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Computer-assisted image-based
risk analysis and planning in lung
surgery - a review
Stefan Krass1*, Bianca Lassen-Schmidt1 and Andrea Schenk1,2

1Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany, 2Department of Diagnostic and
Interventional Radiology, Hannover Medical School, Hannover, Germany

In this paper, we give an overview on current trends in computer-assisted
image-based methods for risk analysis and planning in lung surgery and
present our own developments with a focus on computed tomography (CT)
based algorithms and applications. The methods combine heuristic,
knowledge based image processing algorithms for segmentation,
quantification and visualization based on CT images of the lung. Impact for
lung surgery is discussed regarding risk assessment, quantitative assessment
of resection strategies, and surgical guiding. In perspective, we discuss the
role of deep-learning based AI methods for further improvements.

KEYWORDS

image processing, lung surgery, risk analysis, surgical planning, lung cancer,

quantification

Introduction

Computational image-based surgical planning and risk analysis has been the subject

of research during the last decades. Different approaches were developed in particular for

brain, lung and liver surgery. For lung surgery, different imaging modalities, e.g.

fluorescence bronchoscopic technique (1), as well as a variety of other devices (2)

exist. In this paper, we concentrate on CT-based modelling of the patient individual

lung morphology combined with quantification and visualization methods to support

thoracic surgeons prior and during surgical interventions.

Chen-Yoshikawa et al. (3) give an overview about current trends in thoracic surgery

and present, among other topics, the current role of CT-based image analysis and

modeling for planning and risk analysis in thoracic surgery. They still see a limitation

in the complexity in manipulating the discussed software systems. Matsumoto et al.

(4) compare different software programs for the visualization of anatomical lung

structures based on volume and surface rendering. They concluded that the generated

three-dimensional (3D) images facilitate a better understanding of anatomic

structures. They also see a lack in accuracy in subsegmental blood vessels compared

to intraoperative findings. Ikeda et al. (5) outline the importance of knowledge about

the anatomy prior and during surgery, in particular for video-assisted throracoscopic

surgery (VATS) and evaluate a particular software system (Synapse Vincent, Fuji Film

Co., Ltd., Tokyo, Japan). They discuss in particular the role of 3D image analysis for

the knowledge of the patient individual blood vessel structure and see impact on

safety and education. Nia et al. (6) use this system for preoperative planning and

guiding of video-assisted surgery and conclude that preoperative planning with
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interactive 3D CT reconstruction is useful to prepare a surgeon

with knowledge on specific anatomic variations. They also

demonstrate the feasibility of intraoperative 3D guidance in

VATS. Also (7) retrospectively evaluated the impact of 3D

modeling of the pulmonary vessels on lung resection. They

focused on robotic interventions and emphasize the

improvement of confidence of the surgeon in recognizing

anatomical structures and the appreciation of pulmonary

artery variations.

Chen et al. (8) describe the role of computed-tomography

based reconstruction of the lung morphology as a basis for

further applications of virtual and augmented reality. They

demonstrate the ability to segment vessels and bronchi as well

as the tumor (incl. safety margin) based on CT data with the

commercial workstation Ziostation (Amin, Inc., Tokyo,

Japan). Based on the same techniques, Iwano et al. (9)

demonstrated the impact on segmentectomy of the lung.

In Tokuno et al. (10), a new approach for virtual anatomic

reconstruction was presented, that considers the deformation of

the lung during the intervention. Lesage et al. (11) evaluated the

use of modeling of pneumothorax to predict the tumor

localization during minimal invasive surgery based on a

preoperative CT scan.

Sortini et al (12) give an overview on intra-thoracoscopic

localization techniques to improve the detectability of smaller

pulmonary nodules during intervention. The review describes

a variety of different invasive peroperative techniques like

radioguiding vital dyes, and hook wires. They conclude that

there is no superiority of one specific technique but see

advantages of ultrasound guidance compared to invasive

techniques due to reduced complications.

Strength and limitations: The work presented in this paper

emphasizes the importance of explicit segmentation of

anatomical structures of the lung in computed tomographic

images followed by quantification algorithms and adequate

visualization techniques to support the thoracic surgeon. In

contrast to methods that purely rely on volume rendering

techniques, this explicit segmentation allows for

quantification-based risk analysis, as will be shown later. First

methods for the determination of bronchopulmonary

segments based on CT were described 2000 by Krass et al.

