA(84; 7 · 3 · 2a; 3) a ≤ 2,
OA(90; 5 · 32 · 2a; 3) a = 1,
OA(96; 8 · 6b · 2a; 3) 0 ≤ b ≤ 1 a + b ≥ 3, a ≤ 11,
OA(96; 8 · 3b · 2a; 3) 0 ≤ b ≤ 1 a + b ≥ 3, a ≤ 11,
OA(96; 6 · 4b · 2a; 3) 1 ≤ b ≤ 2, a + b ≥ 3, 3b + a ≤ 15,
OA(96; 4c · 3b · 2a; 3) 0 ≤ b ≤ 1, 0 ≤ c ≤ 2, a + b + c ≥ 4, 3(c − 1) + 2b + a ≤ 23,
OA(100; 52 · 2a; 3) 1 ≤ a ≤ 2.
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Proof. The cases with N at most 64 were given in Brouwer et al. [2005]. The
first five cases depending on parameters m were also determined there. We consider
now cases with 72 ≤ N ≤ 100.

(i) Applying (Rao) to OA(12, 6 · 2a; 2) of OA(72; 62 · 2a; 3) gives 1 ≤ a ≤ 6.
OA(72; 6 · 3b · 2a; 3) with 0 ≤ b ≤ 1, 1 ≤ a ≤ 11: When b = 1, we use the derived
designs OA(12, 3 · 2a; 2), and find a ≤ 9. When b = 0, we use the derived designs
OA(12, 2a; 2), which leads to a ≤ 11.
Applying (Div) to OA(18, 32 · 2a; 2) of OA(72; 4 · 32 · 2a; 3) we find a = 1.
OA(72; 3b · 2a; 3) with 1 ≤ b ≤ 2: Applying (Rao) to OA(24, 3b−1 · 2a; 2)s, we have
24 ≥ 1 + 2(b − 1) + a. In other words:

1 ≤ b ≤ 2, a + b ≥ 4 (to avoid trivial designs) and a + 2b ≤ 25.

Hence 3 ≤ a ≤ 23 for b = 1, and 2 ≤ a ≤ 21 for b = 2. If b = 2 then a ≤ 20 by
(Del) [Hedayat et al., 1999, Section 9.2].

(ii) OA(80; 5·4b ·2a; 3) with a ≥ 8: Applying (Rao) to the derived designs OA(16; 4b ·
2a; 2) of OA(80; 5 · 4b · 2a; 3), the parameters must satisfy:

0 ≤ b ≤ 1, a + b ≥ 3 and 3b + a ≤ 15.

If b = 0, a ≤ 15; and if b = 1 then a ≤ 12.

(iii) OA(81; 9 · 3b; 3): b ≤ 4 by applying (Rao) to OA(9, 3b; 2).
OA(81; 3b; 3): the derived designs OA(27; 3b−1; 2) must satisfy that 27 ≥ 1+2(b−1),
ie, b ≤ 14.

(iv) OA(84; 7 · 3 · 2a; 3): we have a ≤ 2 by applying (Div).

(v) OA(90; 5 · 32 · 2a; 3): we have a ≤ 1 by applying (Div).

(vi) OA(96; 8 · 6b · 2a; 3) with 0 ≤ b ≤ 1 a + b ≥ 3, a ≤ 11: applying (Rao) to
OA(12; 6b · 2a; 2), we get a+ b ≥ 2, 12 ≥ 1+5b+a, or a+5b ≤ 11. If b = 0, a ≤ 11,
and if b = 1, a ≤ 6.
OA(96; 8 · 3b · 2a; 3) with 0 ≤ b ≤ 1 a + b ≥ 3, a ≤ 11. Indeed, the derived designs
OA(12; 3b · 2a; 2) shows that a ≤ 11 if b = 0; and a ≤ 4 if b = 1.
OA(96; 6 · 4b · 2a; 3) and b > 0. Use (Rao) for OA(16; 4b · 2a; 2) to see that the
parameters must satisfy

1 ≤ b ≤ 2, a + b ≥ 3, and 3b + a ≤ 15.

When b = 2, a ≤ 9; and when b = 1, a ≤ 12.
OA(96; 4c ·3b ·2a; 3) with b+c > 0. When c > 0, use Rao for OA(16; 4c−1 ·3b ·2a; 2);
when c = 0, use Rao for OA(32; 3b−1 · 2a; 2). The parameters must satisfy

0 ≤ b ≤ 1, 0 ≤ c ≤ 2, a + b + c ≥ 4, and 3(c − 1) + 2b + a ≤ 23.

That is, when c = 2, if b = 1, a ≤ 18; if b = 0, a ≤ 20. When c = 1, if b = 1,
a ≤ 21; if b = 0, a ≤ 20.

(vii) By (Div), a < 3 in OA(100; 52 · 2a; 3). �
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N Levels Existence Construction Upper bound Nonexistence

72 18 · 2a a ≤ 3 (M) 3
72 9 · 2a a ≤ 6 (IS) 7 a = 7, (X)
72 62 · 2a a ≤ 2 (IS) 3 a = 3, (O)
72 6 · 3 · 2a a ≤ 4 (IS) 5 a = 5, (O’)
72 6 · 2a a ≤ 11 (M) 11
72 4 · 32 · 2a a ≤ 1 (T) 13 a = 2, (Div)
72 32 · 2a a ≤ 12 (B) and (IS) 20 a = 13 ?
72 3 · 2a a ≤ 12 (B) and (IS) 23 a = 13 ?
80 20 · 2a a ≤ 3 (M) 3
80 10 · 4 · 2a a ≤ 2 (O) 4 a = 3, (O)
80 10 · 2a a ≤ 7 (M) 7
80 5 · 4 · 2a a ≤ 6 (A), (La), (IS) 8 a = 7 ?
80 5 · 2a a ≤ 9 (B) 15 a = 10 ?
80 4 · 2a a ≤ 19 (M) 19
81 9 · 3b b ≤ 4 (***) 4
81 3b b ≤ 10 (L) 14 b = 11,
84 7 · 3 · 2a a ≤ 2 (M) 4 a = 3, (Div)
88 22 · 2a a ≤ 3 (M) 3
88 11 · 2a a ≤ 6 (IS) 7 a = 7, (X)
90 5 · 32 · 2a a = 1 (T) 6 a = 2, (Div)
96 24 · 2a a ≤ 3 (M) 3
96 12 · 4 · 2a a ≤ 4 (IS) and (L) 4
96 12 · 2a a ≤ 7 (M) 7
96 8 · 6 · 2a a ≤ 2 (IS) or (O) 3 a = 3, (O)
96 8 · 3 · 2a a ≤ 4 (IS) or (J) 5 a = 5, (O’)
96 8 · 2a a ≤ 11 (M) 11
96 6 · 42 · 2a a ≤ 6 (La), (IS) 9 a = 7 ?
96 6 · 4 · 2a a ≤ 8 (S) 12 a = 9 ?
96 6 · 2a a ≤ 15 (M) 15
96 42 · 3 · 2a a ≤ 7 (S) 18 a = 8 ?
96 42 · 2a a ≤ 20 (Q) 20
96 4 · 3 · 2a a ≤ 9 (S) 21 a = 10 ?
96 3 · 2a a ≤ 16 (J) 31 a = 17 ?
100 52 · 2a a ≤ 2 (T) 15 a = 3, (Div)

Table 6.3. Parameters of OA(N ; sc
1 · sb

2 · sa
3 ; 3)s with 72 ≤ N ≤ 100

6.3. Constructing OAs with run size 72 ≤ N ≤ 100

Since there is no OA of strength 3 with run size larger 64 and less than 72, we
list parameters for OAs with 72 ≤ N ≤ 100 in Table 6.3. In the fourth column of
Table 6.3 we show the constructions for OAs with 72 ≤ N ≤ 100 whose parameters
were indicated in Lemma 60. We skip all cases found by Construction (M). When
the gap between the total number of known columns with the upper bound is
positive, we mention the next open cases. The question marks ? written in the last
column of Table 6.3 indicate that we have not proved yet the nonexistence of OAs
with corresponding values.
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Basic constructions. We consider case by case with respect to the run sizes.

(i) N = 72: OA(72; 9 · 2a; 3) with 2 ≤ a ≤ 6: this has the form OA(8m;m · 2a; 3)
where 3 ≤ a ≤ 7, 3 ≤ m ≤ 12. Since m = 9 is an odd number, using Construction
(X) we get a = 6.
OA(72; 62 · 2a; 3) exists for a ≤ 2 by (IS) and (O).
OA(72; 6 · 3 · 2a; 3) exists for a ≤ 4 by (IS) and (O’).
OA(72; 4 · 32 · 2a; 3) exists for a ≤ 1 by (T), but not for a = 2 by Div.
OA(72; 32 · 2a; 3): See a construction of the case a = 12, b = 2 at Brouwer [2004].
When b = 1, a ≤ 20; an OA(72; 3 · 2a; 3) exists obviously. The open cases are
13 ≤ a ≤ 20.

(ii) N = 80: OA(80; 5 · 4b · 2a; 3) with a ≥ 1: For b = 1, a ≤ 12, we get a = 5 by
juxtaposing two arrays OA(40; 2 · 5 · 25; 3); and a = 6 by the arithmetic method
below. If we take the derived designs at the 4-factor, then a ≤ 8 [Wu et al., 1992].
For b = 0, a ≤ 15, we obtain a = 9 by juxtaposing an array OA(32; 216; 3) and
OA(48; 3 ·29; 3). Hence, the open cases are 7 ≤ a ≤ 8 for b = 1; and are 10 ≤ a ≤ 15
for b = 0.

(iii) N = 81: OA(81; 9 · 3b; 3), b ≤ 4: by (B) and (***).
OA(81; 3b; 3): 3 ≤ b ≤ 10: by (L); see Hedayat et al. [1999, Section 5.9] for nonex-
istence of b = 11.

(iv) N = 88: OA(88; 11 · 2a; 3) with 2 ≤ a ≤ 6: a = 6 is obtained similarly as in
the case OA(72; 9 · 26; 3)).

