Introduction

The versatility and accuracy of programs such as
LALAland specially SUPERF1SH?to calculate the rf prop-
erties of atanding-wave cavities for linacs and storage
rings 18 by now well established. Such rf properties
include the resonant frequency, the phase shift per pe-
riodie length, the E- and H-ficld configurations, the
shunt impedance per unit length and ". While other pro-
grams such as THAP?have exiated for some time for travele
ing-wave structures, the wide availability of SUPERFISH
makes it desirable to extend the use of this program to
traveling-wave astructures aa well. That is the purpase
of thia paper. In the process of showing how the con-
version from standing waves to traveling waves can be ac-
complished and how the group velocity csn be calculated,
the paper also attempts to clear up some of the common
ambiguities between the propertiea of these two types of
waves. Good agrecment ia found between calculated re-
sults and experimental values obtained earlier.

Space Harmonics, Standing and Traveling Waves

To illustrate our problem, let us review the case
of the classical cylindrically symmetric disk-loaded
waveguide for which LALA and SUPERFISH can yield exact
field solutions. It is well kmown" that in the lowest
pass-band (accelerating Mg ~type mode). the traveling-
wave I-:z field can be expressed as
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wave snapshots of E are ghown for two instants of time,
wt=Q and wt=n/2. Notice that E; is plotted on axis
{r=0) but B, and are 2ero on axis and thue are plot-
ted for O<r<a. e units are arbitrary. The field
patterns that are shown have for many years been knoun
approxinately from bead measurements, paraxial approxi-
wations of Maxwell's equations and general symmetry
argumenta. However, gome of the subtleties in Fig. la
can only be gotten from a camplete computer solution,

ag shown later 1) this paper. Notice also that since
the ficlds are sketched at an instant of time, they are
not at their maxima, except for aelected symmetry plancs.
H% travels in phase with E; to preserve a net pawer flow
( "H)z'ErHO' Fig. 1b shows E; qy max at r =0 vs z and
the corresponding phase varia:loﬁ, as governed by Eq. (1).

The atanding waves are shown 1in Fig. lc. The snap-
shots of E are given for two different boundary condi-
tions: Neuman (Ep=0) on the left, and Dirichlet (Hr=0)
on the right. E, and E. which sre shown at their maxi-
wum valuea in time are in time-phase, Hy leads them in
time quadrature and there is no power propopation: the
energy almply switches back and forth between the elec-
tric and magnetic fields. On the axis (r = 0), the axial
electric fields can be expressed as:
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where ap 1is the amplitude of the space harmonic of in~ - Jut ™
dex n, Bz = 8oz + 2mnz/d, k2 =k% -8 , k=w/c and d 1a Eraw ™ “);_ t8aeinB z (Dirichler) S

the periodic length. Let a be the radiua of the iria
and b the radius of the cylinder. On axie r=o,

Jo(0) =1 and the amplitudes all reduce to the ap's.
Furthemmore, the fundamental (n=0) field amplitude at
any r, for a structure where Ec-k-m/c is equal to
a,J5(0), which indicates that a synchronous electron
undergoes the same average acceleration indepandently
of radial position. If one chooses the origin at a
point of symmetry of the structure (in the middle of a
cavity or a disk) the a_'s are all real. Notice that
for r=0, expression (15l asaumes a special form when
z=0 and when z=d/2:
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i.e., the axial traveling-wave E-field goea through an
ey .remun where all the space harmonics are colinear.
This 1s also how at r=a the epace harmonics “conspire"
to make the tangential E-field at the disk edge equal
to zero, i.e., how they fulfill the function for which
they were invented in the firet place, namely to mateh
perindic boundary conditions. Notice aleo that if the
phase shift per cell is an exact sub-multiple of 2m,
i.e., Bod = 2n/m, then B, =By(l+mn). In what follows,
we will focus on the so-called 2n/3 mode (m=3) which

vhere the factor of 2 comes from the summation of two
traveling waves of amplitude a,. These and the corre-
sponding E, and are the components calculated by LALA
and SUPERFISH. Notice that the snapshots of E, and
E, at the instants chogen are 1ndist1nguishaﬁ}-§ but
H¢'1s different.

