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Computer calculations of phase diagrams 

A K MALLIK 
Indian Institute of Technology, Bombay 400076, India 

Abstract. The thermodynamic route of establishing phase diagrams is a relatively recent 
activity, considering that tiff about the fifties most phase diagrams were determined by the 
measurement of certain physical property or quantitative microscopy using light optics or 
x-ray diffraction. The thermodynamic formalism used by Kaufman and Bernstein is explained 
and illustrated with examples of the development of hypothetical binary phase diagrams. The 
calculation of ternary phase diagrams can begin with the binary phase diagram data as a first 
approximation. However, to calculate a reasonably accurate ternary phase diagram a certain 
amount of ternary solution data is necessary. Various empirical equations have been proposed 
in the literature to express ternary thermodynamic data. 

Calculation of simple ternary isothermal sections is illustrated with the examples of 
Mo-V-W and Cd-Sn-Pb systems. The numerical techniques which involve the differentiation 
of thermodynamic parameters with respect to composition get more involved with the number 
of components becoming 3 or more. A simpler approach has been applied recently to find the 
minimum position on the Gibbs free energy surface. 

Keywords. Phase diagrams; solution models; binary diagrams; lattice stability; ternary 
diagrams; miscibility gap; hill climbing technique. 

1. Introduction 

A phase diagram represents the domains of  stable phases under a given condition of  
composition and pressure. Till the fifties, phase diagrams were approached mainly 
through experimental measurements which did not involve thermodynamics, using 
either direct phase estimation methods or indirect methods. The indirect methods 
involve measurement of  a physical property or rather a change thereof like dilation, 
resistivity etc or thermal analysis. The thermodynamics of  phase equilibria represented, 
till about the riffles, a parallel activity with few bridges or connections with the former 
approach. As the stable state of  a phase is associated with the minimum of  free energy, it 
should be possible to link up thermodynamics with phase diagram, provided of  course 
that an adequate representation of  thermodynamic data is available. The reason why 
this link-up got going only after the fifties is perhaps due to the lack of  communication 
between the physical chemists and physical metallurgists. 

The relatively slow progress of  the thermodynamic route to  phase diagram has also 
been caused by the lack of  data even for binary systems, not to speak of  ternary systems. 
On the contrary, by the use of  a physical property, phase diagrams can be determined 
directly. A natural consequence has been that "the number of  systems for which phase 
diagrams have been determined is much greater than that for which the thermodynamic 
properties of  solution phases are known" (Ansara 1979). 

The situation has changed considerably during the last twenty five years and more 
and more phase diagrams are being generated from thermodynamic data. Not only 
does it provide considerable saving of  labour but the exercise gives a deeper insight to 
the systematics of  phase diagrams. The calculations have become feasible with the 
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availability of computers and appropriate numerical methods. Further, with the 
availability of sophisticated instruments, it has become possible to generate more 
precise and reliable thermodynamic data. Some of the early usage of thermodynamic 
data for the calculation of phase diagrams were by Wagner (1954), White et al (1977) 
and Hardy (1953). Extensive contributions have been made subsequently by 
Kubaschewski and Barin (1974), Kaufman and Bernstein (1970), Hillert (1970), Gaye 
and Lupis (1975), Chart et al (1975) and Pelton and Thompson (1975) on the 
calculation of phase diagrams. To conserve space, the mathematical formalism used in 
the present paper will be that of Kaufman and Bernstein, except where mentioned 
otherwise. 

2. Phase equilibrium 

At a given temperature and pressure, the maximum number of coexisting phases in a 
system formed by m components is equal to (m + 1) phases according to the phase rule. 
If there are j phases in the system, the partial free energy of a given component is the 
same for each phase under equilibrium conditions (figure I). The condition can be 
expressed by a set of nonlinear equations such as 

GI'= GI 2,= d, °~, (I) 

for i = 1 to ruth element and 1 tojth phase. The equilibrium for a system is represented 
by the condition that the molar free energy is minimum. 

