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Abstract

A long-standing goal in biology is to establish the link between function, structure, and dynamics of proteins. Considering
that protein function at the molecular level is understood by the ability of proteins to bind to other molecules, the limited
structural data of proteins in association with other bio-molecules represents a major hurdle to understanding protein
function at the structural level. Recent reports show that protein function can be linked to protein structure and dynamics
through network centrality analysis, suggesting that the structures of proteins bound to natural ligands may be inferred
computationally. In the present work, a new method is described to discriminate protein conformations relevant to the
specific recognition of a ligand. The method relies on a scoring system that matches critical residues with central residues in
different structures of a given protein. Central residues are the most traversed residues with the same frequency in networks
derived from protein structures. We tested our method in a set of 24 different proteins and more than 260,000 structures of
these in the absence of a ligand or bound to it. To illustrate the usefulness of our method in the study of the structure/
dynamics/function relationship of proteins, we analyzed mutants of the yeast TATA-binding protein with impaired DNA
binding. Our results indicate that critical residues for an interaction are preferentially found as central residues of protein
structures in complex with a ligand. Thus, our scoring system effectively distinguishes protein conformations relevant to the
function of interest.
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Introduction

Proteins are dynamic molecules that adopt multiple structures in

vitro and in vivo [1]. To study the role protein dynamics has in

protein function, a combination of approaches has been used [1–

6]. For instance, crystallographic structures of proteins associated

with different substrate’s analogues have been instrumental in

understanding enzymatic function [6]. More recently, the role of

protein dynamics in the dihydrofolate reductase function has been

analyzed using nuclear magnetic resonance relaxation dispersion

[5]. Furthermore, techniques such as NMR, hydrogen-deuterium

exchange and mutagenesis experiments have provided insights at

specific time-scales of protein dynamics and function [7,8];

however, the detailed understanding of protein dynamics usually

requires information over a broad range of time-scales. Thus,

computational modeling is becoming central in studying the link

between protein dynamics and protein function for multiple time-

scales [8].

To effectively link protein dynamics to protein structure and

function using computational modeling techniques, it is required

to know the structure of a protein bound to a natural ligand,

considering that protein function at the molecular level is

understood by the ability of proteins to bind to other molecules

(e.g., biological macromolecules and/or small molecules). How-

ever, public databases of protein structures scarcely show this

information: for instance, in September 4 2007, the PDB release

contained 45,632 entries including 1,856 protein-DNA complexes

(data obtained from the Protein Data Bank [9]), and 1,700

protein-protein complexes (PINT database [10]). Thus, a

computational procedure to identify functional conformations of

proteins will facilitate the modeling of protein function in terms of

protein structure and dynamics.

In this work, we introduce a computational approach aimed at

identifying functional conformers of proteins. To explain the basis

of our approach, we have established some definitions and axioms.

Definitions:

D1 We refer to a protein function as a process (group of events

over time) that depends on the intra and inter molecular

interactions of proteins.

D2 A protein conformer is the three-dimensional structure of a

protein at a given time, and it corresponds to a local minimum in

the free energy surface.

D3 A functional conformer of a protein is a protein structure

that at a given time participates in a particular protein function

(e.g., catalysis).

D4 Critical residues for a protein function are those residues

that upon mutation abolish the activity of the protein. This

definition depends on the way the activity was experimentally

measured; hence, a (experimentally determined) critical residue

may be either a residue critical for maintaining the protein
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structure or a residue critical for the interaction with other

molecules, or both. For the proteins analyzed here, residues that

did not tolerate more than 2 substitutions without loosing full

activity in vivo were considered critical residues. Here we simply

refer to these residues as critical residues, unless otherwise specified

(i.e., critical residues for ligand binding).

D5 Central residues are the most traversed residues with the

same frequency in networks derived from a given protein

conformation (see Methods and [11,12]). The most traversed

residues are identified by an automatic procedure [12] and usually

involve 20% or less of the residues in a protein conformer.

Furthermore, to model protein function in terms of protein

dynamics, we will assume as axioms:

A1 Proteins accomplish their function through a set of conforma-

tions

A2 Critical residues for protein function play their roles in that set

of conformations.

Note that experimental evidence supports axiom A1 [1–6], but

no evidence exists for axiom A2. However, if axiom A2 is correct,

we should be able to identify functional conformers of proteins by

identifying those conformers harboring preferentially the critical

residues for ligand binding.

In order to relate different conformations with different critical

residues we need to estimate a property of the residues that varies

with the conformation of proteins; the property used in this study

is centrality. One of the reasons to choose centrality comes from

the observed alteration in the centrality values of critical residues

involved in binding in the dihydrofolate reductase enzyme upon

ligand binding [13]. Our method scores for the presence of critical

residues as central residues in different protein conformers, thus

the conformers with higher scores are postulated to be the

conformations associated to the interaction of interest.

It is important to note that many possible conformations could

be involved in binding a ligand, provided that the ligand as well

presents several conformations accessible to the protein. In this

regard, our method does not attempt to identify all of them or a

specific one. Instead, here we show that our method can determine

from a population of protein conformations, which ones are those

related to the binding of a ligand.

In summary, the goal of our work is to identify the functional

conformers of proteins. For that, we describe a method that

accounts for the presence of critical residues important for ligand

binding in different protein conformations. We tested our method

in 24 different proteins and more than 260,000 conformations of

these proteins both in the absence of a ligand or bound to a ligand.

Our results indicate that functional conformers harbor preferen-

tially the critical residues for ligand binding as central residues,

thus providing a procedure to effectively identify the functional

conformers of proteins.

Results

Mapping Critical Residues for Protein Function onto
Multiple Protein Conformers

Our group [11,12] and others [14,15] have previously reported

that network centrality is related to the function of the protein. In

most of these previous works, every function of the protein (e.g.,

folding, catalysis) was limited to the analysis of a single protein

structure. Considering axiom A1 (an ensemble of protein

conformations accomplishes protein function), the analysis of a

single protein structure may not be appropriate to effectively

understand protein function. Thus, a procedure that uses multiple

protein conformers to identify critical residues may be more

reliable.

A first step in our approach is to build a network representation

of a protein conformer (two residues were linked if they have at least

one pair of atoms at 5 Å or less, see Methods). From this network,

we determine the central residues as those with the largest

transitivity value and the same frequency of occurrence in the

network (see Figure S1). The transitivity values were obtained by

counting the number of times a residue was in the shortest paths

connecting every pair of residues in the network (see Methods).

This may be extended to include as many protein conformers as

required. In order to estimate the reliability of our procedure to

link critical residues with central ones, we used two parameters:

sensitivity and specificity. Sensitivity accounts for the fraction of

truly predicted critical residues, and specificity for the fraction of

truly predicted non-critical residues (see Methods).

To this end, we have reported that using multiple protein

conformations derived from the normal modes of vibration

improves the sensitivity of predictions based on the transitivity

[12]. Here, we extend these results for two well-characterized

proteins in terms of structure and function, HIV protease [6,16]

and T4 lysozyme [17]. We observed that including a large number

of experimentally determined protein conformers improved the

reliability for predicting critical residues from the residue’s

transitivity parameter (see Figure 1). Additionally, we looked at

the triosephosphate isomerases (TIMs), a family of enzymes

involved in central metabolism. This family includes 16 protein

orthologs with known three-dimensional structures in the current

PDB release. We observed that central residues shared by most

TIM structures, actually correspond to the most conserved

residues (see Figure 2).

