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Diabetic retinopathy (DR) is a complication of long-standing diabetes, which is hard to detect in its early stage because it only
shows a few symptoms. Nowadays, the diagnosis of DR usually requires taking digital fundus images, as well as images using
optical coherence tomography (OCT). Since OCT equipment is very expensive, it will benefit both the patients and the oph-
thalmologists if an accurate diagnosis can be made, based solely on reading digital fundus images. In the paper, we present a novel
algorithm based on deep convolutional neural network (DCNN). Unlike the traditional DCNN approach, we replace the
commonly used max-pooling layers with fractional max-pooling. Two of these DCNNs with a different number of layers are
trained to derive more discriminative features for classification. After combining features from metadata of the image and
DCNNGs, we train a support vector machine (SVM) classifier to learn the underlying boundary of distributions of each class. For
the experiments, we used the publicly available DR detection database provided by Kaggle. We used 34,124 training images and
1,000 validation images to build our model and tested with 53,572 testing images. The proposed DR classifier classifies the stages of
DR into five categories, labeled with an integer ranging between zero and four. The experimental results show that the proposed
method can achieve a recognition rate up to 86.17%, which is higher than previously reported in the literature. In addition to
designing a machine learning algorithm, we also develop an app called “Deep Retina.” Equipped with a handheld ophthalmoscope,
the average person can take fundus images by themselves and obtain an immediate result, calculated by our algorithm. It is
beneficial for home care, remote medical care, and self-examination.

1. Introduction

The global cost of treating adult diabetes and its induced
chronic complications is USD 850 billion in 2017. Diabetic
retinopathy (DR) is one of the most common and serious
complications of diabetes mellitus and is a leading cause of
low vision and blindness in working-age adults [1, 2]. The
International Diabetes Foundation (IDF) estimated that the
global population with diabetes in 2017 was 451 million and
over one-third of the population had DR [3], representing a
tremendous population at risk of visual impairment or
blindness. By 2045, the worldwide prevalence of diabetes is
expected to increase to 693 million people [3]. In addition,
almost half (49.7%) of all people living with diabetes remain

undiagnosed for years because of silent symptoms [3].
However, long-term high blood sugar levels ultimately
destroy blood vessels and nerves, leading to complications,
such as cardiovascular disease and blindness. Detection and
treatment of DR in the early stage will prevent its devel-
opment or progression.

The diagnosis and severity of DR are based on retinal
examination. Clinically, the classification of DR can be di-
vided into two categories: (1) nonproliferative diabetic
retinopathy (NPDR) with exudation and ischemia in dif-
ferent severity but without retinal neovascularization, and
(2) proliferative diabetic retinopathy (PDR), which is
characterized by neovascularization with or without its
complications of traditional retinal detachment and the
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initial appearance of vitreous hemorrhage. Microvascular
diseases of NPDR include microaneurysms, retinal dot and
blot hemorrhages, lipid exudates, venous beading change,
and intraretinal microvascular abnormalities (IRMA). Based
on the degree and extent of these lesions, NPDR can be
divided into three levels: mild NPDR presents with
microaneurysms or few retinal hemorrhages; moderate
NPDR shows more severe microaneurysms, hemorrhage or
soft exudate, but not reaching the level of severe NPDR,
which is associated with marked retinal hemorrhage in 4
quadrants, venous beading in at least 2 quadrants and IRMA
in at least 1 quadrant. Table 1 summarizes the DR category
with its manifestation.

Manual grading by ophthalmologists has been the
mainstay of DR screening in the past decades. However, due
to the expanding population with diabetes and the recent
advances in technology, automated detection of DR offers
the potential to provide an efficient and cost-effective ap-
proach to screening. Current commercialized automated
retinal image analysis systems (ARIAs), such as iGradingM,
Retmarker, and EyeArt, focus on differentiating diseased/no
disease, or detection of referable DR [5, 6]. Nonetheless,
ARIAs are currently not sufficiently sophisticated to classify
different levels of DR, which means that identifying the
subtle change between levels is still a challenging task for the
technique of medical image analysis. Figure 1 shows example
fundus images for each lesion.

In addition to the accuracy of medical image pro-
cessing, the mobility and portability of medical examina-
tion equipment are of equal importance. Currently, the
acquisition of digital fundus images requires the cooper-
ating patient to sit in front of the fundus camera in the
room, with ambient lighting minimized or turned off. The
patient needs to look forward at the camera at a fixed light
and use infrared fundus imaging to focus on the area of
interest. Many nonmydriatic cameras have software that
automatically detects the posterior pole of the eye and takes
a picture when it is focused behind the eye. The RGB image
sensor still requires a flash to capture images in the visible
light spectrum. However, the digital fundus imagers most
popularly used in the clinics are bulky and expensive, as
shown in Figure 2, which limit its capability for large-scale
screening.