(v) N = 96: OA(96; 6 · 4b · 2a; 3): For b = 2, a ≤ 9. We get a = 3 by juxtaposing an
OA(32; 2 · 42 · 23; 3) and an OA(64; 4 · 42 · 28). Furthermore, an OA(96; 6 · 42 · 24; 3)
will be made by Construction (Q) below. We make an OA(96; 6 · 42 · 25; 3) by (La).
An OA(96; 6 · 42 · 26; 3) is found by (IS). For b = 1, a ≤ 12. We get a = 8 from
splitting a 4-level factor in OA(96; 6 · 42 · 26; 3). Hence, for b = 2, the open cases
are 7 ≤ a ≤ 9; and for b = 1, a ≤ 12, the open case is OA(96; 6 · 4 · 29; 3).
OA(96; 4c · 3b · 2a; 3):

The case b = 0. We use Construction (Q).
The case b = 1. For c = 2, we consider OA(96; 42 · 3 · 2a; 3), a is bounded
above by 13 [Wang and Wu, 1991]. We employ Construction (A) below
for the case a = 5, and we split the 6-level factor in OA(96; 6 · 42 · 26; 3) to
get a = 7. For c = 1, then a ≤ 20 (by Del) in OA(96; 4 ·3 ·2a; 3). Splitting
the 6-level factor in OA(96; 6 ·4 ·28; 3) gives OA(96; 4 ·3 ·29; 3). For c = 0,
then a ≤ 31 in OA(96; 3 · 2a; 3). Juxtaposing three OA(32; 216; 3) gives
OA(96; 3 · 216; 3).

So the open cases are OA(96; 42 ·3 ·28; 3), OA(96; 4 ·3 ·210; 3), and OA(96; 3 ·217; 3).

Quasi-multiplication construction (Q). We construct OA(96; 4c · 2a; 3). The gener-
alized Rao bound of a is reached for all c = 0, 1, 2. If c = 2, a ≤ 20, and a = 20 is
constructed in several steps in the following construction,

We use the difference scheme construction [Wang and Wu, 1991] to make an
array f0 := OA(24; 4 · 220; 2) = [A|B], where A is the 4-column, 0, 1, 2, 3 are
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constant vectors of appropriate length, and B = OA(24; 220; 2):

f0 :=













A B
0 . . .
1 . . .
2 . . .
3 . . .













.

Next we make three arrays OA(24; 4 · 220; 2) by cyclically taking modulo 4 for the
4-column, and modulo 2 for the binary part, i.e.:

fi = [ (A + i) mod 4 | (B + i) mod 2 ], for i ≥ 1.

Lastly, the desired array is formed by first, concatenating f0, f1, f2, f3, to form f =
OA(96; 4 · 220; 3), then adding the second 4-level column to f , we get:

OA(96, 42 · 220, 3) :=









0 f0

1 f1

2 f2

3 f3









If c = 1, a ≤ 23. a = 23 is made by (M). If c = 0, a ≤ 48, a = 48 is made by (H).

Arithmetic construction of OA(96; 6 · 42 · 23; 3). We use the method of Section 3.5.
Let S1 denote for the 6-level column, S2 and S3 the two 4-level columns, and
X1, X2, X3 the three 2-level columns of the array. Here n = lcm(6, 4, 4) = 12, so
A = A0 = {0, 1, 2, 3, 4, 5}, and B = Z12 \A = {6, 7, 8, 9, 10, 11}. Columns S1, S2, S3

form a full design D = Z6×Z4×Z4 of 96 runs, so any binary column X is a function
of [S1, S2, S3]. Using (3.5.1), there is a 3-to-1 mapping between the column S1 with
X, and 2-to-1 mappings between the columns S2, S3 with S. Therefore, columns
X1, X2, X3, X4 can be defined respectively by the linear functionals hi : D → Z12:

h1 = (a0x + a1y + a2z)mod 12, h2 = (b0x + b1y + b2z) mod 12,

h3 = (c0x + c1y + c2z)mod 12, h4 = (d0x + d1y + d2z) mod 12,

where ai, bi, ci, di ∈ Z12 (i = 0, 1, 2) are unknown coefficients. We start with
column X1. Note that any constraint found for X1’s coefficients also hold for those
of X2, X3, X4. Firstly, X1 is orthogonal to [S2, S3], denoted by X1 ⊥ [S2, S3], only
if for every fixed pair (y, z) ∈ Z4 × Z4, the scattering coefficient of the columns
[S2, S3] in Z12 is c2,3 = q2,3 = N

4.4.2 = 3. Recall from (3.5.3) that values of a binary
column X (being determined by a function f : D → Z12 → Z2) are computed by
using the partition function g : Z12 → Z2

X := 0 if h ∈ A; and X := 1 if h ∈ B.

So half of the six values a0x + a1y + a2z (mod 12) are in A, and half are not.
Taking (y, z) = (0, 0) implies that a0 ∈ {2, 6, 7, 9, 10,−10,−6,−5,−3,−2} =: L1.
Similarly, X1 ⊥ [S1, S2], [S1, S3] implies a1, a2 ∈ {3, 6, 7, 9,−9,−6,−5,−3} =: L2.

Hence we have proved the following lemma.

Lemma 61. If the binary columns X1, X2, X3 are orthogonal to D then

a0, b0, c0, d0 ∈ L1, a1, a2, b1, b2, c1, c2, d1, d2 ∈ L2.
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Checking all possibilities of the vector a = [a0, a1, a2] shows that there are only
two binary columns X orthogonal to Q with a0 = 7, 9. They are given by vectors
a = [7, 6, 6], [9, 6, 6]. Next, we find the maximum number of binary columns with
the same coefficient a0 6= 7, 9 for variable x (in functions h1, . . . , h4). The first
three columns X1, X2, X3 in this series are given by h1 = a0x + a1y + a2z mod 12,
h2 = a0x + b1y + b2z mod 12, and h3 = a0x + c1y + c2z mod 12, resulting in:

h2 = h1 + (b1 − a1)y + (b2 − a2)z mod 12

h3 = h1 + (c1 − a1)y + (c2 − a2)z mod 12

h3 = h2 + (c1 − b1)y + (c2 − b2)z mod 12.

(6.3.1)

Lemma 62. If X2 ⊥ [X1, S3], X2 ⊥ [X1, S2], X3 ⊥ [X1, S3], X3 ⊥ [X1, S2],
X3 ⊥ [X2, S3], X3 ⊥ [X2, S2], then {b1 −a1, b2 −a2, c1 −a1, c2 −a2, c1 − b1, c2 − b2}
is a sub set of L2.

Proof. The functions (6.3.1) are degree 1 polynomials. �

Due to this lemma, the set L2 is updated to L2 := { 3, 6, 9,−9,−6,−3 }. There
are 10 solutions (triples of binary columns), which have the same coefficient a0,
for example [10, 3, 9], [10, 6, 6], [10, 9, 3]. If only two binary columns have the same
coefficient a0, we get 32 solutions, for instance [[2, 3, 3], [2, 9, 9], [6, 6, 6]]. (Distinct
coefficients a0 give no result). Remark that, trying combine the above solutions
to form the fourth column gives no answer. By splitting the 6-column, we get an
OA(96; 3 · 42 · 24; 3). How about OA(96; 3 · 42 · 2a; 3) for a ≥ 5?

Arithmetic construction of OA(96; 3 · 42 · 2a; 3). From Lemma 60, we know a is
bounded above by 18. By juxtaposing three arrays OA(32; 42 · 24; 3) we obtain an
OA(96; 3·42 ·24; 3). By the arithmetic construction, we find an OA(96; 3·42 ·25; 3) =
OA(96; 3 · 42 · 2 · 24; 3), in which the last four binary columns are determined by
the vectors [3, 3, 2, 6], [3, 6, 8, 2], [6, 9, 4, 2], and [9, 9, 8, 6]. To conclude, using the
arithmetic method, we have

Proposition 63. OA(96; 6 · 42 · 23; 3) and OA(96; 3 · 42 · 25, 3) exist.

6.4. Enumerating isomorphism classes

Notice that the methods of ILP and automorphism groups in Chapter 4 now
are implemented for extension of binary columns only. We have

Theorem 64. The numbers of isomorphism classes of strength 3 orthogonal
arrays with run size 8 ≤ N ≤ 100 are as indicated in Table 6.4.

In the table, we use multiplicity notation for automorphism group orders. We
abbreviate n1 to n, where n is a group size. In the third column of the table,
number 0 indicates that there is no array. This conclusion is based on the Rao
bound, the Delsarte bound, the divisibility condition (on the run size) or by explicit
nonexistence proofs. In these cases, a particular name of lower bound or an explicit
nonexistence proof is indicated. Open cases are indicated by ‘≥ 0’, ie, we do not
know whether an array exists or not with the parameters given in the first and
second column. That means exhaustive computing (Constructions (B) and (IS))
fails to construct those arrays, or no proof of nonexistence has been found yet for
the time being. For series having more than 5000 non-isomorphic arrays, we only
list the number of arrays, not giving the automorphism group size. The actual OAs
will be put at Nguyen [2005].
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Table 6.4: Non-isomorphic OAs of strength 3 with 8 ≤ N ≤ 100

N Type # Size of the automorphism group Methods

8 24 1 192 (I)
16 4 · 23 1 192 (I)
16 4 · 24 0 (Rao)

24 6 · 23 1 1728 (IS)
24 6 · 24 0 (Rao)
24 3 · 23 2 2881, 122882 (IS)

24 3 · 24 3 48, 384, 1152 (IS)
24 3 · 25 0 (5.1)
27 34 1 1296 (IS)
27 35 0 (Rao)

32 42 · 22 2 128, 512 (IS)
32 42 · 23 2 128, 384 (IS)
32 42 · 24 2 512, 1536 (IS)
32 42 · 25 0 (Rao)

32 4 · 23 3 1152, 24576, 12582912 (IS)
32 4 · 24 7 64, 962, 384, 1152, 1536, 4608 (IS)
32 4 · 25 7 16, 32, 64, 1282, 256, 512 (IS)

32 4 · 26 11 242, 644, 128, 2562, 768, 1536 (IS)
32 4 · 27 8 84, 962, 128, 384, 7682, 10752 (IS)
32 4 · 28 0 (Rao)
36 32 · 22 3 576, 8192, 196608 (IS)

36 32 · 23 0 (Div)
40 10 · 23 1 691200 (IS)
40 10 · 24 0 (Rao)

40 5 · 23 9 5760, 737284, 125829124 (B)
40 5 · 24 28 324, 968, 1924, 2884, 23044, 46083, 23040 (B)
40 5 · 25 2 12 (IS)
40 5 · 26 1 60 (IS)

40 5 · 27 0 (X)
48 12 · 23 1 24883200 (IS)
48 12 · 24 0 (Rao)
48 6 · 4 · 22 3 128, 192, 2304 (IS)

48 6 · 4 · 23 0 (O)
48 6 · 23 24 345601, 2949127, 2516582412, 289910292483 (B)
48 6 · 24 122 6424, 964, 12812, 28819, 38436, 11527, 34564,

92167, 138244, 230404, 138240

(B)

48 6 · 25 578 8264, 1666, 2420, 32117, 4810, 6445, 12812,
25624, 3844, 51212, 46084