3. Solution models 

For an alloy system A-B ,  in which X represents the atom fraction of B and which 
exhibits two competing phases 0t and //, the free energies of each phase may be 
represented by the following equations 

G = = ( 1 - X ) G ) + X G ~ + R T [ X l n X + ( I - X ) I n ( I - X ) ]  + ~G =, (2) 

Cr a = ( 1 - X ) G ~ + X G B a + R T [ X I n X + ( I - X ) I n ( 1 - X ) ] + E G  p. (3) 

In (2) and (3) G~ and GP~ are the free energies of the = and fl modifications of the element 
A, while G~ and ~ are the free energies of the at and p modifications of the element B. 
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The excess free energies of  mixing of  the ~t and fl phases are expressed as rG" and ~G p 
and X is the atom fraction of  B. 

The partial molar free energies of  A and B in an alloy containing X atom fraction B 
are G A ano G B respectively and are defined as 

dG 
G A = G - X OX' (4) 

OG 
G B = G + (1 - X) dX" (5) 

By differentiating G" and G ~ in (2) and (3) with respect to X, one can obtain the 
expressions for tT~, (7~A, G~ and ~ i.e. the partial free energy terms. Further applying 
the concept of  equality of  chemical potentials as defined in (1), the following general 
equations can be obtained. 

\ l - X , ]  \ - X - - ~ )  -X--~-),  (6) 

Y~G" \ / ~GP'~ Xp EG,,+ ( 1 - - X ) ~ ) .  (7) AG~-'" + RT ln~-~ = -X)-~-)-[~G'+(1 

When rG = 0, the solution is said to be ideal and the above equations can be considered 
simplified. Unfortunately, the ideal solution model is too simplistic and few solutions 
whether liquid or solid conform to it. A wide range of  solution models have been 
suggested in the literature. However, in the present paper only the regular solution 
model will be used, which postulates that the ZG term is equal to the enthalpy of  mixing 
AH. .  For the regular solution model 

~G- = ~ . x ( 1  - x ) ,  (8) 

eC~ -- ep x (1  - X), (9) 

where E~ and Ep are the interaction parameters for the 0t and fl phases respectively. 
Equations (6) and (7) can now be simplified as 

/ '1  - x p \  _ E . X , ,  - AG)-"+ RT In ~ )  - 2 E,X~, (10) 

Xp 
A G e "  + RT In ~--~ = E,(1 - X,) 2 - E , ( 1  - Xa) 2. (11) 

4. Numerical methods 

Once the phase stability parameters, AG) -'a, AG~ -'a and the interaction parameters E. 
and Ep are estimated with some confidence, (10) and (11) can be solved by appropriate 
iterative procedures to obtain values for X.  and Xp, which make it possible to locate 
at I ~t + fl I fl phase boundaries. Rudman (1969) used a trial and error method by assigning 
arbitrary values to the unknown X,  and Xp, so that the whole range of  composition is 
covered. The values are then selected which best fit the equations. Kaufman and 
Bernstein (1970) used a method based on the Newton-Raphson iteration technique, 
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which will be briefly described here. This method involves selecting a couple of 
approximate equilibrium values for X, and X B as a starting point, from which more 
precise solutions are obtained using approximation computed as under 

1 F(Xp,,,X~.,) Fx~(X,6,,,X,,,, ) (12) 
Xp~,+a~ = X~,~ (Xp,,X..) G(XI~,,X~,) Gx~(XI~,,X~.) 

= Xp~n~ AXB~n~ 
stx~.,x~.) 

1 ]Fxp(XB.,X.. ) F(Xp.,X~,) 
X"<'+I~ = Xa~n) J(Xpn,X~) Gxp(Xp,,X.) G(Xp.,X,.) 