One of the major goals for this study, besides increasing
the classification accuracy using artificial intelligence, is to
come up with a new system framework for DR screening.
The new framework combines the advantages of mobile
computing, cloud computing, big data, and artificial in-
telligence. The components of the proposed framework can
be described as following:

(i) Mobile block: The fundus image acquisition is
achieved using a hand-held fundus imager, coupled
with a self-developed iPhone APP. The imager is
small and light-weighted. It can be carried inside a
backpack. The deployment of such devices is ex-
tremely convenient. The portable nature due to its
small form factors and light-weight can benefit the
medical service for remote rural areas.
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(ii) Cloud block: The proposed system does not sacrifice
its computational performance for its portability.
Thanks to the architecture of cloud computing, the
core of the computational resources is moved to the
cloud and can be scaled up flexibly as the request
increases. We developed highly efficient deep
learning algorithm which runs on cloud server and
is able to respond to the diagnosis request within 10
seconds.

(iii) Big data block: The cloud-based architecture also
helps to collect big data. As more and more end
devices (hand-held fundus camera) are being used,
the number of fundus images that passed into the
cloud will increase accordingly. By storing all of
these fundus image data, we are able to make good
use of such big dataset, such as machine learning
model retraining, new feature exploration, or cross-
domain data-mining for different types of ophal-
mological diseases.

In summary, in this paper, we propose a new system
framework for DR screening, based on artificial intelligence,
mobile computing, cloud computing, and big data analytics.
Figure 3 shows an illustration of the proposed system. Such
system is a new paradigm for telemedical service and will
benefit rural areas where the medical resources are
insufficient.

In the following sections, we will gradually unveil our
ideas and show the experimental results. In Section 2, we
performed related literature review for important algorithms
for the foundation of DR classification, which is retinal vessel
segmentation. In Section 3, we performed related literature
review for DR detection. In Section 4, we illustrated the
proposed deep learning and machine learning algorithms in
full details. We show the experimental results in Section 5
and discuss some important findings in Section 6. Finally, a
conclusion is given in Section 7.

2. Literature Review of Retina
Vessels Segmentation

In the process of identifying DR, it is pivotal to locate the
retinal vessels. If the vessels position can be correctly known,
we can determine whether the patient is suffering from DR
based on information about the precise location and
thickness of the vessels. However, vessel tracking is a
complex process because of the many other substances
besides vessels in fundus images. Numerous vessel seg-
mentation methods have been proposed, which can be
broadly divided into five categories: vascular tracking,
matched filtering, morphological processing, deformation
models, and machine learning.

2.1. Methods of Vascular Tracking. Methods of vascular
tracking are based on the continuous structure of vessels, by
starting at an initial point and following the vessels until no
further vessels are found. The critical factor in this procedure
is the setting of the initial point, as this will affect the
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TaBLE 1: Classification of diabetic retinopathy [4].

Category Level Manifestation
1 Few microaneurysms or hemorrhage
) Microaneurysms, hemorrhages, soft exudates, venous
. o . beadi
Nonproliferative diabetic retinopathy (NPDR) . cacine
Severe retinal hemorrhage in >4 quadrants, or venous
3 beading change in >2 quadrants, or mild intraretinal
microvascular abnormality in >1 quadrant
Proliferative diabetic retinopathy (PDR) 4 Neovascularization of retina or optic disc

(d)

(e)

FIGURE 1: Examples of fundus images showing different lesions. (a) 0 level (normal), (b) level 1, (c) level 2, (d) level 3, and (e) level 4.

accuracy of vessel segmentation. Currently, setting the initial
point can be done either artificially or automatically.

The earliest adaptive vascular tracking method was
proposed by Liu and Sun [7] in 1993, which extracts the
vasculature from X-ray angiograms. First, given an initial
point and direction within a vessel, the authors apply an
“extrapolation-update” scheme that involves estimating
local vessel trajectories. Once a vessel fragment has been
tracked, it is removed from the image. This procedure is
repeated until the vascular tree has been extracted. The
drawbacks of this strategy are that due to the algorithm used,
the user must set the vessel starting points and that the
approach does not seem adaptable to three-dimensional
extraction. In 1999, an automatic vascular tracking
method was developed by Can et al. [8]. This strategy mainly
collects pixel wide vascular local minimum points (usually in
the middle of a vessel) to perform tracking. Vlachos and
Dermatas [9] suggested a multiscale line tracking method
with morphological postprocessing. Yin et al. [10] proposed
a retinal vascular tree extraction, based on iterative tracking
and Bayesian method.

The advantage of vascular tracking is that it can provide
local information about characteristics, such as the

diameter/width and direction of vessels. However, the
vascular tracking performance can be easily affected by
crossing or branching of vessels, which reduces the iden-
tification efficiency.

2.2. Methods of Matched Filtering. Matched filtering
methods employ multiple matched filters for extraction, so
designing proper filters is essential to detect vessels. Since the
gray-scale distribution of fundus vessels is in keeping with
Gaussian, an intuitive method exists that uses the maximum
response of images after filtering to find vessel points. As the
diameter/width of vessels is diverse, a multiscale Gaussian
filter method is often used for vessel tracking.