(B)

48 6 · 26 1879 2120, 4606, 8192, 1256, 16177, 2428, 32354,

4837, 64126, 7214, 9620, 128105, 3844, 51224,
153612, 138244

(B)

48 6 · 27 1525 2120, 4120, 6192, 8150, 12170, 16174, 2430,

32240, 6463, 9610, 12830, 16821, 19242, 25621,
28814, 38482, 76821, 153621, 967684

(B)

48 6 · 28 0 (Rao)
48 4 · 3 · 22 5 1152, 8192, 98304, 1048576, 4194304 (IS)

48 4 · 3 · 23 35 43, 87, 169, 24, 322, 484, 64, 963, 144, 192,
288, 384, 1152

(IS)

48 4 · 3 · 24 19 48, 810, 16 (IS)
48 4 · 3 · 25 0 (O’)

48 3 · 2a, 3 ≤ a ≤ 9 (Br)
48 3 · 210 0 (IS)
54 6 · 33 2 216, 2592 (IS)

54 6 · 34 0 (IS)

continued on next page
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Table 6.4 (continued)

N Type # Size of the automorphism groups Methods

54 35 · 2 4 6, 12, 18, 72 (IS)
54 35 · 22 0 (Div)

54 35 4 36, 40, 144, 960 (35)
54 36 0 (Del)
56 14 · 23 1 1219276800 (IS)
56 14 · 24 0 (Rao)

56 7 · 23 66 241920, 147456011, 7549747231,
2899102924823

(B)

56 7 · 24 479 4825, 64150, 19231, 38475, 57662, 115270,
172823, 576011, 2764815, 4608011, 1382405,

967680

(B)

56 7 · 25 2760 22520, 4240 (IS)
56 7 · 26 2950 1840, 21260, 4420, 6296, 1286, 2448 (IS)

56 7 · 27 0 (Rao)
60 5 · 3 · 22 6 5760, 24576, 196608, 1048576, 4194304,

16777216
(IS)

60 5 · 3 · 23 0 (Div)

64 16 · 23 1 78033715200 (IS)
64 16 · 24 0 (Rao)
64 8 · 4 · 22 4 256, 1024, 1152, 36864 (IS)

64 8 · 4 · 23 11 12, 16, 323, 96, 1282, 192, 1024, 3072 (IS)
64 8 · 4 · 24 20 48, 643, 1286, 256, 384, 5123, 7682, 1536,

4096, 12288
(IS)

64 8 · 4 · 25 0 (Rao)
64 8 · 23 187 1935360, 884736016, 30198988870,

5798205849685, 11874725579980815
(B)

64 8 · 24 2576 96200, 128750, 192220, 256150, 38425, 76870,
102475, 1152305, 1536150, 2304140, 3456255,

460870, 576071, 3456016, 5529615, 13824026,
22118415, 27648016, 9676806, 7741440, 2304,
34563, 4608, 5760, 34560, 55296

(B)

64 8 · 25 ≥ 20489 (B)
64 8 · 26 ≥ 19217 (B)
64 8 · 27 ≥ 23159 (B)
64 8 · 28 0 (Rao)

64 46 1 48 (B)
64 47 0 (Rao)
64 45 · 2 1 68 (B)

64 45 · 22 1 8 (B)
64 45 · 23 0
64 45 1 144 (B)
64 44 · 2 3 256, 512, 1536 (B)

64 44 · 22 5 256, 512, 10242, 1536 (B)
64 44 · 23 3 256, 384, 512 (IS)
64 44 · 24 3 256, 10242 (IS)
64 44 · 25 1 512 (IS)

64 44 · 26 1 3072 (IS)
64 44 · 27 0 (Rao)
64 44 19 3848, 5126, 30723, 92162 (B)
64 43 · 2 10 8, 16, 24, 32, 48, 64, 128, 256, 384, 3072 (IS)
64 43 · 22 107 23, 49, 6, 824, 1620, 24, 3219, 48, 6412, 96,

1286, 2565, 384, 5122, 7682
(IS)

64 43 · 23 237 26, 430, 6, 842, 1651, 3246, 482, 6430, 963,

12818, 2564, 3842,512, 1536

(IS)

continued on next page
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Table 6.4 (continued)

N Type # Size of the automorphism groups Methods

64 43 · 24 255 24, 427, 63, 834, 1661, 24, 3246, 484, 6436,
963, 12819, 192, 25610, 3842, 5122, 15362

(B)

64 43 · 25 126 47, 6, 814, 1622, 24, 3225, 482, 6419, 962,
12818, 192, 25610, 5122, 15362

(B)

64 43 · 26 35 164, 326, 484, 646, 963, 1287, 256, 384, 7683 (B)
64 43 · 27 12 482, 643, 128, 3844, 7682 (B)

64 43 · 28 2 6, 28 (B)
64 43 · 29 0 (5.10)
64 42 · 22 34 (B)
64 42 · 23 1740 132, 292, 4375, 8376, 16220, 2416, 32121, 4834,

6471, 9667, 128126, 1929, 25621, 2884, 3847,
5127, 768, 102419, 11522, 204814, 3072,
409644, 4608, 819216, 122882, 163848, 245764,

3276816, 655365, 1966085, 3932164, 20971529,
41943044, 83886082, 5368709123,
549755813888, 1649267441664

(B)

64 42 · 24 ≥ 5500 ,,

64 42 · 25 ≥ 5630 ,,
64 42 · 26 ≥ 1885 ,,
64 42 · 27 ≥ 6673 ,,

64 42 · 28 ≥ 953 ,,
64 42 · 29 ≥ 146 ,,
64 42 · 210 ≥ 4 32, 642, 256 ,,
64 42 · 211 ≥ 1 ,,
64 42 · 212 ≥ 1 ,,
64 42 · 213 0 (Rao)
64 4 · 23 12 4947802324992, 105672301608962,

541653102231552, 68475651442606083,

6925339958244802562,
88744444269617479682,
2326382359861460459323392

(B)

64 4 · 24 163 9216, 163842, 245764, 327686, 491522,
1310724, 2949122, 52428813, 104857612,
15728644, 20971523, 314572815, 419430416,
62914563, 83886087, 125829124, 503316484,

1342177283, 2684354568, 4026531844,
5368709126, 80530636821, 16106127364,
64424509443, 193273528322, 274877906944,

4123168604164, 1649267441664,
49478023249922, 6597069766656,
19791209299968

,,

64 4 · 25 12692 ,,

64 4 · 26 ≥ 7258 ,,
64 4 · 27 ≥ 9570 ,,
64 4 · 28 ≥ 1189 1100, 2264, 4335, 8169, 16132, 242, 3290, 486,

6435, 969, 12814, 1923, 2567, 3845, 5123,

7685, 1024, 15365, 3072, 61442, 21504

,,

64 4 · 29 ≥ 13 82, 16, 322, 643, 963, 256, 6144 ,,
64 4 · 210 ≥ 1 ,,
64 4 · 211 ≥ 1 ,,
64 4 · 212 ≥ 1 ,,
64 4 · 213 ≥ 1 ,,
64 4 · 214 ≥ 1 ,,

64 4 · 215 ≥ 1 ,,
64 4 · 216 0 (Rao)

continued on next page
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Table 6.4 (continued)

N Type # Size of the automorphism groups Methods

72 18 · 23 1 6320730931200 (IS)
72 18 · 24 0 (Rao)

72 9 · 23 5 17418240, 61931520, 1509949440,
173946175488, 118747255799808

(B)

72 9 · 24 26 64, 96, 128, 192, 288, 3842, 512, 576, 768,
2304, 3456, 3840, 4608, 6912, 10368, 11520,

23040, 27648, 34560, 241920, 552960, 829440,

1935360, 7741440, 69672960

,,

72 9 · 25 ≥ 27349 ,,
72 9 · 26 ≥ 14484 ,,

72 9 · 27 0 (X)
72 62 · 22 2394 64930, 96720, 192320, 384183, 512231, 4147210 (B)
72 62 · 23 0 (O)

72 6 · 3 · 22 9 98304, 589824, 2097152, 8388608, 16777216,
536870912, 805306368, 3221225472,
9663676416

72 6 · 3 · 23 231 15, 228, 447, 6, 868, 122, 1647, 242, 3214, 489,

646, 96, 576

(IS)

72 6 · 3 · 24 289 1215, 233, 33, 422, 89, 121, 164, 482 (IS)
72 6 · 3 · 25 0 (O’)

72 6 · 23 82 289910292484, 78275778969613,
2113446032179221 256783692909772819,
13866319417127731221,
81879229526197539962884

(B)

72 6 · 24 156 25636, 51272, 307232, 409612, 1105924 ,,
72 6 · 25 64296 ,,
72 6 · 26 ≥ 34719 ,,
72 6 · 27 ≥ 50906 ,,

72 6 · 28 ≥ 3978 ,,
72 6 · 29 ≥ 388 180, 2219, 434, 821, 1621, 24, 328, 1283, 10368 ,,
72 6 · 210 ≥ 31 47, 85, 16, 642, 1449, 2883, 5763, 51840 ,,

72 6 · 211 ≥ 3 14402, 110880 ,,
72 6 · 212 0 (Rao)
72 4 · 32 · 2 17 8192, 49152, 65536, 196608, 5242884,

41943044, 8388608, 9437184, 268435456,

402653184, 1610612736

(IS)

72 4 · 32 · 22 0 (Div)
72 32 · 22 9 3693514644397228032, 657366253849018368,

21540577406124633882624,

36520347436056576, 19967499960663932928,

5135673858195456, 56358560858112,

427972821516288, 39582418599936

(B)

72 32 · 23 465 3456, 4096, 81922, 163847, 245762, 327685,
49152, 6553611, 98304,1310722, 19660811,
26214427, 3932163, 52428823, 7864325,
104857623,1179648, 15728649, 209715216,

23592963, 314572823, 419430450,47185925,
62914568, 838860820,
943718410, 125829122, 14155776, 167772165,
1887436813, 251658243,
28311552, 335544322, 377487368, 42467328,
50331648, 6710886424,
754974724, 849346562, 113246208,

13421772826, 509949444, 169869312,

continued on next page
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Table 6.4 (continued)

N Type # Size of the automorphism groups Methods

226492416, 2684354569, 3019898883,
3397386244, 4026531849, 536870912,

6794772483, 8053063688, 107374182410,
1358954496, 1610612736, 2038431744,
2147483648, 2293235712, 3057647616,
4076863488, 45864714242, 48318382082,

54358179842, 9663676416, 10871635968,
12230590464, 17179869184,
24461180928, 34359738368, 43486543872,
489223618563, 687194767362, 97844723712,