AX,,(n) (13) 
= X.~.~ ./(Xp., X~,)' 

where F(Xp,X,,) = O, G(Xp,X~,) = O, (14) 

and the Jacobian 

= I (15) 
6~,p(xp, x,) 6~,,(xp,x,) l" 

It can be seen that differentiation of thermodynamic properties with respect to the 
atomic fraction is involved and this becomes more difficult and involved as the number 
of components increases. They also have to be repeated for all expressions relating the 
free energy and atom fraction. 

5. Binary diagrams 

The utility of the Newton-Raphson iterative technique can be illustrated with the 
development of hypothetical binary phase diagrams reported by Balakrishna and 
Mallik (1979, 1980) and which are shown in figure 2. To begin with, simple 
isomorphous phase diagram (s calculated when the solution is considered ideal. As the 
interaction parameters EL and E, are increased for the purpose of computation, the 
solidification range is enlarged and a solid state miscibility gap appears. Between the 
values of 4250 and 4500 cal/mol for the interaction parameters, an invariant peritectic 
reaction appears. By further raising the interaction parameter magnitude, a monotectic 
type reaction can be brought out. 

The scope of the calculation can be illustrated further to deal with components 
exhibiting allotropy. Figure 3 shows the development of phase diagrams involving 
three phases, liquid (L) and solid phases (g) and (fl), with varying combinations of the 
interaction parameters EL, E, and Ep. With small positive values of the interaction 
parameters, the equilibrium between L/fl and fl/~ phases correspond to azeotropic 
minima. Increase of the value for E, leads to the development of a miscibility gap in the 

region. A further increase of E, leads to the formation of an eutectoid reaction. 
By suitably varying the relative magnitudes of the interaction parameters a wide 

range of phase diagrams can be generated. In real systems, however, the solid state 
interaction parameter will be greater than that of the liquid state. Further, by the very 
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Figure 2. Development of peritectic and monotectic reactions with use of highly positive 
interaction parameters (cal/mol) (Balakrishna and Mallik 1979). 

nature of  formalism, the miscibility gaps so obtained are symmetrical. To deal with 
intermediate phases, in addition to the terminal phases, additional data are needed. 
Since there are many phase diagrams for which limited or very little thermodynamic 
data are available, it is quite possible to apply (10) and (11) in reverse, wherein the 
interaction parameters can be calculated using known values of X~, Xp at the phase 
boundaries. The computed interaction parameters can be compared and averaged with 
available thermodynamic data to replot the phase diagram with more reliability 
(Appendix 1). 

6. Lattice stability 

To be able to determine the form of the free energy-composition curves, two important 
data are needed, which are the lattice stability and the free energy of  mixing. While the 
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Fipre 3. Development of phase diagrams with allotropy of both the components 
(interaction parameters in cal/mol) (Balakrishna and Mallik 1980). 

relative shape of the curves is controlled by the latter, the former i.e. the lattice stability 
value controls the relative position of the free energy curves. Kaufman and Bernstein 
(1970) estimated the phase stability values for a number of  elements, mainly transition 
metals, for different structural forms which are liquid, fcc, bcc and cph structures. The 
regular solution phase diagrams of 72 binary refractory metal systems were computed 
using the lattice stability values and computed interaction parameters. 

While it would be ideal to obtain quantitative information on the lattice stability 
values from first principle formalism, such calculations are extremely difficult. Ifa metal 
exhibits polymorphism at atmospheric pressure, the free energy difference can be 
estimated from the measurements of the latent heat of transformation, heat of fusion 
and the volume changes attending the transformations. In cases where no polymorph- 
ism is displayed at one atmosphere, phase transformations at high pressures can be 
studied. The T-P diagram can be used with thermodynamic and volumetric data 
pertaining to one atmosphere to obtain the lattice stability expressions for various 
polymorphs. The analysis of phase diagram can enable the estimation of phase stability. 
For example, the lattice stability of hcp, fcc and bec forms of Zn has been estimated 
through individual analysis of AI-Zn, Cu-Zn and Ag-gi, phase diagrams. Kaufman and 
Nesor (1978) and Kaufman (1978) published an extensive range of lattice stability 
values for a wide range of elements on coupled phase diagrams and thermochemical 
data. 