In 1989, Chaudhuri et al. [11] pioneered the application
of Gaussian filters in vessel tracking, by using some vascular
characteristics, such as the fact that vessels are darker than
the background, the width of the vessels ranges from 2 to 10
pixels, and the vessels grow from the optic disc into a radial
shape. Therefore, Chaudhuri et al. [11] designed two-
dimensional Gaussian filters that can detect vessels in 12
different directions. However, this method needs large
computation, and some of the dark lesions are similar to the
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Figure 2: Commercialized fundus camera used in the clinics. The machine is bulky and expensive, making it difficult for large-scale

screening.

oy

Online
training

Big data
collection

Level 0 e
Image acquisition Level 1
on mobile device Level 2
Level 3 «
Level 4

FiGure 3: The proposed framework. It is composed of mobile block (image acquisition), cloud block (deep learning algorithm on cloud
computing platform) and big data block (big data collection and training).

characteristic of vessels, causing tracking errors. Hoover
etal. [12] described an improved method that considers local
and regional characteristics of vessels to separate blood
vessels in retinal images and iteratively determine whether
the current point is a vessel point.

After such improvement, a large number of studies of
reformed filters have been developed. Jiang and Mojon [13]
promoted a generalized threshold method based on a
multithreshold detection. Zhang et al. [14] improved the
matching filtering method by applying a local vessel cross
section analysis, using local bilateral thresholding. Li et al.
[15] suggested a multiscale production of the matched filter,
to enhance the extraction of tiny vessels.

2.3. Methods of Morphological Processing. Morphological
processing facilitates the segmentation and identification of
target objects by analyzing and processing structural ele-
ments in a binary image. Thus, linear and circular elements
of blood vessels can be selected, isolating the desired
structure instead of the background image. In addition,

morphological processing can also smooth and fill the image
contour with the advantage of antinoise. However, this
method overrelies on structural elements and does not make
good use of characteristics of vessels.

According to vessel characteristics, Zana and Klein [16]
introduced a mathematical morphology-based algorithm
that allows separating the vessels from all possible un-
desirable patterns. Building on this approach, Ayala et al.
[17] proposed using different average fuzzy sets. In Miri and
Mahloojifar [18], fundus images were analyzed by the use of
curvelet transform and morphological reconstruction of
multistructural elements to enhance the boundaries and
determine the vascular ridge. Karthika and Marimuthu [19]
combined curvelet transform and morphological re-
construction of multistructural elements, with strongly
connected component analysis (SCCA) to segment and
identify vessels.

2.4. Methods of Deformation Models. First introduced by
Kass et al. [20] in 1988, the key benefit of deformation
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models is the ability to produce smooth parametric curves or
surfaces. Two categories of deformation models are iden-
tified: parametric deformation and geometric deformation.
Parametric deformation models are also called active con-
tour or snake models (set of points each with an associated
energy). Through the external and internal forces acting on
the snake, the snake model can change its shape and
smoothness toward the desired structure. In 2007, Espona
et al. [21] used a parametric deformation model method on
fundus images and promoted an improved method with
morphological segmentation. With the assistance of mor-
phological vessel segmentation, the snake model expands to
the contour of the obtained vessels until the local energy
function is minimal. Another deformation model method
called ribbon of twins (ROT), which combines ribbon snakes
and double snakes, was proposed by Al-Diri and Hunter
[22]. Each twin consists of two snakes, one inside and one
outside the vessel edges. The double snake model then at-
tempts to integrate the pairs of twins on the vessel borders
into a single ribbon and calculate the vessel width.

There are several shortcomings in parametric de-
formation models. For instance, the segmentation results
depend on the initial contour, and difficulties arise when
extending from low to high dimensions and in segmenting
complex objects. Geometric deformation can well solve the
problems caused by parametric deformable models. Geo-
metric deformable models are based on deformation curve
evolution theory and have no strict requirement on the
position of the initial contour, which increases the robust-
ness of the method and allows it to be extended to high
dimensions. Zhang et al. [23] proposed an automatic vessel
segmentation method, which uses nonlinear orthogonal
projection to capture the characteristics of retinal blood
vessels and obtained an adaptive local thresholding algo-
rithm for blood vessel segmentation. Zhao et al. [24] sug-
gested a retinal vessel segmentation method that employs a
region-based active contour model with a level set imple-
mentation and a region growing model.

2.5. Methods of Deformation Model. Machine learning is an
algorithm that teaches computers to learn to achieve goals
automatically, by building generative or discriminative
models from accumulated datasets. Machine learning can be
divided into supervised learning and unsupervised learning.
The supervised learning methods learn to achieve goals
based on ground-truth, which means that during the
training stage, the training data used to train the model come
with a “label” that can be used by the machine learning
algorithm to differentiate the data. Applying such paradigm
in the problem of DR, it means that when using supervised
learning, one needs to mark all of the pixels belonging to
vessels in advance, whereas the unsupervised learning
method does not need to mark them beforehand.