(13) and subsequently validated by Böhm et al. (14). Using

this approach, methods for functional analysis of lungs, lung

lobes, and bronchopulmonary segments where developed by

Kuhnigk et al. (15).
FIGURE 1

CT-based segmentation of a tumor in relation to the bronchial tree.
Methods

Segmentation

Based on lung CT data, we have developed methods for the

segmentation of even complex tumors in the lung, methods for
Frontiers in Surgery 02
the segmentation and labeling of the bronchial tree, for the

pulmonary vessel system, and, what is expected to be

important for anatomic resection strategies, the determination

of bronchopulmonary lobes and segments. Related work will

be found within the respective cited literature.

Tumor segmentation
Tumors are segmented with a semi-automated algorithm

that calculates, after an interactive selection of the tumor

position, the borders of the tumor based on morphological

assumptions. Adjacent vessels are automatically excluded from

the segmentation result. The tumor segmentation is robust

even in complex anatomical regions, but still needs an

interactive selected starting point within the tumor. Figure 1

shows an example of a segmented tumor. The methods – as

well as related work - are described in more detail in Kuhnigk

et al. (16).

Bronchial tree
An adaptive region growing method initially proposed by

Selle et al. (17) for liver vessels is used for the segmentation

of the bronchial tree. It automatically adapts the segmentation

threshold with the increase of the segmented airways. For

details, we refer to Zidowitz et al. (18) and Schmidt et al.

(19). In Figure 2 the result of a CT-based airway

segmentation is shown. The algorithm also enables fully

automated labeling of the bronchi according to their affiliation

with the individual bronchopulmonary lobes.

Blood vessels
Due to the high contrast, segmentation of blood vessels can

be done using a conventional 3D region growing algorithm.

This fully automated approach includes an automatic
frontiersin.org
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detection of seed points in the hilum region (15). The

segmentation of blood vessels within the lungs is not able to

differentiate between pulmonary arteries and veins. The

method was part of the “VESSEL 12” challenge (VESsel

SEgmentation in the Lung 2012) (20) that was closed in

November 2019 and is still on rank two among 31

submissions. A separation of pulmonary veins and arteries

was achieved by an additional interaction by marking specific

points in veins and arteries. A result of the overall procedure

is shown in Figure 3.
FIGURE 2

Bronchial tree with automatically identified lobe bronchi.

FIGURE 3

Pulmonary arteries and veins in relation to bronchial tree.
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Lobes and segments
Lobar boundaries are detected by a hybrid approach that

generates a cost image based on the absence or rareness of

larger blood vessels adjacent to the boundary, and an original

image, where segmented blood vessels are removed (15). This

approach was expanded by Lassen-Schmidt et al. (21) who

also included an explicit segmentation of the pulmonary

fissures (see Figure 4) (22). This method participated in an

international challenge (LOLA11, LObe and Lung Analysis

2011) (23), where it was ranked first at the time of the challenge.

The original approach for segmentation of pulmonary

segments (13) was based on the segmented bronchial tree and

therefore limited in accuracy. Validation studies yield an

accuracy of volumetric overlap between segmentation and

ground truth of approxemately 80%. A sufficient

determination of the borders of pulmonary segments is not

possible with this method. Therefore, Stöcker et al. proposed a

segment segmentation, that is based on pulmonary arteries,

and achieved an accuracy of 2–3 mm compared to

groundtruth for the localization of segment boundaries

computed by the pulmonary artery-based method (23). A

result of this segment approximation based on CT data is

shown in Figure 5.
Quantification

Using segmentations, the quantification of a variety of

measures which may assist planning or clinical decision

support become possible: tumor volume, tumor distances – to

lobe or segmental borders, but also to the different

bifurcations of the bronchial tree. Furthermore, based on the

lobe and segment segmentation, it is not only possible to

determine the volume of each individual anatomic unit of the

lung, but it also enables the computation of CT parameters,

that characterize the morphology and function of the

parenchyma – like mean lung density or emphysema index.

These quantification methods, which rely strongly on explicit

segmentation of morphologic structures of the lung, are a

prerequisite for risk analysis prior to lung surgery.
Tumor morphology
Tumor volume quantification is possible on the basis of the

segmentation. The algorithm takes also into account partial

volume effects at the boundary of the tumor. This is of

particular importance with smaller tumors, where border

voxels account for more than 50% of the total volume. More

details about the volumetric method can be found in (16).

Beside tumor volume, quantification of tumor distances to

specific anatomic landmarks is possible based on the

segmented lung morphology. In particular distances to

carina and to lobe and segment borders are of prognostic
frontiersin.org
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FIGURE 4

Automatically identified lung lobes.