1030792151042, 110075314176,
137438953472,146767085568, 2061584302084,
2935341711362, 990677827584,

1761205026816, 3710851743744,
7421703487488, 160489808068608,
213986410758144, 29249267520503808

(B)

72 32 · 24 ≥ 50000 (B)

72 32 · 25 ≥ 30993 (B)
72 32 · 26 ≥ 12167 (B)
72 32 · 27 ≥ 1304 (B)

72 32 · 28 ≥ 379 136, 2222, 483, 820, 1611, 323, 642, 32768,
98304

(B)

72 32 · 29 ≥ 157 13, 2109, 431, 61, 89, 161, 323 (I)
72 32 · 210 ≥ 67 228, 423, 85, 166, 322, 643 (I)
72 32 · 211 ≥ 14 25, 44, 83, 322 (I)
72 32 · 212 ≥ 6 82, 16, 64, 96, 288 (I)
72 32 · 213 ≥ 0
72 3 · 23 6 24, 484, 288 (B)

72 3 · 24 89 805306368, 1207959552, 2717908992,
6442450944, 10871635968, 16307453952,
19327352832, 217432719362, 24461180928,

326149079042, 489223618565, 65229815808,
73383542784, 86973087744, 110075314176,
2201506283522, 4403012567043,
521838526464, 8806025134083,

10436770529282, 1981355655168,
2348273369088, 26418075402244,
39627113103363, 52836150804485,

70448201072642, 74217034874882,
79254226206723, 21134460321792,
356644017930242, 422689206435842,
713288035860482, 75144747810816,

106993205379072, 1426576071720962,
2139864107581444, 320979616137216,
4279728215162882, 5777633090469888,
173328992714096644, 346657985428193285,

486937965814087682, 138663194171277312,
2773263883425546242,
227442304239437611008,
1819538433915500888064,
5458615301746502664192

,,

72 3 · 25 ≥ 1 ,,
72 3 · 26 ≥ 1 ,,

72 3 · 27 ≥ 1 ,,
72 3 · 28 ≥ 1 ,,

continued on next page



114 6. A COLLECTION OF STRENGTH 3 ORTHOGONAL ARRAYS

Table 6.4 (continued)

N Type # Size of the automorphism groups Methods

72 3 · 29 ≥ 120 ,,
72 3 · 210 ≥ 1 ,,

72 3 · 211 ≥ 1 ,,
72 3 · 212 ≥ 1 ,,
72 3 · 213 ≥ 0
80 20 · 23 1 632073093120000 (IS)

80 20 · 24 0 (Rao)
80 10 · 4 · 22 ≥ 1
80 10 · 4 · 23 0 (O)
80 10 · 23 6 174182400, 495452160, 9059696640,

695784701952, 237494511599616,
759982437118771200

(B)

80 10 · 24 ≥ 11 11523, 4608, 10368, 13824, 18432, 41472,

552962, 1382400

(IS)

80 10 · 25 635 14, 228, 497, 8155, 16122, 246, 3288, 4810,
6431, 9610, 12817, 1444, 1922, 2567, 28816,
3842, 5124, 5767, 7682, 10243, 11523, 23046,

46083, 92163, 184321, 368642, 737281,
18432001

(B)

80 10 · 26 33071 ,,

80 10 · 27 ≥ 19204 ,,
80 10 · 28 0 (Rao)
80 5 · 4 · 22 25 49152, 196608, 1048576, 20971522, 4194304,

83886083, 16777216, 25165824, 1342177282,
2684354563, 5368709122, 21474836482,
687194767362, 137438953472, 274877906944,
1099511627776

(IS)

80 5 · 4 · 23 ≥ 447 (IS)

80 5 · 4 · 24 ≥ 1 ,,
80 5 · 4 · 25 ≥ 1 ,,
80 5 · 4 · 26 ≥ 5 ,,

80 5 · 4 · 27 ≥ 0
80 5 · 23 50 (B)
80 5 · 24 2174 46080, 491524, 6553616, 737288, 983044,

13107220, 52428858, 104857685, 11796483

2097152140, 314572826, 4194304180,
629145653, 8388608126, 125829128,
1677721676, 3355443250, 377487364,

6710886477, 134217728250, 1509949448,
268435456103, 40265318420, 53687091257,
805306368144, 1073741824160, 161061273632,
214748364856, 241591910414, 322122547220,

429496729616, 128849018888, 3435973836839,
386547056644, 6871947673666,
10307921510420, 13743895347216,
20615843020869, 2748779069444,

41231686041668, 6184752906247,
12369505812488, 16492674416644,
49478023249927, 65970697666564,
197912092999683, 351843720888324,
1055531162664968, 2111062325329924,
3166593487994884, 25332747903959044,
50665495807918083, 253327479039590401

,,

80 5 · 25 ≥ 35137 ,,
80 5 · 26 ≥ 54859 ,,

continued on next page
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Table 6.4 (continued)

N Type # Size of the automorphism groups Methods

80 5 · 27 ≥ 6536 ,,
80 5 · 28 ≥ 2172 ,,

80 5 · 29 ≥ 70 ,,
80 5 · 210 ≥ 0
80 4 · 23 17 (B)
80 4 · 24 303 16777216, 251658245, 33554432, 503316483,

754974726, 1006632963, 1509949443,
201326592, 30198988819, 60397977621,
9059696644, 12079595526, 181193932835,
24159191042, 362387865661, 72477573128,

1087163596820, 144955146245,
2174327193615, 4348654387231,
8697308774425, 130459631616,

17394617548810, 2609192632329,
347892350976, 5218385264644, 695784701952,
1043677052928, 4174708211712

(B)

80 4 · 25 ≥ 16608 ,,

80 4 · 26 ≥ 15082 ,,
80 4 · 27 ≥ 54785 ,,
80 4 · 28 ≥ 1855 ,,

80 4 · 29 ≥ 406 ,,
80 4 · 210 ≥ 7 16, 2 ,,
80 4 · 211 ≥ 1 ,,
80 4 · 212 ≥ 1 ,,
80 4 · 213 ≥ 1 ,,
80 4 · 214 ≥ 1 ,,
80 4 · 215 ≥ 1 ,,
80 4 · 216 ≥ 1 ,,

80 4 · 217 ≥ 1 ,,
80 4 · 218 ≥ 1 ,,
80 4 · 219 ≥ 1 ,,

80 4 · 220 0 (Rao)
81 9 · 33 3 324, 864, 69984 (B), (L)
81 9 · 34 2 324, 3888 (B)
81 9 · 35 0 (Rao)

81 34 32 31104, 49152, 1966082, 786432, 10485762,
1572864, 3145728, 4718592, 62914562,
8388608, 251658242, 28311552, 377487362,

100663296, 3019898882, 603979776,
1207959552, 1358954496, 1811939328,
5435817984, 8153726976, 86973087744,
3522410053632, 285315214344192,
380420285792256,
1326443518324400147398656

(B)

81 35 ≥ 9906 (B)
81 36 ≥ 229 123, 267, 3, 437, 623, 89, 1229, 162, 2414, 3611,

48, 727, 1442, 216, 2592, 7776

,,

81 37 ≥ 478 ,,
81 38 ≥ 78 ,,
81 39 ≥ 1 23328 (L)
81 310 ≥ 1 (L)
81 311 0
84 7 · 3 · 22 ≥ 1
84 7 · 3 · 23 0 (Div)
88 22 · 23 1 76480844267520000 (IS)

continued on next page
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Table 6.4 (continued)

N Type # Size of the automorphism groups Methods

88 22 · 24 0 (Rao)
88 11 · 23 4428 1916006400, 445906944037, 63417876480442,

34789235097601554, 7124835347988481855,
759982437118771200539

(B)

88 11 · 24 ≥ 5000 ,,
88 11 · 25 ≥ 87585 ,,

88 11 · 26 ≥ 16147 ,,
88 11 · 27 0 (X)
90 5 · 32 · 2 ≥ 1 17280 (IS)
90 5 · 32 · 22 0 (Div)

96 24 · 23 ≥ 1 (IS)
96 24 · 24 0 (Rao)
96 12 · 4 · 22 ≥ 1 (IS)

96 12 · 4 · 23 ≥ 6 4608, 82944, 1024, 1024, 4608, 248832
96 12 · 4 · 24 ≥ 16 2563, 5122, 20483, 40963, 12288, 184322,

331776, 995328
96 12 · 4 · 25 0 (Rao)

96 8 · 6 · 22 ≥ 1
96 8 · 3 · 22 ≥ 1
96 8 · 3 · 23 ≥ 1

96 8 · 3 · 24 ≥ 1
96 8 · 3 · 25 0 (O’)
96 8 · 23 1172 11874725579980815, 200385994162176071,

48693796581408768160,
97387593162817536016,2629465015396073472265,
141991110831387967488300,
25877879949020457074688170,
2096108275870657023049728160,

22004106236779809165166824652815

(B)

96 8 · 24 ≥ 14500 ,,
96 8 · 25 ≥ 23352 ,,

96 8 · 26 ≥ 36943 ,,
96 8 · 27 ≥ 7600 ,,
96 8 · 28 ≥ 971 2240, 4240, 872, 1216, 16318, 2436, 12818,

14416, 3846, 4328, 55296
,,

96 8 · 29 ≥ 193 836, 1610, 3266, 6430, 9616, 1283, 2566, 2888,
5123, 10246, 11528, 165888

,,

96 8 · 210 ≥ 3 7202, 14400 ,,

96 8 · 211 ≥ 0
96 8 · 212 0 (Rao)
96 6 · 42 · 2 ≥ 4 32, 64, 256, 9216 (IS)
96 6 · 42 · 22 ≥ 249 258, 465, 856, 1642, 3219, 647, 128, 256 (IS)

96 6 · 42 · 23 ≥ 29987 ,,
96 6 · 42 · 24 ≥ 7895 11520, 23649, 42265, 8403, 1652, 24, 325 ,,
96 6 · 42 · 25 ≥ 1199 1411, 2370, 4250, 8137, 12, 1629, 48 ,,
96 6 · 42 · 26 ≥ 8 22, 42, 84 ,,

96 6 · 42 · 27 ≥ 0
96 6 · 4 · 22 ≥ 1 648518346341351424 (IS)
96 6 · 4 · 23 ≥ 4 (IS)
96 6 · 4 · 24 ≥ 249 ,,
96 6 · 4 · 25 ≥ 29987 ,,
96 6 · 4 · 26 ≥ 7895 ,,
96 6 · 4 · 27 ≥ 1199 1462, 2372, 4290, 875 ,,

96 6 · 4 · 28 ≥ 8 22, 44, 82 ,,
96 6 · 4 · 29 ≥ 0

continued on next page
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Table 6.4 (continued)