For supervised learning, Cesar and Jelinek [30] and
Leandro et al. [31] proposed a supervised classification with
two-dimensional Gabor wavelet. Each pixel has a feature
vector that consists of the gray-scale feature and responses of
distinct sizes of two-dimensional Gabor wavelet. Ricci and

Perfetti [25] proposed a segmentation method for retinal
vessels based online manipulation and support vector
classification. Since the features are extracted by two
orthogonal vertical lines, it reduces the features and
training samples in supervised learning. A supervised
method using neural network was proposed by Marin
et al. [26], which has one input layer, three hidden layers,
and one output layer. Each pixel in the image is repre-
sented by a seven-dimensional feature vector to train the
network. Shanmugam and Banu [27] used an extreme
learning machine (ELM) to detect retinal vessels by
creating a seven-dimensional feature vector based on
gray-scale features and invariant moments and using ELM
to segment vessels. In 2015, Wang et al. [28] raised a new
hierarchical retinal vascular segmentation, including
three steps: preprocessing, hierarchical feature extraction,
and integration classification. It involves using simple
linear iterative clustering (SLIC) to perform super-pixel
segmentation and randomly selecting a pixel to represent
the entire super-pixel, as a more easy and efficient means
of extracting features.

For unsupervised learning, in 1998, Tolias and Panas
[32] created an automatic and unsupervised segmentation
method based on blurred fundus images, which used fuzzy
C-means (FCM) to find initial candidate points. Xie and Nie
[33] proposed a segmentation method based on a genetic
algorithm and FCM. Salazar-Gonzalez et al. [29] used
methods of vector flow to segment retinal vessels.

Table 2 is a summary about the performance comparison
between different existing methods.

3. Literature Review of Diabetic
Retinopathy Detection

Although extracting vessels before detecting DR with machine
learning can achieve high accuracy, it is time-consuming to
create the marked ground-truth for retinal vessels. Another
paradigm is to train the computer to automatically learn how to
distinguish levels of DR by reading retinal images directly,
without performing vessel segmentation. In 2000, Ege et al. [34]
proposed an automatic analysis of DR by different statistical
classifiers, including Bayesian, Mahalanobis, and k-nearest
neighbor. Silberman et al. [35] introduced an automatic de-
tection system for DR and reported an equal error rate of 87%.
Karegowda et al. [36] tried to detect exudates in retinal images
using back-propagation neural networks (BPN). Their features
were decided by two methods: decision trees and genetic al-
gorithms with correlation-based feature selection (GA-CFES). In
their experiment, the best BPN performance showed 98.45%
accuracy. Kavitha and Duraiswamy [37] did some research on
automatic detection of hard and soft exudates in fundus im-
ages, using color histogram thresholding to classify exudates.
Their experiments showed 99.07% accuracy, 89% sensitivity,
and 99% specificity. In 2014, de la Calleja et al. [38] used local
binary patterns (LBP) to extract local features and artificial
neural networks, random forest (RF), and support vector
machines (SVM) for detection. In using a dataset containing 71
images, their best result achieved 97.46% accuracy with RF.
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TABLE 2: Performance comparison.

Method Year Reference Sn Sp Acc AUC Database
Vascular trackin 2010 [9] 0.7468 0.9551 0.9285 — DRIVE
8 2012 [10] 0.6887 0.9562 0.9290 — STARE
2009 [14] 0.6611 0.9848 0.9497 — STARE
Matched filtering 2012 [15] 0.7191 0.9687 0.9407 — STARE
0.7154 0.9716 0.9343 — DRIVE
Morphological processin 2011 [18] 0.7352 0.9795 0.9458 — DRIVE
phological p & 2014 [19] 0.7862 0.9815 0.9598 - DRIVE
2007 [21] 0.6634 0.9682 0.9316 — DRIVE
— 0.9736 0.9087 — STARE
Deformation model 2009 [23] — 0.9772 0.9610 — DRIVE
0.7187 0.9767 0.9509 — STARE
2014 [24] 0.7354 0.9789 0.9477 — DRIVE
— — 0.9584 0.9602 STARE
2007 [25] — — 0.9563 0.9558 DRIVE
0.6944 0.9819 0.9526 — STARE
2011 [26] 0.7067 0.9801 0.9452 — DRIVE
Machine learning 2013 [27] 0.8194 0.9679 0.9725 — DRIVE
2014 28] 0.8104 0.9791 0.9813 0.9751 STARE
0.8173 0.9733 0.9767 0.9475 DRIVE
0.7887 0.9633 0.9441 — STARE
2014 [29] 0.7512 0.9684 0.9412 — DRIVE

Sn: sensitivity, Sp: specificity, Acc: accuracy, AUC: area under curve.