Group Velocity

The group velacity for a traveling wave can be ob-
tained from the dispersion diagram (v, =dw/d8) or from
the energy velocity (v, -P/H.m) where P is the power
flow and Wpy 18 the energy atored per unit length. 1In
order to calculate v, with some accuracy from the first
expression, which is generally done for the standing-
wave case, one needs to compute several frequencies on
the w - B84d diagram, typically for B,d =0, n/3,n/2, 2n/3
snd 7, and then fit the data to some smooth curve. If
however we want to obtain v, by calculating the fields
at only one frequency, namely the operating frequency,
then the second expression is to be used. Far a given
z, we have:
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is easy to represent schematically and for which there v, o= Hl— -2 Zt = (5)

is a large amount of experimental data from the SLAC 8 ™ f €E v f L

linac and many othera. The results, however, are quite 2 av+ v

general and apply to any Bod except 7. Fig.la 1llus- Unit unie

trates the behavior of E , E_ and H¢: two traveling- length length
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Pigure 1
It turns out rhat LALA and SUPERFISH already give Wgy,

the energy stored for the SW case. The denominator
Wry 1s simply Wgy/2: this can be shown rigorously or
seen by superposition since over a wavelength, the
energy stored from s TW coming from the left added to
that (rom a TW coming from the right results in twice
the energy stored. The expression in the numerator
can in principle be calculated at any cross-sectional
plane (S) since, by continuity, energy tannot accumu-
late and the net power flow over a period must be in-
dependent of the plane of integration. What we need
to know are the simultaneous values of Ep 1y and Hy 1y
at cheir time maxima in one plane. These' quantitiesd
can be extracted from the SW plots. To do so, a "trick"
is needed. If two traveling waves of the proper phase
add up to a standing wave (Eqa. (3), (4)), there must
conversely be two standing waves which add up to a
traveling wave. Referring to Fig. 1d, we see that if
for example we shift the diagram of Fig. lc to the left
by 2 =-d, we have a secon] SW splution 1b) which looks
Just like the first ane (A};

+ Juts
B=e _S_Zancus 8, (z+2)
- - Ju[‘- (6]
A e _:_Zann:os Bn z

both of which are made up of one TW going left and one
going right. The "trick" is to add them with the proper
phases to have the TW's going left cancel and those go-
ing right add. This can be achieved by multiplying

(A d-m/2) im/2

% by e and B by e + Then:
4=
ICCER PN Bejz = 2s8in B4y a Jlwt-Bq2)
=
™

and it follows that the amplitude and phase of the TW
are!

. AL+~ 2amcossd
|Tw]“ = 5 [¢))
4 8in Bod
B - AcosB d
tan® (z) = ~————32- (8)
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where A and B are functions of z. Eqs. (7),(8) are gen-
eral and apply to any field component, Ey, E; or Hy, at
any z. Hence, given exact SW fleld values, e.g., as
ghown In Fig. 2a and 2h, one can now obtain exact TW
plots as in Fig. lb. Eq. (7) gives the maxlmum TW am-
plitude at any z and thus ylelds the E, and 's needed
for Eq. (5). NWNotice iurthermore that Eqa. {7) and (8)
can be obtained from A and B plots in either the Ncuman
or Dirichlet conflgurations. ln what follows, we shall
narrow down the discussion to planes of symmetry half-
way through a cavity or a disk where Eqs. (7) and (8) are
simplified.

Reuman case: With the Neuman houndaties of Fig, lc,
we see that Er sy=0 at z=0 and 3d/2 but has Elnll.e
values at z=d/2 and d. At z=d/2, B=0Q and E,

Er sw(d/2)/y3. At z=3d/2, B=-A and Er, 'n.'=Er su()d/zw_
similar observations can be made for . Fot example,

at z=0, B=AcosB,d and Hy =Wy, sw(0)/2 and at z=d,
B=A and Hy Ty = su(d) The results are summarized

tn Table I. Since'the tabulated values are the maxima

of the fields, the results must Le self-consistent and
independent of which mid-cavity or disk one considexs.

