
Computer Automated Multi-Paradigm
Modeling: An Introduction
Pieter J. Mosterman
The MathWorks, Inc.
3 Apple Hill Dr.
Natick, MA 01760
pieter.mosterman@mathworks.com

Hans Vangheluwe
Modelling, Simulation and Design Lab
School of Computer Science
McGill University
McConnell Engineering Bldg. room 328
3480 University Street
Montreal, Quebec, Canada
hv@cs.mcgill.ca

Modeling and simulation are quickly becoming the primary enablers for complex system design.They
allow the representation of intricate knowledge at various levels of abstraction and allow automated
analysis as well as synthesis. The heterogeneity of the design process, as much as of the system
itself, however, requires a manifold of formalisms tailored to the specific task at hand. Efficient design
approaches aim to combine different models of a system under study and maximally use the knowl-
edge captured in them. Computer Automated Multi-Paradigm Modeling (CAMPaM) is the emerging
field that addresses the issues involved and formulates a domain-independent framework along three
dimensions: (1) multiple levels of abstraction, (2) multiformalism modeling, and (3) meta-modeling.
This article presents an overview of the CAMPaM field and shows how transformations assume a
central place. These transformation are, in turn, explicitly modeled themselves by graph grammars.

Keywords: Multi-paradigm modeling, multi-formalism, multi-abstraction, meta-modeling, model
transformation

1. Introduction

Modern engineered systems have reached a complexity
that requires systematic design methodologies and model-
based approaches to ensure correct and competitive realiza-
tion. In particular, the use of digital controllers has proven
to be difficult to manage as small errors in their design may
lead to catastrophic failures. In addition, the interdepen-
dencies in the software that implements the control algo-
rithms are difficult to oversee, which only exacerbates with
the increasing size of embedded software. Similarly, the
interdependencies between controllers scattered about the
control system are difficult to manage. Their effects, as well
as the subtle interaction between information-processing
components and the physical environment, are difficult to
analyze.

This article uses a power window system, as typ-
ically found in modern automobiles [1], as a run-
ning example. Figure 1 illustrates how a worm gear
is used to rotate the main lever of a scissor-type lift
mechanism (which contains a supporting rod in ad-
dition to the lever). This mechanism moves the win-
dow up and down between the bottom and top of the
window frame. A DC motor connects to the worm

|
|
|
|
|

SIMULATION, Vol. 80, Issue 9, September 2004 433-450
©2004 The Society for Modeling and Simulation International

DOI: 10.1177/0037549704050532

gear to power the rotation, as commanded by the controller.
An important consideration in the design of this system is
the potential presence of an obstacle (such as a passen-
ger’s arm) between the window and the frame. The design
of such a system progresses through a number of stages that
may or may not use different models of the components and
subsystems. For example, in the initial design stages, dis-
crete event models may be used to design the hierarchical
control structure of the main behavior (i.e., the passen-
ger can command the window to move; moving decom-
poses into up and down). In more advanced design stages,
the models become increasingly detailed (e.g., adding data
acquisition effects) and may include continuous-time and
power effects (e.g., to simulate the current drawn by the
DC motor). In addition to this, system integration requires
increasingly comprehensive analyses that involve different
models used in designing different aspects of the system’s
functionality. For example, the model of the lift mechanism
may be designed using bond graphs [2], while the main
controller may be modeled using Statecharts [3], and the
pulse-width modulation of the DC motor may be modeled
using time-based block diagrams [4].

Comprehensive design and analysis is the main topic
of new holistic design paradigms such as mechatronics
[5] and System-on-Chip [6]. These approaches aim to
avoid overspecification and to attain optimal performance.
The corresponding design paradigms require many differ-
ent levels of explanation, different theories, and modeling



Mosterman and Vangheluwe

Figure 1. A power window system

languages. In general, complex systems are becoming in-
creasingly heterogeneous because of the integration of dif-
ferent implementation technologies in the modern design
process. In addition, the many engineering disciplines that
are involved in system design all have developed domain-
and problem-specific (often proprietary) formalisms to
match their needs optimally.

To address these complex systems issues, designers turn
to modeling and simulation technologies. Whereas in the
early history of the field of control engineering, differential
equation models could still be directly derived from the
system, the complexity of systems has increased far be-
yond that. For example, the need to defer expensive proto-
typing while obtaining maximum confidence in the design
requires models with extreme detail that incorporate many
implementation effects. Sophisticated modeling languages
facilitate these requirements as model design can be done
at a high conceptual level. This trend is very evident in soft-
ware design, in which there is a shift from programming
software to modeling software. In particular, the model-
driven architecture (MDA) [7] focuses on the explicit mod-
eling of software design specifications as well as on their
transformation from a platform-independent model (PIM)
abstraction level, via a platform-specific model (PSM) ab-
straction level, to the code level.

Multiparadigm techniques have been successfully ap-
plied in the field of software architectures [8], control
system design [9], model-integrated computing [10], and
tool interoperability [11]. To advance the state of the art
and to accumulate knowledge scattered across domains, a
domain-independent framework for complex systems de-
velopment is needed. The emerging field of Computer Au-

tomated Multi-Paradigm Modeling (CAMPaM) [12-14]
aims to achieve this by addressing and integrating three
orthogonal directions of research:

1. model abstraction deals with the different levels of
detail of models and the relationship between these
models;

2. multiformalism modeling deals with coupling of and
transforming between the manifold of formalisms
used;

3. meta-modeling deals with the description of model-
ing formalisms and their domain-specific aspects.

CAMPaM explores the possible combinations of these
notions to provide an application- and domain-independent
framework; to combine, transform, and relate formalisms;
to generate maximally constrained domain- and problem-
specific formalisms, methods, and tools; and to verify
consistency between multiple views. This is a power-
ful approach that allows the generation (instantiation) of
domain- and problem-specific methods, formalisms, and
tools. Thanks to a common meta-language, the models that
use different formalisms (instances of the different family
of models that each of the formalisms embodies) can be
integrated by combination, layering, heterogeneous refine-
ment, and multiple views [9, 15-17]. When extended with
model transformation, multiparadigm modeling leads to a
suite of technologies and applications that convert a model
into a different representation, possibly changing the ab-
straction, partitioning, and hierarchical structure.

This article gives an overview of CAMPaM. It first
presents the separate dimensions of CAMPaM in section 2,
which will repeatedly highlight the importance of trans-
formations. In section 3, the different dimensions are then
explicitly related to the ubiquitous transformation concept.
Next, section 4 concentrates on the execution of heteroge-
neous models. Section 5 then presents the conclusions of
this contribution.

2. CAMPaM:The Three Dimensions

A conceptual (as opposed to a physical) model is the cross-
product of the system under scrutiny, the level of abstrac-
tion, and the formalism used. In the following, when a
model is referred to, a conceptual model is meant.

2.1 Abstraction

A model is designed to solve a problem. How well it suits
this purpose determines its quality. As such, a system has
infinitely many models that each can be best for a given
task. This task notion is captured by the level of abstraction
determined by the perspective one has on a system, the
problem to be solved, and the background of the model
designer.

For example, to investigate the requirement of the power
window in Figure 1—that the window be rolled down
10 cm in case of an object between the window and

434 SIMULATION Volume 80, Number 9



COMPUTER AUTOMATED MULTI-PARADIGM MODELING

1

position

1
s

window position

up signal

conversion

1

up

rate

50

gain

10

friction

down signal

conversion

-1

down

rate

0

0

1
s

angular velocity

2

down

1

up

actuator window

Figure 2. Low-order model of power window behavior

the frame—a continuous-time model is needed.This can
be a model of low order, as shown in Figure 2, where
a Simulink® [4] continuous-time-based block diagram is
shown that is of second order. It consists of an actuator part
that converts the control signals up and down before they
enter the window part that consists of a gain, force integra-
tor, and then angular velocity integrator. Viscous friction
determines the force from the velocity and feeds back neg-
atively. To evaluate the requirement that the force on the
object shall not exceed 100 N, a more detailed model is re-
quired.A possible model is shown in Figure 3. The actuator
takes the two control signals and integrates their voltage
into an angular velocity. This angular velocity drives the
worm gear, which rotates with a different velocity. The dif-
ference between the two, through some gain, is the torque
acting on the gear. This torque passes through two gains;
the first one is because of the gear ratio, and the next one is
because of the effect of the main lever. The result is a force
moving the window. The friction force that also acts on the
window is computed as a nonlinear function of the window
velocity and position. Note that this model is at a different
level of abstraction (more detailed), yet it is still formulated
using the same formalism: a continuous-time-based block
diagram. Systematically and automatically deriving mod-
els of different complexity significantly increases produc-
tivity as well as quality of models. It also cross-correlates
different modeling efforts. Note that changes between lev-
els of abstraction may involve using different formalisms
but not necessarily so, as illustrated by the power window
example.

In general, the abstraction process can be considered
a type of transformation that is preserving some invari-
ant properties (usually behavioral) of the system. The
challenge is to model these transformations and use such
transformation models to automate model abstraction and
refinement as well as abstraction-level selection. This fa-
cilitates many applications. For example, in optimization,

increasingly complex models may be more likely to find
a global optimum [18]. Another example is the use of one
base model that embodies as much detail as possible for
any given task. Less detailed models can be automatically
derived from it for the different design and operation tasks
(e.g., control design, performance assessment, and model-
based diagnosis) [19]. Another possible application is in
numerical solvers that adapt the complexity of the model
to the efficiency requirements (e.g., real-time simulation
constraints) [20]. In reactive learning environments (mi-
croworlds), increasingly adding detail to the world model
leads to a challenging environment for students at different
levels of proficiency [21]. Note that, in general, it may be
possible to automatically add model detail as well as to
automatically reduce complexity of a base model [22].

2.2 Formalism

Independent from the changes in abstraction level, changes
in the modeling formalism can be made. A change in for-
malism may induce a change in abstraction level, but this
is not necessary. Which formalism to use depends not only
on the desired level of abstraction but also on the data avail-
able to calibrate the model, the available numerical solvers
(or, more generally, what tools facilitate the desired anal-
yses), and, as indicated earlier, what problem needs to be
solved.

For example, the design of the power window controller
is most naturally expressed in the Statecharts formalism
[23, 24]. A possible implementation using DCharts [25,
26] is shown in Figure 4. The controller is in its Neutral,
movingUp, or movingDown state. Hierarchy is used, for
example, to transition from either movingUp or moving-
Down to Neutral when the cmdStop event occurs.