N Type # Size of the automorphism groups Methods

96 42 · 3 · 2 ≥ 1 134217728 (IS)
96 42 · 3 · 22 ≥ 4 (IS)

96 42 · 3 · 23 ≥ 249 ,,
96 42 · 3 · 24 ≥ 29987 ,,
96 42 · 3 · 25 ≥ 7895 ,,
96 42 · 3 · 26 ≥ 1199 1696, 2320, 4145, 838 ,,

96 42 · 3 · 27 ≥ 8 22, 44, 82 ,,
96 42 · 3 · 28 ≥ 0
96 42 · 22 247 549755813888, 18554258718723,

2199023255552, 55662776156166,

7421703487488, 222651104624643,
2504824927027210, 200385994162176,
22543424343244818, 4508684868648964,

9017369737297929, 202890819089203220,
40578163817840647, 54104218423787524,
1826017371802828834, 3652034743605657612,
73040694872113152, 8217078173112729616,

16434156346225459210,
4930246903867637764,
147907407116029132816,

1972098761547055104,
29581481423205826568,
59162962846411653122,
118325925692823306248,
1331166664044262195210,
23665185138564661248,
266233332808852439045,
53246666561770487808,
79869999842655731712,
11980499976398359756810,
2396099995279671951366,

1703893329976655609856,
194084099617653428060164,
388168199235306856120326,
1018708622073139313202167808,
4074834488292557252808671232

(B)

96 42 · 23 ≥ 1 ,,
96 42 · 24 ≥ 1 ,,

96 42 · 25 ≥ 10595 ,,
96 42 · 26 ≥ 231 ,,
96 42 · 27 ≥ 8 ,,
96 42 · 28 ≥ 1 ,,

96 42 · 29 ≥ 1 ,,
96 42 · 210 ≥ 1 ,,
96 42 · 211 ≥ 1 ,,
96 42 · 212 ≥ 1 ,,

96 42 · 213 ≥ 1 ,,
96 42 · 214 ≥ 1 ,,
96 42 · 215 ≥ 1 ,,
96 42 · 216 ≥ 1 ,,
96 42 · 217 ≥ 1 ,,
96 42 · 218 ≥ 1 ,,
96 42 · 219 ≥ 1 ,,

96 42 · 220 ≥ 1 (Q)
96 42 · 221 0 (Rao)

continued on next page
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Table 6.4 (continued)

N Type # Size of the automorphism groups Methods

96 4 · 3 · 22 ≥ 1 (IS)
96 4 · 3 · 23 ≥ 1 (IS)

96 4 · 3 · 24 ≥ 1 2251799813685248 ,,
96 4 · 3 · 25 ≥ 1 64 ,,
96 4 · 3 · 26 ≥ 1 2 ,,
96 4 · 3 · 27 ≥ 1 2 ,,

96 4 · 3 · 28 ≥ 1 2 ,,
96 4 · 3 · 29 ≥ 8 (S)
96 4 · 3 · 210 ≥ 0
96 3 · 2a, 3 ≤ a ≤ 16 ≥ 1 (B)

100 52 · 22 8198 (B)
100 52 · 23 0 (Div)

The method used to obtain the four non-isomorphic arrays OA(96; 6 · 42 · 2; 3)
differed from the one used for the other series. The first array was obtained by
Construction (La), using Latin squares in Section 3.6. By extending this array, we
get the OA(96; 6 ·42 ·2a; 3)s listed for a = 2, 3, 4, 5, 6. From the OA(96; 6 ·42 ·2a; 3)s,
with 2 ≤ a ≤ 6, we delete the first binary column, and check whether the arrays
obtained are among the OA(96; 6 · 42 · 2a−1; 3)s that we already found. Whenever
we find a new OA(96; 6·42 ·2a−1; 3), we try extend it. By repeatedly deleting binary
columns from the extended OAs, we found three more OA(96; 6 · 42 · 2; 3)s.

Essentially this method is backtrack with a slightly variation, when we do not
know all non-isomorphic arrays with 4 columns. I apply this construction to the
series OA(96; 6 · 42 · 2; 3), in particular, since Construction (IS) fails (get out of
memory) to find all extensions of OA(96; 6 · 42; 3).

6.5. Conclusion

This chapter presented results which are computed by combining methods for-
mulated in Chapters 3 and 4. Specifically, we obtained many orthogonal arrays of
strength 3 with run size between 8 and 100.



APPENDIX A

Selected orthogonal arrays

Table A.1: The set of OA(48; 3 · 29; 3)s

48.1.9.1 48.1.9.2 48.1.9.3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0
0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0
0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1
0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1
0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1
0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 1
0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0
0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0
0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1
0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0
1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0
1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1
1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1
1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0
1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0
1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1
1 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1
1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0
1 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1
1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 1 0
1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1
1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1
1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0
1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0
1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1
2 0 0 0 1 0 1 0 1 0 2 0 0 0 1 0 1 0 1 0 2 0 0 0 1 0 1 0 0 1
2 0 0 1 0 1 1 0 1 1 2 0 0 1 0 1 1 0 0 0 2 0 0 1 0 1 1 0 0 0
2 0 0 1 1 0 1 1 0 1 2 0 0 1 1 0 1 1 0 1 2 0 0 1 1 0 0 0 1 0
2 0 0 1 1 1 0 1 1 0 2 0 0 1 1 1 0 1 1 0 2 0 0 1 1 1 0 1 0 1
2 0 1 0 0 0 1 0 0 1 2 0 1 0 0 0 1 0 0 1 2 0 1 0 0 1 0 1 0 1
2 0 1 0 0 1 0 0 1 0 2 0 1 0 0 1 0 0 1 0 2 0 1 0 0 1 1 0 1 0
2 0 1 0 1 0 0 1 0 0 2 0 1 0 1 0 0 1 1 1 2 0 1 0 1 0 0 1 1 0
2 0 1 1 0 1 0 1 0 1 2 0 1 1 0 1 0 1 0 1 2 0 1 1 0 0 1 1 1 1
2 1 0 0 0 0 0 1 1 1 2 1 0 0 0 0 0 1 0 0 2 1 0 0 0 0 0 0 1 1
2 1 0 0 0 1 1 1 0 0 2 1 0 0 0 1 1 1 1 1 2 1 0 0 0 0 1 1 0 0

continued on next page
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Table A.1 (continued)

48.1.9.1 48.1.9.2 48.1.9.3

2 1 0 0 1 1 0 0 0 1 2 1 0 0 1 1 0 0 0 1 2 1 0 0 1 1 1 1 1 1

2 1 0 1 0 0 0 0 0 0 2 1 0 1 0 0 0 0 1 1 2 1 0 1 0 1 0 1 1 0

2 1 1 0 1 1 1 1 1 1 2 1 1 0 1 1 1 1 0 0 2 1 1 0 1 1 0 0 0 0

2 1 1 1 0 0 1 1 1 0 2 1 1 1 0 0 1 1 1 0 2 1 1 1 0 0 0 0 0 1

2 1 1 1 1 0 0 0 1 1 2 1 1 1 1 0 0 0 0 0 2 1 1 1 1 0 1 1 0 0

2 1 1 1 1 1 1 0 0 0 2 1 1 1 1 1 1 0 1 1 2 1 1 1 1 1 1 0 1 1

Table A.2: The set of OA(54; 35 · 2; 3)s

54.5.1.1 54.5.1.2 54.5.1.3 54.5.1.4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1
0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0
0 0 2 2 1 0 0 0 2 2 1 0 0 0 2 2 1 0 0 0 2 2 1 0
0 0 2 2 2 1 0 0 2 2 2 1 0 0 2 2 2 1 0 0 2 2 2 1
0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0
0 1 0 2 2 0 0 1 0 2 2 1 0 1 0 2 2 1 0 1 0 2 2 1
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0
0 1 2 0 2 1 0 1 2 0 2 0 0 1 2 0 2 0 0 1 2 0 2 0
0 1 2 1 0 1 0 1 2 1 0 1 0 1 2 1 0 1 0 1 2 1 0 1
0 2 0 1 2 1 0 2 0 1 2 1 0 2 0 1 2 0 0 2 0 1 2 1
0 2 0 2 0 1 0 2 0 2 0 0 0 2 0 2 0 1 0 2 0 2 0 0
0 2 1 0 2 0 0 2 1 0 2 0 0 2 1 0 2 1 0 2 1 0 2 0
0 2 1 2 1 1 0 2 1 2 1 1 0 2 1 2 1 0 0 2 1 2 1 1
0 2 2 0 0 0 0 2 2 0 0 1 0 2 2 0 0 0 0 2 2 0 0 1
0 2 2 1 1 0 0 2 2 1 1 0 0 2 2 1 1 1 0 2 2 1 1 0
1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1
1 0 0 2 2 1 1 0 0 2 2 0 1 0 0 2 2 0 1 0 0 2 2 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 2 0 1 1 0 1 2 0 1 1 0 1 2 0 1 1 0 1 2 0 1

1 0 2 0 2 0 1 0 2 0 2 1 1 0 2 0 2 1 1 0 2 0 2 1

1 0 2 1 0 0 1 0 2 1 0 0 1 0 2 1 0 0 1 0 2 1 0 0

1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1

1 1 0 0 2 0 1 1 0 0 2 0 1 1 0 1 0 0 1 1 0 1 0 0

1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 2 1 1 1 1 1 2 1

1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 2 0 1 1 1 2 2 0

1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 0 1 0 1 1 2 0 1 0

1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1

1 2 0 1 0 0 1 2 0 1 0 0 1 2 0 0 2 0 1 2 0 0 2 1

1 2 0 2 1 0 1 2 0 2 1 1 1 2 0 2 1 1 1 2 0 2 1 0

1 2 1 0 0 1 1 2 1 0 0 1 1 2 1 0 0 1 1 2 1 0 0 0

1 2 1 2 2 0 1 2 1 2 2 0 1 2 1 1 1 0 1 2 1 1 1 1

1 2 2 0 1 1 1 2 2 0 1 0 1 2 2 1 2 1 1 2 2 1 2 0

1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 2 0 0 1 2 2 2 0 1

2 0 0 1 2 0 2 0 0 1 2 0 2 0 0 1 2 1 2 0 0 1 2 0

2 0 0 2 0 0 2 0 0 2 0 1 2 0 0 2 0 0 2 0 0 2 0 1

2 0 1 0 2 1 2 0 1 0 2 1 2 0 1 0 2 0 2 0 1 0 2 1

2 0 1 2 1 0 2 0 1 2 1 0 2 0 1 2 1 1 2 0 1 2 1 0

2 0 2 0 0 1 2 0 2 0 0 0 2 0 2 0 0 1 2 0 2 0 0 0

2 0 2 1 1 1 2 0 2 1 1 1 2 0 2 1 1 0 2 0 2 1 1 1

2 1 0 1 0 1 2 1 0 1 0 1 2 1 0 0 2 1 2 1 0 0 2 0

2 1 0 2 1 1 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 1
2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 0 2 1 1 0 0 1

continued on next page
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Table A.2 (continued)