Thus, including multiple protein conformers does improve the

relationship between central residues and critical residues

providing support to axiom A1: this improvement could be

explained by the presence of different central residues in different

protein conformations, which is the basis for the contention that a

collection of structures corresponds to the functional conformation

of the protein.

Different Sets of Protein Conformers Have Different Sets
of Central and Critical Residues

Our results suggest that different sets of protein conformers

harbor different sets of central and critical residues. That is, each

protein conformer presents several and different central residues.

If this were correct, then it would be possible to find the set of

Author Summary

Proteins participate in most of the doings of the cells
through a variety of interactions. There is an intimate
relationship between the function of a protein and its
three-dimensional structure, but understanding this rela-
tionship remains an unsolved problem, in part due to the
limited information on protein structures bound to other
biological molecules. On the other hand, thousands of
protein structures in the unbound or free form, are made
public every year and these differ from those of the bound
structures. How to predict the protein structure in the
bound form may assist researchers in understanding the
structure/function relationship. Here we report that
protein structures bound to other molecules tend to
present, as central amino acids, those that are critical for
binding other molecules. This feature allowed us to
identify the protein structures known to be involved in
protein interactions from a screening of thousands of
structures derived from the free form.

Functional Conformers of Proteins
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protein conformers harboring the critical residues for ligand

binding: the functional conformers. That is the contention of

axiom A2.

In Figure 3, the fraction of identical central residues shared by

every pair of protein conformers (y-axis) was calculated and

normalized to 1; so, Figure 3 shows that even when two

conformers are similar (e.g., some HIV-1 protease conformers

share less than 1 Å RMSD values; see Figure 4 for the RMSD

values), their central residues are not the same (no value of 1 was

found between any protein conformer compared). To determine if

there is a relationship between centrality and the structural

differences between the conformers (measured as the Root Mean

Square Deviation), we plotted the RMSD against the fraction of

central residues shared by every conformer; we found that there is

no such relationship (Figure 4).

Thus, we have shown that different protein conformers have

different central residues despite the small geometrical differences

observed between the proteins and, consequently, that there is no

relationship between the overall geometrical differences observed

between protein conformers and the occurrence of central residues

in these conformers. These results provide the basis to assess axiom

A2.

Screening for Protein Functional Conformers
We propose that if a protein conformer participates in a given

protein function, it must harbor as central residues those that are

critical for that function (axiom A2). For instance, protein

conformers of an enzyme solved in the presence of its substrate

may show as central residues the critical residues involved in

binding the substrate. In order to account for this, the sensitivity

values reported in the following sections will use as critical residues

those critical for ligand binding only, thus differing from the

previous results shown so far.

To evaluate axiom A2, we looked at the HIV protease for which

there are multiple protein complexes solved with a substrate or an

inhibitor. From crystallographic [6] and mutagenesis studies [16],

it has been shown that the residues Asp25, Gly27, Asp29, Asp30,

Lys46 and Ile50 are critical for substrate binding and/or catalysis.

For comparison, we analyzed 42 and 31 HIV protease structures

solved in the absence or presence of a substrate analogue,

respectively (see Methods for the list of PDB structures). By looking

at the fraction of critical residues harbored by these sets of

conformers as central residues (expressed as the sensitivity value),

we observed that the HIV protease conformers bound to a

Figure 1. Residue centrality as a marker for protein conformational diversity. The sensitivity and specificity for predicting critical residues
are plotted for 2 well-characterized proteins: HIV-protease (squares) and the T4 lysozyme (circles). The empty symbols correspond to the values
obtained with a single protein conformer and the shadowed symbols correspond to those obtained with multiple conformers. For comparison, the
filled symbols correspond to the values obtained with conserved residues predicted as critical residues (see Methods).
doi:10.1371/journal.pcbi.1000009.g001

Figure 2. Reconstructing functional and phylogenetic relation-
ships from central residues. For every structure of the SCOP
structural family 51351 (Triose Phosphate Isomerase family, including:
1TIM, 1AMK, 1CI1, 1HG3, 1M6J, 1B9B, 1TCD, 1TRE, 1YYA, 1HTI, 1R2R,
1MO0, 1YDV, 1YPI, 1WYI, 8TIM), we calculated their central residues.
Using a multiple sequence alignment, we mapped each central residue
into the 1TIM structure. Then, we counted the frequency that each
position of 1TIM was found as a central residue in all the family
(centrality score). Here, we show the relationship of this frequency with
a conservation score for each position of 1TIM derived using the
Bayesian ConSeq procedure [50]. In this Bayesian approach, the highly
conserved positions are those with negative scores.
doi:10.1371/journal.pcbi.1000009.g002

Functional Conformers of Proteins
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substrate analogue predominantly show as central residues those

that are known to be involved in catalysis (see Figure 5).

We also analyzed multiple computationally generated protein

conformers. In these studies, we used the yeast TATA binding

protein (TBP), which has been solved both in the presence [18]

and in absence [19] of its ligand: the DNA TATA box. It has been

previously shown by mutagenesis that at least 53 residues in yeast

TBP are involved in DNA binding (see Table 1). We ran four

molecular dynamics simulations, and for each of them 63,000

structures were generated. The four simulations included: a)

TBP+WtDNA, TBP in the presence of a high affinity substrate

(the TATA sequence), using PDB file 1YTB [19] as the starting

structure, b) TBP-WtDNA, TBP that was solved in the presence of

the TATA sequence (that is 1YTB), but the DNA was not included

in the simulation, c) TBP-GCDNA, TBP in the presence of a low

affinity substrate (GC sequence) generated by in silico substitution

of the TATA sequence present in 1YTB by the GCGCGCGCGC

DNA duplex and d) TBP solved without substrate, using PDB file

1TBP [18] as a starting structure. The abundance of critical

residues for DNA binding found as central residues in these

conformers follows the order: a).b).c).d) (see Table 2 and

Figure 6). Also, there is no correlation between the RMSD

Figure 3. Paired comparison of central residues in protein conformers. The fraction of identical central residues shared by every pair of
conformers (y-axis) is plotted against every pair of conformer analyzed (x-axis). The results are shown for every pair between the 23 T4 Lysozyme
structures analyzed (filled circles) and the 31 complexed HIV-1 protease structures compared against all the 42 non-complexed HIV-1 protease
structures (empty triangles). Please refer to Methods for the PDB codes of the structures used in this comparison.
doi:10.1371/journal.pcbi.1000009.g003

Figure 4. Mapping the relationship between RMSD and centrality in crystallographic conformers. Combined Sensitivity (CS) is plotted
against the Root Mean Square Deviation (RMSD) values observed for every pair of structures compared. 31 HIV-1 protease structures in complex with
a substrate were compared against 42 HIV-1 protease structures without a substrate. Please refer to Methods for the PDB codes of the structures used
in this comparison.
doi:10.1371/journal.pcbi.1000009.g004
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differences of the conformers and the critical residues for DNA

binding harbored by these conformers (see Figure 7).