7. Empirical equations for solutions 

For the calculation of phase diagrams it is necessary to express the thermodynamic 
properties of multicomponent phases as analytical functions of composition. If no 
ternary data are available, the following representation for the excess integral free 



Computer calculations of phase diaarams 113 

energy may be used (Kohler 1960) 

~G = (1 - XA)2 EG(BC ) + (1 - Xn) 2 EG(CA) + (1 - Xc) 2 EG(AB) 

+ Z . m k (16) ck ,,,a, X A X s X c. 
n>~l 
m>_-I 
k~>l 

The three binary terms in (16) gives an exact representation of~G in the ternary system, 
if the ternary solution as well as all three binary solutions are regular and the ternary 
terms can be set to zero. An expression for the partial property ~GA corresponding to 
(16) may be derived by differentiation. Several other empirical equations have been 
proposed for expressing the thermodynamic properties of ternary systems which are 
shown in figure 4. Toop (1965) expressed the excess free energy of mixing for a ternary 
system by the following equation 

1 ,4 EG(AB)+ 1 --XA XA+ [(1 --XA)2EGtBc)]XB/Xc 

(17) 

The equations given by Toop (1965) and Kohler (1960) have also been used with an 
additional term of  the form XaXBX c (AX a +BXB+CX c +D) to represent exper- 
imental data, the coefficients A, B, C and D being calculated from a least square analysis. 
Pelton and Bale (1977) represented the integral molar excess free energy E at any 
constant temperature for the ternary system (Bi-Cd-Zn) by a general polynomial 
expansion as given below 

EG Z . = k (18) = S n m k X z n X c d X B i  , 

where the q~.mk are constant coefficients. Any number of terms necessary to adequately 
represent the system may be included. Expressions for the partial molar excess free 
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Figure 4. Free energy surfaces of competing phases in ternary system and application of the 
common tangent principle. 
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energy may be obtained by differentiation of (18). Using the above formalism Pelton 
and Bale (1977) calculated the phase diagrams for the Bi-Cd-Zn, Bi-Cd-Sn and Fe-Cr- 
Ni-O systems. 

8. Ternary diagrams 

The formalism reported for the binary system can be extended to the ternary system. 
The integral free energy of a single phase solution with 3 components can be expressed 
as (Kaufman and Bernstein 1970) 

G IX, Y, T] = ZG~ + XGj + YG~ + RT (Z In Z + X In X + Y In Y) 

+ X Z  Eij+ YZ E~ + X Y  Ej~, (19) 

where X, Y, Z are atomic fraction ofelements J, K and I respectively, G~, Gj, G, the free 
energies of the pure element I, J, K and E o, E~ and Ejk are the binary interaction 
parameters. 

The partial free energies of I, J, K in a given phase are 

OG OG 
= 6-x - YFi' 

OG OG = 

(~ = G - X 0G y 0G 
~ + ( 1 -  )0-~. ( 2 o )  

The equilibria between two phases, liquid (L) and solid (S) can be shown schematically 
by the common tangent plane in figure 4, which shows the locus of points (X1, Fl) and 
(X2, Fe) corresponding to possible tangent points of a plane tangent to the two free 
energy surfaces GItX, F,T] and GeEX, F,T]. As with the binary diagrams and 
equations (10) and (11), similar equations can be written for the ternary case as 

Ai A G ~ e _ I . R T I n ( Z e / Z I ) + ( E i ~ X 2 1  2 2 2 1 2 = Ei~ XI)  + (Eik Y2 - EikY1 ) 

