

Computer Architecture A Quantitative Approach

Third Edition

John L. Hennessy Stanford University

David A. Patterson University of California at Berkeley

With Contributions by

David Goldberg Xerox Palo Alto Research Center

Krste Asanovic Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

AN IMPRINT OF ELSEVIER SCIENCE

AMSTERDAM BOSTON LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

Contents

	Fore Pref	eword ace	vii xvii	
	Ack	nowledgments	XXV	
Chapter 1	Fundamentals of Computer Design			
	1.1	Introduction	2	
	1.2	The Changing Face of Computing and the Task of the Computer Designer	4	
	1.3	Technology Trends	11	
	1.4	Cost, Price, and Their Trends	14	
	1.5	Measuring and Reporting Performance	24	
	1.6	Quantitative Principles of Computer Design	39	
	1.7	Putting It All Together: Performance and Price-Performance	48	
	1.8	Another View: Power Consumption and Efficiency as the Metric	56	
	1.9	Fallacies and Pitfalls	57	
	1.10	Concluding Remarks	65	
	1.11	Historical Perspective and References	67	
		Exercises	74	
Chapter 2	Instruction Set Principles and Examples			
	2.1	Introduction	90	
	2.2	Classifying Instruction Set Architectures	92	
	2.3	Memory Addressing	95	
	2.4	Addressing Modes for Signal Processing	101	
	2.5	Type and Size of Operands	104	

	2.6	Operands for Media and Signal Processing	105
	2.7	Operations in the Instruction Set	108
	2.8	Operations for Media and Signal Processing	109
	2.9	Instructions for Control Flow	111
	2.10	Encoding an Instruction Set	117
	2.11	Crosscutting Issues: The Role of Compilers	120
	2.12	Putting It All Together: The MIPS Architecture	129
	2.13	Another View: The Trimedia TM32 CPU	136
	2.14	Fallacies and Pitfalls	142
	2.15	Concluding Remarks	147
	2.16	Historical Perspective and References	148
		Exercises	161
Chapter 3	Inst	ruction-Level Parallelism and Its Dynamic Exploitation	
	3.1	Instruction-Level Parallelism: Concepts and Challenges	172
	3.2	Overcoming Data Hazards with Dynamic Scheduling	181
	3.3	Dynamic Scheduling: Examples and the Algorithm	189
	3.4	Reducing Branch Costs with Dynamic Hardware Prediction	196
	3.5	High-Performance Instruction Delivery	209
	3.6	Taking Advantage of More ILP with Multiple Issue	215
	3.7	Hardware-Based Speculation	224
	3.8	Studies of the Limitations of ILP	240
	3.9	Limitations on ILP for Realizable Processors	253
	3.10	Putting It All Together: The P6 Microarchitecture	259
	3.11	Another View: Thread-Level Parallelism	272
	3.12	Crosscutting Issues: Using an ILP Data Path to Exploit TLP	273
	3.13	Fallacies and Pitfalls	273
	3.14	Concluding Remarks	276
	3.15	Historical Perspective and References	280
		Exercises	288
Chapter 4	Expl	oiting Instruction-Level Parallelism with Software Appro	aches
	4.1	Basic Compiler Techniques for Exposing ILP	304
	4.2	Static Branch Prediction	313
	10.00000		

- 4.3Static Multiple Issue: The VLIW Approach3154.4Advanced Compiler Support for Exposing and Exploiting ILP319
- 4.4 Advanced complet Support for Exposing and Exploiting IEI
 4.5 Hardware Support for Exposing More Parallelism at Compile Time
 340

	4.6	Crosscutting Issues: Hardware versus Software	
		Speculation Mechanisms	350
	4.7	Putting It All Together: The Intel IA-64 Architecture	251
	4.8	and Itanium Processor Another View: ILP in the Embedded and Mobile Markets	351 363
	4.0 4.9	Fallacies and Pitfalls	303
		Concluding Remarks	370
		Historical Perspective and References	372
	4.11	Exercises	378
Chapter 5	Men	nory Hierarchy Design	
	5.1	Introduction	390
	5.2	Review of the ABCs of Caches	392
	5.3	Cache Performance	406
	5.4	Reducing Cache Miss Penalty	413
	5.5	Reducing Miss Rate	423
	5.6	Reducing Cache Miss Penalty or Miss Rate via Parallelism	435
	5.7	Reducing Hit Time	443
	5.8	Main Memory and Organizations for Improving Performance	448
	5.9	Memory Technology	454
	5.10	Virtual Memory	460
	5.11	Protection and Examples of Virtual Memory	469
	5.12	Crosscutting Issues: The Design of Memory Hierarchies	478
	5.13	Putting It All Together: Alpha 21264 Memory Hierarchy	482
	5.14	Another View: The Emotion Engine of the Sony Playstation 2	490
	5.15	Another View: The Sun Fire 6800 Server	494
	5.16	Fallacies and Pitfalls	498
	5.17	Concluding Remarks	504
	5.18	Historical Perspective and References	504
		Exercises	513
Chapter 6	Mul	tiprocessors and Thread-Level Parallelism	
	6.1	Introduction	528
	6.2	Characteristics of Application Domains	540
	6.3	Symmetric Shared-Memory Architectures	549
	6.4	Performance of Symmetric Shared-Memory Multiprocessors	560
	6.5	Distributed Shared-Memory Architectures	576