54.5.1I.1 54.5.1.2 54.5.1.3 54.5.1.4

2 1 1 2 2 1 2 1 1 2 2 1 2 1 1 1 1 1 2 1 1 1 1 0

2 1 2 0 1 0 2 1 2 0 1 1 2 1 2 1 2 0 2 1 2 1 2 1

2 1 2 1 2 0 2 1 2 1 2 0 2 1 2 2 0 1 2 1 2 2 0 0

2 2 0 0 1 0 2 2 0 0 1 0 2 2 0 0 1 0 2 2 0 0 1 0

2 2 0 0 2 1 2 2 0 0 2 1 2 2 0 1 0 1 2 2 0 1 0 1

2 2 1 1 0 0 2 2 1 1 0 0 2 2 1 1 0 0 2 2 1 1 0 0

2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 2 2 1 2 2 1 2 2 1
2 2 2 2 0 1 2 2 2 2 0 1 2 2 2 0 1 1 2 2 2 0 1 1

2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 2 0

Table A.3: Four good OA(72; 32 · 27; 3)s

72.2.7.552 72.2.7.1081 72.2.8.280 72.2.8.379

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1
0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0
0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0
0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1
0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0
0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 0 1
0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0
0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 1
0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0
0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0
0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 1
0 2 0 1 0 1 1 1 0 0 2 0 1 0 0 1 0 1 0 2 1 0 1 1 1 1 1 0 2 1 0 0 0 0 1 0

0 2 0 1 1 0 0 1 1 0 2 0 1 0 0 1 1 0 0 2 1 1 0 0 1 0 1 0 2 1 0 1 0 1 0 1

0 2 0 1 1 0 1 0 0 0 2 0 1 1 1 0 0 1 0 2 1 1 0 1 0 0 1 0 2 1 1 0 1 1 1 1

0 2 0 1 1 1 0 0 1 0 2 0 1 1 1 0 1 0 0 2 1 1 1 0 0 1 0 0 2 1 1 1 1 0 0 0

0 2 1 0 0 0 1 1 0 0 2 1 0 0 1 0 1 1 0 2 0 0 0 1 1 0 1 0 2 0 0 0 1 1 0 1

0 2 1 0 0 1 0 1 1 0 2 1 0 0 1 1 1 0 0 2 0 0 1 0 1 1 0 0 2 0 0 1 1 0 1 0

0 2 1 0 0 1 1 0 0 0 2 1 0 1 0 0 0 1 0 2 0 0 1 1 0 1 0 0 2 0 1 0 0 0 0 0

0 2 1 0 1 0 0 0 1 0 2 1 0 1 0 1 0 0 0 2 0 1 0 0 0 0 0 0 2 0 1 1 0 1 1 1

1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0

1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1

1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1

1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 0

1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0

1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1

1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1

1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0

1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1

1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 0

1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0

1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1

1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1

1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0

1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 0 0 0 0 0 0 0 1 2 0 0 0 0 0 1 0 1 2 0 0 0 1 0 1 1 1 2 0 0 1 0 1 0 0
1 2 0 0 0 0 1 1 1 1 2 0 0 1 1 1 0 1 1 2 0 0 1 0 1 0 1 1 2 0 1 0 1 0 1 1

continued on next page
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Table A.3 (continued)

72.2.7.552 72.2.7.1081 72.2.8.280 72.2.8.379

1 2 0 1 0 0 1 0 1 1 2 0 1 0 1 0 0 0 1 2 1 0 0 0 1 1 0 1 2 1 0 1 1 0 1 0

1 2 0 1 0 1 0 1 0 1 2 0 1 1 0 1 1 1 1 2 1 0 1 1 0 0 0 1 2 1 1 0 0 1 0 1

1 2 1 0 1 0 1 0 1 1 2 1 0 0 0 1 0 1 1 2 0 1 0 0 1 1 1 1 2 0 0 1 1 1 1 1

1 2 1 0 1 1 0 1 0 1 2 1 0 1 1 0 1 0 1 2 0 1 1 1 0 0 1 1 2 0 1 0 0 0 0 0

1 2 1 1 1 1 0 0 0 1 2 1 1 0 1 0 0 1 1 2 1 1 0 1 0 1 0 1 2 1 0 1 0 0 0 1

1 2 1 1 1 1 1 1 1 1 2 1 1 1 0 1 1 0 1 2 1 1 1 0 1 0 0 1 2 1 1 0 1 1 1 0

2 0 0 1 0 0 1 0 1 2 0 0 1 0 0 1 0 1 2 0 1 0 0 1 0 1 0 2 0 1 0 0 0 0 0 1
2 0 0 1 0 1 0 1 0 2 0 0 1 0 1 1 1 0 2 0 1 0 1 0 1 0 0 2 0 1 0 1 1 1 1 1

2 0 0 1 1 0 1 1 1 2 0 0 1 1 0 0 0 1 2 0 1 1 0 1 0 0 1 2 0 1 1 0 1 0 1 0

2 0 0 1 1 1 0 0 1 2 0 0 1 1 1 0 1 0 2 0 1 1 1 0 0 1 0 2 0 1 1 1 0 1 0 0

2 0 1 0 0 0 1 1 0 2 0 1 0 0 0 1 1 0 2 0 0 0 0 1 1 0 1 2 0 0 0 0 1 1 1 0

2 0 1 0 0 1 0 0 0 2 0 1 0 0 1 0 0 0 2 0 0 0 1 0 1 1 0 2 0 0 0 1 0 0 0 0

2 0 1 0 1 0 1 0 1 2 0 1 0 1 0 1 1 1 2 0 0 1 0 1 0 1 1 2 0 0 1 0 0 1 0 1

2 0 1 0 1 1 0 1 0 2 0 1 0 1 1 0 0 1 2 0 0 1 1 0 1 0 1 2 0 0 1 1 1 0 1 1

2 1 0 0 0 0 0 1 1 2 1 0 0 0 1 0 0 1 2 1 0 0 0 0 1 1 1 2 1 0 0 1 1 0 0 0

2 1 0 0 0 0 1 0 0 2 1 0 0 1 0 1 1 0 2 1 0 0 1 1 0 0 1 2 1 0 1 0 0 1 1 1

2 1 0 1 0 1 1 1 0 2 1 0 1 0 1 0 1 1 2 1 1 0 1 1 1 1 1 2 1 1 0 1 1 1 1 1

2 1 0 1 1 0 0 0 0 2 1 0 1 1 0 1 0 0 2 1 1 1 0 0 1 0 1 2 1 1 1 0 0 0 0 0

2 1 1 0 0 1 1 1 1 2 1 1 0 0 0 1 0 1 2 1 0 0 1 1 0 1 0 2 1 0 0 1 0 1 0 1

2 1 1 0 1 0 0 0 1 2 1 1 0 1 1 0 1 0 2 1 0 1 0 0 0 0 0 2 1 0 1 0 1 0 1 0

2 1 1 1 1 1 0 1 1 2 1 1 1 0 0 0 1 0 2 1 1 1 0 0 1 1 0 2 1 1 0 1 0 0 1 0

2 1 1 1 1 1 1 0 0 2 1 1 1 1 1 1 0 1 2 1 1 1 1 1 0 0 0 2 1 1 1 0 1 1 0 1

2 2 0 0 0 1 0 0 1 2 2 0 0 0 0 0 1 1 2 2 0 0 0 0 0 0 0 2 2 0 0 0 0 0 1 1

2 2 0 0 1 0 0 1 0 2 2 0 0 0 1 1 0 0 2 2 0 1 0 1 1 1 0 2 2 0 0 0 1 1 0 0

2 2 0 0 1 1 1 0 0 2 2 0 0 1 0 0 0 0 2 2 0 1 1 0 0 1 1 2 2 0 1 1 0 1 1 0

2 2 0 0 1 1 1 1 1 2 2 0 0 1 1 1 1 1 2 2 0 1 1 1 1 0 0 2 2 0 1 1 1 0 0 1

2 2 1 1 0 0 0 0 0 2 2 1 1 0 0 0 0 0 2 2 1 0 0 0 0 1 1 2 2 1 0 0 0 1 1 0

2 2 1 1 0 0 0 1 1 2 2 1 1 0 1 1 1 1 2 2 1 0 0 1 1 0 0 2 2 1 0 0 1 0 0 1

2 2 1 1 0 1 1 0 1 2 2 1 1 1 0 0 1 1 2 2 1 0 1 0 0 0 1 2 2 1 1 1 0 0 1 1
2 2 1 1 1 0 1 1 0 2 2 1 1 1 1 1 0 0 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 0 0

NOTES: 6 blocks for 72.2.7.552 (72.2.8.280) generated by PQ and FG

(PQ2 and BG); additional generator for 12 blocks: CG (EG).



APPENDIX B

Notation

We use the following basic notation and terminology throughout the thesis.

Common notation. As a rule-of-thumb, writing A := B or B =: A means
that we define a set (a group, a structure . . .) A with the value B, that was well-
determined. We write (a1, . . . , ai, . . . , ad) for a vector, write [a1, . . . , ai, . . . , ad] for
a list of d entries, and {a1, . . . , ai, . . . , ad} for a set of d elements.

Factorial designs and fractional factorial designs. Suppose that we have d
finite sets Q1, Q2, . . . , Qd contained in a field k, called the factor sets or factors.
Note that the Qi are only taken as subsets of a field for convenience. The (full)
factorial design with respect to these d factors is the Cartesian product D = Q1 ×
. . . × Qd ⊂ kd. Moreover, ri := |Qi| is the number of levels of the factor i. We say
that D is symmetric if ri = r for all i; otherwise, D is mixed , that is ri 6= rj for
some i 6= j. Let s1, s2, . . . , sm be the distinct levels of D, and suppose that D has
exactly ai factors with si levels. We call sa1

1 · sa2
2 · · · sam

m the design type of D. For
example, if Q1 = {0, 1, 2, 3}, Q2 = Q3 = Q4 = {0, 1}, then

D = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), . . . , (3, 1, 1, 0), (3, 1, 1, 1)}
is the 4 · 23 mixed factorial design.