4. Material and Methods

We propose an automatic DR detection algorithm, based on
DCNN, fractional max-pooling [39], SVM [40], and
teaching-learning-based optimization (TLBO) [41]. Specif-
ically, we train two DCNN networks with fractional max-
pooling, combining their prediction results using SVM and
optimizing the SVM parameters with TLBO. The reason for
training two distinct networks is that different network
architectures may have their unique advantages in feature
space representation. By training two DCNNs and com-
bining their features, the prediction accuracy can be further
enhanced. Another important factor impacting the recog-
nition rate is the parameter of classifiers. We propose to
optimize the SVM parameters using TLBO. We illustrate the
image preprocessing methods in Section 4.1 and present the
fractional max-pooling, SVM, and TLBO, in Sections 4.2,
4.3, and 4.4, respectively.

4.1. Preprocessing. Given the vessels in the original fundus
images are mostly not very clear, and the size of each
fundus image may differ, it is essential to preprocess images
so that they have the same size and the visibility of the
vessels is improved. There are three steps in preprocessing.
The first is to rescale images to the same size. Since the
fundus images are circular, we rescale the input images so
that the diameter of the fundus images becomes 540 pixels.
After rescaling, the local average color value is subtracted
from the rescaled images, and another transformation is
performed so that the local average is mapped to 50% gray-
scale in order to remove the color divergence caused by
different ophthalmoscopes. Last but not least, because
boundary effects may occur in some images, we remove the

periphery by clipping 10% from the border of the images.
Figure 4 shows the original fundus image and the image
after preprocessing.

4.2. Fractional Max-Pooling. Pooling is a procedure that
turns the input matrix M;, x N,  into a smaller M, X
N, output matrix. The purpose is to divide the input

matrix into multiple pooling regions (P; ;):

pic{1,2,3,...,M,,} foreachie{l,...,M,}
pjc{L,2,3,...,Ny,} foreach je{l,....Ny}. (1)

b4 out
P;; = pi x pj.

The pooling results are computed according to pooling
type:

Oper

Output; ;. =
utpu i,j (k,l) c Pl]

Inputy ;. (2)

In equation (2), “Oper” refers to a particular mathe-
matical operation. For example, if max-pooling is used, the
operation will be to take the maximum of the input region.
For average pooling, the average of the input region is taken.
For such a network that requires tremendous learning, it is
preferable to use as many hidden layers as possible. In this
work, the pooling layer used in our networks is fractional
max-pooling instead of general max-pooling.

Fractional max-pooling is a pooling scheme that
makes the size of the output matrix equivalent to fractional
times that of the input matrix after pooling, i.e.,
Ny, = aNg» >0, a ¢ Z. To describe the general

m
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(®)

(d)

FIGURE 4: Image before and after the preprocessing stage. (a, b) images before preprocessing stage; (c, d) images after preprocessing stage.

pooling regions, let (x,-)f\fg“‘ and ( yj)l.\i‘)(;‘ be two increasing

integer sequences starting with one and ending with M,, or
N;,. These two sequences are used in pooling steps, as
described in Figures 5 and 6.

Pi,jz[xi—l’xi_a] X[yj—l’yj_b]' (3)

The constants, a and b in equation (3), stand for the
overlapping length and the width of the pooling window,
respectively. Figure 5 is a simple example of overlapping
pooling. Figure 6 illustrates different pooling region types.

After fractional max-pooling, the pooling window size is
still integers, but the global pooling size will change. Namely,
fractional max-pooling does not directly change the pooling
window into a fractional scale. Instead, it uses windows of
variable size to achieve fractional pooling. The generation of x
and y sequences can be random or pseudorandom. Pseudo-
random sequences generate more stable pooling regions than
random sequences and can also achieve higher accuracy [39].

4.3. Support Vector Machine (SVM). SVM is a supervised
learning method used for classification and regression
analysis. SVM can find the hyperplane or decision boundary
defined by the solution vector w, which not only separates
the training vectors but also works well with unseen test
data. To improve its generalization ability, SVM selects
decision boundaries based on maximizing margins between
classes.

Figure 7 illustrates the idea. Suppose there are n points in
a binary dataset:

x=1{1,2,3,4,5},y={1,2,4,5L,a=0,b=1
Pyy=Ixp_px =0l X [y, y — 1] = [1,2] x [1, 2]
Po=lxpx = U x [y -1 = [1,2] x [2,3]

FIGURE 5: An overlapping example. The blue solid line indicates
pooling region P, ; while the red dotted line shows the P, ,.

(X0 91)s -5 (X0 90)s (4)

where y; is the data label, which can be 1 or —1, indicating
the class to which X, belongs. We need to find the optimized
hyperplane, such that the distance between the hyperplane
and its nearest point x, is maximized. A hyperplane can be
written as equation (5) based on X:

W-X-b=0, (5)

where W is the normal vector of the hyperplane, and the
value of b/|W| decides the margin of hyperplane from the
training data point along the normal vector w.
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a=1,b=1
x={L2,...},y=1{.2,...}

x={L3,...L,y=1{L2,...}

x={L2,...},y=1{13,...}

P1,1 = [X171’x1 -1]x [}/171,}/1 -1]=[1,1] x[1,1]

Py= [ x =1 x [y y = 1 = [1,2] x [1,1]

P1,1 = [-lep X;— 1] x [}’171,}’1 -1]=[1,1] x[1,2]

] —0
H—D
[ —— [

— 1

FiGure 6: Different pooling types when both a and b equal to one. The left side shows the equations for pooling condition and computation
of pooling region. Pictures on the right side indicate regions before and after pooling.