+ (AE 2 X2Y2 - AE 1XtY~ ) = O, 

Aj = AG~ ~2 + RT In (X2/XI) + [_E 2 (1 - X2) e - E~ (1 - X1)2 ] 

"Jr" (E2k y 2  _ E;  k y 2  ) _  [ - A E 2 y 2  (1 - X 2 )  - AEIy1  (1 - X0]  = 0, 

A~, = AGk ~ ~2 + RT In (Y2/Yx) + ( E2X2 - E~j X2) + [ E2 (1 - y2)2 

- -  E~k(1 - -  Y1 )2]  _ [ A E 2 X 2  (1 - Y2) - A E I X I  (1 - Y I ) ]  -~ 0 ,  ( 21 )  

where AE = Ei~ + Eik -- Ejk. (22) 

Equation (21) is solved numerically by the Newton-Raphson iteration technique 
(Appendix 2). 

For starting the iteration one has to choose the initial value of Xt for the independent 
variable and then choose the starting values of X °, yO, yO2. As shown in figure 5 the 
two binary edges IJ and JK define limits ofX~ Y~ and X2 Y2. The iteration is continued 
until it converges on a solution of X2, Y~, I"2. The value of X~ is then changed slightly 
and the procedure is repeated using previous solutions found for X1. The correctors 
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Figure 5. Computation of phase boundaries and tie lines with isothermal ternary sections 
from 1 J  edge to the JK edge. 
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where J, the Jacobian dcterminant is 

J = 

~Ai aA i c~A i 
aX2 ~YI ~Y2 

aAj 
~X2 ~YI JY2 
~A~ ~Ak ~Ak 
~X2 ~Y1 aY2 

(24) 

8.1 Calculated phase diagrams 

Figure 6 shows the calculated isothermal section for the Mo-V-W system by Bhansali 
and Mallik (1984) using the above approach, for which experimental diagram is not 
available. All the binaries are of  the isomorphous type with complete solid solubility. 
Both ideal and regular solution models have been used. It may be noted that while the 
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Mo V 

Figure 6. Calculated isothermal sections for the Mo-V-W ternary phase diagram (Bhansali 
and Mallik 1984). 

5n 

Pb Cd 

Figure 7. Calculated isothermal sections for the Cd-Pb-Sn ternary phase diagram (Bhansali 
and Mallik 1984) --- experimental 
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ideal solution model produces almost straight liquidus and solidus lines, the regular 
solution model produces more realistic contours which are naturally curved. 

Figure 7 shows the calculated liquidus projections for the ternary system Cd-Pb-Sn, 
(Bhansali and Mallik 1984) which shows one eutectic reaction at each of the binary 
edges. The figure also shows experimental lines obtained by thermal analysis and the 
match between experimental and computed lines is rather satisfactory. This is so 
considering that only binary phase diagram data have been used in the calculation of  
this diagram. Two alternatives are available. The first is to use calculated binary 
interaction parameters. The second is to use interaction parameters which are 
manipulated to produce the best fit with the binary diagram. In the above ternary phase 
diagrams the second alternative has been used. It is further possible to introduce 
ternary interaction parameters. This is where some measurements of thermodynamic 
data in the ternary region can be extremely useful. 

8.2 Ternary miscibility gap 

The magnitudes of the interaction parameters indicate the extent of solubility or 
immiscibility. Positive interaction parameter represents repulsive interaction between 
the two atomic species in solution. If the binary interaction parameter exceeds 2RT a 
miscibility gap is expected, which may or may not extend to the other binary edge 
depenQing on the magnitude of the other binary interaction parameter. The problem of 
defining the phase boundaries is similar to the two solution phase situation. The 
schematic free energy surface is shown in figure 8, which shows the occurrence of 
miscibility gaps on IJ and IK binary edges. Equation (21) can be used with the 
modification that AG~2= 0, E~j = E~ = E o. In case only one binary shows the 
miscibility gap the upward convexity of the free energy surface will gradually disappear 
as one moves from one binary edge to the other. 