FIGURE 5

Identified bronchopulmonary segments.

FIGURE 6

Safety margin between tumor and segment border.
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value for tumor resection and allow for infiltration risk

assessment related to different resection strategies - like lobe

resection vs. (bi-)segmentectomy. The methods and

application for distance-based risk analysis are described in

detail in (24, 25). Figure 6 shows an example of a tumor

safety margin in relation to the boundary of a

brochopulmary segment. Quantification of distance between

tumor and segment border is demonstrated in Figure 7. Use

of pulmonary arteries instead the bronchial tree for the

identification of bronchopulmonary segment boarders is

essential. Even with this bronchopulmonary segment

boarders are identified with an accuracy of about 2 mm. Part
Frontiers in Surgery 04
of future work is the incorporation of pulmonary veins, that

often are located between segment boarders.

Lobe and segment-based quantification
Based on the segmentation of pulmonary lobes and

segments, the calculation of quantitative CT parameters, like

volume, volume percentage, mean lung density, percentiles,

and low – as well as – high attenuation values become

possible for each anatomical lung unit. This allows for a

differentiated analysis of lung structure. Figure 8 shows an

example of lobe-based quantification of lung CT parameters.
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FIGURE 7

Distance between tumor and segment border (2 mm).

FIGURE 8

Lobe based functional CT parameters.

FIGURE 9

Visualization of segmented bronchi, lobe borders and tumor.

FIGURE 10

Visualization of segmented bronchopulmonary borders and
emphysematous regions.
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Visualization

The segmentation of lung structures in CT images enables

a highly selective visualization of the lung morphology,

e. g. bronchopulmonary lobes, bronchial tree and tumor or

extended emphysema in specific lobes. This supports the surgeons

in the planning phase prior to, as well as during, the intervention

as a guiding tool (26). Figure 9 demonstrates the selective

visualization of lung lobe borders, tumor and bronchi.
Frontiers in Surgery 05
In Figure 10, the relation between emphysematous regions and

lung lobes is visualized.

The visualization of segmented structures as opaque or

semi-transparent surface renderings is also directly suited for

display in augmented and virtual reality devices. It can be

combined with basic direct volume renderings of the CT data,

as shown, e.g., for the bones in Figure 9. Using recent fast

approaches of direct volume rendering like adaptive

volumetric illumination sampling (AVIS) (27), a highly

realistic visualization of the lung and it structures becomes
frontiersin.org
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FIGURE 11

AVIS rendering technique.

FIGURE 12

Determination of distance between tumor and resection cutting
point of bronchial tree: 51 mm.
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feasible (Figure 11), even for augmented reality devices that

may support the surgeon in the operation room.
Expected impact for lung surgery

Impact of computer-assistance for lung surgery is expected

within the three categories: general operability, resection

strategy, and surgical planning and guidance. These three

categories will be discussed in the following paragraphs.
Operability

There are two prominent limitations for the operability of a

patient. One is the expected remaining lung function after

resections, the other limitation is the probability of tumor

infiltration in larger adjacent lung structures like blood vessels

or pericardium.

An estimation of postoperative lung function is often

performed using 2D projection scintigraphy. With this

additional invasive method, 3D information is not available.

In contrast, CT-based quantification of remaining volumes of

the lung parenchyma combined with lobe-based quantification

of CT parameters like mean lung density, emphysema index,

emphysema classification and fibrosis index may allow for a

better prognosis of post-operative lung function. The

determination of CT parameters is described in (28), the

approximation of post-operative lung function in (15).
Frontiers in Surgery 06
The direct diagnosis of tumor infiltration into neighboring

structures is challenging and often not possible purely based

on CT data. Nevertheless, the distance between tumor border

and adjacent structures could indicate the infiltration

probability. Limmer et al. (29, 30) show surgical examples,

where CT-based morphologic features allow for the estimation

of infiltration probability.
Resection strategy

The second expected impact of computer-assistance for

thoracic surgery is the support for choosing an adequate

resection strategy for an individual patient. A combination of

quantitative morphological parameters - like size and form of

tumor, distance to carina and lobe bronchus, or spatial

relationships to lobes and segments, combined with functional

quantitative CT parameters, can impact decision making

regarding resection strategies like lobectomy, segmentectomy

or bi-segmentectomy. This refers to different extents of

resections, but also to different surgical techniques (31, 32).