Because the hierarchical nature of Statecharts may ham-
per analysis, it is often desirable to transform the hierar-
chical state transition diagram into a flat state transition

Volume 80, Number 9 SIMULATION 435



Mosterman and Vangheluwe

2

force

1

position

1
s

storage

0.6

lever

forward

0.6

lever

back

-K-

inertias

1
s

geometric state

7.5

gear

forward

7.5

gear

back

7

gain

position

velocity

torque

friction

-K-

dissipation

1
s

Integrator

-K-

Coulomb and viscous friction torques

2

down

1

up

actuator window

Figure 3. Higher order model of power window behavior

moving

Safe

movingDown movingUp

Neutral

Emergency

control

cmdDown

cmdUp

objectDetected

[plant in Hi_Top]
[plant in Hi_Bot]

cmdUp

cmdStop

cmdDown

Figure 4. Statechart of the power window control

diagram [27].1 The equivalent state transition diagram is
shown in Figure 5. Since state transition diagrams are a
proper subset of Statecharts, a more illustrative formalism
transformation is given by the subsequent transformation
to an equivalent Petri net [28], shown in Figure 6. The
transformation into a Petri net representation may allow for
different types of analysis (such as static deadlock checks)
that are otherwise not possible.

Figure 6 shows the transformed controller in the top-
right corner. States in the state transition diagram have been
mapped onto Petri net Places. Transitions in the state transi-
tion diagram have been mapped onto Petri net Transitions.
The input events cmdUp, cmdDown, and cmdStop are
represented as Places in the Petri net model. This provides
an explicit interface to the controller model. Placing a to-

1. Note that some tools actually exploit the hierarchical nature to
apply more efficient analysis algorithms or to synthesize more efficient
code.

ken in an interface Place is equivalent to generating the
corresponding input event in the state transition diagram.
Transitions triggered not by an external event but rather
by a change in system state, such as [in S], have been
mapped onto a two-way arc between the Place representing
S and the Petri net Transition. The return arc is necessary
as testing state S should not modify the current state.

Thanks to the inherent concurrency in Petri nets, not
only the controller but also other concurrent parts of the
system can be easily modeled. The small part of the plant
behavior pertaining to the presence of an object is needed
at this stage of the design process. This is modeled in
the top-left part of Figure 6. In the bottom-right part of
Figure 6, an environment that generates exactly one of
cmdUp, cmdDown, or cmdStop, exactly once, is mod-
eled. In the bottom-left corner of the same figure, the possi-
ble insertion and subsequent removal of an object are mod-
eled. Note how the controller does not directly observe the

436 SIMULATION Volume 80, Number 9



COMPUTER AUTOMATED MULTI-PARADIGM MODELING

movingDown
movingUp

Neutral

Emergency

[plant in Hi_Top]
[plant in Hi_Bot]

cmdUp
cmdDown

cmdStop
cmdStop

cmdDown

objectDetected

cmdUp

Figure 5. State transition diagram of the power window control

presence of an object but rather indirectly, via the plant’s
power consumption, as will be discussed later. The model
does not specify when (i.e., in what order) any of the above
events occur. This makes Petri nets more suited than Stat-
echarts to model and subsequently analyze a whole class
of reactive behaviors.

A formalism consists of a syntactic part and a semantic
part. The syntactic part deals with the form and structure of
valid models. It is typically separated into a concrete part
and an abstract part. The former pertains to the actual ap-
pearance (which can be, for example, textual or graphical),
while the latter is about how the language elements may
be connected: for example, that an algebraic assignment
has a left-hand side and a right-hand side or that a Petri net
Place may only be connected to a Petri net Transition.

The semantic part concerns the meaning of the formal-
ism’s syntactic constructs. It can be specified in an op-
erational manner, which captures explicitly how a model
can be executed.Alternately, a denotational or transforma-
tional specification can be given by providing rules to map
a model in a given formalism onto a model in a different
formalism for which a semantics is available. For example,
the state transition model in Figure 4 can be mapped onto
the behaviorally equivalent Petri net in Figure 6. Note that,
in a sense, the operational approach is also one of trans-
formation as it transforms an executable specification into
a simulation trace.

Formalism transformations allow one to:

• generate a functional model from software or even an ex-
ecution trace (e.g., a solver procedure can be synthesized

from the concepts that are part of the domain-specific on-
tology [i.e., function calls] and their respective execution
ordering);

• automate the generation of different views on a system
(e.g., scenario diagrams from a functional model) or even
an implementation model;

• automate design by generating specifications from
requirements, ultimately leading to automated code syn-
thesis (or at least stub generation), which, in turn, can be
integrated in an automated optimization and runtime archi-
tecture reconfiguration scheme for hardware and software
or for software only (e.g., for System-on-Chip applications
[6]);

• automatically derive a reconfiguration model for guiding
runtime system changes from functional and architectural
models [29, 30];

• use best-of-class methods and tools by generating the
required data and model representation format to pre-
vent inconsistencies at the boundaries between engineer-
ing teams, engineering software, and multiple modeling
paradigms, as well as to enable the sharing and coordinat-
ing of information flow with minimal overhead [31].

In addition to facilitating usage of multiple formalisms
in isolation, it should be possible to combine and even in-
tegrate models that use a variety of different formalisms
by means of coupling and transformation. This multifor-
malism modeling is often facilitated on the semantic level
by providing a sufficiently general execution mechanism
onto which many different formalisms can map their se-
mantics. Examples of this are the DEVS formalism [7, 32,
33], Ptolemy [34], and S-functions [4].

Volume 80, Number 9 SIMULATION 437



Mosterman and Vangheluwe

Hi_Bot
0

Hi_Top
0

Med_Mid
0

object.Present
0

object.Absent
1

removeObject
1

insertObject
1

control.Neutral
1

control.movingDown
0

control.movingUp
0

control.Emergency
0

cmdUp
0

cmdDown
0

cmdStop
0

cmd
1

removeObject insertObject

cmdUp

unconditional

cmdDown

in_plant.Hi_Bot startMovingDown StopMovingDown StopMovingUp startMovingUp in_plant.Hi_Top

gen_cmdUp gen_cmdStop gen_cmdDown

in_object.Present_and_con

Figure 6. Petri net model of the power window control

2.3 Meta-Modeling

The third CAMPaM dimension concentrates on the mod-
eling of modeling formalisms (i.e., meta-modeling) [35-
38]. To quickly construct domain-specific and tailored for-
malisms and their (visual) editors, explicitly modeling the
formalisms is the most efficient approach, provided that a
meta-model compiler is available to synthesize the tools.

Meta-modeling is the explicit modeling of a class of
models (i.e., of a modeling language). A meta-model ML
of a modeling languageL is a model (with textual or visual
syntax) in its own right, which specifies precisely which
models m are elements of L.

Modeling environments based on meta-modeling will
check, by means of a meta-model ML, whether a given
model m is in L, or they will constrain the modeler during
the incremental model construction process such that only
elements of L can be constructed. Note how the latter ap-
proach, though possibly more efficient due to its incremen-

tal nature of construction and consequently of checking,
may render certain valid models in L unreachable through
incremental construction.

The advantages of meta-modeling are numerous. First,
an explicit model of a modeling language can serve as docu-
mentation and as specification. Such a specification can be
the basis for the analysis of properties of models in the lan-
guage. From the meta-model, a modeling environment may
be automatically generated. The flexibility of the approach
is tremendous: new languages can be designed by simply
modifying parts of a meta-model. As this modification is
explicitly applied to models, the relationship between dif-
ferent variants of a modeling language is apparent. Above
all, with an appropriate meta-modeling tool, modifying a
meta-model and subsequently generating a modeling tool
for possibly visual languages is orders of magnitude faster
than developing such a tool by hand. The tool synthesis is
repeatable and less error prone than hand crafting.

438 SIMULATION Volume 80, Number 9



COMPUTER AUTOMATED MULTI-PARADIGM MODELING

As meta-models are models in their own right, they must
be elements of a modeling language (or, put differently,
expressed in a particular formalism). This modeling lan-
guage can be specified in a so-called meta-meta-model.
Note how the meta qualifier is obviously relative to the
original model.

Although an arbitrary number of meta-levels are
possible in principle, in practice, some modeling lan-
guages/formalisms such as entity-relationship diagrams
(ERD) and UML class diagrams are expressive enough
to be expressed in themselves. That is, the meta-model of
such a language L is a model in language L. From the im-
plementation point of view, this allows one to bootstrap
a meta-modeling environment. This is often referred to as
meta-circular interpretation.

To illustrate these concepts, consider a meta-model of
the Statechart formalism that was used in Figure 4 to model
part of the power window control. This meta-model, shown
in Figure 7, is itself a model in the UML class diagram for-
malism. The basis of the Statechart formalism is the state
transition diagram, which consists of States, Transitions,
Conditions, Actions, and an Initial state transition. These
entities are marked by rectangles in the meta-model. Tran-
sitions connect states, indicated by the directed relations.
Each state may have 0 or more transitions exiting it, as
marked by the 0 : N cardinality. Similarly, each state may
have 0 : N transitions entering it. On the other hand, a
transition can exit from one and only one state and enter
one and only one other, indicated by the 1 : 1 cardinalities.
Also, a state may have one initial transition connected to
it, and the initial transition can connect to one and only
one state. Each transition may contain a condition and an
action, indicated by the diamond connection.

To extend this state transition diagram meta-model to
include Statecharts,2 the State, Initial, and Transition en-
tities are all derived from one Element entity. Now, by al-
lowing states to contain elements, hierarchy is introduced.
Furthermore, each state is specialized into an AND state or
an OR state. All states in an AND state are active when the
containing state is active, whereas in an OR state, only one
of the contained states is active (the traditional state tran-
sition diagram notion). These constraints are not explicitly
modeled here for clarity.

In many research endeavors, meta-modeling is applied
to capture the abstract syntax of a class of models. Models
of transformation allow a generalization of this to include
the semantics as well. This then becomes the enabling tech-
nology for (1) the design of tailored formalisms and tools
by constituting an infinitely fine-grained spectrum of for-
malisms; (2) the use of domain-specific formalisms and
tools to facilitate high-level, model-based programming;
(3) including domain constraints within formalisms; and

2. Note that the actual Statechart formalism, such as used in
Stateflow® [39], is much more complex than the reduced form discussed
here. A more detailed meta-model of Statecharts can be found in Pereira
Remelhe et al. [40].

(4) finding analogies, similarities, and differences between
models of different system views and aspects.