Suppose D is a sa1
1 · · · sam

m mixed factorial design. A fraction F of D is a subset
consisting of elements of D. If F has an element with multiplicity greater than one,
we say F has replications. This is also called an sa1

1 · · · sam
m fractional design. For

example

F = { (0, 0, 0, 0), (0, 1, 0, 1), (0, 0, 1, 1), (0, 1, 1, 0), (1, 0, 0, 0), (1, 1, 0, 1),

(1, 0, 1, 1), (1, 1, 1, 0), (2, 1, 1, 1), (2, 0, 1, 0), (2, 1, 0, 0), (2, 0, 0, 1),

(3, 1, 0, 0), (3, 1, 0, 1), (3, 1, 1, 0), (3, 1, 1, 1) }
is a 4 · 23 mixed fractional design. We usually consider a fractional design as a
matrix whose rows correspond to the elements of the multiset, in any order, and
whose columns correspond to the factors. So the example above becomes

F =









0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1









T

,

where T denotes transpose.
Let t be a natural number. A fraction F of D is called t-balanced if, for

each choice of t columns from F , every possible combination of coordinate values
from those columns occurs equally often. In other words, for every index set I ⊆
{1, . . . , d} of size t, each row of

∏

i∈I Qi occurs equally often in the projection of

123



124 B. NOTATION

F onto the coordinates indexed by I. Note that a fraction with strength t also has
strength s for all 1 ≤ s ≤ t. The example above has strength 3 but not strength
4. A t-balanced fraction F is also called a mixed orthogonal array of strength t of
strength t. If F has N rows, we write F = OA(N ; sa1

1 · sa2
2 · · · sam

m ; t). We also refer
to the rows of F as runs, so N is the run size.

An orthogonal array is called trivial if it contains each element of Q1 × Q2 ×
· · · × Qd the same number of times. We say that a triple of column vectors X, Y ,
Z are orthogonal if each possible value (x, y, z) appears in [X|Y |Z] with the same
frequency. So an array has strength three if, and only if, every triple of columns in
the array is orthogonal.

In some circumstances, we also use the notation OA(N ; r1 · r2 · · · rd; t) where
we allow some ri = rj for i 6= j. Of course the existence of OA(N ; r1 · r2 · · · , rd; t)
does not depend on the ordering of the parameters rj , and we can take them in
non-increasing order if we wish. The relation between the sk and and rj then is:

s1 = r1 = . . . = ra1
, s2 = ra1+1 = . . . = ra1+a2

, . . . ,

sm = ra1+a2+···+am−1+1 = . . . = ra1+a2+···+am
= rd.

Sometimes we find it useful to consider arrays with ri = 1 for some i. An OA(N ; 1 ·
r1 · r2 · · · rd; t) is equivalent to an OA(N ; r1 · r2 · · · rd; t), provided t ≤ d.

Permutations. If X is a set, a permutation on X is a bijection from X to itself. We
write Sym(X) for the symmetric group on X, ie, the group of all permutations on X.
Moreover, if N is a positive integer, we write SymN instead of Sym({1, 2, . . . , N}).
We usually write elements of SymN in cycle notation, so the permutation p =
(1, 2, 3)(4, 5) is defined by 1p = 2, 2p = 3, 3p = 1, 4p = 5, 5p = 4. We denote the

collection of all k-subsets of X by
(

X
k

)

, and the power set (set of all subsets) of X

by P(X) =
⋃

k

(

X
k

)

. We say a group K acts on a set X if we can define a group
homomorphism φ : K −→ Sym(X) such that for x ∈ X and g, h ∈ K we have:

xφ(gh) = (xφ(g))φ(h).

We abbreviate xφ(g) by xg. In general, we write permutation action on the right.
Let p ∈ SymN . The action of p on a subset B := {x1, x2, . . . , xk} of {1, 2, . . . , N}
is given by:

(B.0.1) Bp := {xp
1, x

p
2, . . . , x

p
k}.

With this action, the group SymN acts naturally on the set
(

{1,2,...,N}
k

)

of all subsets
of {1, 2, . . . , N} of size k. The action of p on a list Y := [y1, y2, . . . , yN ] of length
N is given by

[y1, y2, . . . , yN ]p := [y1p−1 , y2p−1 , . . . , yNp−1 ]

where y1, y2, . . . , yN are arbitrary objects. In other words, we compute the ith

position of Y p by Y p[i] = yip−1 = Y [ip
−1

]. The group SymN also acts on the set of
length N lists since for every i = 1 . . . N and p, q ∈ SymN we have

Y pq[i] = yiq−1p−1 = y(iq−1 )p−1 = Y p[iq
−1

] = (Y p)q[i].

For instance, k = 8, p = (2, 4) ∈ Sym({2, 3, . . . , 8}) gives

{1, 3, 4, 5, 8}(2,4) = {1, 2, 3, 5, 8}.
If p = (2, 4, 8, 3), then p−1 = (2, 3, 8, 4), and

[1, 3, 5, 8,−100, 2, A,B](2,4,8,3) = [1, 5, B, 3,−100, 2, A, 8].



APPENDIX C

Glossary

Table C.1: Common notation and algebraic notation

Notation Meaning

N natural numbers

Z, Zn = {0, 1, 2, . . . , n − 1} integers and the ring of integers modulo n

Q rationals

R real numbers

k, k field of coefficients and its algebraic closure

|A|, Ac number of elements and complement of a set A

AT transpose of A when A is a matrix or a vector

A × B Cartesian product of two sets A, B

d number of factors, variables, indeterminates,

N run size of an orthogonal array

x = (x1, . . . , xd) vector of factors, variables or indeterminates

k[x] k[x1, . . . , xd], the ring of polynomials with coefficients in k

over the indeterminates x1, . . . , xd

X a finite set, a factor or a vector of length N

Z(J) the zero set of an ideal J over a filed k

V an algebraic variety, a vector space

(G) an ideal generated by a generating set G

〈B〉 a k-vector space generated by a basis B

α = (α1, α2 . . . , αd) a d-tuple of nonnegative integers

xα a term x
α1
1 x

α2
2 . . . x

αd
d

x∗ = {x1, . . . , xd}
∗ the set of terms in x1, . . . , xd

I(V ) vanishing ideal of a variety V

I(F ) defining ideal or design ideal of a fraction F

125



126 C. GLOSSARY

Table C.2: Notation of construction and enumeration methods

Notation Meaning

X set of all t-(v, k, λ) block designs, or

set of all combinatorial structures of given type

Aut(F ) automorphism group of a fraction

Sym(X) full symmetric group on a finite set X

SymN Sym({1, 2, . . . , N})

Q1, Q2, . . . , Qd factor sets or factors

ri = |Qi| number of levels of factor i

Q = Q1 × . . . × Qd full factorial design in d factors Qi

p ∈ Q a design point, an experimental run

m number of distinct levels in a fractional factorial design

s1, . . . , sm distinct levels of a fractional design having m sections

s
a1
1 · · · sam

m design type of a fraction

OA(N ; sa1
1 · sa2

2 · · · sam
m ; t) a strength t OA with N runs, m distinct sections

F an orthogonal array of strength t, t ≥ 1

F(U, N) set of all OAs having design type U and run size N

T underlying set (the look-up table) of F(U, N)

or the search tree in backtrack search

P a linear system of equations with integer coefficients

Z(P ) set of vector solutions of a linear system P

Z(u) set of sub-vectors of solutions X ∈ Z(P )

without component u

n dimension of the affine space Z(P )
T

Q

IN := [1, 2, . . . , N ] row-index list of a strength 3 orthogonal array F

RowInd(Fi) row-index set of a strength 2 derived design Fi of F

L(Fi) row permutation subgroup associated with Fi

Fi1,...,im OA((r1r2 · · · rm)−1N ; rm+1 · · · rd; t − m) the derived

designs of an OA F taken with respect to an m-tuple of

symbols i1, . . . , im where ij = 1, . . . , rj , and j = 1, . . . , m

RowInd(Fi1,...,im ) row-index set of Fi1,...,im

Vi1,...,im set of vector solutions of Fi1,...,im

Li1,...,im subgroup associated with Fi1,...,im
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Table C.3: Notation of selection methods

Notation Meaning

n2 maximum number of estimable components of 2-factor interactions

in a model based on an orthogonal array

n+ additional higher-order interaction components

that are estimable

npe number of degrees of freedom obtained from duplicate runs

n2(...) rank of the matrix with all components of

2-factor interactions

n2(..0) rank of the interaction matrix excluding components of

the 3 × 3 interaction

n2(.00) rank of the matrix of just the 2 × 2 interactions

n2(0.0) rank of just the 2 × 3 interactions

GWLP generalized word-length pattern (A1, A2, . . . , An)

A4 fourth component of GWLP

df6 minimum decrease in n2 in case the design was

to be blocked in 6 blocks

df12 minimum decrease for the 12 blocks case

ECv estimation capacity for v two-factor interactions

EC(...) mean estimation capacity over all models with 0 up to 45

two-factor interactions

EC(..0) mean estimation capacity of the interaction models excluding

the components of the 3 × 3 interaction

EC(.00) mean estimation capacity of models involving

just the 2 × 2 interactions

EC(0.0) mean estimation capacity of just the 2 × 3 interactions





APPENDIX D

Installed packages

Singular code for computing estimators of a regression model
function Compute-set-estimable-terms(F )

Input: F is a fractional design; and < is a term order.

Output: Set of estimable terms of a model based on F .
2: int z, d; list X, T ; ideal b, c, canon y, Est, J, D, Gb; intvec V ; ⊲ Type declaration

timer = 1; z = rtimer; ⊲ computing time of each command will be printed

4: V = Get-levels-design(F ); ⊲ the levels
d = ncols(F ); ⊲ the number of factors

6: T = Gen-lterm1(F, V, d); ⊲ main function computes estimators
LtI = T [1]; ⊲ leading terms of the vanishing ideal I(F )

8: Gb = T [2]; ⊲ Gröbner basis of I(F )
X = T [6]; ⊲ factor indeterminates

10: Est = Reverse(T [3]); Est = sort(Est)[1]; ⊲ estimable terms
b = std(T [4]); canon = Form-list(b); ⊲ canonical polynomials

12: c = Extract-k-interactions(Est, X, 2); ⊲ 2-interaction terms
y = Extract-k-interactions(Est, X, 1); y = 1, y; ⊲ grand mean and MEs

14: if size(c) > 0 then

J = y, c;
16: else

J = y;
18: end if ⊲ grand mean, MEs and 2-interactions

D = Differ-ideal(Est, J); ⊲ higher-than-2 interactions
20: z = rtimer− z; ⊲ computing time

Return list(Est, canon, Gb, LtI , J , c, D)
22: end function

Singular code for constructing 3-balanced designs

function INVERSE-PROBLEM(U , c)
Input: U a design type, and c an index indicating a design being computed.
Output: Fractions F having given estimable terms E determined by c.