Key parameters for the planning of segment resections are

tumor size, distance to segment border, distance to the

arterial and bronchial cutting point, and safety margins (for

example visualizations see Figures 6, 7, 12).
Surgical planning and guidance

The third expected impact on thoracic surgery is based on

visualization techniques and should help the surgeon via

image-based guidance. Examples are the visualization of
frontiersin.org
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pulmonary metastasis which can guide the surgeon during

metastatic surgery or the visualization of a central tumor in

relation to bronchi and pulmonary vessel systems in particular

for video-assisted throracoscopic surgery (26, 29).
Commonalities with liver surgery
planning

Some approaches for surgical planning and risk analysis for

lung share commonalities with liver surgical planning.

Therefore, we also give a short review over related methods to

support liver surgery in oncological cases as well as in living

donor liver transplantation.

As for lung surgery, the first step is the segmentation of

basic anatomic, pathologic and potential risk structures from

contrast-enhanced CT or magnetic resonance imaging (MRI)

data. For liver, these structures are the organ itself, the

hepatic vessel systems of liver artery, portal vein, and hepatic

vein as well as lesions in case of planning for oncologic

surgery. Bile ducts can be segmented and integrated if they

were imaged using a particular contrast agent (Iotroxic Acid;

limited availability) or additional image sequences (e.g.

magnetic resonance cholangiopancreatography, MRCP).

Segmentation of the liver and hepatic lesions has recently

switched from using established image analysis methods to

deep learning approaches [e.g. (33, 34)]. A fact which was

also confirmed by the international LiTS (Liver Tumor

Segmentation) challenge in 2017 (35, 36) where all

algorithms that placed in the top 10 used deep neural

networks. Vessel segmentations are still a matter of

traditional image processing approaches using a region

growing step (e.g. 17, 37), but first deep learning networks

have also been presented for this task (38, 39).

Risk analysis and planning for liver surgery is typically

based on perfusion and drainage territories and their

combination with virtual resections. Perfusion territories can

be a schematic division of the liver according to the

Couinaud segments (40) and can be transferred using

landmarks or applying a DL network, but can alternatively

and more precisely be computed from the individual

branches of the portal vein system (e.g. 17). Drainage

territories estimated from the hepatic vein branches can be

of great importance in particular for major resections such

as extended hemi-hepatectomies and in living donor liver

transplantations. Studies have shown that computer-assisted

surgical planning and risk analysis can change surgery in

about one third of complex cases when compared to

conventional surgical planning (41, 42). In these challenging

surgical cases, not only liver volume but also hepatic

function plays an important role and combinations thereof

can further improve the preoperative risk analysis and

outcome prediction (43).
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Current work and outlook

The acceptance of the presented methods in clinical routine

relies on the grade of automation and robustness with regard to

different image types for the processing of the CT images. The

effort to achieve the desired image processing results should be

feasible regarding time and interaction. For currently used

heuristic, knowledge-based methods, there is a highly grade of

automation for segmenting bronchi, lungs, lobes and tumors.

However, automatic segmentation of lungs and lobes in cases

where the patients suffer from lung infiltration is limited.

Also, the separate segmentation of pulmonary arteries and

veins is a tedious task. The change of paradigms in medical

image computing that took place during recent years in the

transition from heuristic, knowledge-based algorithms to deep

learning methods gives a chance to enhance automation and

adaption to different image data types, as well as apply these

approaches for more complex procedures which were beyond

the previous methods.. With this the clinical uptake of new

methods could be far quicker and easier than before.

In (44), a broad overview over the developments in

computer analysis in chest imaging during the last decades is

given. The author describes the transition to deep learning-

based algorithms. Examples are presented for airway and

fissure segmentation, nodule detections and classification.

Deep convolutional networks are seen as the technique of

choice for image analysis. Proper implementation of software

for building and training such networks is emphasized. A

review on deep learning based structural and functional

analysis across a variety of lung imaging modalities is given in

(45). The authors give an overview of the deep learning

research literature with regard to lung image analysis

applications. Lassen-Schmidt et al. (46) present the automatic

segmentation of the pulmonary lobes with a 3D u-net and

optimized loss function.

There are several advantages of deep learning-based

methods over knowledge-based algorithms. Deep learning

networks learn from data characteristics that maybe difficult

to recognize by humans. Adaptions of models to different

scanners, resolutions and contrast agents are easier to

perform, because new data can be included into the training

set or added by transfer learning. If annotated data exist, also

the segmentation of new structures is applicable and faster

compared to classical heuristic approaches.