An illustrative example of meta-modeling is its use to
facilitate exchange of models and data between tools for
computer-aided software/systems engineering (CASE).
The corresponding CDIF (CASE Data Interchange For-
mat) project [41] proved meta-modeling to be an industrial-
strength technology.A crucial aspect of CDIF was its ex-
tensibility. New formalisms could be developed and used
in exchange transactions by first making the model of the
formalism available using the meta-formalism of CDIF,
an entity-attribute-relationship (EAR)–type formalism (a
proven powerful formalism for modeling the syntax of
many types of formalisms). The CASE tool first processes
the meta-model so it “understands” the data that follow.
The only formalism that needs to be shared between tools
is the EAR one that specifies the meta-models.

2.4 Relating the Dimensions

So far, the independent dimensions of CAMPaM have been
presented. In general, however, these dimensions interact,
and their full benefits are reaped only when the different
dimensions are cross-correlated.

An example of this is the translation of a continuous-
time model into a finite state representation to validate the
control structure designed in Figure 4. This approach is
common in analysis and verification approaches that re-
quire a finite state space (e.g., Lunze [42] and Preußig
et al. [43]). For example, Figure 8 shows a trajectory in
the force-position phase space where the window is com-
manded from its bottom-most position to the top. This tra-
jectory was generated from the model in Figure 3. Based
on this, a finite state discrete model can be derived us-
ing a grid, as shown by the dashed horizontal and verti-
cal lines in Figure 8. The finite state machine abstracted
from this trajectory is shown in Figure 9. Note that dur-
ing a normal closing operation, the system moves through
the sequence of states Low_Bot, Low_Mid, Low_Top,
Med_Top, Hi_Top, Med_Top, Low_Top.

When an object is present, the system is required to
detect and roll down the window before the force exceeds
100 N. A continuous-time phase space trajectory that stops
movement without reversal is shown in Figure 10. The ad-
ditional state Med_Mid that may be traversed is an emer-
gency state and should not be reachable in normal opera-
tion. It is entered when the object event occurs. The state
Hi_Mid is a violation of system requirements as it corre-
sponds to a state where there is too much force exerted
on the object. This state should not be reachable given a
proper control algorithm. The nonreachability of the un-
wanted state can be verified once a discrete event model of
the plant behavior is available. It has to be verified that the
control model in Figure 4, in which the cmdDown com-
mand always follows objectDetected, renders the control
safe (i.e., the state Hi_Mid cannot be reached).

Volume 80, Number 9 SIMULATION 439



Mosterman and Vangheluwe

Figure 7. Statecharts meta-model

Figure 8. Window force versus position when the top (at 45 cm) is reached

The finite state machine model of the system behavior
was automatically transformed into a behaviorally equiv-
alent Petri net. This Petri net was subsequently combined
with the controller and environment model shown in Fig-
ure 6. The resulting Petri net model is shown in Figure
11. From this model, the CAMPaM tool AToM3 has com-
puted in Figure 11 the coverability graph [28, 44], shown
in Figure 12 as depicting all reachable states. The design
of AToM3 has been described in de Lara and Vangheluwe
[45] and de Lara Jaramillo, Vangheluwe, and Moreno [46].

Figure 13 shows a simple computation tree logic (CTL)
[47] model expressing that Hi_Mid is unwanted.

The results of a simple model checker included in
AToM3 in Figure 14 show that this state is not reach-
able. Furthermore, after constructing an appropriate integer
linear programming (ILP) problem from the coverability
graph, the following conservation laws (that were intu-
itively expected) were inferred:




x[object.Absent] + x[object.Present] = 1
x[Low_Bot] + x[Low_Mid] + x[Low_Top]+

x[Med_Bot] + x[Med_Mid] + x[Med_Top]+
x[Hi_Bot] + x[Hi_Top] = 1

x[control.Neutral] + x[control.movingUp]+
x[control.movingDown]+

x[control.Emergency] = 1

3. Transformation

In section 2, the notion of the transformation of models has
been a recurring concept. It is a crucial element in model-
based endeavors. It forms the glue between the three or-
thogonal directions of CAMPaM: formalisms, abstraction,
and meta-modeling.

440 SIMULATION Volume 80, Number 9



COMPUTER AUTOMATED MULTI-PARADIGM MODELING

Low_Top

Low_Mid

Low_Bot

Med_Top

Med_Mid

Med_Bot

Hi_Top

Hi_Mid

Hi_Bot

[control in movingUp]

[control in Neutral]

[control in movingUp]

[control in movingDown]

[control in Neutral]

[control in movingUp]

[control in movingDown]

[control in movingUp]

[control in movingDown]

[control in Neutral]

[control in movingUp]

[control in movingDown]

[control in movingUp]

[control in movingDown]

[control in Neutral]

[control in Neutral]

[control in Neutral]

[control in movingDown]

[object in Present and co

[control in movingDown]

[control in movingUp]

[control in movingDown]

Figure 9. Discrete event model of plant behavior

Figure 10. Window force versus position when an object (at 30 cm) is detected

Volume 80, Number 9 SIMULATION 441



Mosterman and Vangheluwe

H
i_

B
ot

0

H
i_

M
id

0

H
i_

T
op

0

M
ed

_B
ot

0

M
ed

_M
id

0M
ed

_T
op

0

Lo
w

_B
ot

1

Lo
w

_M
id

0

Lo
w

_T
op

0

ob
je

ct
.P

re
se

nt
0

ob
je

ct
.A

bs
en

t
1

re
m

ov
eO

bj
ec

t

1

in
se

rt
O

bj
ec

t
1

co
nt

ro
l.N

eu
tr

al
1

co
nt

ro
l.m

ov
in

gD
ow

n

0

co
nt

ro
l.m

ov
in

gU
p

0

co
nt

ro
l.E

m
er

ge
nc

y

0

cm
dU

p
0

cm
dD

ow
n

0
cm

dS
to

p
0

cm
d

1

in
_o

bj
ec

t.P
re

se
nt

_a
nd

_c
on

in
_c

on
tr

ol
.N

eu
tr

al
_2

2x
21

in
_c

on
tr

ol
.M

ov
in

gD
ow

n_
22

x

in
_c

on
tr

ol
.M

ov
in

gU
p_

31
x3

2

in
_c

on
tr

ol
.M

ov
in

gD
ow

n_
32

x

in
_c

on
tr

ol
.N

eu
tr

al
_3

2x
31

in
_c

on
tr

ol
.M

ov
in

gU
p_

32
x3

3

in
_c

on
tr

ol
.M

ov
in

gD
ow

n_
33

x

in
_c

on
tr

ol
.N

eu
tr

al
_3

3x
32

in
_o

bj
ec

t.P
re

se
nt

_a
nd

_c
on

in
_c

on
tr

ol
.M

ov
in

gD
ow

n_
23

x

in
_c

on
tr

ol
.N

eu
tr

al
_2

3x
22

in
_c

on
tr

ol
.M

ov
in

gU
p_

11
x1

2

in
_c

on
tr

ol
.M

ov
in

gD
ow

n_
12

x

in
_c

on
tr

ol
.N

eu
tr

al
_1

2x
11

in
_c

on
tr

ol
.M

ov
in

gU
p_

12
x1

3

in
_c

on
tr

ol
.M

ov
in

gD
ow

n_
13

x

in
_c

on
tr

ol
.N

eu
tr

al
_1

3x
12 re

m
ov

eO
bj

ec
t

in
se

rt
O

bj
ec

t

cm
dU

p

un
co

nd
iti

on
al

cm
dD

ow
n

in
_p

la
nt

.H
i_

B
ot

st
ar

tM
ov

in
gD

ow
n

S
to

pM
ov

in
gD

ow
n

S
to

pM
ov

in
gU

p
st

ar
tM

ov
in

gU
p

in
_p

la
nt

.H
i_

T
op

in
_c

on
tr

ol
.m

ov
in

gU
p_

an
d_

o

in
_c

on
tr

ol
.m

ov
in

gD
ow

n_
31

x

in
_c

on
tr

ol
.m

ov
in

gU
p

in
_c

on
tr

ol
.m

ov
in

gD
ow

n_
21

x

ge
n_

cm
dU

p
ge

n_
cm

dS
to

p
ge

n_
cm

dD
ow

n

Figure 11. Petri net model of plant, controller, and environment

442 SIMULATION Volume 80, Number 9



COMPUTER AUTOMATED MULTI-PARADIGM MODELING

[L
ow

_B
ot

, c
m

d,
 in

se
rt

O
bj

ec
t, 

ob
je

ct
.A

bs
en

t, 
re

m
ov

eO
bj

ec
t, 

co
nt

ro
l.N

eu
tr

al
]

[L
ow

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, r
em

ov
eO

bj
ec

t, 
ob

je
ct

.P
re

se
nt

, c
m

d]

[L
ow

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, c
m

d,
 o

bj
ec

t.A
bs

en
t]

[L
ow

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
cm

dU
p]

[L
ow

_B
ot

, c
on

tr
ol

.m
ov

in
gU

p,
 o

bj
ec

t.A
bs

en
t]

[L
ow

_M
id

, o
bj

ec
t.A

bs
en

t, 
co

nt
ro

l.m
ov

in
gU

p]

[L
ow

_T
op

, c
on

tr
ol

.m
ov

in
gU

p,
 o

bj
ec

t.A
bs

en
t]

[M
ed

_T
op

, o
bj

ec
t.A

bs
en

t, 
co

nt
ro

l.m
ov

in
gU

p]

[H
i_

T
op

, c
on

tr
ol

.m
ov

in
gU

p,
 o

bj
ec

t.A
bs

en
t]

[H
i_

T
op

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t]

[M
ed

_T
op

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t]

[L
ow

_T
op

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t]

[L
ow

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
cm

dS
to

p]

[L
ow

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, c
m

dD
ow

n,
 o

bj
ec

t.A
bs

en
t]

[L
ow

_B
ot

, o
bj

ec
t.A

bs
en

t, 
co

nt
ro

l.m
ov

in
gD

ow
n

]

[M
ed

_B
ot

, o
bj

ec
t.A

bs
en

t, 
co

nt
ro

l.m
ov

in
gD

ow
n]

[H
i_

B
ot

, o
bj

ec
t.A

bs
en

t, 
co

nt
ro

l.m
ov

in
gD

ow
n

]

[c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
H

i_
B

ot
]

[M
ed

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t]

[L
ow

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t]

[L
ow

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.P

re
se

nt
, c

m
dU

p,
 r

em
ov

eO
bj

ec
t]