In order to analyze the veracity of axiom A2 and the reliability

of our method in a larger data set of proteins, we employed the

MolMov set that includes a total of 20 different proteins (see

Methods and Table 3). This set includes a subset of protein

structures solved in the absence of a ligand (subset U) and a subset

of protein structures interacting with a ligand (subset I). A total of

286 alternative conformations were generated for every protein

structure in each subset, providing a total of 2,860 protein

structures in each subset, as derived from the normal modes of

vibration (see Methods). The critical residues for ligand binding for

each protein were assumed to be those conserved residues on the

protein surface (see Methods). This assumption includes some

degree of uncertainty (conserved residues not necessarily are

functionally relevant) and provides an additional way to evaluate

our procedure (see below). We observed that on average, the

proportion of truly predicted critical residues (expressed as

sensitivity) in the MolMov subset U is smaller than for the subset

I (see Figure 8A) but not in all cases (see Figure 8B). We noticed

that the MolMov set included 10 proteins for which the predicted

critical residues were closer to the ligand (3 Å on average per

Figure 5. Mapping functional conformers in the HIV-protease by centrality measurements. The overall and average sensitivity for
predicting critical residues of the HIV-protease was significantly higher when we used crystallographic structures of the HIV-protease associated with
a substrate (black dots) than when the crystallographic structures did not include the substrate (white dots). To facilitate visual analysis, the points of
each group were sorted in ascending order according to their sensitivity value.
doi:10.1371/journal.pcbi.1000009.g005

Figure 6. Mapping functional conformers in the TBP by
centrality measurements. The overall and average sensitivity for
predicting critical residues for the binding of the TBP to the TATA
sequence was significantly higher when we used structures derived
from a molecular dynamics simulation of the TBP associated with the
TATA sequence, (labeled TBP+WtDNA, black dots) than when the
simulated structures were without DNA, (labeled TBP, red dots). To
facilitate visual analysis, the points of each group (63,000 structures
each) were sorted in ascending order according to their sensitivity
value. See Table 2 for a statistical analysis of these data.
doi:10.1371/journal.pcbi.1000009.g006

Figure 7. Mapping the relationship between RMSD and
centrality in molecular dynamics. TBP conformers with the highest
and lowest values of both sensitivity and specificity in the four
molecular dynamic simulations of TBP were used to show the
relationship between the sensitivity value and the RMSD of the
conformer with respect to the 1YTB structure.
doi:10.1371/journal.pcbi.1000009.g007
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protein, data not shown) in the crystal structure (see Figure 8C for

an example) than for the other 10 proteins in the MolMov set (see

Figure 8D for an example). Thus, only when the critical residues

are truly related to the function of interest, our approach can

identify the associated conformations to that function. These

results are independent of the nature of either the ligand or the

protein analyzed (see Table 3).

Linking Mutagenesis Data to Protein Structure and
Dynamics

The 53 mutants listed in Table 1 were identified with TBP-

DNA binding gel-shift assays [20–42]. The assay does not

distinguish between folding-defective mutants and mutants directly

involved in DNA binding. In contrast to the HIV protease, there

are not numerous structures of the yeast TBP bound to the TATA

DNA, thus limiting our ability to establish the structure/

dynamics/function relationship of these mutants. For instance,

the assumption that only residues less than 5 Å from DNA are

directly involved in binding eliminates residues that are at a longer

distance from DNA; yet, these distant residues may be at 5 Å or

closer to the DNA in some alternative conformations of TBP

bound to DNA. If multiple protein structures are computationally

Table 1. TBP DNA-Binding Null Mutants.

WT Residue Mutants References

Pro65 Ser [34]

Leu67 Lys [38]

Asn69 Ser, Arg, deletion [33,21,26,22,17]

Val71 Ala, Met, Arg, Glu [36,21,33,26,25,32]

Leu76 Lys [38]

Leu80 Lys [38]

Leu82 Lys [38]

Lys97 Glu [24]

Arg98 Glu [21,22]

Phe99 Lys, Leu [36,19]

Ala100 Pro [27]

Ile103 Lys [19]

Arg105 Leu, Cys [36,19]

Pro109 Ala, Gln [32]

Lys110 Leu [38,39]

Thr111 Ile [37]

Thr112 Lys [36]

Ala113 Lys, Leu [19]

Leu114 Lys, Phe [38,19,21,31]

Ile115 Lys [19]

Phe116 Tyr, Lys, Leu [36,19,32]

Ser118 Leu [18,29]

Lys120 Leu [38,39]

Met121 Lys [19]

Val122 Arg, Lys [19,21]

Thr124 Asn, Arg [21,26]

Gly125 Deletion [26]

Lys127 Leu [38,39]

Ser126 Asn [37]

Arg141 Ala [38]

Ile143 Asn [34]

Phe148 Leu [18]

Lys156 Ala [38]

Asn159 Asp, Leu, Arg [23,18,21,29,32]

Val161 Ala, Glu, Arg [36,18,21,29,33,32]

Leu172 Lys [38]

Leu175 Lys [38]

Leu189 Pro, Ser [28,20]

Phe190 Arg, Gln, Thr [20,21]

Pro191 Ala [27]

Leu193 Lys [38]

Ile194 Arg, Phe [35,21]

Arg196 Glu, Cys [36,21]

Lys201 Glu, Leu [38,39,21]

Val203 Glu, Lys, Thr [35,36,21]

Leu204 Lys [38]

Leu205 Arg, Val, Lys, Phe [35,38,21,30,31]

Phe207 Leu, Tyr [36]

Lys211 Leu [38,39]

Val213 Arg [21]

WT Residue Mutants References

Leu214 Lys [38]

Thr215 Arg [21]

Lys218 Leu [38,39]

WT residue column describes the residue (3-letter code amino acid and its
position) in the wild-type TBP that once mutated to any of the amino acids
described in the Mutants column, abolished the ability of TBP to bind DNA. The
reference numberings reporting such mutants are indicated.
doi:10.1371/journal.pcbi.1000009.t001

Table 2. Statistical Analysis of the TBP Functional Conformer
Identification.

Group N Mean SD

TBP+WtDNA 63000 0.254 0.122

TBP-WtDNA 63000 0.249 0.116

TBP-GCDNA 63000 0.234 0.117

TBP 63000 0.23 0.109

Compared
Groups ModelDF

Model
MS

Error
DF Error MS F a

TBP+WtDNA–
TBP-WtDNA

1 0.671 125998 0.014 46.709 0.05

TBP-WtDNA–
TBP-GCDNA

1 7.319 125998 0.013 533.58 0.05

TBP-GCDNA–
TBP

1 0.564 125998 0.012 43.873 0.05

(Upper Part) Each row shows the statistical parameters for each group of TBP
conformers derived from molecular dynamics simulations. TBP+WtDNA: TBP
with the TATA sequence. TBP-WtDNA: TBP orginally resolved with the TATA
sequence but removed during the simulation. TBP-GCDNA: TBP with a GCGC
sequence. TBP: TBP originally resolved without DNA and simulated without
DNA. (N: number of conformers, SD: Standard deviation).
(Lower Part) Each row summarizes the results for a one-way ANOVA (Null
hypothesis: mean(1st group) = mean(2nd group)) for the pairs of groups
indicated in the first column. In each case the null hypotheses is rejected at the
0.05 level of significance (DF: degrees of freedom, MS:mean square, F:
Calculated F-value , a: level of significance).
doi:10.1371/journal.pcbi.1000009.t002
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generated to determine which residues always fall within a cut-off

distance from DNA, there is no a priori knowledge to determine if

all possible conformations were explored. Thus, simply measuring

the distance between the ligand and the protein does not provide a

comprehensive method to link structure to biological function.