Drawbacks are the need of a powerful hardware

infrastructure for the training of the algorithms. Of significant

importance is the need of a large number of datasets

including respective annotation which, at present, limits the

development of deep learning-based algorithms. A third

drawback may be the risk of overfitting if the training datasets

do not cover the variety of anatomical variations and

differences in imaging techniques and in the routine data to

which the algorithm is later applied.
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For image-based planning and risk analysis in lung

surgery, we anticipate that in the short term deep

learning-based methods applied to an automated

separation of pulmonary veins and arteries and a more

robust lung and lobe segmentation in high pathological

cases will be impactful.
Author contributions

SK wrote the first draft of the manuscript. AS added

commonalites with surgery planning of the liver and

visualization aspects. BLS expanded the outlook to include

recent work on Deep Learning for lung segmentation. All

authors contributed to the article and approved the

submitted version.
Funding

Parts of this work were supported by the German Research

Foundation under Grant DFG 199/20-1.
Frontiers in Surgery 08
Acknowledgments

The authors express their gratitude to all thoracic surgeons
who participated in the DFG research project mentioned for
their comments regarding the developed methods.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.
References
1. Moghissi K, Dixon K. Image-guided surgery and therapy for lung cancer: a
critical review. Future Oncol. (2017) 13(26):2383–94. doi: 10.2217/fon-2017-0265

2. Zhao Z, Jordan S, Tse ZTH. Devices for image-guided lung interventions:
state-of-the-art review. Proc Inst Mech Eng H. (2019) 233(4):444–63. doi: 10.
1177/0954411919832042

3. Chen-Yoshikawa TF, Fukui T, Nakamura S, Ito T, Kadomatsu Y, Tsubouchi H,
et al. Current trends in thoracic surgery. Nagoya J Med Sci. (2020) 82(2):161–74.
doi: 10.18999/nagjms.82.2.161

4. Matsumoto T, Kanzaki M, Amiki M, Shimizu T, Maeda H, Sakamoto K, et al.
Comparison of three software programs for three-dimensional graphic imaging as
contrasted with operative findings. Eur J Cardiothorac Surg. (2012) 41:1098–103.
doi: 10.1093/ejcts/ezr152

5. Ikeda N, Yoshimura A, Hagiwara M, Akata S, Saji H. Three dimensional
computed tomography lung modeling is useful in simulation and navigation of
lung cancer surgery. Ann Thorac Cardiovasc Surg. (2013) 19(1):1–5. doi: 10.
5761/atcs.ra.12.02174

6. Nia P S, Olsthoorn JR, Heuts S, Maessen JG. Interactive 3D reconstruction of
pulmonary anatomy for preoperative planning. Virtual Simul Intraoper Guiding
Video-Assist Thoracoscopic Lung Surg. (2019) 14(1):17–26. doi: 10.1177/
1556984519826321

7. Bhakhri K, Hyde ER, Sze MM, Berger LU, Ourselin S, Routledge T, et al.
Surgeon knowledge of the pulmonary arterial system and surgical plan
confidence is improved by interactive virtual 3D-CT models of lung cancer
patient anatomies. Front Surg. (2021) 8:652428. doi: 10.3389/fsurg.2021.652428

8. Chen Z, Zhang Y, Yan Z, Dong J, Cai W, Ma Y, et al. Artificial intelligence
assisted display in thoracic surgery: development and possibilities. J Thorac Dis.
(2021) 13(12):6994–7005. doi: 10.21037/jtd-21-1240

9. Iwano S, Yokoi K, Taniguchi T, Kawaguchi K, Fukui T, Naganawa S. Planning
of segmentectomy using three-dimensional computed tomography angiography
with a virtual safety margin: technique and initial experience. Lung Cancer.
(2013) 81(3):410–5. doi: 10.1016/j.lungcan.2013.06.001

10. Tokuno J, Chen-Yoshikawa TF, Nakao M, Matsuda T, Date H. Resection
process map: a novel dynamic simulation system for pulmonary resection.
J Thorac Cardiovasc Surg. (2020) 159(3):1130–8. doi: 10.1016/j.jtcvs.2019.07.136
11. Lesage AC, Rajaram R, Tam AL, Rigaud B, Brock KK, Rice CD, et al.
Preliminary evaluation of biomechanical modeling of lung deflation during
minimally invasive surgery using pneumothorax computed tomography scans.
Phys Med Biol. (2020) 65(22):225010. doi: 10.1088/1361-6560/abb6ba

12. Sortini D, Feo C, Maravegias K, Carcoforo P, Pozza E, Liboni A, et al.
Intrathoracoscopic localization techniques. Review of literature. Surg Endosc.
(2006) 20(9):1341–7. doi: 10.1007/s00464-005-0407-z

13. Krass S, Selle D, Boehm D, Jend HH, Kriete A, Rau W, et al. A method for
the determination of bronchopulmonary segments based on HRCT data. In: HU
Lemke, MW Vannier, K Inamura, AG Farman, K Doi, editors. Computer assisted
radiology and surgery. New York: Elsevier Science (2000). p. 584–9.