For y;,, whose value is 1, the data must satisfy
WX -b>1,and for y; whose value is —1, W - ¥ —b<~1

has to be satisfied. Combining these two conditions, we get
y:(W-X-b)>1. (6)

The goal is to maximize b/ 12| according to the constrain
of equation (6) in order to derive the optimized decision
hyperplane for classification.

Sometimes, the training data might not be able to be
perfectly separated using linear boundaries. Therefore, in the
SVM formulation, we need to introduce the error metric ¢
and the cost parameter C, as shown in equation (7). The goal
now becomes to minimize

Lt o
—w-w+C) ¢ 7
5 ;1 (7)
Subject to
WU-x, +bx1-¢ if W-x >b,
W-x, +b<-1+¢ if W-x. <b, (8)
g >0.

The performance of SVM is influenced by two main
parameters, the first one is C, which is a tunable parameter in
equation (7). The other one is y, which is used in the radial
basis function (RBF) kernel to map data into a higher di-
mensional space before training and classification. The RBF
kernel can be defined as

2
K(xpxy) =e bl ©)
where y denotes the width of the Gaussian envelope in a
high-dimensional feature space.

4.4.  Teaching-Learning-Based  Optimization  (TLBO).
TLBO, an evolution-based optimization algorithm, was
proposed by Rao et al. [41], in 2011. The concept of TLBO is
inspired by the evolution of the learning process when a
group or a class of learners learn a target task. There are two

>

FiGure 7: Example of decision boundary hyperplane with two
classes of samples.

ways of learning in groups or classes: (1) learning from the
guidance of the teacher and (2) learning from other learners.
The procedure of TLBO can be divided into two phases, as
described below in Sections 4.4.1 and 4.4.2.

4.4.1. Teacher Phase. In the whole population, the teacher
(Xteacher) can be considered as the best solution. Namely,
learners learn from the teacher in the teacher phase. In this
phase, the teacher strives for enhancing the results of other
individuals (X;) by increasing the mean result of the
classroom. This can be described as adjusting X, to
approximate X, In order to maintain a stochastic
nature during the optimization process, two randomly
generated parameters, r and T', are applied in each iteration
for the solution X; as

Xnew = Xi +7; (X - TFX (10)

teacher mean )’

Ty =round[1 + rand (0, 1)]. (11)

In equation (10), r; is a randomly selected number in the
range of 0 and 1. Moreover, X, ., and X; are the new and
existing solutions at iteration i, respectively. T in equation
(11) is a teaching factor which can be either 1 or 2.
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4.4.2. Learner Phase. The learners gain their knowledge by
interacting with each other. Therefore, an individual learns
new information if other individuals have more knowledge
than him or her. In this phase, the student X; interacts
randomly with another student X (i# j) in order to en-
hance his or her knowledge. Equation (12) shows that if X; is
better than X; (e, f(X]-) > f(X;) for minimization
problems), X ; is moved toward X;. Otherwise, it is moved
away from X;.
X +r(X-X;), f(X;)> f(X)),
Koo = (12)
X;+r(X;-X,), £(X)>f(X))

If the new solution X, to the problem is better than the
old ones, the new solution X, will be recorded as the best
solution. After updating the status of each learner, a new
iteration begins. A stop criterion, based on the iteration
number or the difference of the cost function, can be set to
stop the iteration properly. The flowchart of TLBO is shown
in Figure 8.

5. Result

Our fundus image data is from the database provided by one
of the Kaggle contests; entitled “Identify signs of diabetic
retinopathy in eye images” [42]. In this database, there are
about 90,000 images. We separate 1000 images from the
training dataset to be the validation dataset. The detailed
information of each dataset is shown in Table 3, and our two
network architectures are shown in Figure 9.

Our proposed method uses two DCNNss with fractional
max-pooling layers. For every input fundus image, the two
DCNN will output a vector of size 1 x 5, representing the
probability distribution of the prediction for each lesion
(category). The probability distribution, together with other
values, forms a feature with dimensionality 24. The 24
features are described as follows:

(i) DCNN probabilities of each lesion, respectively (5
features)

(ii) Averages of R, G, and B channel values within 50% =
50% center cropped image (3 features)

(iii) Widths and heights of 50% = 50% center cropped
image (2 features)

(iv) Overall standard deviation of the original image and
50% =* 50% centered cropped image, Laplacian-
filtered image (2 features)

(v) In total, there are 12 features for one fundus
image. We then append another 12 features from
the fundus image of the other eye of the same
subject. Therefore, the overall length of the feature
vector is 24 for one fundus image. The 24 feature
vectors of dimensionality are used as input vec-
tors of SVM

The 24-dimensional vector is used to train a multiclass
SVM (five classes), whose parameters are optimized using
the TLBO method. We implemented the method described

in [39] and used it as the baseline. The baseline system uses
similar features with a scheme of ensemble classifier (RF).