Similar reasoning may be applied to energy calculations, since

there is no a priori energy value that may be used to specify the

relevant residues for binding. In this context, our method does not

measure the distance between the ligand and protein, thus is

complementary to the criteria based on the distance between the

ligand and a protein and could be used to improve our ability to

identify critical residues for protein-ligand interactions.

All 53 critical residues in TBP involved in DNA binding

qualified as central residues in the structures generated during the

simulations (see Table 4). This indicates that the simulations

sampled relevant conformations of TBP associated to the function

of the 53 DNA-binding null mutants. However, the centrality

criteria used to map critical residues onto protein structures does

not distinguish between critical residues for structure and binding.

Thus, we examined if there are differences in the presence of these

critical residues in the simulations. We would expect that critical

residues found exclusively in simulations of TBP in the presence of

DNA are more likely to be involved in binding, while those

residues prevalently found in all the simulations (frequen-

cy. = 0.50) are more likely to be involved in maintaining TBP

structure. From Table 4, we identified Lys97, Ser118, Pro191,

Lys211, Val213 and Thr215 (yeast TBP numbering) as residues

critical for binding, whereas critical residues for TBP structure

would be Leu67, Leu76, Leu80, Val122, Leu172 and Leu175. In

agreement with the yeast TBP-DNA structure, all residues that

were predicted to be involved in DNA binding are oriented

towards it, while those predicted to be involved in TBP structure

actually are in the protein’s core, with the exception of Val122,

which faces DNA. Moreover, Leu67, Leu76, Leu80, Leu172 and

Leu175 were shown to produce misfolded proteins upon mutation

to Lysine [18].

Figure 8. Mapping functional conformers in the MolMov set by centrality measurements. The sensitivity value for predicting critical
residues in the MolMov set (see Methods) is plotted against each conformer evaluated. (A) The sensitivity values for 10 proteins with predicted critical
residues close to the ligand showed significantly higher values when the protein was associated to a ligand (red squares) than the corresponding
protein structures without the ligand (black squares). (B) As in (A), but here 10 proteins are shown for which the predicted critical residues were not
close to the ligand. To facilitate visual analysis in (A) and (B), the points of each group were sorted in ascending order according to their sensitivity
value. (C) 1CIP, Guanine nucleotide-binding protein in complex with a GTP analogue, is an example of a protein where the predicted critical residues
were close to the ligand. (D) 2RKM, Oligopeptide-binding protein in complex with Lys-Lys peptide, is an example of a protein where the predicted
critical residues were not close to the ligand. In (C) and (D) the ligand is in yellow, the protein in green, and the critical residues in purple.
doi:10.1371/journal.pcbi.1000009.g008
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Discussion

Under the current view that proteins accomplish their function

through a set of conformations [4,43], we postulate that the known

critical residues play their roles in that set of conformations. In

such a case, having a method to map critical residues to protein

structures will assist in the identification of the protein conforma-

tions associated to the function of the critical residues. In previous

reports, it has been shown that central residues to protein structure

are related to residues critical for protein function (e.g., folding,

catalysis) [11–15]. In all these previous studies, central residues

have been detected in a single protein structure. However, protein

function comprises an ensemble of protein structures and

presumably, each protein structure may harbor a different subset

of central and critical residues. Supporting this notion, Vendrus-

colo and cols. [14] showed that central residues in the folding

transition state of 6 proteins map only critical residues for folding.

Along this line, we showed that in the folded states of 131 proteins,

central residues map to critical residues for either keeping the

structure and/or binding [11,12]. Here, we show additional

evidence that including multiple conformers of a given protein

improves the relationship observed between central residues and

critical residues for protein function in three different proteins (see

Figures 1 and 2). Taken together, axiom A1 is supported by these

results.

Note that simply including many protein conformers in the

analysis may not identify more critical residues. In this case, it is

important to take into account the diversity of conformations

being analyzed and the mechanism used by the protein to

recognize the ligand (e.g., induced-fit versus selected-fit mecha-

nisms. See below).

Additionally, our results are in agreement with the notion that

conserved residues are not always functionally important, yet some

conserved residues have functional roles (e.g., catalytic residues).

Also, our results indicate that different protein conformers may

harbor different central residues and, presumably different

functions (axiom A2). If such is the case, our goal to identify

functional conformers computationally seems reachable.

Indeed, we show that different protein conformers harbor

different sets of central residues (see Figure 3), despite their

structural similarities (,1 Å) as measured by RMSD (see Figure 4).

Consequently, we found that there is no relation between the

difference in central residues in different conformers and the

geometrical differences, measured as RMSD, amongst the

conformers (see Figure 4 and 7), indicating that centrality is not

simply a measure of the geometrical differences between protein

structures. Thus, the data indicate that central residues seem to be

fingerprints of protein conformations.

Understanding this correspondence between centrality and

protein structure may lead to generate protein structures hosting

specific sets of critical and central residues. This will require a

more in-depth characterization of the topological features of

protein structures represented as networks. Recognizing our

current limitation to generate protein conformers harboring a

specific set of central residues, our best approximation to identify

functional conformers of proteins is through the screening of

collections of protein structures.

We determined the central residues for 73 experimentally

determined conformers of the HIV protease and for 252,000

computationally generated conformers of TBP. For these two

proteins, the critical residues for binding the substrate or other

Table 3. The MolMov Set.

PDB Code Protein Name Ligand Name SCOP Classification

1BJY Tetracyclin repressor Tetracycline All alpha

1DQY Antigen85c (mycolyltransferase) Diethyl phosphate inhibitor Alpha/beta

1CRX CRE recombinase DNA All alpha

1EX7 Guanylate kinase Guanosine 5-monophosphate All beta

1QUK Phosphate-binding protein Phosphate Alpha/beta

1GTR Glutaminyl-tRNA synthase ATP Alpha/beta

2DRI Ribose-binding protein Ribose Alpha/beta

1SSP Uracyl-DNA glycosylase Uracyl-DNA Alpha/beta

1CIP Guanine nucleotide-bindign protein Phosphoaminophosphonic acid-guanylate ester Alpha/beta

3PJR Helicase DNA Alpha/beta

1B0O Beta-Lactoglobulin Palmitate All beta

6TIM TriosePhosphate Isomerase 3-Phosphoglycerol Alpha/beta

1F8A Peptidyl-prolyl cis-trans isomerase Phosphoserine-proline peptide Alpha + beta

1DVJ Orotinide monophosphate dehydrogenase 6-AZA Uridine MonoPhosphate Alpha/beta