GI 

G K 

G3 

I l 

K ~ y I 

Figure g. Schematic representation of the free energy surface for miscibility gaps at two 
binary edges. 



118 A K Mallik 

9. Hill climbing technique 

It has been pointed out that the differentiation of thermodynamic properties with 
respect to atomic fraction becomes more difficult and cumbersome as the number of 
components increases beyond three. The problem becomes even more difficult if there 
are small erroneous inflexions in the free energy curve determined from experimental 
observations. Nelder and Mead (1965) suggested a simplex approach which finds the 
minimum positions on the Gibbs free energy surface by hill climbing computational 
technique. In this method, the free energy ofa multicomponent system is calculated at a 
certain number of coordinates, usually 10. The point which has the highest value of free 
energy is replaced by another one. The procedure is iterated until a minimum value is 
obtained. This technique has been used by Counsell et al (1971) to calculate the 
miscibility gap in the liquid Cd-Pb-Zn and Cd-Pb-Sn-Zn systems. The method can also 
be used when tables of discrete values of thermodynamic data are used in place of 
analytical expressions. The minimization of free energy has been tested for two-phase 
separation in binary, ternary and quaternary mixtures. The procedure can be used to 
minimize a function ofm variables by comparison of the values of this function at m + 1 
points, followed by replacement of the point corresponding to the highest value of the 
function by another point. The process is continued by reflection, contraction and 
expansion upto the point when a minimum value is obtained. 

10. Higher order phase diagrams 

A quarternary phase diagram is usually represented as a regular tetrahedron, where the 
four equilateral triangular surfaces represent the 4 ternary diagrams and the six edges 
represent 6 binary diagrams at a given temperature. The lattice simplex method has 
been used (Ansara 1979) to express mathematically liquidus or solidus volumes in 
higher order systems. In principle, the method (Scheffe 1958; Gorman and Hinman 
1962) involves constructing mathematical models, commonly polynomials, which 
correlate the property and composition of test alloys. To calculate the coefficients of the 
equations, the properties are measured according to a definite distribution within a 
simple lattice. Relatively few quarternary systems have been investigated in detail. 

11. Conclusions 

The calculation of binary phase diagrams has been actively pursued in the last 25 years. 
While adequate description exists for the terminal phases (bcc, fcc and hcp forms), 
phase diagrams with several intermediate phases can only be attempted with some 
experimental data about their stability. The regular solution model, notwithstanding its 
limitations has been used quite extensively. 

For the calculation of ternary phase diagrams the starting point can be the binary 
system data. Analytical series expansions have been developed for representing the 
thermodynamic data of ternary and higher order solutions as a function of 
composition. A major uncertainty relates to the extension of the binary intermediate 
phases into the ternary regions. Asymmetrical miscibility gaps also cannot be 
determined without some data. 
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Such computational techniques which use the differentiation of  thermodynamic 
parameters with respect to composition become more difficult beyond ternary 
diagrams. Thus, use of  other minimization techniques, which do not involve 
differentiation may be more attractive. As yet, the calculation of quarternary phase 
diagrams has been attempted on a limited scale only. 

Lattice stability 
G!-2 G!-~ 

l ] 

Thermodynamic solution dote 
EG' ,EG2, E~j , Ei 2 

I 1 ¢ 
Newton Raphson iterative 

methods 
¢ 

Compute 
T ,X1, X 2 

phase boundaries 

Cornpore with 
experimental diagram 

Yes 

Store data 

No 

~ rage 

Compare 
E I E  2 
G ,G 

E I E 2 
i} ,  ij 

T 
Analyse 

phase 
diagram 

T 

Appendix 1. Flow diagram for coupling of thermodynamic data with phase diagram data 
for the generation of averaged phase diagram. 
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Appendix 2. Flow diagram for the iterative calculation of phase boundaries in ternary 
diagram isothermal sections. 
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