We used the validation set data to optimize the pa-
rameter set (C, y) in SVM using TLBO. The upper and
lower bounds of the parameter are set within [0, 100]. We
ran 50 iterations with 50 students.

Our final accuracy for five-class classification task of
DR is 86.17% and the accuracy for the binary class
classification task is 91.05%. Labels for five-class classi-
fication are normal, NPDR level 1, NPDR level 2, NPDR
level 3, and PDR while labels for binary class classifi-
cation are normal and abnormal. For binary classifica-
tion, its sensitivity is 0.8930 while the specificity is
0.9089. Except counting accuracy, we also do a T-test for
our binary class classification. The T-test is also called the
Student’s t-test. It is a statistical hypothesis test, in which
the test statistic follows a Student’s t-distribution.
Usually, the t-test is used to compare whether there is a
significant difference between two groups of data and
assists in judging the data divergence. In doing a paired
samples t-test with results from binary class classification
and random judgment, its outcome is 1 for the hypothesis
test result, zero for the p value and [0.3934, 0.4033] for
the confidence interval, under null hypothesis at the 5%
significant level.

The hypothesis test result is an index that tells whether
two data come from the same distribution or not. If the data
come from the same distribution, the value of the hypothesis
test result will be close to 0. On the contrary, if the data
resources are distinct, the result will be close to 1, which
means there is a differentiation between the data. The p value
is the probability of accepting the assumption that there is a
difference between two data may be wrong. The smaller the p
value, the more reason that there is a disparity between data.

Also, we designed an app called “Deep Retina,” pro-
viding personal examination, remote medical care, and early
screening. Figure 10 shows our app interfaces. After
choosing a fundus image that the user wants to check, it will
send the image to our server and use our designed machine
learning method. It takes about 10s (depends on network
speed) to get the result, which will be presented as the
probability of each lesion. With a handheld device, in-
dividuals can do the initial examination at the district office
or even at home. More importantly, it can benefit some
remote areas that lack medical resources.

6. Discussion

6.1. Accuracy Improvement. Table 4 shows the accuracy
comparison when using different classifiers and pa-
rameter optimization methods on each dataset. Using the
default parameters with SVM (without optimization),
accuracies in both validation and test sets are higher than
that of the RF [39]. If we optimize the parameters using
the default parameter searching method provided in the
LIBSVM software package, though it achieves very high
accuracy in the five-fold cross validation experiment, the
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Ficure 8: TLBO flowchart.
validation and test accuracies are even lower than the Table 5 shows the confusion matrix of the classification

default one. From this result, we believe that overfitting  results from the two DCNN networks (before performing
arises when optimizing parameters in SVM. SVM classification). Network 1 is the architecture shown on
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TaBLE 3: Detailed information of each dataset.

) DR lesions
Dataset # of images
1 2 3 4
Train 34124 73% 6% 15% 3% 3%
Validation 1000 70% 8% 15% 4% 3%
Test 53572 74% 7% 15% 2% 2%

3 x 3 conv, 128

3 x 3 conv, 64

3 x 3 conv, 160

3 x 3 conv, 96

3 x 3 conv, 192

3 x 3 conv, 128 3 x 3 conv, 224

3 x 3 conv, 256

3 x 3 conv, 192 3 x 3 conv, 288

3 x 3 conv, 224 3 x 3 conv, 320

3 X 3 conv, 256 3 x 3 conv, 352

3 x 3 conv, 288 3 x 3 conv, 384

2 x 2 conv, 320 2 x 2 conv, 416

1 x 1 conv, 356 1 x 1 conv, 448

F1GURE 9: Architecture of the two DCNN networks that we used.

the left side of Figure 9, and network 2 is the one on the right
side. From Table 5, it shows that the lesion classifications of 0
and 2 are better than the other categories. For lesion 1, most
of the prediction results are incorrect. Also, for lesions 3 and
4, the majority of the results are misclassifications that are
classified into lesion 2.

Table 6 shows the confusion matrix of the classification
results using the full procedure of the proposed method
(using SVM with TLBO). Table 7 displays the difference
between Tables 5 and 6, which serves as a performance
comparison between the two methods (using DCNN only
and DCNN + SVM + TLBO). From the table, every class,
except class 0 and overall accuracy, is increased in network 1.
For network 2, each accuracy, except class 3, is increased.
The decline in accuracy of class 3 is mainly caused by
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misclassification of class 2. Table 8 shows the confusion
matrix of the classification results using the baseline method
as reported in [39], for comparison purposes.