1FTM Glutamate receptor AMPA Alpha/beta

3MBP Maltose-binding protein Maltotriose Alpha/beta

1QAI Reverse transcriptase Nucleic acid Multidomain protein (alpha and beta)

2RKM Oligopeptide binding protein Lys-Lys peptide Alpha/beta

1I7D DNA toposiomerase II 8-bases single-stranded DNA Multidomain protein (alpha and beta)

1PFK Phosphofructokinase Fructose diphosphate Alpha/beta

The proteins solved in complex with a ligand in the MolMov set are listed with their ligands. The first ten rows correspond to the protein whose predicted critical
residues were close to the ligand; the last ten rows are the proteins whose predicted critical residues were not close to the ligand. The last column indicates the
structural classification as indicated in the SCOP database.
doi:10.1371/journal.pcbi.1000009.t003
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ligand have been identified [6,16,20–42]. It is important to note,

that it may be possible to have more than a single protein

conformer binding a substrate/ligand, provided also that the

substrate/ligand exists in several conformations. Given this

condition, it is not surprising to find several conformers of these

two proteins harboring as central residues those matching the

critical residues for binding the substrate/ligand (see Figures 5 and

6). As expected, the protein conformers harboring most of the

central residues corresponding to the critical residues for binding

the substrate/ligand, are the experimentally determined conform-

ers bound to the substrate/ligand (see Figures 5 and 6). We

observed a similar trend for a larger data set of 20 different

proteins (see Figure 8A). However, the protein structures in

complex with a ligand cannot be identified if the critical residues

provided are not related to the binding of such ligand (in our case,

derived from a conservation index of exposed residues; see

Figure 8B and 8D). These results are independent of the nature of

either the ligand or the protein analyzed (see Methods and

Table 3).

Thus, according to axiom A2 critical residues for ligand binding

will exert their function in the protein conformers bound to the

ligand. In terms of our procedure, axiom A2 implies that central

residues found in protein conformers bound to the ligand will

include mostly the critical residues for ligand binding. Our results

provide support to this axiom and provide the feature to identify

the functional conformers of proteins.

We noticed that some conformers derived from the protein

structure in the absence of a ligand actually present large

sensitivity values (see Figures 5, 6, and 8A). Understanding these

results will require further studies, but a possible explanation could

be found in the mechanism of action used by the proteins to

recognize their ligands. For instance, in the induced-fit mechanism

[4,5], proteins in the absence of a ligand, will rarely adopt a

conformation observed when proteins are bound to the ligand,

and only when the ligand is present such conformations will be

frequently observed. According to our postulate, a protein

conformation in the absence of a ligand will harbor less frequently

central residues matching critical residues. That is the case for the

HIV protease (see Figure 5); however, the yeast TBP dynamics

shows a large number of conformers in the absence of a ligand

with a high proportion of central residues matching critical

residues for binding (see Figure 6). This suggests a possible

induced-fit mechanism for the HIV-1 protease but not for the

yeast TBP. Our results then, could be interpreted according to the

mechanism used by the protein to recognize its ligand. However,

further studies will be required to validate the usefulness of our

Table 4. Observed Frequencies of Critical Residues for DNA
Binding Found as Central Residues in Simulated Conformers
of TBP.

WT Residue TBP+WtDNA TBP-WtDNA TBP TBP-GCDNA

Pro65 0.579 0.277 0.247 0.429

Leu67 0.786 0.621 0.552 0.57

Asn69 0.237 0.051 0.045 0.026

Val71 0.268 0.016 0.015 0.015

Leu76 0.842 0.911 0.81 0.689

Leu80 0.897 0.969 0.861 0.728

Leu82 0.435 0.286 0.255 0.161

Lys97 0.001 0 0 0

Arg98 0.026 0.034 0.03 0

Phe99 0.233 0.294 0.261 0.098

Ala100 0 0.044 0.039 0.003

Ile103 0.045 0.022 0.019 0.037

Arg105 0.102 0.013 0.011 0.02

Pro109 0.075 0.044 0.04 0.057

Lys110 0.029 0.017 0.015 0.034

Thr111 0.279 0.124 0.11 0.208

Thr112 0.433 0.551 0.49 0.287

Ala113 0.049 0.029 0.025 0.098

Leu114 0.578 0.652 0.579 0.21

Ile115 0.35 0.551 0.49 0.422

Phe116 0.184 0.244 0.217 0.389

Ser118 0.001 0 0 0

Lys120 0.344 0.496 0.441 0.421

Met121 0.326 0.089 0.079 0.128

Val122 0.665 0.961 0.854 0.569

Thr124 0.11 0.042 0.037 0

Gly125 0.025 0.032 0.029 0.01

Lys127 0.338 0.273 0.243 0.274

Ser136 0.221 0.122 0.109 0.103

Arg141 0.014 0.001 0.001 0

Ile143 0.168 0.132 0.117 0.075

Phe148 0.164 0.071 0.063 0.078

Lys156 0.213 0.156 0.139 0.223

Asn159 0.323 0.343 0.305 0.287

Val161 0.247 0.221 0.197 0.141

Leu172 0.897 0.998 0.887 0.758

Leu175 0.958 1.007 0.895 0.757

Leu189 0 0.033 0.029 0

Phe190 0.046 0.03 0.027 0

Pro191 0.001 0 0 0

Leu193 0.479 0.497 0.442 0.336

Ile194 0.016 0.016 0.015 0.002

Arg196 0.045 0.035 0.031 0.031

Lys201 0.003 0.003 0.002 0.082

Val203 0.063 0.023 0.02 0.048

Leu204 0.087 0.053 0.048 0.061

Leu205 0.071 0.033 0.03 0.023

Phe207 0.054 0.001 0.001 0.002

WT Residue TBP+WtDNA TBP-WtDNA TBP TBP-GCDNA

Lys211 0.049 0 0 0

Val213 0.093 0 0 0

Leu214 0.453 0.336 0.299 0.245

Thr215 0.013 0 0 0

Lys218 0.572 0.644 0.572 0.477

The observed frequencies of DNA-binding null mutant positions (WT residue)
for each of the 4 molecular simulations, including: a) TBP+WtDNA, b) TBP-
WtDNA, c) TBP and d) TBP-GCDNA. The frequencies were obtained by
normalizing the number of times any of the residues in this table was detected
as central in all of the 63,000 conformations analyzed.
doi:10.1371/journal.pcbi.1000009.t004
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approach in determining the mechanism of protein interactions

and are out of the scope of the current work.

To illustrate the usefulness of our method in the study of the

structure/dynamics/function relationship of proteins, we exam-

ined previously reported mutants of the yeast TBP that have been

identified as critical for DNA binding. Since binding to DNA is a

dynamic process, it is important to keep in mind that a single

structure of TBP in complex with DNA may not be sufficient to

determine which of the residues have a role in binding or in

keeping the structure. We explored the use of our method for

distinguishing these residues. Our results show that residues Lys97,

Ser118, Pro191, Lys211, Val213 and Thr215 are more likely

involved in binding, while residues Leu67, Leu76, Leu80, Val122,

Leu172 and Leu175 appeared to be involved in the preservation of

the structure of yeast TBP. It is important to note that our method

does not use a criterion based on the distance of the protein to the

ligand; nonetheless our results are in consonance with the distance

and orientation of the critical residues observed in the structure of

yeast TBP in complex with the TATA-box DNA. Likewise,

mutations on the residues predicted to be involved in maintaining

TBP structure (Leu67, Leu76, Leu80, Leu172 and Leu175) do not

transcribe in either an activated (in the presence of transcription

activators) or basal fashion, supporting the idea of a structural role

for these residues [18]. Interestingly, residue Val122 is predicted to

be involved in maintaining TBP structure but it faces DNA,

suggesting that Val122 may have a dual role: DNA binding and

structure maintenance. Further experimental evidence is required

to elucidate this possibility.