14. Boehm D, Krass S, Kriete A, Rau WS, Selle D, Jend H-H, et al.
“Segmentbestimmung im computertomogramm der lunge”: in-vitro validierung.
In: A Horsch, TM Lehmann, editors. Bildverarbeitung für die medizin. Berlin:
Springer (2000). p. 168–72.

15. Kuhnigk JM, Dicken V, Zidowitz S, Bornemann L, Kuemmerlen B, Krass S,
et al. Informatics in radiology (infoRAD): new tools for computer assistance in
thoracic CT. Part 1. Functional analysis of lungs, lung lobes, and
bronchopulmonary segments. Radiographics. (2005) 25(2):525–36. doi: 10.1148/
rg.252045070

16. Kuhnigk JM, Dicken V, Bornemann L, Bakai A, Wormanns D, Krass S, et al.
Morphological segmentation and partial volume analysis for volumetry of solid
pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging. (2006) 25
(4):417–34. doi: 10.1109/TMI.2006.871547

17. Selle D, Preim B, Schenk A, Peitgen HO. Analysis of vasculature for liver
surgical planning. IEEE Trans Med Imaging. (2002) 21:1344–57. doi: 10.1109/
TMI.2002.801166

18. Zidowitz S, Schmidt A, Kriete A, Krass S, Peitgen H-O. Steps towards a
patient individual geometric model of the bronchial tree used for functional
simulations. In: AA Amini, A Manduca, editors. Proceedings of SPIE, vol. 5369.
Bellingham: SPIE (2004). p. 125–31.

19. Schmidt M, Kuhnigk JM, Krass S, Owsijewitsch M, de Hoop B, Peitgen H-O.
Reproducibility of airway wall thickness measurements. In: N Karssemeijer, RM
Summers, editors. Proceedings of SPIE, vol 7624. Bellingham: SPIE
(2010). p. 76241O. doi: 10.1117/12.844453.
frontiersin.org

https://doi.org/10.2217/fon-2017-0265
https://doi.org/10.1177/0954411919832042
https://doi.org/10.1177/0954411919832042
https://doi.org/10.18999/nagjms.82.2.161
https://doi.org/10.1093/ejcts/ezr152
https://doi.org/10.5761/atcs.ra.12.02174
https://doi.org/10.5761/atcs.ra.12.02174
https://doi.org/10.1177/1556984519826321
https://doi.org/10.1177/1556984519826321
https://doi.org/10.3389/fsurg.2021.652428
https://doi.org/10.21037/jtd-21-1240
https://doi.org/10.1016/j.lungcan.2013.06.001
https://doi.org/10.1016/j.jtcvs.2019.07.136
https://doi.org/10.1088/1361-6560/abb6ba
https://doi.org/10.1007/s00464-005-0407-z
https://doi.org/10.1148/rg.252045070
https://doi.org/10.1148/rg.252045070
https://doi.org/10.1109/TMI.2006.871547
https://doi.org/10.1109/TMI.2002.801166
https://doi.org/10.1109/TMI.2002.801166
https://doi.org/10.3389/fsurg.2022.920457
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Krass et al. 10.3389/fsurg.2022.920457
20. VESsel SEgmentation in the Lung. https://vessel12.grand-challenge.org/
(Accessed April 7, 2022) (2012).