6.6 Performance of Distributed Shared-Memory Multiprocessors 584

	6.7	Synchronization	590		
	6.8	Models of Memory Consistency: An Introduction	605		
	6.9	Multithreading: Exploiting Thread-Level Parallelism within a Processor	608		
	6.10	Crosscutting Issues	615		
	6.11	Putting It All Together: Sun's Wildfire Prototype	622		
	6.12	Another View: Multithreading in a Commercial Server	635		
	6.13	Another View: Embedded Multiprocessors	636		
	6.14	Fallacies and Pitfalls	637		
	6.15	Concluding Remarks	643		
	6.16	Historical Perspective and References	649		
		Exercises	665		
Chapter 7	Stor	Storage Systems			
	7.1	Introduction	678		
	7.2	Types of Storage Devices	679		
	7.3	Buses—Connecting I/O Devices to CPU/Memory	692		
	7.4	Reliability, Availability, and Dependability	702		
	7.5	RAID: Redundant Arrays of Inexpensive Disks	705		
	7.6	Errors and Failures in Real Systems	710		
	7.7	I/O Performance Measures	716		
	7.8	A Little Queuing Theory	720		
	7.9	Benchmarks of Storage Performance and Availability	731		
	7.10	Crosscutting Issues	737		

Chapter 8 Interconnection Networks and Clusters

Exercises

7.14 Fallacies and Pitfalls

7.15 Concluding Remarks

7.11 Designing an I/O System in Five Easy Pieces

7.16 Historical Perspective and References

7.12 Putting It All Together: EMC Symmetrix and Celerra

7.13 Another View: Sanyo VPC-SX500 Digital Camera

8.1	Introduction	788
8.2	A Simple Network	793
8.3	Interconnection Network Media	802
8.4	Connecting More Than Two Computers	805
8.5	Network Topology	814
8.6	Practical Issues for Commercial Interconnection Networks	821

741

754

760

763

769

770

778

	8.7	Examples of Interconnection Networks	825
	8.8	Internetworking	830
	8.9	Crosscutting Issues for Interconnection Networks	834
	8.10	Clusters	838
	8.11	Designing a Cluster	843
	8.12	Putting It All Together: The Google Cluster of PCs	855
	8.13	Another View: Inside a Cell Phone	862
	8.14	Fallacies and Pitfalls	867
	8.15	Concluding Remarks	870
	8.16	Historical Perspective and References	871
		Exercises	877
Appendix A	Pipe	elining: Basic and Intermediate Concepts	
	A.1	Introduction	A-2
	A.2	The Major Hurdle of Pipelining—Pipeline Hazards	A-11
	A.3	How Is Pipelining Implemented?	A-26
	A.4	What Makes Pipelining Hard to Implement?	A-37
	A.5	Extending the MIPS Pipeline to Handle Multicycle Operations	A-47
	A.6	Putting It All Together: The MIPS R4000 Pipeline	A-57
	A.7	Another View: The MIPS R4300 Pipeline	A-66
	A.8	Crosscutting Issues	A-67
	A.9	Fallacies and Pitfalls	A-77
	A.10	Concluding Remarks	A-78
	A.11	Historical Perspective and References	A-78
		Exercises	A-81
Appendix B	Solu	itions to Selected Exercises	
		Introduction	B-2
	B.1	Chapter 1 Solutions	B-2
	B.2	Chapter 2 Solutions	B-7
	B.3	Chapter 3 Solutions	B-11
	B.4	Chapter 4 Solutions	B-16
	B.5	Chapter 5 Solutions	B-21
	B.6	Chapter 6 Solutions	B-25
	B. 7	Chapter 7 Solutions	B-29
	B.8	Chapter 8 Solutions	B-30
	B.9	Appendix A Solutions	B-35

Online Appendices (www.mkp.com/CA3/)

Appendix C	A Survey of RISC Architectures for Desktop, Server, and Embedded Computers
Appendix D	An Alternative to RISC: The Intel 80x86
Appendix E	Another Alternative to RISC: The VAX Architecture
Appendix F	The IBM 360/370 Architecture for Mainframe Computers
Appendix G	Vector Processors Revised by Krste Asanovic
Appendix H	Computer Arithmetic by David Goldberg
Appendix I	Implementing Coherence Protocols
	P. (

References	R-1
Index	· I-1