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1. INTRODUCTION

In the past decades, computer audition (CA), as an emerging interdisciplinary subject that
includes acoustics, signal processing, machine learning, and deep learning technologies to
provide computers with audio processing abilities similar to or even beyond human beings,
has been increasingly studied for its applications in healthcare. Benefiting from its non-invasive
characteristics, CA can facilitate both the clinical practice and home monitoring in almost every
aspect of advanced intelligent medical systems like machine-listening-based diagnosis (1), mental
disease screening (2), music therapy (3), and many others. On the one hand, fast development of
the internet of things (IoT) and machine learning (ML) makes it easy to collect and analyze the
health-related audio data using the most prevalent devices. On the other hand, even though the
market/demand is great, CA for healthcare applications is still a young field compared to automatic
speech recognition (ASR) (4) and music information retrieval (MIR) (5). To provide an overview
of CA for healthcare concerns, Figure 1 shows a word cloud generated by key topics related to CA
for healthcare in the past two decades on Google Scholar.

A forum on future audio technologies for healthcare was organized at the Harbin Institute
of Technology, which was held on 28 December 2019 during the 7th Conference on Sound
and Music Technology (CSMT) in Harbin, P. R. China1. This forum and its summary report in
this paper present the current consensus and opinions from a broad range of leading scientists
from the expertise of audio technologies, mobile Health (mHealth), IoT, AI, smart wearables,
cognitive sciences, neuro sciences, biomedical engineering, and clinical practice. The authors hope
this discussion can be a good start for not only attracting more attentions for this promising
interdisciplinary field but also for providing a venue for colleagues from multiple fields to
understand where we are and the future trends in the development of CA for healthcare.

1http://www.csmcw-csmt.cn/
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FIGURE 1 | Word cloud generated by the number of references (patents and citations excluded) related to the key topics in CA for healthcare (searched by Google

Scholar, years 2000 to 2019).

2. CLINICAL DEMANDS AND BIG DATA

In clinical practice, demand is increasing for personalized and
human-centered medical service. The cutting-edge technologies
in ML and its subset, deep learning (DL) (6), are increasing
the capabilities of CA to play an important role in medical
applications. Moreover, it is even easier to capture big audio data
from the increasingly prevalent sensor devices now used in daily
life. The question of how to leverage the power of AI and Big
Data to better the healthcare field is now attracting attention and
global efforts.

3. NON-INVASIVE MHEALTH
APPLICATIONS

Audio-based methods are marked by being cheap, convenient,
and—most importantly—non-invasive. Whether analyzing the
audio signals generated by the human body [e.g., snore
sounds (1)], or using music for treatment of mental diseases (3),
subjects have no need to be equipped with multiple sensors
or even be burdened by invasive devices (e.g., endoscopy).
Additionally, CA canmake it feasible to collect data from subjects
via mobile devices (e.g., a smartphone), which can provide the
subjects 24×7 monitoring service.

4. DATA COLLECTION, ANNOTATION, AND
PARTITION

Open access databases are crucial for a sustainable and
reproducible research. However, CA for healthcare is lacking

in standard available public databases. Numerous works
were presented by using private databases, which limits the
comparability and objectivity of studies on algorithms and
methods. In the future, collecting and releasing more publicly
accessible databases needs to be a top priority. For a specific
topic, the data acquiring system (equipment, environment,
place) should be consistent, aiming to minimize the effects
caused by humans. Unlike normal applications in other CA
fields of application (e.g., speech recognition), healthcare-
related projects need specific domain knowledge (e.g., medicine).
Annotation of databases is another tough mission. On the
one hand, there is a large amount of unlabeled data that
can be easily collected by ubiquitous microphone devices.
On the other hand, accurately labeled, clean, and high-
quality data are rare. To address this (labeled) data scarcity
issue, unsupervised learning (7), semi-supervised learning (8),
active learning (9), and synthesis, such as by generative
adversarial networks (GANs) (10), can be explored more in the
healthcare area.

5. EVALUATION METRICS

Using suitable and reasonable evaluation metrics is necessary
to guarantee a high-quality control progress in developing
algorithms and methods. In healthcare applications, screening
(such as binary classification of normal or abnormal) is
the prerequisite for almost all cases. Thus, the widely
used evaluation metrics in existing works are accuracy,
sensitivity, specificity, and precision. However, data imbalance is
a prevalent phenomenon in numerous healthcare applications.
Moreover, multi-class classification and regression can be
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more accurate than only screening in clinical practice.
Hence, unweighted average recall (UAR) (11) is advised
rather than the frequently used accuracy due to the latter
potentially leading to over-optimistic conclusions. In addition,
confusion matrices, the receiver operating characteristic
curve, and derived measures such as the area under
curve or equal error rate, can provide better insight into a
model’s performance.

6. FUNDAMENTAL RESEARCH

Fundamental research is always crucial and beneficial for CA
applications in healthcare. In a classic ML paradigm, human
hand-crafted features can be good indicators for researchers
to know the relationship between the acoustical properties (in
time and frequency domain) and the pathological symptoms.
For instance, the popular large-scale acoustic feature extraction
toolkit OPENSMILE (12) can provide thousands of well-designed
features that can be used both for the statistical analysis and
the ML model building. DL, as a hot sub-discipline of ML,
is currently dominating most of the works in AI applications
due to its powerful capacity to learn higher representations
directly from big data. Particularly, deep end-to-end system
can learn features themselves from raw audio data without
any human domain knowledge (13). Nevertheless, it is difficult
to build an explainable and responsible AI system by DL. In
particular, finding the underlying mechanism of the pathological
symptoms can never be neglected in any medicine-related
subject. We believe that future work should be done by combing
both the classic ML and DL methods. Understanding the
fundamental knowledge is equally important for building strong
enough models.

7. EFFICIENT COLLABORATION ACROSS
MULTIPLE FIELDS

As indicated in (14), collaborations across fields of expertise
can benefit both the computational scientists and the
experimentalists for ML applied to life sciences and medicine.
However, breaking the walls between each subject (e.g., medicine
and engineering) is still something that needs doing. Experts
from an engineering background may look more into the
state-of-the-art technologies that can be used but pay less
attention to the real clinical practice or subjects’ requirement.
Medical scientists usually have a stronger interest to uncover
the pathology via the help of AI but show less passion for the
mechanisms of ML methodologies. However, in order to achieve
a major breakthrough, an efficient and thorough collaboration
between all involved experts is a prerequisite. Specifically, CA for

healthcare needs even more fields involved, e.g., arts, education,
and ethics.

8. INTELLECTUAL PROPERTY
PROTECTION

The intellectual property (IP) protection is always essential for
high-tech research and development. In particular, due to the
interdisciplinary characteristic, IP protection cannot be well-
implemented by a single field. On the side of experts from a
medical background, the data itself should be fully considered as
their IP. However, it should be encouraged to publicly release the
data for scientific purposes. On the engineering end, the efforts
toward developing algorithms, platforms, software, etc., should
be valued.

9. DISCUSSION

We fully consider the aspects of clinical demands and big data,
non-invasive mHealth applications, data collection, evaluation
metrics, fundamental research, efficient interdisciplinary
collaboration, and IP protection. We believe that, by reading this
brief opinion piece, readers can gain a clear insight on where we
are and what we can do in the future by CA for healthcare in
this often under catered for area of artificial intelligence (AI). In
summary, CA for healthcare is a young and promising field that
needs tremendous collaboration across different fields. Future
work should aim at the development of non-invasive clinical
apparatus, in-home health monitoring system, and personal
precision treatment service.
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