[L
ow

_B
ot

, o
bj

ec
t.P

re
se

nt
, c

on
tr

ol
.m

ov
in

gU
p,

 r
em

ov
eO

bj
ec

t]

[L
ow

_M
id

, o
bj

ec
t.P

re
se

nt
, c

on
tr

ol
.m

ov
in

gU
p,

 r
em

ov
eO

bj
ec

t]

[o
bj

ec
t.P

re
se

nt
, M

ed
_M

id
, c

on
tr

ol
.E

m
er

ge
nc

y,
 r

em
ov

eO
bj

ec
t]

[c
on

tr
ol

.E
m

er
ge

nc
y,

 M
ed

_M
id

, o
bj

ec
t.A

bs
en

t]

[c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
M

ed
_M

id
]

[c
on

tr
ol

.N
eu

tr
al

, L
ow

_M
id

, o
bj

ec
t.A

bs
en

t]

[c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.P

re
se

nt
, M

ed
_M

id
, r

em
ov

eO
bj

ec
t]

[c
on

tr
ol

.N
eu

tr
al

, L
ow

_M
id

, o
bj

ec
t.P

re
se

nt
, r

em
ov

eO
bj

ec
t]

[L
ow

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.P

re
se

nt
, c

m
dS

to
p,

 r
em

ov
eO

bj
ec

t]

[L
ow

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, c
m

dD
ow

n,
 o

bj
ec

t.P
re

se
nt

, r
em

ov
eO

bj
ec

t]

[L
ow

_B
ot

, o
bj

ec
t.P

re
se

nt
, r

em
ov

eO
bj

ec
t, 

co
nt

ro
l.m

ov
in

gD
ow

n]

[M
ed

_B
ot

, o
bj

ec
t.P

re
se

nt
, r

em
ov

eO
bj

ec
t, 

co
nt

ro
l.m

ov
in

gD
ow

n]

[o
bj

ec
t.P

re
se

nt
, H

i_
B

ot
, r

em
ov

eO
bj

ec
t, 

co
nt

ro
l.m

ov
in

gD
ow

n]

[c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.P

re
se

nt
, H

i_
B

ot
, r

em
ov

eO
bj

ec
t]

[M
ed

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.P

re
se

nt
, r

em
ov

eO
bj

ec
t]

[L
ow

_B
ot

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.P

re
se

nt
, r

em
ov

eO
bj

ec
t]

[L
ow

_B
ot

, i
ns

er
tO

bj
ec

t, 
co

nt
ro

l.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
re

m
ov

eO
bj

ec
t, 

cm
dU

p]

[L
ow

_B
ot

, i
ns

er
tO

bj
ec

t, 
co

nt
ro

l.m
ov

in
gU

p,
 o

bj
ec

t.A
bs

en
t, 

re
m

ov
eO

bj
ec

t]

[in
se

rt
O

bj
ec

t, 
Lo

w
_M

id
, o

bj
ec

t.A
bs

en
t, 

co
nt

ro
l.m

ov
in

gU
p,

 r
em

ov
eO

bj
ec

t]

[L
ow

_T
op

, i
ns

er
tO

bj
ec

t, 
co

nt
ro

l.m
ov

in
gU

p,
 o

bj
ec

t.A
bs

en
t, 

re
m

ov
eO

bj
ec

t]

[M
ed

_T
op

, i
ns

er
tO

bj
ec

t, 
ob

je
ct

.A
bs

en
t, 

co
nt

ro
l.m

ov
in

gU
p,

 r
em

ov
eO

bj
ec

t]

[H
i_

T
op

, i
ns

er
tO

bj
ec

t, 
co

nt
ro

l.m
ov

in
gU

p,
 o

bj
ec

t.A
bs

en
t, 

re
m

ov
eO

bj
ec

t]
[H

i_
T

op
, o

bj
ec

t.P
re

se
nt

, c
on

tr
ol

.m
ov

in
gU

p,
 r

em
ov

eO
bj

ec
t]

[H
i_

T
op

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.P

re
se

nt
, r

em
ov

eO
bj

ec
t]

[M
ed

_T
op

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.P

re
se

nt
, r

em
ov

eO
bj

ec
t]

[L
ow

_T
op

, c
on

tr
ol

.N
eu

tr
al

, o
bj

ec
t.P

re
se

nt
, r

em
ov

eO
bj

ec
t]

[H
i_

T
op

, i
ns

er
tO

bj
ec

t, 
co

nt
ro

l.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
re

m
ov

eO
bj

ec
t

]

[M
ed

_T
op

, i
ns

er
tO

bj
ec

t, 
co

nt
ro

l.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
re

m
ov

eO
bj

ec
t]

[L
ow

_T
op

, i
ns

er
tO

bj
ec

t, 
co

nt
ro

l.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
re

m
ov

eO
bj

ec
t]

[M
ed

_T
op

, o
bj

ec
t.P

re
se

nt
, c

on
tr

ol
.m

ov
in

gU
p,

 r
em

ov
eO

bj
ec

t]

[L
ow

_T
op

, o
bj

ec
t.P

re
se

nt
, c

on
tr

ol
.m

ov
in

gU
p,

 r
em

ov
eO

bj
ec

t]

[L
ow

_B
ot

, i
ns

er
tO

bj
ec

t, 
co

nt
ro

l.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
re

m
ov

eO
bj

ec
t, 

cm
dS

to
p]

[L
ow

_B
ot

, i
ns

er
tO

bj
ec

t, 
co

nt
ro

l.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
re

m
ov

eO
bj

ec
t, 

cm
dD

ow
n]

[L
ow

_B
ot

, i
ns

er
tO

bj
ec

t, 
ob

je
ct

.A
bs

en
t, 

re
m

ov
eO

bj
ec

t, 
co

nt
ro

l.m
ov

in
gD

ow
n]

[M
ed

_B
ot

, i
ns

er
tO

bj
ec

t, 
ob

je
ct

.A
bs

en
t, 

re
m

ov
eO

bj
ec

t, 
co

nt
ro

l.m
ov

in
gD

ow
n]

[in
se

rt
O

bj
ec

t, 
H

i_
B

ot
, o

bj
ec

t.A
bs

en
t, 

re
m

ov
eO

bj
ec

t, 
co

nt
ro

l.m
ov

in
gD

ow
n]

[in
se

rt
O

bj
ec

t, 
co

nt
ro

l.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
H

i_
B

ot
, r

em
ov

eO
bj

ec
t]

[M
ed

_B
ot

, i
ns

er
tO

bj
ec

t, 
co

nt
ro

l.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
re

m
ov

eO
bj

ec
t]

[L
ow

_B
ot

, i
ns

er
tO

bj
ec

t, 
co

nt
ro

l.N
eu

tr
al

, o
bj

ec
t.A

bs
en

t, 
re

m
ov

eO
bj

ec
t]