For the power calculaiion, we tan take the power flow

ac z=d/2, t.e., £r, TuHy, 7= Er,sw(d/2) Hy gy(d/2) 3

or at z =d, i.e., Er THH¢ TH= Er swid) H¢ Sw(d)/'I]

Dirichlet case: Table Il shows very similar re-
sults for the Dirichlet case shown in Fig. le,

Results

Table I11 shows the results that have been obtained
by computing the preperties of four SLAC-type cavities
and bg compariog them with results obtained experimen-
tally® in the early 1960's. The four cavities whose 2b
and 2a dimensions are shown are equally spaced along a
constant-gradient 3,05msection. The computed values of
r/Q, @ and r are obtained from the standing-wave SUPER-
FISH caleulations. The values of r/Q for the TW case
are simply twice those for the SW case. All values of
r/Q and T have been corrected for the a, (velocity of
light) space harmonic amplitude. The values of @ are
the same for the SW and the TW cases. The assumed con-
ductivity of copper 18 5.8 x 107 mhos/m. We see that in
general, agreement between computed and experimental re-
sults is excellent, For reasons not understood, the
resonant frequency 1s almost systematically high by 1 MHz.
Most other differences including thoae for the group
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Neumar Boundaries

Table I Table IX
Maximun Values of !l_ and E. for Neuman Boundaries Maximys Values of !r and ll‘ for Dirichlet Boundaries
Mid- Mid- Mid- Mid-
location _Csvity Disk Cavity Diak Location Cavity Dink Cavity Digk
d ) 4 Y
z [ 3 d 7 z 0 2 d 7
Er,Sh‘ 0 Finite Pinite 0 Er.SH Finite Pinite Finite Finite
d 3d
E ) E (d) E ()] =)
B T, SW 2 T,SW E T,5W E (g) E (@) T,SW 2
T, TW /3 ﬁ T,TW 2 r,SW 2 T,5W 2
H¢,SH Finite Pinite Finite Finite HQ,SH 0 Finite Finite 0
H, o (0) B, oSh o B, @)
H $,5W " @ u @) ¢,5W 2 H $,5W2 $,5%
$,TW 2 $,5W $.SW 2 v ﬁ J;T
Table III

Comparison of Computed and Experimental Results for Four SLAC Cavities

Cavity No. (Z:) (::1) ;H_e_? f)cig:p (ré%;’m (r/nQ[)ccmmp Qup E‘I :"%7_"‘,‘ l;lch nll’ (VE/C)exg (vg/c)cumg
1 8.3442 2.6201 2856 2857.04 38.13 38.99 14160 13780 54 53.7 0.0202 0.0204
28 8.2960 2.4506 2856 2B57.74  40.40 40,70 13860 13760 56 56 0,0157 0.0161
57 8.2393 2.2185 2856 2B57.40 42.77 43.08 13560 13736 S8 59.2 0.0111 0.0113
84 8.1773 1.9171 2856 2857.15 45.45 46,07 13200 13710 60 63.2 0.0067 0.0073
Dirichlet Boundaries
1 8.3442 2.6201 2856 2857.01 38.13 38,70 14160 13780 54  53.4 0.0202 G.0204
28 8.2960 2.4506 2856 2857.28  40.40 40.40 13860 13759 56 55.6 0.0157 0.0162
57 8.2393 2.2185 2856 2856.83 42,77 42.76 13560 13734 58 58.8 0.0121 0.0114
84 8.1773 1.9171 2856 2856.56 45.45 45.79 13200 13768 60 62.80 0.0067 0.0066

velacity, are within 1 or 2Z, It should alao be remem~
bered chat the experimental results were certainly = t
accurate to more than 2X%. Slight discrepancies between
the Neuman and Dirichlet results can be used as final
checks to verify the ultimate reliability of the field
calculations, Figs. 2a and b give actual computer plots
of the maxizmum amplitude standing-wave Bnapshots shown
in Fig. le. Both examples were computed for the di-
mensions of the first cavity in Table III. The periodic
length d 18 3.5 cm and the diak thickness 0.584 cm. All
field amplitudes are in arbitrary units, Ez being on
axis, Et and HO off axis.
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Fig. 2. Standing-wave amplitudes of E,s E, and H. in cavity (1) (see Table III) as calculated by SUPERFISH.