Conclusions
Our results support the notion that protein function is achieved

through an ensemble of protein conformations [4,43]. The

method shown here may be applied to any other protein of

interest to identify its potential functional conformers. For that

purpose, we have made available the software to identify central

residues at http://bis.ifc.unam.mx/jamming/ [12]. The identifi-

cation of functional conformers of a target protein is indeed useful

in many different areas of research, such as drug design, protein

function design and protein-protein interaction predictions,

among others. Likewise and as shown here, the ability to map

critical residues onto protein structures may increase our capacity

to link experimental data with structural information. For instance,

in many mutagenesis studies of proteins, especially those that test

the in vivo function of the mutants, it is not obvious if the defects in

function are related to a folding and/or processing problem, or to

a more subtle functional effect. Our method may aid in the

interpretation of such data.

Materials and Methods

Data
To study the relationship between conserved residues and

central residues in multiple protein structures, two proteins were

used: HIV protease and the T4 lysozyme. For the HIV protease,

73 experimentally determined crystal structures were used: 1a30,

1a8g, 1a9m, 1aaq, 1ajv, 1ajx, 1axa, 1bdr, 1bv7, 1bv9, 1bwa,

1bwb, 1cpi, 1dif, 1dmp, 1gnm, 1gnn, 1gno, 1hbv, 1hih, 1hiv, 1hos,

1hps, 1hpv, 1hpx, 1hsg, 1hte, 1htf, 1htg, 1hvc, 1hvi, 1hvj, 1hvk,

1hvl, 1hvr, 1hvs, 1hwr, 1hxb, 1hxw, 1mer, 1mes, 1met, 1meu,

1mtr, 1odw, 1odx, 1ody, 1ohr, 1pro, 1qbr, 1qbs, 1qbt, 1qbu, 1sbg,

1tcx, 1vij, 1vik, 1ytg, 1yth, 2aid, 2bpv, 2bpw, 2bpx, 2bpy, 2bpz,

2upj, 3aid, 4hvp, 4phv, 5hvp, 7hvp, 8hvp, 9hvp. For the T4

lysozyme 23 experimentally determined crystal structures were

used: 1ctw, 1cu0, 1cu2, 1cu3, 1cu5, 1cu6, 1cup, 1cuq, 1cv0, 1cv1,

1cv3, 1cv4, 1cv5, 1cv6, 1cvk, 1cx7, 1d2w, 1d2y, 1d3f, 1d3j, 1d3m,

1d3n, 1qsq.

To identify functional conformers three sets of protein structures

were used: HIV protease, the yeast TATA-Binding Protein (TBP)

and the MolMov set of proteins. For the HIV protease, the same

protein structures described above were used. The PDB code of

those structures in complex with a substrate analogue are: 1aaq,

1cpi, 1dmp, 1hbv, 1hih, 1hiv, 1hos, 1hps, 1hpv, 1hte, 1htf, 1htg,

1hvi, 1hvj, 1hvk, 1hvl, 1hvr, 1hvs, 1ohr, 1sbg, 2bpv, 2bpw, 2bpx,

2bpy, 2bpz, 4hvp, 4phv, 5hvp, 7hvp, 8hvp, 9hvp. For TBP, the

crystal structures used had the PDB codes: 1tbp for TBP without

DNA, and 1ytb for the TBP complex with a TATA box

(TATATAAA).

In the case of the MolMov set, we used the proteins reported at

the database of macromolecular movements [44]. This database

includes structures of proteins motions and we have analyzed only

those including an interaction with a ligand. Thus, this set includes

protein structures in the absence of a ligand (MolMov subset U)

and the structures of the same protein solved in the presence of a

ligand (MolMov subset I). The PDB codes in the MolMov subset

U includes: 1bjz, 1beb, 1dqz, 1tre, 1pin, 1dv7, 4crx, 1ex6, 1fto,

1omp, 1rkm, 1oib, 1nyl, 1urp, 1akz, 1d6m, 1gp2, 2pfk and 1pjr.

The PDB codes in the MolMov subset I include: 1bjy, 1b0o, 1dqy,

6tim, 1f8a, 1dvj, 1crx, 1ex7, 1ftm, 3mbp, 1qai, 2rkm, 1quk, 1gtr,

2dri, 1ssp, 1i7d, 1cip, 1pfk and 3pjr. 10 of these proteins showed

the predicted critical residues close to the ligand, while the other

proteins showed the predicted critical residues not so close to the

ligand (see Table 3). The MolMov set includes very diverse types

of ligands and protein architectures (see Table 3) and the number

of amino acids per protein ranked from 156 to 647. Finally, for

each structure in these subsets, 26 normal modes of vibration were

calculated using ElNèmo [45] and 11 protein conformations

derived for each. Thus, the MolMov set includes a total of 5,720

protein structures, with 2,860 protein structures in each subset.

TBP Molecular Dynamics
The initial structure for the simulation of free TBP was 1TBP

[18] (PDB code). The structure 1YTB [19] (chains B and D),

which is the carboxyl terminal domain of TBP from Saccharomyces

cerevisiae bound to a TATA box hairpin (59 TATATAAA 39,

CYC1), was used as the initial structure; the bases in the hairpin

were removed, and only 10 basepairs were kept (the TATA box

and one-basepair at the 59 and 39 end). The complex of TBP

bound to sequence 59 GCGCGCGCGC 39 (CG) was constructed

introducing the necessary modifications to the 1YTB structure

using the Biopolymer module of InsightII program. The structures

were solvated placing the solute molecules on a cubic TIP3 water

box and removing all the waters within 2.5 Å of the solute. The

cubic water box was trimmed to a hexagonal box employing the

Simulaid program [46]. Initially, the water molecules and sodium

atoms were submitted to an energy minimization using 4 stages of

500 Steepest Descent (SD) steps and 2 stages of 1000 Adopted

Basis Newton-Raphson (ABNR) steps. After solvent minimization,

periodic boundary conditions (PBC) were turned on employing the

CRYSTAL module of the CHARMM [47] program version 28

using CHARMM27 parameters [48,49]. The solvent was again

minimized with 500 ABNR steps keeping the solute molecule

fixed. Two final minimization stages were applied to the whole

system with 250 SD steps and 250 ABNR steps. The solvent was

equilibrated with 150 ps of molecular dynamics using a 1.5 fs step

in the NPT ensemble at 300 K with the Leap-Frog integrator.