6.2. Deep Learning vs Traditional Classification Methods.
Many traditional classification methods try to solve the
problem of DR detection by (1) using image processing to
capture symptoms in fundus images and then (2) building a
classifier to make decisions based on the detected symptoms
(1). The shortcoming of image processing methods is that the
manifestations of the symptoms are random across different
images; therefore, it is extremely time-consuming and re-
quires intense efforts to label the locations of the symptoms.
Abiding by the new philosophy that comes with the emer-
gence of the deep learning technology, our proposed method
is trying to learn how to make decisions directly from the
image data itself. Different than the former approaches, our
images only need to be labeled with lesion number instead of
labeling symptom locations. Consequently, it saves consid-
erable time during the database preprocessing stage. On top of
the classification results by the two DCNN networks, we use
SVM optimized by TLBO to generate an improved outcome,
and we achieve 86.17% accuracy. Our result is better than the
first-place winner in the Kaggle competition. It shows that our
research result is the state-of-the-art.

6.3. Limitation. In our current datasets, the number of
images of lesions 3 and 4 is not sufficient to train a network,
which is a limitation of the proposed method. Therefore, one
of our future works is to develop deeper collaborative re-
lations with hospitals and clinics to acquire more data of
lesions 3 and 4. With more data, we believe the classification
accuracy will be further increased. In addition, from our
result, we found that it is hard to differentiate the images
between lesions 0 and 1. Therefore, when we collect new
data, it is desirable to collect more images belonging to
lesions 0 and 1. Also, we can attempt to use a different
network architecture for this problem.

7. Conclusion

It is feasible to train a deep learning model for automatic
diagnosis of DR, as long as we have enough data for sta-
tistical model training. Furthermore, the database prepa-
ration stage only needs a categorical label for each training
image. It does not require detailed annotation for retinal
vessel tracking in every image. Hence, it is time-efficient
compared to the traditional machine learning-based method
for automatic diagnosis of DR. The final accuracy can
achieve 86.17% and 91.05% for five-class and binary class
classifications, respectively.

The sensitivity and specificity of binary classification are
0.8930 and 0.9089, respectively, which is a satisfactory result.
Furthermore, we developed an automatic inspection app
that can be used in both personal examination and remote
medical care. With more image data collected, we expect the
accuracy can be even more enhanced, further improving our
system.
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FiGure 10: App interfaces.

TABLE 4: Accuracy comparison when using different classifiers and different parameter optimization methods on each dataset.

Method
Dataset SVM RF [39]
Without optimization Default parameter searching TLBO
Five-fold cross validation (using training data) 88.744% 96.5724% — —
Validation data 85.4% 79.6% — 84.7%
Test data 86.1177% 81.0573% 86.17% 86.02%

TaBLE 5: Confusion matrix of the classification results from the two DCNN networks, before performing SVM classification.

Ground-truth level

Determined level Network 1 Network 2

0 1 2 3 4 0 1 2 3 4
0 39031 2693 2361 75 160 38310 2233 1617 51 78
1 118 438 185 0 1 327 735 290 1 3
2 339 626 5058 738 392 790 786 5509 620 345
3 0 0 170 332 102 4 1 338 486 185
4 43 5 85 69 551 100 7 105 56 595
Accuracy (%) 98.74 11.64 64.36 27.35 45.69 96.91 19.54 70.01 40.03 49.34
Overall accuracy (%) 84.76 85.18

TaBLE 6: Confusion matrix of the classification results using the full procedure of the proposed method (using SVM with TLBO).

Ground-truth level

Determined level SVM optimized with TLBO

0 1 2 3 4
0 38611 2233 1513 44 80
1 312 831 349 1 1
2 570 696 5706 701 393
3 3 0 215 408 123
4 35 2 76 60 609
Accuracy (%) 97.67 22.09 72.60 33.61 50.50
Overall accuracy (%) 86.17
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TaBLE 7: Differences between Tables 5 and 6.
Ground-truth lesion

Determined lesion SVM-network 1 SVM-network 2

0 1 2 3 4 0 1 2 3 4
0 +420 —460 —848 =31 -80 +310 0 -104 —43 +2
1 +194 +393 +164 +1 0 -15 +96 +59 0 -2
2 +231 +70 +648 =37 +1 -220 -90 +197 +81 +48
3 +3 0 +45 +76 +21 +1 -1 -123 -78 -62
4 +3 -3 +45 +76 +58 -65 -5 -28 +4 +14
Accuracy increment (%) -1.08 89.77 12.80 22.88 10.52 0.78 13.05 3.69 -16.03 2.3
Opverall accuracy increment (%) 1.6 1.16

TaBLE 8: Confusion matrix of the classification using the baseline method [39] and its overall accuracy.
Original
Determined Random forest
0 1 2 3 4

0 38228 2001 1331 38 64
1 546 1026 434 3 2
2 710 732 5726 635 358
3 2 1 279 465 146
4 45 2 89 73 636
Accuracy (%) 96.70 27.27 72.86 38.30 52.74
Overall accuracy (%) 86.01
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detection).
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