re
m

ov
eO

bj
ec

t
re

m
ov

eO
bj

ec
t

re
m

ov
eO

bj
ec

t

in
_p

la
nt

.H
i_

B
ot

ge
n_

cm
dU

p

in
_c

on
tr

ol
.M

ov
in

gU
p_

32
x3

3

in
_c

on
tr

ol
.N

eu
tr

al
_1

3x
12

in
_c

on
tr

ol
.N

eu
tr

al
_1

2x
11

re
m

ov
eO

bj
ec

t
in

_c
on

tr
ol

.N
eu

tr
al

_3
3x

32

st
ar

tM
ov

in
gD

ow
n

in
_c

on
tr

ol
.N

eu
tr

al
_3

3x
32

st
ar

tM
ov

in
gU

p

in
_c

on
tr

ol
.M

ov
in

gD
ow

n_
12

x1
1

in
_p

la
nt

.H
i_

T
op

st
ar

tM
ov

in
gD

ow
n

in
_p

la
nt

.H
i_

B
ot

re
m

ov
eO

bj
ec

t

in
_c

on
tr

ol
.M

ov
in

gU
p_

31
x3

2

in
_c

on
tr

ol
.M

ov
in

gU
p_

32
x3

3
in

_c
on

tr
ol

.M
ov

in
gD

ow
n_

13
x1

2

re
m

ov
eO

bj
ec

t
in

_c
on

tr
ol

.M
ov

in
gU

p_
31

x3
2

in
_o

bj
ec

t.P
re

se
nt

_a
nd

_c
on

tr
ol

.M
ov

in
gU

p_
21

x2
2

in
_c

on
tr

ol
.N

eu
tr

al
_1

2x
11

ge
n_

cm
dD

ow
n

re
m

ov
eO

bj
ec

t

in
_p

la
nt

.H
i_

T
op

re
m

ov
eO

bj
ec

t

in
_c

on
tr

ol
.N

eu
tr

al
_3

2x
31

re
m

ov
eO

bj
ec

t

ge
n_

cm
dD

ow
n

ge
n_

cm
dS

to
p

in
_c

on
tr

ol
.N

eu
tr

al
_3

2x
31

re
m

ov
eO

bj
ec

t

in
_c

on
tr

ol
.m

ov
in

gU
p

in
_c

on
tr

ol
.N

eu
tr

al
_1

3x
12

re
m

ov
eO

bj
ec

t

in
_c

on
tr

ol
.m

ov
in

gU
p_

an
d_

ob
je

ct
.A

bs
en

t

ge
n_

cm
dS

to
p

in
_c

on
tr

ol
.M

ov
in

gD
ow

n_
12

x1
1

in
_c

on
tr

ol
.M

ov
in

gD
ow

n_
13

x1
2

in
_c

on
tr

ol
.m

ov
in

gU
p re

m
ov

eO
bj

ec
t

re
m

ov
eO

bj
ec

t

re
m

ov
eO

bj
ec

t

re
m

ov
eO

bj
ec

t

re
m

ov
eO

bj
ec

t

in
_c

on
tr

ol
.N

eu
tr

al
_2

2x
21

re
m

ov
eO

bj
ec

t

re
m

ov
eO

bj
ec

t

un
co

nd
iti

on
al

in
_c

on
tr

ol
.N

eu
tr

al
_2

2x
21

re
m

ov
eO

bj
ec

t

un
co

nd
iti

on
al

in
se

rt
O

bj
ec

t

st
ar

tM
ov

in
gU

p
in

se
rt

O
bj

ec
t

in
se

rt
O

bj
ec

t

in
se

rt
O

bj
ec

t

ge
n_

cm
dS

to
p

ge
n_

cm
dU

p

st
ar

tM
ov

in
gU

p

re
m

ov
eO

bj
ec

t
in

_c
on

tr
ol

.m
ov

in
gU

p

in
se

rt
O

bj
ec

t

in
se

rt
O

bj
ec

t

in
se

rt
O

bj
ec

t

in
se

rt
O

bj
ec

t

in
se

rt
O

bj
ec

t

in
_c

on
tr

ol
.N

eu
tr

al
_1

2x
11

in
se

rt
O

bj
ec

t in
_c

on
tr

ol
.M

ov
in

gD
ow

n_
13

x1
2

ge
n_

cm
dD

ow
n

in
_c

on
tr

ol
.M

ov
in

gD
ow

n_
12

x1
1

in
_c

on
tr

ol
.N

eu
tr

al
_1

3x
12

in
se

rt
O

bj
ec

t

in
se

rt
O

bj
ec

t
in

_p
la

nt
.H

i_
B

ot

st
ar

tM
ov

in
gD

ow
n

in
se

rt
O

bj
ec

t

in
se

rt
O

bj
ec

t

in
_c

on
tr

ol
.M

ov
in

gU
p_

31
x3

2

in
_c

on
tr

ol
.m

ov
in

gU
p_

an
d_

ob
je

ct
.A

bs
en

t

in
se

rt
O

bj
ec

t

in
_p

la
nt

.H
i_

T
op

in
_c

on
tr

ol
.N

eu
tr

al
_3

3x
32

in
_c

on
tr

ol
.M

ov
in

gU
p_

32
x3

3

in
se

rt
O

bj
ec

t

in
_c

on
tr

ol
.N

eu
tr

al
_3

2x
31

in
se

rt
O

bj
ec

t

in
se

rt
O

bj
ec

t

re
m

ov
eO

bj
ec

t
ge

n_
cm

dU
p

Figure 12. Reachability graph for the Petri net model

Volume 80, Number 9 SIMULATION 443



Mosterman and Vangheluwe

Figure 13. A model of unwanted patterns

As in many cases, models, meta-models, and meta-
meta-models are all attributed, typed graphs. These graphs
can be transformed by means of graph rewriting. The
rewriting is specified in the form of models in the graph
grammar [48] formalism.

Graph grammars are a generalization of Chomsky gram-
mars for graphs [48, 49].Graph grammars are composed of
production rules, with each having graphs on their left- and
right-hand sides (LHS and RHS). In the double-pushout
approach (DPO), productions have the following form:

p : L
l←− K

r−→ R, where L (left-hand side), K (in-
terface graph), and R (right-hand side) are graphs, and l
and r are (usually injective) morphisms. That is, K is the
set of nodes and edges that are preserved by the produc-
tion, L \ K is the set of nodes and edges that are deleted,
and R \ K is the set of nodes and edges that are created
by the production. The diagram in Figure 15 sketches the
application of a rule on a graph G, resulting in graph H .

Thus, to apply a production on a graph G, a match m
should be found between the production’s LHS L and the
graph G. This can be either an injective or noninjective
morphism. The next step is to delete all the elements in G
matched with elements of L \K . Finally, the elements of
R \K are added. Note how this process can be expressed
in terms of category theory as two pushouts in category
Graph [49]. Furthermore, the double-pushout approach
needs two additional conditions. The dangling condition
specifies that if an edge is not deleted, its source and target
nodes should be preserved. The identification condition
specifies that if two nodes or edges are matched into a
single node or edge in the host graph (via a noninjective
morphism), then both should be preserved. Productions
can be extended with sets of application conditions (AC)
[50] of the form {P ci−→ Q} and a morphism x from L
to P . This means that to apply the rule, if an occurrence
of P is found, then an occurrence of Q must be found for
the rule to be applicable. Note that if ci is empty, there is
a negative application condition (NAC). In this case, if an

occurrence of graph P is found, then the rule is not ap-
plicable. If x = idL, then we have a positive application
condition.

Some graph rewriting systems have control mechanisms
to determine the order in which rules are checked. When
multiple matches are found, nondeterminism occurs. This
nondeterminism may be resolved in three ways. Evalua-
tion can be sequentialized, a random matching rule may
be chosen, or, if no conflicts exist, rules may be evalu-
ated in parallel. Having these three possibilities gives one
the power to model a variety of operational semantics of
formalisms.

Three kinds of transformations of models are typically
of interest. The first is model execution (defining the oper-
ational semantics of the formalism). The second is model
transformation into another formalism (expressing the se-
mantics of models in one formalism by mapping onto a
known formalism). A special case of this is when the target
formalism is textual. In this case, it is possible to describe,
by means of meta-modeling, the abstract syntax graph of
the textual formalism (i.e., the intermediate representation
used by compilers once they parse a program in text form),
in such a way that models in textual formalisms can then be
processed as graphs. The third one is model optimization,
for example, reducing its complexity (maintaining perti-
nent invariants, however).

On one hand, graph grammars have some advantages
over specifying the computation to be done in the graph us-
ing a traditional programming language. Graph grammars
are a natural, formal, visual, declarative, and high-level
representation of the computation. Computations are thus
specified by means of high-level models, expressed in the
graph grammar formalism. The theoretical foundations of
graph rewriting systems may assist in proving correctness
and convergence properties of the transformation tool. On
the other hand, the use of graph grammars is constrained by
efficiency. In the most general case, subgraph isomorphism
testing is NP-complete. However, the use of small sub-

444 SIMULATION Volume 80, Number 9



COMPUTER AUTOMATED MULTI-PARADIGM MODELING

NODE LABELS:

0[’Low_Bot’, ’cmd’, ’insertObject’, ’object.Absent’, ’removeObject’, ’control.Neutral’, ’True’]
1[’Low_Bot’, ’control.Neutral’, ’removeObject’, ’object.Present’, ’cmd’, ’True’]
2[’Low_Bot’, ’control.Neutral’, ’cmd’, ’object.Absent’, ’True’]
3[’Low_Bot’, ’control.Neutral’, ’object.Absent’, ’cmdUp’, ’True’]
4[’Low_Bot’, ’control.movingUp’, ’object.Absent’, ’True’]
5[’Low_Mid’, ’object.Absent’, ’control.movingUp’, ’True’]
6[’Low_Top’, ’control.movingUp’, ’object.Absent’, ’True’]
7[’Med_Top’, ’object.Absent’, ’control.movingUp’, ’True’]
8[’Hi_Top’, ’control.movingUp’, ’object.Absent’, ’True’]
9[’Hi_Top’, ’control.Neutral’, ’object.Absent’, ’True’]
10[’Med_Top’, ’control.Neutral’, ’object.Absent’, ’True’]
11[’Low_Top’, ’control.Neutral’, ’object.Absent’, ’True’, ’deadlock’]
12[’Low_Bot’, ’control.Neutral’, ’object.Absent’, ’cmdStop’, ’True’, ’deadlock’]
13[’Low_Bot’, ’control.Neutral’, ’cmdDown’, ’object.Absent’, ’True’]
14[’Low_Bot’, ’object.Absent’, ’control.movingDown’, ’True’]
15[’Med_Bot’, ’object.Absent’, ’control.movingDown’, ’True’]
16[’Hi_Bot’, ’object.Absent’, ’control.movingDown’, ’True’]
17[’control.Neutral’, ’object.Absent’, ’Hi_Bot’, ’True’]
18[’Med_Bot’, ’control.Neutral’, ’object.Absent’, ’True’]
19[’Low_Bot’, ’control.Neutral’, ’object.Absent’, ’True’, ’deadlock’]
20[’Low_Bot’, ’control.Neutral’, ’object.Present’, ’cmdUp’, ’removeObject’, ’True’]
21[’Low_Bot’, ’object.Present’, ’control.movingUp’, ’removeObject’, ’True’]
22[’Low_Mid’, ’object.Present’, ’control.movingUp’, ’removeObject’, ’True’]
23[’object.Present’, ’Med_Mid’, ’control.Emergency’, ’removeObject’, ’True’]
24[’control.Emergency’, ’Med_Mid’, ’object.Absent’, ’True’]
25[’control.Neutral’, ’object.Absent’, ’Med_Mid’, ’True’]
26[’control.Neutral’, ’Low_Mid’, ’object.Absent’, ’True’, ’deadlock’]
27[’control.Neutral’, ’object.Present’, ’Med_Mid’, ’removeObject’, ’True’]
28[’control.Neutral’, ’Low_Mid’, ’object.Present’, ’removeObject’, ’True’]
29[’Low_Bot’, ’control.Neutral’, ’object.Present’, ’cmdStop’, ’removeObject’, ’True’]
30[’Low_Bot’, ’control.Neutral’, ’cmdDown’, ’object.Present’, ’removeObject’, ’True’]
31[’Low_Bot’, ’object.Present’, ’removeObject’, ’control.movingDown’, ’True’]
32[’Med_Bot’, ’object.Present’, ’removeObject’, ’control.movingDown’, ’True’]
33[’object.Present’, ’Hi_Bot’, ’removeObject’, ’control.movingDown’, ’True’]
34[’control.Neutral’, ’object.Present’, ’Hi_Bot’, ’removeObject’, ’True’]
35[’Med_Bot’, ’control.Neutral’, ’object.Present’, ’removeObject’, ’True’]
36[’Low_Bot’, ’control.Neutral’, ’object.Present’, ’removeObject’, ’True’]
37[’Low_Bot’, ’insertObject’, ’control.Neutral’, ’object.Absent’, ’removeObject’, ’cmdUp’, ’True’]
38[’Low_Bot’, ’insertObject’, ’control.movingUp’, ’object.Absent’, ’removeObject’, ’True’]
39[’insertObject’, ’Low_Mid’, ’object.Absent’, ’control.movingUp’, ’removeObject’, ’True’]
40[’Low_Top’, ’insertObject’, ’control.movingUp’, ’object.Absent’, ’removeObject’, ’True’]
41[’Med_Top’, ’insertObject’, ’object.Absent’, ’control.movingUp’, ’removeObject’, ’True’]
42[’Hi_Top’, ’insertObject’, ’control.movingUp’, ’object.Absent’, ’removeObject’, ’True’]
43[’Hi_Top’, ’object.Present’, ’control.movingUp’, ’removeObject’, ’True’]
44[’Hi_Top’, ’control.Neutral’, ’object.Present’, ’removeObject’, ’True’]
45[’Med_Top’, ’control.Neutral’, ’object.Present’, ’removeObject’, ’True’]
46[’Low_Top’, ’control.Neutral’, ’object.Present’, ’removeObject’, ’True’]
47[’Hi_Top’, ’insertObject’, ’control.Neutral’, ’object.Absent’, ’removeObject’, ’True’]
48[’Med_Top’, ’insertObject’, ’control.Neutral’, ’object.Absent’, ’removeObject’, ’True’]
49[’Low_Top’, ’insertObject’, ’control.Neutral’, ’object.Absent’, ’removeObject’, ’True’]
50[’Med_Top’, ’object.Present’, ’control.movingUp’, ’removeObject’, ’True’]
51[’Low_Top’, ’object.Present’, ’control.movingUp’, ’removeObject’, ’True’]
52[’Low_Bot’, ’insertObject’, ’control.Neutral’, ’object.Absent’, ’removeObject’, ’cmdStop’, ’True’]
53[’Low_Bot’, ’insertObject’, ’control.Neutral’, ’object.Absent’, ’removeObject’, ’cmdDown’, ’True’]
54[’Low_Bot’, ’insertObject’, ’object.Absent’, ’removeObject’, ’control.movingDown’, ’True’]
55[’Med_Bot’, ’insertObject’, ’object.Absent’, ’removeObject’, ’control.movingDown’, ’True’]
56[’insertObject’, ’Hi_Bot’, ’object.Absent’, ’removeObject’, ’control.movingDown’, ’True’]
57[’insertObject’, ’control.Neutral’, ’object.Absent’, ’Hi_Bot’, ’removeObject’, ’True’]
58[’Med_Bot’, ’insertObject’, ’control.Neutral’, ’object.Absent’, ’removeObject’, ’True’]
59[’Low_Bot’, ’insertObject’, ’control.Neutral’, ’object.Absent’, ’removeObject’, ’True’]