21. Lassen B, van Rikxoort EM, Schmidt M, Kerkstra S, van Ginneken B,
Kuhnigk JM. Automatic segmentation of the pulmonary lobes from chest CT
scans based on fissures, vessels, and bronchi. IEEE Trans Med Imaging. (2013)
32(2):210–22. doi: 10.1109/TMI.2012.2219881

22. Lassen-Schmidt BC, Kuhnigk JM, Konrad O, van Ginneken B, van Rikxoort
EM. Fast interactive segmentation of the pulmonary lobes from thoracic
computed tomography data. Phys Med Biol. (2017) 62(16):6649–65. doi: 10.
1088/1361-6560/aa7674

23. LObe and Lung Analysis. https://lola11.grand-challenge.org/ (Accessed April
7, 2022) (2011).

24. Stoecker C, Welter S, Moltz JH, Lassen B, Kuhnigk JM, Krass S, et al.
Determination of lung segments in computed tomography images using the
Euclidean distance to the pulmonary artery. Med Phys. (2013) 40(9):091912.
doi: 10.1118/1.4818017

25. Stoecker C, Welter S, Klemm W, Beckers F, Witte B, Krass S. Computer
assistance in lung surgery for segment resections and minimally invasive
surgery. In: HK Hahn, R Kikinis, J Klein, A Nabavi, S Weber, editors. CURAC
2015 Tagungsband. Bremen: Fraunhofer MEVIS (2015). p. 327–32.

26. Dicken V, Kuhnigk JM, Bornemann L, Zidowitz S, Krass S, Peitgen H-O.
Novel CT data analysis and visualization techniques for risk assessment and
planning of thoracic surgery in oncology patients. In: HU Lemke, K Inamura, K
Doi, MW Vannier, AG Farman, editors. Computer assisted radiology and
surgery. Amsterdam: Elsevier Science (2005). p. 783–7.

27. Kraft V, Link F, Schenk A, Schumann C. Adaptive illumination sampling for
direct volume rendering. In: N Magnenat-Thalmann, C Stephanidis, E Wu, D
Thalmann, B Sheng, J Kim, G Papagiannakis, M Gavrilova, editors. CGI 2020,
LNCS 12221. Cham: Springer Nature Switzerland AG (2020). p. 107–18.

28. Boehm D, Krass S, Selle D, Jend H-H, Peitgen H-O. Segmentabhängige
bestimmung von quantitativen funktionsparametern aus dem CT der lunge. In:
H Handels, A Horsch, T Lehmann, HP Meinzer, editors. Bildverarbeitung für
die medizin. Berlin: Springer (2001). p. 295–9.

29. Limmer S, Dicken V, Kujath P, Krass S, Stöcker C, Wendt N, et al. Three-
dimensional reconstruction of central lung tumors based on CT data. Chirurg.
(2010) 81(9):833–40. doi: 10.1007/s00104-009-1828-3

30. Limmer S, Stöcker C, Dicken V, Krass S, Wolken H, Kujath P. Computer-
Assisted visualization of central lung tumours based on 3-dimensional
reconstruction. In: K Subburaj, editors. CT Scanning – techniques and
applications. London: InTech (2011). p. 205–28.

31. Welter S, Stöcker C, Dicken V, Kühl H, Krass S, Stamatis G. Lung segment
geometry study: simulation of largest possible tumours that fit into
bronchopulmonary segments. Thorac Cardiovasc Surg. (2012) 60(2):93–100.
doi: 10.1055/s-0030-1271009

32. Stoecker C, Bornemann L, Dicken V, Krass S, Kuhnigk JM, Zidowitz S, et al.
CT-based patient individual anatomical modeling of the lung and its impact on
thoracic surgery. In: O Dössel, WC Schlegel, editors. IFMBE Proceedings, vol
25/IV. Berlin: Springer (2009). p. 1592–5.
Frontiers in Surgery 09
33. Chlebus G, Schenk A, Moltz JH, van Ginneken B, Hahn HK, Meine H.
Automatic liver tumor segmentation in CT with fully convolutional neural
networks and object-based postprocessing. Sci Rep. (2018) 8:15497. doi: 10.
1038/s41598-018-33860-7

34. Chlebus G, Meine H, Thoduka S, Abolmaali N, van Ginneken B, Hahn HK,
et al. Reducing inter-observer variability and interaction time of MR liver
volumetry by combining automatic CNN-based liver segmentation and manual
corrections. PLoS ONE. (2019) 14(5):e0217228. doi: 10.1371/journal.pone.0217228

35. LiTS - Liver Tumor Segmentation Challenge. https://competitions.codalab.
org/competitions/17094/ (Accessed April 14, 2022) (2017).

36. Bilic P, Christ PF, Vorontsov E, Chlebus G, Chen H, Dou Q, et al. The Liver
Tumor Segmentation Benchmark (LiTS). arXiv:1901.04056. doi: 10.48550/
arXiv.1901.04056 (2019).