2: int ok, d, nu, mu, nm, max1, max2; intvec V ; ⊲ Type declaration
list G, H, X, sys, K, A, E, E2, C, M, Est, L, LF ;

4: d = Number-factors(U);
H = Get-levels-from-design-type(U);

6: V = H[1]; K = H[2]; ⊲ the levels and the weight vector of factor indeterminates
if (size(U) == 1) then

8: ring R = 0, x(1..d), dp;

else

10: if (size(U) == 2) then

ring R = 0, (x(1..d)), (wp(K[1], K[2]));
12: else

if (size(U) == 3) then

14: ring R = 0, (x(1..d)), (wp(K[1], K[2], K[3]));
end if

16: end if

end if ⊲ declare base ring R

18: ⊲ we use wp ordering for mixed design to collect all MEs involving the largest-level factor
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X = Form-var(d); A = Initialize-XCE(c, X);
20: E = A[1]; L = A[2]; ⊲ estimable terms and design type

C = Compute-nu-mu(X, E, L, c);
22: nu = C[1]; mu = C[2]; nm = nu ∗ mu; ⊲ mu = |Est(F )|, nm = |{ajl}|

⊲ now extend R to a new ring R1 that includes new variables ajl

def R1 = extendring(nm, ”a(”, ”dp(nm)”, 0, R);; setring R1;
24: ideal a, GB, canon, Gb, X, Lv; ⊲ type redeclaration after redefining ring

X = Form-var(d); a = Get-vars-A-from-ring(nm);

26: sys = Construct-system(d, c, X, a, L);
GB = sys[1]; ⊲ system of polynomials in terms of ajl

28: G = sys[2]; ⊲ border basis
canon = sys[3]; ⊲ canonical polynomials

30: E2 = sys[4]; ⊲ E2 = G \ canon, border basis except canonical polynomials
M = sys[5];; ⊲ multiplication matrices

32: max1 = 25; max2 = 75;

⊲ used to decide computing Grobener basis when reducing system or not
34: kill sys; ⊲ to free memory

Gb = ReduceSystem(1, GB, max1, max2); ⊲ main procedure reduces system GB

36: LF = Factor-solve0(L, Lv, Gb, G, X, mu);
⊲ main procedure compute designs

38: Return LF ;
end function

GAP code for constructing strength 3 OAs: version 1, using local row permutations

function Make-column-X-use-row-symbol-perms(Lf , lev, t,d)

Input: Lf a list of OAs, lev the factor’s level, t strength, number of factors d ≥ c + b + a

Output: Strength t OAs having design type [[s1, c], [s2, b], [2, a + 1]] if lev = 2;
2: if Lf = [] then

Return [[], [], []];
4: end if ;

Ans := []; Ans2 := []; LSols := []; extA := [];
6: q := Extend-design-type(Lf [1], s); U := q[1]; ⊲ the design type before extending,

U1 := q[2]; ⊲ U has the form [[s1, c], [s2, b], [2, a]], U1 = [[s1, c], [s2, b], [2, a + 1]]
8: if Sum(U, v → v[2]) = d then

Ans2 := Lf ;

10: else

i := 0;
12: for f inLf do

i := i + 1; L := Build-column-X-use-AutF(f , U , lev, t, U1);

14: ⊲ main function finds all extensions of f , using localization at derived designs
if L 6= [] then

16: extA := Concatenation(extA, [i]); Ans := Concatenation(Ans, L);
⊲ extA stores indices of extendable arrays

18: Y := List(Ans, b → Size-autmomorphism-group(b, U1));
Write-arrays-to-disk(Ans, Y , U1, extA);

20: end if ;

end for;
22: end if ;

if Sum(U, v → v[2]) = d then

24: Ans := The-case-reaching-bound(Ans2, U , d, lev, t, extA);

Return Ans;
26: else ⊲ The current number of factors is

P

v∈U1
v[2];

M := The-case-not-yet-reaching-bound(Ans, U1, lev, t, extA);
28: Ans :=MAKE-COLUMN-X-USE-ROW-SYMBOL-PERMS(M , lev, t, d);

Return Ans;
30: end if ;

end function
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GAP code for constructing strength 3 OAs: version 2, by computing pivotal variables

function Make-column-X-use-LA-Group-method2(Lf , lev, t, d)
Input: Lf a list of OAs, lev the new level, t the strength, number of factors d ≥

c + b + a

Output: Strength t OAs having design type [[s1, c], [s2, b], [2, a + 1]] if lev = 2.
2:

if Lf = [] then Return [[], [], []];
4: end if ;

Ans := []; Ans2 := []; extA := []; N := Length(Lf [1]);
6: ⊲ N is the run size

q := Extend-design-type(Lf [1], lev); U := q[1];
8: ⊲ U is the design type before extending

U1 := q[2];
10: ⊲ and design type after extending U1 = [[s1, c], [s2, b], [2, a + 1]]

12: if Sum(U, v → v[2]) = d then Ans2 := Lf ;
else

14: stringx := Form-name-variables-without-x0(N , 1);;
R := PolynomialRing(Rationals, stringx);; stringx := [];

16: x := IndeterminatesOfPolynomialRing(R); R := PolynomialRing(Rationals, x);
i := 0;

18: for f inLf do
i := i + 1; L := Extend-one-column (f , lev, t , x);

20: ⊲ main function finds all extensions of f , using integral pivotal variables
if L 6= [] then

22: extA := Concatenation(extA, [i]); Ans := Concatenation(Ans, L);
Y := List(Ans, b → Size-autmomorphism-group(b, U1));

24: Write-arrays-to-disk(Ans, Y , U1, extA);
end if ;

26: ⊲ store results accumulated up to the ith array
end for;

28: end if ;

30: if Sum(U, v → v[2]) = d then
Ans := The-case-reaching-bound(Ans2, U , d, lev, t, extA);

32: Return Ans;
else

34: M := The-case-not-yet-reaching-bound(Ans, U1, lev, t, extA);
⊲ computing non-isomorphic OAs, by employing canonical labeling arrays

36: Ans :=MAKE-COLUMN-X-USE-LA-GROUP-METHOD2(M , lev, t, d);
Return Ans;

38: end if ;
end function

⋄ Note that the procedures MAKE-COLUMN-X-USE-ROW-SYMBOL-PERMS(Lf , lev, t, d) and
MAKE-COLUMN-X-USE-LA-GROUP-METHOD2(Lf , lev, t, d) are implemented for extending
binary columns only.
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Samenvatting

In dit proefschrift bestuderen we de constructie van orthogonale arrays (OAs)
van sterkte 3. Elk drietal kolommen uit deze arrays heeft de eigenschap dat elke
combinatie van de daarmee corresponderende factorinstellingen even vaak voorkomt.
We beschouwen ook de selectie van een OA als proefopzet. We gebruiken algebra,
modulaire rekenkunde en meetkunde om afzonderlijke arrays te construeren, en
we gebruiken combinatoriek en verzamelingenleer om alle niet-isomorfe OAs op te
sommen van sterke 3 en met gegeven aantallen runs, factoren en niveaus van de
factoren. We stellen criteria voor om arrays te selecteren die het meest nuttig zijn
voor praktijkproblemen.

Eerst beschouwen we het probleem om schatbare termen te vinden van een
gegeven design, en het omgekeerde probleem om fractionele designs, inclusief sterkte-
t designs, te maken met bepaalde schatbare termen. We tonen aan dat deze proble-
men aangepakt kunnen worden met methodologie die gebruik maakt van Gröbner
bases. Onze praktische implementatie in een computer-algebra pakket laat echter
zien dat de constructiemethode alleen voor kleine gevallen werkt.

Ten tweede stellen we enkele specifieke constructiemethoden voor van OAs van
sterkte 3. Met behulp van lineaire codes, Hadamard matrices en Latijnse vierkanten
maken we verscheidene nieuwe OAs met 80 en 96 runs. De specifieke constructies
geven ons inzicht in de wetmatigheden van OAs. Er is echter geen afzonderlijke con-
structiemethode die alle niet-isomorfe OAs van een bepaald type kan voortbrengen.

Ten derde stellen we een backtrack algoritme voor om een reeks OAs van een
gegeven type te genereren. Dit algoritme maakt gebruik van de automorfisme groep
van een OA. We stellen ook een methode voor om bestaande OAs uit te breiden
met behulp van integer linear programming. Een mengeling van deze benaderingen
stelt ons in staat om elke reeks OAs van sterkte 3 te construeren, mits het aantal
runs niet al te groot is.

Verder behandelen we het probleem om OAs voor praktijksituaties te selecteren.
We gebruiken daarbij diverse reeksen 3a2b arrays als voorbeelden. We stellen voor
om arrays alleen beschikbaar te houden als ze toelaatbaar zijn volgens verscheidene
nader uitgewerkte criteria, waaronder het vermogen van een array om de runs
orthogonaal op de hoofdeffecten te verblokken.

Tenslotte geven we een verzameling van de meeste niet-isomorfe arrays van
sterkte 3 met ten hoogste 100 runs.
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Summary

In this thesis, we study the construction of strength-3 orthogonal arrays (OAs).
Each triple of columns from these arrays has every combination of the corresponding
factor settings occurring equally often. We also consider the selection of an OA as
an experimental design. We employ algebra, modular arithmetic, and geometry
to construct individual arrays. We use combinatorics and group theory to list all
non-isomorphic OAs of strength 3 with a given number of runs, and given numbers
and levels of the factors. We propose criteria to select arrays that are most useful
for practical problems.

First, we address the problem of finding estimable terms given a design, and
the inverse problem of making fractional designs, including strength t designs, with
certain estimable terms. We show that these problems can be tackled by Gröbner
bases methodology. However, our practical implementation in a computer-algebra
package shows that the construction method only works for small cases.

Second, we propose some specific constructions of OAs of strength 3. Using
techniques from linear codes, Hadamard matrices, and Latin squares, we produce
several new OAs with 80 and 96 runs. The specific constructions give us an insight
into the regularity of OAs. However, no single construction method can generate
all strength 3 non-isomorphic OAs of certain types.

Third, to generate a series of OAs of a given type, we propose a backtrack search
approach using the automorphism group of an OA. We also propose to extend
existing OAs with integer linear programming. A mixture of these approaches
permit the construction of any series of OAs of strength 3 and moderate run-size.

Further, we address the problem of selecting OAs for practical uses, using
several series of 3a · 2b arrays as examples. We propose to retain arrays only if
they are admissible according to several criteria, including the ability of an array
to block the runs orthogonally to the main effects.

Finally, we present a collection of most of the non-isomorphic strength 3 OAs
with run size at most 100.
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