--> FORMULA = Hi_Mid
--> LIST OF NODES WHICH SATISFY THE FORMULA = []

Figure 14. Result of model checking

Volume 80, Number 9 SIMULATION 445



Mosterman and Vangheluwe

L
m

��

Kl��

d
��

r �� R
m �

��
G Dl ��� r � �� H

Figure 15. Application of a rule on graph G

graphs on the LHS of graph grammar rules, as well as using
node and edge types and attributes, can greatly reduce the
search space. This is the case with the vast majority of for-
malisms of interest. It is noted that a possible performance
penalty is a small price to pay for explicit, reusable, easy-
to-maintain models of transformation. In cases in which
performance is a real bottleneck, graph grammars can still
be used as an executable specification to be used as the
starting point for a manual implementation.

The above CAMPaM concepts have been imple-
mented in AToM3 (A Tool for Multi-formalism and Meta-
Modeling), in which multiabstraction, multiformalism,
and meta-modeling are combined. The power of AToM3

has been demonstrated by modeling the DEVS formalism
[51], Petri nets and Statecharts [52], GPSS [53], causal
block diagrams [54], and flow diagrams [55].

4. Hybrid Dynamic Systems

To execute (simulate) models designed using the sophisti-
cated and domain-specific languages discussed so far, in-
terpreters/compilers are required that translate the high-
level modeling constructs into low-level specifications.
The simulated behavior can be continuous or of a discrete
event nature, and often these two types of behavior are
combined, which allows a hybrid execution.

4.1 Combining Executable Formalisms

At the execution level, there are again many different for-
malisms, especially in the discrete event domain. For ex-
ample, Petri nets (and their variants such as timed, col-
ored, and stochastic nets) have operational semantics that
allow simulation. VHDL [56] allows for simulation, where
the event-driven nature of the simulator is of critical im-
portance because of the typically large set of possible
events of which only a minor subset is active. DEVS is
another language, with operational semantics for which
simulators exist. In the continuous domain, differential
equations can be simulated using numerical solvers. Con-
tinuous behavior generation is often based on discretization
in time, and in the control engineering domain, typically
straightforward simulation of continuous behavior is ap-
plied by implementing some form of a forward integration
algorithm.

The continuous and discrete event formalisms are fun-
damentally different, though. Dedicated continuous-time

numerical solvers for differential and algebraic equations,
such as used in plant modeling, apply numerical algorithms
that are based on continuity assumptions. In addition, such
numerical solvers may support implicit model formula-
tions, which leads to conceptually simpler and more el-
egant models in certain cases [57]. Although the model
itself may be simpler, its transformation into a trajectory is
more complex, which demonstrates how the complexity of
the model-solver combination is invariant under behavior-
preserving formalism transformations.

In its most general form, execution can be achieved
by producing computer code that may even be optimized
by weaving the numerical solver code and model execu-
tion code together (e.g., [58]). The CAMPaM technologies
can be applied to have model interpretation automatically
produce highly optimized code that integrates solver and
model characteristics.

Dedicated solvers have their advantage, though: they
also allow independent selection of an appropriate numer-
ical integration method, depending on the characteristics
of the simulation trajectories (e.g., particular types of stiff-
ness). This is not possible when the solver is built into the
model of computation.

The combination of continuous behavior with discrete
state changes leads to so-called hybrid dynamic systems,3

which have been investigated extensively, driven by the
increasing need for comprehensive controller/plant be-
havior analysis [59-61]. As such, hybrid dynamic sys-
tems are a key technology in the field of CAMPaM. Ad-
vances are immediately reflected in the usefulness of higher
level CAMPaM notions. Therefore, it is meaningful to
give a brief overview of the two basic perspectives. The
combined behavior of hybrid dynamic systems introduces
issues in many aspects such as modeling, simulation, sen-
sitivity analysis, and optimization [62]. In particular, is-
sues specific to simulation include (1) event detection and
location, (2) sequences of discrete transitions, (3) consis-
tent semantics of hybrid dynamic systems formalisms, (4)
sensitivity to initial conditions, and (5) sliding mode be-
havior [63].

4.2 State-Centered Execution Model

A canonical representation of hybrid dynamic systems is
in terms of hybrid automata [64]. These models combine
continuous behavior in certain discrete states with transi-
tions between them. Behavior in each state is then captured
by a set of differential equations, while an invariant speci-
fies the allowed values of continuous variables in this state.
Transitions between states can be enabled based on con-
tinuous variables crossing thresholds. When enabled, they
are not enforced to be taken immediately, but they do have
to be executed before the invariant would be violated (note

3. To clearly distinguish between hybrid intelligent systems that mix
neural nets and fuzzy logic and also to avoid confusion with hybrid ve-
hicles that mix electric motors and combustion engines.

446 SIMULATION Volume 80, Number 9



COMPUTER AUTOMATED MULTI-PARADIGM MODELING

Figure 16. Hybrid automata model of window behavior

that the complexity of the differential equations in each
state as well as the invariant may differ between states).
A state transition may discontinuously change the values
of the variables used in the differential equations and even
the set of continuous state variables itself.

To illustrate, consider the state in which the window in
the power window example reaches the top of the frame.
Four states can be identified:

• free, the window moves with only actuation and friction
forces acting on it;

• bottom, the window is at the bottom of the frame with a
large reaction force acting on it;

• top, the window is at the top of the frame with a large
reaction force acting on it;

• obstruct, the window moves between the top of the frame
and the bottom with an object stuck between the window
and the frame.

This can be modeled by switching the system of or-
dinary differential equations (ODE) that govern the con-
tinuous behavior of the system, illustrated by the hybrid
automaton in Figure 16. Here, the transition conditions are
given along the transition (e.g., x < top), the invariants
in a state are labeled “inv:,” and the active ODE is labeled
“du:” (based on the action during the state’s active period).
When an event occurs, the system moves into a different
mode of operation. After the mode change, the state vari-
ables in the new mode have to be initialized appropriately
based on the values in the previous mode; when no explicit
function is given in the transition action part, the identity
mapping is assumed. Note that transitions between states
may cause the complexity of the ODE (i.e., the number of
continuous states) to change. For example, when the win-
dow reaches the top of the frame, a stiff, dampened spring
effect becomes active, which adds a continuous state to the
ODE.

The hybrid automata perspective is discrete event cen-
tered and provides an explicit representation. This is ben-

eficial to analysis and synthesis activities. However, it suf-
fers from a combinatorial explosion of discrete states when
there are many interacting local discrete state changes.

4.3 Equation-Centered Execution Models

An alternative approach relies on a system of guarded dif-
ferential and algebraic equations. This approach is centered
around differential equations (e.g., Modelica [65], MAsim
[66], VHDL-AMS [67], χ [68]). Events are generated by
continuous variables crossing thresholds, which may en-
able and disable equations. The different discrete states
with continuous behavior are implicit, and invariants that
capture the domain of continuous behavior in each state are
typically not used. Instead, events have “must-fire” seman-
tics (i.e., an enabled transition is immediately executed).

Using guarded equations, the power window system can
be modeled as

0 = αtop(vwindow − vdef orm)+ (1− αtop)Fobject ,

0 = Cobject Ḟdef orm − vdef orm,
0 = Fobject − Fdef orm − Robjectvdef orm,

(1)

where the mode selection variable αtop is determined by
the window being at the top of the frame or not.

xwindow ≥ xtop ⇒ αtop. (2)

Here, the dampened spring parameters are Cobject to model
the spring and Robject to model the damping. The rate of
deformation of the object is represented by vdef orm and the
corresponding force by Fdef orm. This force is the difference
of the total force acting on the object, Fobject , and the force
required to compensate the dissipation, Robjectvdef orm.

Discontinuous changes in continuous variables are
modeled implicitly by activating algebraic constraints that
reduce the state space dimension and thus require an in-
stantaneous projection into the new space [69]. For ex-
ample, if the frame top is not modeled by a dampened

Volume 80, Number 9 SIMULATION 447



Mosterman and Vangheluwe

spring, the window velocity is instantly forced to zero when
xwindow ≥ xtop by replacing equation (1) with

0 = αtop(vwindow)+ (1− αtop)Fobject . (3)

The implicit modeling approach (both in terms of the
discrete states as well as the continuous equations) allows
a succinct specification of a large number of discrete state
changes, but simulation is about the only analysis tool that
can handle it. Besides, to perform simulation, the numerical
solver has to be extended with additional operations to
make the implicit jumps in continuous states explicit.

4.4 Discussion

Whether to use a state-centered or equation-centered
approach, again, depends on many factors. State-centered
approaches are convenient for analysis and synthesis tasks
because they provide an explicit representation. On the
other hand, equation-centered approaches provide more
modeling power and are often more convenient to use due
to their implicit nature. Therefore, the choice of which for-
malism to use should be made judiciously and be related
to the task at hand, similar to the choice of higher level
formalisms discussed earlier.