37. Schenk A, Prause G, Peitgen HO. Efficient semiautomatic segmentation of
3D objects in medical images. In: SL Delp, AM DiGioia, B Jaramaz, editors.
MICCAI, LNCS (1935). Berlin: Springer (2000). p. 186–95.

38. Felix T, Kock F, Hänsch A, Georgii J, Abolmaali N, Endo I, et al. Improving
deep learning based liver vessel segmentation using automated connectivity
analysis. In: O Colliot, I Išgum, editors. Proceedings of SPIE, vol. 12032.
Bellingham: SPIE (2022). p. 120323E. doi: 10.1117/12.2612526.

39. Kock F, Chlebus G, Thielke F, Schenk A, Meine H. Hepatic artery
segmentation with 3D convolutional neural networks. In: K Drukker, KM
Iftekharuddin, H Lu, MA Mazurowski, C Muramatsu, RK Samala, editors.
Proceedings of SPIE, vol. 12033. Bellingham: SPIE (2022). p. 120331O. doi:
10.1117/12.2607253.

40. Fasel JHD, Schenk A. Concepts for liver segment classification: neither old
ones nor new ones, but a comprehensive one. J Clin Imaging Sci. (2013) 3
(1):48–54. doi: 10.4103/2156-7514.120803

41. Radtke A, Sotiropoulos GC, Molmenti EP, Schroeder T, Peitgen HO, Frilling
A, et al. Computer-assisted surgery planning for complex liver resections: when is
it helpful? A single-center experience over an 8-year period. Ann Surg. (2010) 252
(5):876–83. doi: 10.1097/SLA.0b013e3181fdd012

42. Lang H, Radtke A, Hindennach M, Schroeder T, Frühauf NR, Malago M,
et al. Impact of virtual tumor resection and computer-assisted risk analysis on
operation planning and intraoperative strategy in major hepatic resection. Arch.
Surg. (2005) 140(7):629–38. doi: 10.1001/archsurg.140.7.629

43. Yoon JH, Choi J-I, Jeong YY, Schenk A, Chen L, Laue H, et al. Pre-treatment
estimation of future remnant liver function using gadoxetic acid MRI in patients
with HCC. J Hepatol. (2016) 65(6):1155–62. doi: 10.1016/j.jhep.2016.07.024

44. van Ginneken B. Fifty years of computer analysis in chest imaging: rule-
based, machine learn-ing, deep learning. Radiol Phys Technol. (2017) 10
(1):23–32. doi: 10.1007/s12194-017-0394-5

45. Astley JR, Wild JM, Tahir BA. Deep learning in structural and functional
lung image analysis. Br J Radiol. (2022) 95:1132. doi: 10.1259/bjr.20201107

46. Lassen-Schmidt B, Hering A, Krass S, Meine H. Automatic segmentation of
the pulmonary lobes with a 3D u-net and optimized loss function. Med Imaging
Deep Learn. (2020). doi: 10.48550/arXiv.2006.00083
frontiersin.org

https://vessel12.grand-challenge.org/
https://doi.org/10.1109/TMI.2012.2219881
https://doi.org/10.1088/1361-6560/aa7674
https://doi.org/10.1088/1361-6560/aa7674
https://lola11.grand-challenge.org/
https://doi.org/10.1118/1.4818017
https://doi.org/10.1007/s00104-009-1828-3
https://doi.org/10.1055/s-0030-1271009
https://doi.org/10.1038/s41598-018-33860-7
https://doi.org/10.1038/s41598-018-33860-7
https://doi.org/10.1371/journal.pone.0217228
https://competitions.codalab.org/competitions/17094/
https://competitions.codalab.org/competitions/17094/
https://doi.org/10.4103/2156-7514.120803
https://doi.org/10.1097/SLA.0b013e3181fdd012
https://doi.org/10.1001/archsurg.140.7.629
https://doi.org/10.1016/j.jhep.2016.07.024
https://doi.org/10.1007/s12194-017-0394-5
https://doi.org/10.1259/bjr.20201107
https://doi.org/10.48550/arXiv.2006.00083
https://doi.org/10.3389/fsurg.2022.920457
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/

	Computer-assisted image-based risk analysis and planning in lung surgery - a review
	Introduction
	Methods
	Segmentation
	Tumor segmentation
	Bronchial tree
	Blood vessels
	Lobes and segments

	Quantification
	Tumor morphology
	Lobe and segment-based quantification

	Visualization

	Expected impact for lung surgery
	Operability
	Resection strategy
	Surgical planning and guidance

	Commonalities with liver surgery planning
	Current work and outlook
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