Later, the whole system was equilibrated using the same protocol

for the solvent. The Berendsen algorithm was used. A value of

600.0 atomic mass units (amu) was used for the mass of the
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pressure piston. The reference pressure was set to 1 atm. The

Langevin piston collision frequency was set to 10.0 ps21. The

Langevin piston bath temperature was set to 300 K. The Hoover

constant temperature was used. The Hoover reference tempera-

ture was set to 300.0 K. The mass of the thermal piston was set at

1000 kcal*ps22. The target temperature was 300 K. The image

and neighbor list update were done when necessary (heuristic test),

with a distance cut-off set to 14 Å; electrostatic interactions were

shifted, and van der Waals interactions were switched, to ensure

smooth forces at the cutoff distance. All calculations were

performed using SHAKE algorithm and an integration time step

of 1.5 fs was used. All the systems were simulated for 10.65 ns

using PBC with the CRYSTAL module of CHARMM in the NPT

ensemble at 300 K with the Leap-Frog integrator saving

coordinates every 100 steps. The last 9 ns were used for analysis.

Building Networks and Identifying Central Residues from
Protein Structures

Networks were derived from protein structures by a distance

criterion. That is, two residues were considered neighbors and

consequently to interact if at least 1 atom on each residue is

5 Angstrom (Å) apart or closer. The atoms within that distance

may be part of the amino acid’s main chain and the amino acid’s

side chain. Therefore, the networks that were built had amino acid

residues as nodes and their interactions as links. Links were labeled

with identical weights. We previously reported that among 21

different ways to build networks from protein structures (e.g.,

distance between center of masses, charge, different distance cut-

off values), this way reproduces with better results the prediction of

critical residues from central ones [12]. Central residues were

defined as those residues with the largest transitivity values having

the same frequency in the network (see Figure S1 for an example).

The transitivity values were obtained by counting the number of

times a residue was in the shortest paths connecting every pair of

residues in the network. The frequency of a transitivity value is the

number of residues presenting that transitivity value in a network.

Thus, each residue will have a transitivity value and a frequency in

the network; only those having transitivity values immediately close

to the largest transitivity value in the network and with the same

frequency as those with the largest transitivity values are considered

central. Using this strategy we observe that about 20% or less of the

residues were central given a protein structure (see Figure S1 for an

example). For these calculations, we used our software available at

http://bis.ifc.unam.mx/jamming/ [12]. Transitivity, T, is related to

betweeness, B as follows: Bi = Ti/SPi; where Bi is the betweeness

value calculated for the i-node, Ti is the Transitivity value of the i-

node, and SPi is the number of shortest paths connecting the i-node

to the rest of the nodes in the network.

Estimating the Reliability of the Predictions
Two measurements were used to account for this: sensitivity and

specificity. Sensitivity, Se, is defined as Se = (TP+FN)/AP, where

TP: true positives, FN: false negatives and AP: all positives. In our

case, AP are all the critical residues determined experimentally,

TP are the critical residues correctly predicted and FN the critical

residues not predicted as critical. Specificity, Sp, is defined as

Sp = (AN2FP)/AN; where AN: all negatives and FP: false

positives. In our case, AN are the non-critical residues determined

experimentally and FP are the residues predicted as critical, which

are not critical. Additionally, in order to compare the sensitivity of

the predictions in paired comparisons (see Figure 4), we defined

the Combined Sensitivity parameter as:

CS~M1=C1zM2=C2

Where C1 refers to the observed central residues in protein 1 and,

C2 refers to the observed central residues in protein 2. M is the

number of central residues that are truly critical residues for either

protein 1 or protein 2. Thus, 2, = CS. = 0 to distinguish it from

Sensitivity.

Prediction of Critical Residues as Conserved Residues
The ConSurf server [50] was used for this. The parameters used

to run the ConSurf server were: Maximum likelihood method used

to calculate the conservation scores, PSI-BLAST E-value = 0.001,

maximum number of homologous sequences = 50 and the number

of PSI-BLAST iterations = 1. Conserved residues were those with

the most negative score (color code of 9).

Supporting Information

Figure S1 Transitivity distribution The transitivity values (Y-

axis) obtained for each residue (X-axis) in the yeast TATA-Binding

Protein (1TBP, chain B) are shown as rhombs. The values are

ordered by transitivity value to facilitate the visual analysis of the

data. The central residues are the most traversed residues that

present the same frequency, and are presented as filled rhombs on

the top right corner. That is, there are 6 residues with the largest

transitivity value of 17 (Tyr139, Met121, Phe227, Ile212, Ile160,

Leu175); the next lower transitivity value is 16 and also presents the

same frequency (6 residues: Ile143, Val123, Ile70, Leu76, Ile223,

Leu214) than those with transitivity value of 17; similarly there are 6

residues with transitivity value of 15 (Ile115, Ser136, Met104, Ile170,

Leu234, Ile206). Note that residues with transitivity value of 14 have

a frequency different than 6 and thus were not considered as central.

Only the 18 residues with transitivity values of 17, 16, and 15 are

considered central to the 1TBP structure.

Found at: doi:10.1371/journal.pcbi.1000009.s001 (0.08 MB TIF)

Acknowledgments

We acknowledge the technical assistance received from the Information

Technology core of the Instituto de Fisiologia Celular-UNAM and Alondra

Solares for the compilation of experimental reports of TBP mutants.

Author Contributions

Conceived and designed the experiments: HMM GR. Performed the

experiments: HMM CMP NP GR. Analyzed the data: HMM CMP NP

GR. Contributed reagents/materials/analysis tools: NP GR. Wrote the

paper: HMM CMP NP GR.

References

1. Zaccai G (2000) How Soft Is a Protein? A Protein Dynamics Force Constant

Measured by Neutron Scattering. Science 288: 1604–1607.

2. Kuwata K (2002) An emerging concept of biomolecular dynamics and function:

applications of NMR & MRI. Magn Reson Med Sci 1: 27–31.

3. Mittermaier A, Lay LE (2006) New tools provide new insights in NMR studies of

protein dynamics. Science 312: 224–228.

4. Vendruscolo M, Dobson CM (2006) Structural biology. Dynamic visions of

enzymatic reactions. Science 313: 1586–1587.

5. Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic

energy landscape of dihydrofolate reductase catalysis. Science 313: 1638–

1642.

6. Zoete V, Michielin O, Karplus M (2002) Relation between sequence and

structure of HIV-1 protease inhibitor complexes: a model system for the analysis

of protein flexibility. J Mol Biol 315: 21–52.

7. Agarwal PK (2006) Enzymes: an integrated view of structure, dynamics and

function. Microb Cell Fact 5: 2.

Functional Conformers of Proteins

PLoS Computational Biology | www.ploscompbiol.org 11 2008 | Volume 4 | Issue 2 | e1000009



8. Agarwal PK, Billeter SR, Rajagopalan PTR, Benkovic SJ, Hammes-Schiffer S

(2002) Network of coupled promoting motions in enzyme catalysis. Proc Natl
Acad Sci U S A 99: 2794–2799.

9. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The

protein data bank. Nucleic Acids Res 28: 235–242.
10. Kumar Sh, Gromiha MM (2006) PINT: Protein-protein interactions thermo-

dynamic database. Nucleic Acids Res 34: D195–D198.
11. Thibert B, Bredesen DE, del Rio G (2005) Improved prediction of critical

residues for protein function based on network and phylogenetic analyses. BMC

Bioinformatics 26: 21.
12. Cusack MP, Thibert B, Bredesen DE, del Rio G (2007) Efficient identification of

critical residues based only on protein structure by network analysis. PLoS ONE
2: e421.

13. Hu Z, Bowen D, Southerland WM, Del Sol A, Pan Y, et al. (2007) Ligand
Binding and Circular Permutation Modify Residue Interaction Network in

DHFR. PLoS Comp Biol 3: e117.

14. Vendruscolo M, Dokholyan NV, Paci E, Karplus M (2002) Small-world view of
the amino acids that play a key role in protein folding. Phys Rev E Stat Nonlin

Soft Matter Phys 65: 061910.
15. Amitai G, Shemash A, Sitbon E, Shklar M, Metanely D, et al. (2004) Network

analysis of protein structures identifies functional residues. J Mol Biol 344:

1135–1146.
16. Loeb DD, Swanstrom R, Everitt L, Manchester M, Stamper SE, et al. (1989)

Complete mutagenesis of the HIV-1 protease. Nature 340: 397–400.
17. Renell D, Bouvier SE, Hardy LW, Poteete AR (1991) Systematic mutation of

bacteriophage T4 lysozyme. J Mol Biol 222: 67–88.
18. Kim Y, Geiger JH, Hahn S, Sigler PB (1993) ‘‘Crystal structure of a yeast TBP/

TATA-box complex’’. Nature 365: 512–520.

19. Chasman DI, Flaherty KM, Sharp PA, Kornberg RD (1993) Crystal structure of
yeast TATA-binding protein and model for interaction with DNA. Proc Natl

Acad Sci U S A 90: 8174–8178.
20. Blair WS, Cullen BR (1997) A yeast TATA-binding protein mutant that

selectively enhances gene expression from weak RNA polymerase II promoters.

Mol Cell Biol 17: 2888–2896.
21. Lee M, Struhl K (1995) Mutations on the DNA-binding surface of TATA-

binding protein can specifically impair the response to acidic activators in vivo.
Mol Cell Biol 15: 5461–5469.

22. Nishikawa J, Kokubo T, Horikoshi M, Roeder RG, Nakatani Y (1997)
Drosophila TAF(II)230 and the transcriptional activator VP16 bind competi-

tively to the TATA box-binding domain of the TATA box-binding protein. Proc

Natl Acad Sci USA 94: 85–90.
23. Poon D, Knittle RA, Sabelko KA, Yamamoto T, Horikoshi M, et al. (1993)

Genetic and biochemical analyses of yeast TATA-binding protein mutants. J Biol
Chem 268: 5005–5013.

24. Kou H, Irvin JD, Huisinga KL, Mitra M, Pugh BF (2003) Structural and

functional analysis of mutations along the crystallographic dimer interface of the
yeast TATA binding protein. Mol Cell Biol 23: 3186–3201.

25. Kou H, Pugh BF (2004) Engineering dimer-stabilizing mutations in the TATA-
binding protein. J Biol Chem 279: 20966–20973.

26. Liu Q, Gabriel SE, Roinick KL, Ward RD, Arndt KM (1999) Analysis of TFIIA
Function In Vivo: Evidence for a Role in TATA-Binding Protein Recruitment

and Gene-Specific Activation. Mol Cell Biol 19: 8673–8685.

27. Colbert T, Lee S, Schimmack G, Hahn S (1998) Architecture of protein and
DNA contacts within the TFIIIB-DNA complex. Mol Cell Biol 18: 1682–1691.

28. Cang Y, Auble DT, Prelich G (1999) A new regulatory domain on the TATA-
binding protein. EMBO J 18: 6662–6671.

29. Geisberg JV, Struhl K (2000) TATA-binding protein mutants that increase

transcription from enhancerless and repressed promoters in vivo. Mol Cell Biol
20: 1478–1488.

30. Spencer JV, Arndt KM (2002) A TATA binding protein mutant with increased
affinity for DNA directs transcription from a reversed TATA sequence in vivo.

Mol Cell Biol 22: 8744–8755.

31. Virbasius CM, Holstege FC, Young RA, Green MR (2001) Promoter-specific

activation defects by a novel yeast TBP mutant compromised for TFIIB
interaction. Curr Biol 11: 1794–1798.

32. Kobayashi A, Miyake T, Ohyama Y, Kawaichi M, Kokubo T (2001) Mutations
in the TATA-binding protein, affecting transcriptional activation, show synthetic

lethality with the TAF145 gene lacking the TAF N-terminal domain in

Saccharomyces cerevisiae. J Biol Chem 276: 395–405.

33. Arndt KM, Ricupero SL, Eisenmann DM, Winston F (1992) Biochemical and

genetic characterization of a yeast TFIID mutant that alters transcription in vivo
and DNA binding in vitro. Mol Cell Biol 12: 2372–2382.

34. Arndt KM, Wobbe CR, Ricupero SL, Hovasse S, Struhl K, et al. (1994)
Equivalent mutations in the two repeats of yeast TATA-binding protein confer

distinct TATA recognition specificities. Mol Cell Biol 14: 3719–3728.

35. Arndt KM, Ricupero Hovasse S, Winston F (1995) TBP mutants defective in

activated transcription in vivo. EMBO J 14: 1490–1497.

36. Jackson-Fisher AJ, Chitikila C, Mitra M, Pugh BF (1999) A role for TBP

dimerization in preventing unregulated gene expression. Mol Cell 3: 717–727.

37. Schultz MC, Reeder RH, Hahn S (1992) Variants of the TATA-binding protein

can distinguish subsets of RNA polymerase I, II, and III promoters. Cell 69:
697–702.

38. Strubin M, Struhl K (1992) Yeast and human TFIID with altered DNA-binding

specificity for TATA elements. Cell 68: 721–730.

39. Reddy P, Hahn S (1991) Dominant negative mutations in yeast TFIID define a

bipartite DNA-binding region. Cell 65: 349–357.

40. Cormack BP, Struhl K (1992) The TATA-binding protein is required for

transcription by all three nuclear RNA polymerases in yeast cells. Cell 69:
685–696.

41. Yamamoto T, Horikoshi M, Wang J, Hasegawa S, Weil PA, et al. (1992) A
bipartite DNA binding domain composed of direct repeats in the TATA box

binding factor TFIID. Proc Natl Acad Sci U S A 89: 2844–2848.

42. Lee DK, DeJong J, Hashimoto S, Horikoshi M, Roeder RG (1992) TFIIA

induces conformational changes in TFIID via interactions with the basic repeat.
Mol Cell Biol 12: 5189–5196.

43. James LC, Tawfik DS (2003) Conformational diversity and protein evolution—a
60-year-old hypothesis revisited. Trends Biochem Sci 28: 361–368.

44. Flores S, Echols N, Milburn D, Hespenheide B, Keating K, et al. (2006) The
Database of Macromolecular Motions: new features added at the decade mark.

Nucleic Acids Res 34: D296–D301.

45. Suhre K, Sanejouand Y-H (2004) ElNémo: a normal mode web server for
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