5. Conclusions

The best models are elegant models. This article has in-
troduced the emerging field of CAMPaM, which tries to
support this maxim by developing a domain-independent
framework for multiparadigm modeling that consists
of three dimensions: (1) multiabstraction, (2) multifor-
malisms, and (3) meta-modeling. Transformations, pos-
sibly modeled as graph grammars, are presented as an
operator within and between the different dimensions. A
classification of hybrid dynamic systems, the underlying
execution mechanisms of multiparadigm models has been
given.

CAMPaM is a critical enabler for domain-specific mod-
eling and serves to facilitate the use of high-level modeling
languages. As languages with high-level, domain-specific
modeling elements and constructs become available, the
design of applications becomes intuitive for domain ex-
perts, while a computational implementation is derived by
automatic model transformation. This allows a focus on
design issues rather than on implementation issues. More-
over, the implementation does not have to be structured
in a human-readable and, more important, comprehensi-
ble manner anymore. This in contrast to the present-day
situation in which, for example, object-oriented program-
ming techniques are a necessity for humans to implement
the complex designs that have become common.

A specific domain in which CAMPaM is increasingly
applied is in the field of embedded control systems. The in-
terested reader is referred to a special issue of IEEE Trans-

actions on Control System Technology on CAMPaM [70].4

More about the theory and methodology of CAMPaM can
be found in a special issue of ACM Transactions on Mod-
eling and Computer Simulation [13] on the same topic.

6. Acknowledgments

The authors wish to acknowledge extensive discussions on
the topic of CAMPaM with Juan de Lara.

Prof. Vangheluwe gratefully acknowledges partial sup-
port for this work by a National Sciences and Engineering
Research Council of Canada (NSERC) Innovation Grant.

Finally, Adelinde Uhrmacher and Ernie Page are
thanked for their efforts in organizing the Dagstuhl seminar
on Grand Challenges for Modeling and Simulation.

7. References

[1] Mosterman, Pieter J., Janos Sztipanovits, and Sebastian Engell. 2003.
Computer automated multi-paradigm modeling in control systems
technology. IEEE Transactions on Control System Technology.

[2] Karnopp, D. C., D. L. Margolis, and R. C. Rosenberg. 1990. Systems
dynamics: A unified approach. 2nd ed. New York: John Wiley.

[3] Harel, David. 1987. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming 8:231-74.

[4] Simulink. 2004. Using Simulink. Natick, MA: The MathWorks.
[5] van Amerongen, Job. 2000. Mechatronic design. In The 7th Mecha-

tronics Forum International Conference, Atlanta, GA.
[6] Peters, Kenneth H. 1999. Migrating to single-chip systems. Embedded

Systems Programming 12 (4): 30-45.
[7] Warmer, Jos, and Anneke Kleppe. 2003. The object constraint lan-

guage: Getting your models ready for MDA. 2nd ed. Reading,
MA: Addison-Wesley.

[8] Garlan, David, Robert T. Monroe, and David Wile. 1997. Acme: An
architecture description interchange language. In Proceedings of
CASCON’97, Toronto, Ontario, pp. 169-83.

[9] Vestal, Steve. 1994. Software Architecture Workshop. Retrieved from
http://www.htc.honeywell.com/projects/dssa/ftp/papers/arch-
wkshop

[10] Sztipanovits, Janos, Gabor Karsai, and Hubertus Franke. 1996.
Model-integrated program synthesis environment. In IEEE
Symposium on Engineering of Computer Based Systems,
Friedrichshafen, Germany.

[11] Ernst, Johannes. 1996. Data interoperability between CACSD and
CASE tools using the CDIF family of standards. In Proceedings
of the 1996 International Symposium on Computer Aided Control
System Design, Dearborn, MI, pp. 346-51.

[12] Mosterman, Pieter, and Hans Vangheluwe. 2000. Computer auto-
mated multi paradigm modeling in control system design. In IEEE
International Symposium on Computer-Aided Control System De-
sign, Anchorage, AK, pp. 65-70.

[13] Mosterman, Pieter J., and Hans Vangheluwe. 2002. Computer auto-
mated multi-paradigm modeling. ACM Transactions on Modeling
and Computer Simulation 12 (4): 1-7.

[14] Vangheluwe, Hans, and Juan de Lara. 2003. Computer automated
multi-paradigm modelling: Meta-modelling and graph transfor-
mation. In Winter Simulation Conference, New Orleans, LA, pp.
595-603.

[15] Fishwick, Paul A. 1991. Heterogeneous decomposition and inter-
level coupling for combined modeling. In 1991 Winter Simulation
Conference, Phoenix, AZ, pp. 1120-8.

4. See also http://msdl.cs.mcgill.ca/people/mosterman/campam/ for
a number of special sessions on CAMPaM at control-oriented confer-
ences.

448 SIMULATION Volume 80, Number 9



COMPUTER AUTOMATED MULTI-PARADIGM MODELING

[16] Jourdan, M., F. Lagnier, F. Maraninchi, and P. Raymond. 1994. A
multiparadigm language for reactive systems. In IEEE Interna-
tional Conference on Computer Languages (ICCL), Toulouse,
France.

[17] Ledeczi, Akos, Greg Nordstrom, Gabor Karsai, Peter Volgyesi, and
Miklos Maroti. 2001. On metamodel composition. In Proceedings
of the IEEE International Conference on Control Applications,
Mexico City, Mexico.

[18] Gelsey, Andrew, Mark Schwabacher, and Don Smith. 1998. Using
modeling knowledge to guide design space search. Artificial In-
telligence 101:35-62.

[19] Mann, Heřman. 1996. A versatile modeling and simulation tool for
mechatronics control system development. In 1996 IEEE Sympo-
sium on Computer Aided Control System Design, Dearborn, MI,
pp. 524-9.

[20] Kamel, M. S., K. S. Ma, and W. H. Enright. 1993. ODEXPERT—an
expert system to select numerical solvers for initial value ODE
systems. ACM Transactions on Mathematical Software 19 (1):
44-62.

[21] Mosterman, Pieter J. 1999. Towards model manipulation for efficient
and effective simulation and instructional methods. In Distributed
Modelling and Simulation of Complex Systems for Education,
Training and Knowledge Capitalisation, Eze, France.

[22] Breunese, Arno P. J., Theo J. A. de Vries, Job van Amerongen, and
Peter C. Breedveld. 1995. Maximizing impact of automation on
modeling and design. In ASME Dynamic Systems & Control Div.
’95, San Francisco, pp. 421-30.

[23] Harel, David. 1988. On visual formalisms. Communications of the
ACM 31 (5): 514-30.

[24] Harel, David, and Amnon Naamad. 1996. The statemate semantics
of statecharts. ACM Transactions on Software Engineering and
Methodology 5 (4): 293-333.

[25] Huining Feng, Thomas. 2003. An extended semantics for a State-
chart Virtual Machine. In Summer Computer Simulation Confer-
ence: Student Workshop, edited A. Bruzzone and Mhamed Itmi,
pp. S147-66. Montréal, Canada: Society for Computer Simulation
International (SCS).

[26] Huining Feng, Thomas. 2004. Dcharts, a formalism for modeling
and simulation based design of reactive software systems. M.Sc.
diss., School of Computer Science, McGill University.

[27] Kohavi, Zvi. 1978. Switching and finite automata theory. NewYork:
McGraw-Hill.

[28] Murata, Tadao. 1989. Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE 77 (4): 541-80.

[29] Bapty, Ted, Sandeep Neema, Jason Scott, Janos Sztipanovits, and
Sameh Asaad. 2000. Model-integrated tools for the design of dy-
namically reconfigurable systems. Technical Report ISIS-99-01,
Vanderbilt University, Nashville, TN.

[30] Kumar, Sanjaya, Devesh Bhatt, SteveVestal, Bill Wren, John Shack-
leton, Hazel Shirley, Rashmi Bhatt, John Golusky, Mark Vo-
jta, John Fischer, Steve Crago, Brian Schott, Robert Parker, and
Gary Gardner. 1999. ADAPTERS. In 2nd Annual Military and
Aerospace Applications of Programmable Devices and Technolo-
gies Conference, Laurel, MD.

[31] Fisher, Michael. 1999. Zero-latency engineeringTM. White paper,
Aviatis Corp.

[32] Vangheluwe, Hans. 2000. DEVS as a common denominator for
multi-formalism hybrid systems modelling. In IEEE International
Symposium on Computer-Aided Control System Design, Anchor-
age, AK, pp. 129-34.

[33] Vangheluwe, Hans, and Ghislain C. Vansteenkiste. 2000. The cel-
lular automata formalism and its relationship to DEVS. In 14th
European Simulation Multi-conference (ESM), Ghent, Belgium,
pp. 800-10.

[34] Davis, John, II, Ron Galicia, Mudit Goel, Christopher Hylands, Ed-
ward A. Lee, Jie Liu, Xiaojun Liu, Lukito Muliadi, Steve Neuen-
dorffer, John Reekie, Neil Smyth, Jeff Tsay, and Yuhong Xiong.
1999. Ptolemy II—heterogeneous concurrent modeling and de-
sign in Java. Retrieved from http://ptolemy.eecs.berkeley.edu

[35] Atkinson, Colin. 1997. Metamodeling for distributed object environ-
ments. In First International Enterprise Distributed Object Com-
putingWorkshop (EDOC’97), Brisbane, Australia, pp. 90-101.

[36] Geisler, R., M. Klar, and C. Pons. 1998. Dimensions and dichotomy
in metamodeling. Technical Report 98-5, TU Berlin, Berlin,
Germany.

[37] Engstrom, Eric, and Jonathan Krueger. 2000. A meta-modeler’s job
is never done: Building and evolving domain-specific tools with
DOME. In Proceedings of the IEEE International Symposium on
Computer Aided Control System Design, Anchorage, AK, pp. 83-
88.

[38] Karsai, Gabor, Greg Nordstrom, Akos Ledeczi, and Janos Szti-
panovits. 2000. Specifying graphical modeling systems using
constraint-based metamodels. In Proceedings of the IEEE Inter-
national Symposium on Computer Aided Control System Design,
Anchorage, AK, pp. 89-94.

[39] Stateflow. 2004. Stateflow user’s guide. Natick, MA: The Math-
Works.

[40] Pereira Remelhe, Manuel A., Sebastian Engell, Martin Otter, An-
dré Deparade, and Pieter J. Mosterman. 2002. An environment
for the integrated modelling of systems with complex continuous
and discrete dynamics. In Modelling, analysis, and design of hy-
brid systems, edited by S. Engell, G. Frehse, and E. Schnieder.
Berlin: Springer-Verlag.

[41] Flatscher, Rony G. 2002. Metamodeling in EIA/CDIF meta-
metamodel and metamodels. ACM Transactions on Modeling and
Computer Simulation 12 (4)322-342.

[42] Lunze, Jan. 2000. Diagnosis of quantised systems by means of timed
discrete-event representations. Lecture Notes in Computer Sci-
ence 1790:258-71.

[43] Preußig, J., O. Stursberg, and S. Kowalewski. 1999. Reachability
analysis of a class of switched continuous systems by integrat-
ing rectangular approximation and rectangular analysis. Lecture
Notes in Computer Science 1569:209-22.

[44] Cassandras, Christos G. 1993. Discrete event systems. Homewood,
IL: Irwin.

[45] de Lara, Juan, and HansVangheluwe. 2002.AToM3:A tool for multi-
formalism and meta-modelling. Lecture Notes in Computer Sci-
ence 2306:174-88.

[46] de Lara Jaramillo, Juan, Hans Vangheluwe, and Manuel Alfon-
seca Moreno. 2003. Using meta-modelling and graph grammars
to create modelling environments. In Electronic notes in theoret-
ical computer science, vol. 72, edited by Paolo Bottoni and Mark
Minas. New York: Elsevier.

[47] Clarke, E. M., and E. A. Emerson. 1981. Synthesis of synchroniza-
tion skeletons for branching time temporal logic. Lecture Notes
in Computer Science 131:38-55.

[48] Ehrig, H., G. Engels, H.-J. Kreowski, and G. Rozenberg. 1999.
Handbook of graph grammars and computing by graph trans-
formation: Vol. 2: Applications, languages, and tools. New York:
World Scientific.

[49] Rozenberg, G. 1997. Handbook of graph grammars and computing
by graph transformation. Vol. 1. New York: World Scientific.

[50] Heckel, R., and A. Wagner. 1995. Ensuring consistency of con-
ditional graph rewriting—a constructive approach. In Proceed-
ings of SEGRAGRA 1995, Joint COMPUGRAPH/SEMAGRAPH
Workshop on Graph Rewriting and Computation, Electronic
Notes in Theoretical Computer Science (ENTCS), vol. 2.

[51] Levytskyy, Andriy, Eugène J.H. Kerckhoffs, Ernesto Posse, and
Hans Vangheluwe. 2003. Creating DEVS components with the
meta-modelling tool AToM3. In 15th European Simulation Sym-
posium (ESS), edited by Alexander Verbraeck and Vlatka Hlupic,
pp. 97-103. Delft, the Netherlands: Society for Modeling and Sim-
ulation International (SCS).

[52] de Lara, Juan, and Hans Vangheluwe. 2002. Computer aided multi-
paradigm modelling to process Petri-nets and statecharts. Lecture
Notes in Computer Science 2505:239-53.

[53] de Lara, Juan, and Hans Vangheluwe. 2002. Using meta-modelling
and graph grammars to process GPSS models. In 16th European

Volume 80, Number 9 SIMULATION 449



Mosterman and Vangheluwe

Simulation Multi-conference (ESM), edited by Hermann Meuth,
pp. 100-7. Darmstadt, Germany: Society for Computer Simula-
tion International (SCS).

[54] Posse, Ernesto, Juan de Lara, and Hans Vangheluwe. 2002. Process-
ing causal block diagrams with graph-grammars in AToM3. In
European Joint Conference on Theory and Practice of Software
(ETAPS), Workshop on Applied Graph Transformation (AGT),
Grenoble, France, pp. 23-34.

[55] de Lara, Juan, and HansVangheluwe. 2002. UsingAToM3 as a Meta-
CASE tool. In 4th International Conference on Enterprise Infor-
mation Systems (ICEIS), Ciudad Real, Spain, pp. 642-9.

[56] IEEE 1076.1 Working Group. 1999. IEEE standard 1076.1-1999.
Retrieved from http://www.vhdl.org

[57] Cellier, F. E., H. Elmqvist, and M. Otter. 1996. Modelling from phys-
ical principles. In The control handbook, edited by W. S. Levine,
pp. 99-107. Boca Raton, FL: CRC Press.

[58] Schiela, Anton, and Hans Olsson. 2000. Mixed-mode integration
for real-time simulation. In Proceedings of the First International
Modelica 2000 Workshop, Lund, Sweden, pp. 69-75.

[59] Di Benedetto, Maria Domenica, and Alberto L. Sangiovanni-
Vincentelli, eds. 2001. Hybrid systems: Computation and control.
Lecture Notes in Computer Science 2034.

[60] Lynch, Nancy, and Bruce Krogh, eds. 2000. Hybrid systems: Com-
putation and control. Lecture Notes in Computer Science 1790.

[61] Vaandrager, Frits W., and Jan H. van Schuppen, eds. 1999. Hybrid
systems: Computation and control. Lecture Notes in Computer
Science 1569.

[62] Barton, Paul I., and Cha Kun Lee. 2002. Modeling, simulation, sen-
sitivity analysis and optimization of hybrid systems. ACM Trans-
actions on Modeling and Computer Simulation 12 (4):256-289.

[63] Mosterman, Pieter J. 1999. An overview of hybrid simulation phe-
nomena and their support by simulation packages. Lecture Notes
in Computer Science 1569:164-77.

[64] Alur, Rajeev, Costas Courcoubetis, Thomas A. Henzinger, and Pei-
Hsin Ho. 1993. Hybrid automata: An algorithmic approach to the
specification and verification of hybrid systems. Lecture Notes in
Computer Science 736:209-29.

[65] Elmqvist, Hilding, et al. 1999. ModelicaTM—a unified object-
oriented langauge for physical systems modeling: Language spec-
ification. Version 1.3. Retrieved from http://www.modelica.org/

[66] Mosterman, Pieter J. 2001. MAsim—a hybrid dynamic systems sim-
ulator. Technical Report DLR-IB-515-01/07, Institute of Robotics
and Mechatronics, DLR Oberpfaffenhofen, Wessling, Germany.

[67] Christen, Ernst. 1997. The VHDL 1076.1 language for mixed-signal
design. EE Times, June.

[68] van Beek, D. A., V. Bos, and J. E. Rooda. 2002. Declaration of un-
knowns in DAE-based hybrid system specification. ACM Trans-
actions on Modeling and Computer Simulation 13 (1):39-61.

[69] Mosterman, Pieter J. 2000. Implicit modeling and simulation of dis-
continuities in physical system models. In The 4th International
Conference on Automation of Mixed Processes: Hybrid Dynamic
Systems, pp. 35-40.

[70] Engell, Sebastian, and Pieter J. Mosterman, eds. 2004. Computer
automated multi-paradigm modeling [Special issue]. IEEE Trans-
actions on Control System Technology 12 (2).

Pieter J. Mosterman is a senior research scientist at The Math-
Works, Inc., in Natick, MA. Before, he held a research position
at the German Aerospace Center (DLR) in Oberpfaffenhofen.
He has a PhD degree in Electrical and Computer Engineering
from Vanderbilt University in Nashville, TN, and a MSc degree
in Electrical Engineering from the University of Twente, Nether-
lands. His primary research interests are in computer automated
multi-paradigm modeling (CAMPAM) with principal applica-

tions in training systems and fault detection, isolation, and re-
configuration. For this, he designed several simulation environ-
ments such as the Electronics Laboratory Simulator (nominated
for The Computerworld Smithsonian Award), a first version of
TRANSCEND, HYBRSIM (a paper on which received the Don-
ald Julius Groen Prize), and MASIM. Specific areas of interest are
modeling of physical systems, meta-modeling, and model and for-
malism transformation in computer aided control system design
(CACSD). An important aspect concerns the behavior genera-
tion for heterogeneous models, which requires a hybrid dynamic
systems approach.

Dr. Mosterman is the invited session chair for the 2006 IEEE
International Symposium on CACSD and co-chaired the 2004
Bellairs CAMPaM Workshop and the 14th International Work-
shop on Principles of Diagnosis (2003). He is currently a member
of the IFAC Technical Committee on CACSD, chair of the IEEE
CSS Action Group on Hybrid Dynamic Systems for CACSD, ed-
itor of SIMULATION: Transactions of The Society for Modeling
and Simulation International for the area of Mechatronics, and
associate editor of IEEE TRANSACTIONS ON CONTROL SYS-
TEM TECHNOLOGY and the International Journal of Applied
Intelligence. He was also guest editor of special issues of ACM
TRANSACTIONS ON MODELING AND COMPUTER SIMU-
LATION and IEEE TRANSACTIONS ON CONTROL SYSTEM
TECHNOLOGY on the topic of CAMPAM.

Hans Vangheluwe Hans Vangheluwe is an Assistant Professor
in the School of Computer Science at McGill University, Mon-
treal, Canada. He holds a DSc degree, as well as an MSc in
Computer Science, and BSc degrees in Theoretical Physics and
Education, all from Ghent University in Belgium. He has been
a Research Fellow at the Centre de Recherche Informatique de
Montreal, Canada, the Concurrent Engineering Research Center,
WVU, Morgantown, WV, USA, at the Delft University of Technol-
ogy, The Netherlands, and at the Supercomputing and Education
Research Center of the Indian Institute of Science (IISc), Ban-
galore, India. At McGill University, he teaches Modelling and
Simulation as well as Software Design. He also heads the Mod-
elling and Simulation and Design (MSDL) research lab. He has
been the Principal Investigator of a number of research projects
focused on the development of a multi-formalism theory for Mod-
elling and Simulation. Some of this work has led to the WEST++
tool, which was commercialized for use in the design and opti-
mization of bioactivated sludge Waste Water Treatment Plants.
He was the co-founder and coordinator of the European Union’s
ESPRIT Basic Research Working Group 8467 “Simulation in Eu-
rope”, a founding member of the Modelica Design Team, and an
advisor to the Flemish Institute for the Promotion of Scientific-
Technological Research in Industry (IWT), as well as to the Euro-
pean Commission’s 5th Framework programme. He is an Asso-
ciate Editor for the journal Simulation: Transactions of the Soci-
ety for Modeling and Computer Simulation. His current interests
are in domain-specific modelling and simulation. The MSDL’s
tool AToM3 (A Tool for Multi-formalism and Meta-Modelling)
uses meta-modelling and graph grammars to specify and gener-
ate domain-specific environments.

450 SIMULATION Volume 80, Number 9


