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Introduction 
The versatility and accuracy of programs such as 

LALA1and specially SUPERFlSH2to calculate the tf prop
erties of standing-wave cavities for llnacs and storage 
rings Is by now well established. Such rf properties 
include the resonant frequency, the phase shift per pe
riodic length, the E- and H-flcld configurations, the 
shunt Impedance per unit length and r- While other pro
grams such os TWAP3have existed for sume time for travel
ing-wave structures, the wide availability of SUPERFISH 
makes it desirable to extend the use of this program to 
traveling-wave structures as well. That is the putpose 
of this paper. In the process of showing how the con
version from standing waves to traveling waves can be ac
complished and how the group velocity can be calculated, 
the paper also attempts to clear up some of the common 
ambiguities between the properties of these two types of 
waves. Good agreement is found between calculated re
sults and experimental values obtained earlier. 

Space Harmonics, Standing and Traveling Waves 
To illustrate our problem, let us review the case 

of the classical cylindrlcally symmetric disk-loaded 
waveguide for which LALA and SUPERFISH can yield exact 
field solutions. It is well known1* that in the lowest 
pass-band (accelerating TMnx-type node), the traveling-
wave E field can be expressed as 

wave snapshots of E are shown for two instants of time, 
u t - 0 and ut-tr/2. Notice that E z Is plotted on axis 
(r"0) but E r and IU are zero on axis and thus are pJot-
ted for 0 < r < a . The units are arbitrary. The field 
patterns that are shown have for many years been knoto 
approximately from bead measurements, paraxial approxi
mations of Maxwell's equations and general symmetry 
arguments. However, some of the subtleties In Fig. la 
can only be gotten from a complete computer solution, 
as shown later IK this paper. Notice also that since 
the fields are sketched at an instant of time, they are 
not at thtir maxima, except for selected symmetry planes. 
HA travels in phase with E r to preserve a net power flow 
(ExH) z-E rH*. Fig. lb showB E z T W max at r-0 vs z and 
the corresponding phaBe variation, as governed by Eq. (l). 

The standing waves are shown in Fig. lc. The snap
shots of E are given for two different boundary condi
tions: Neuraan (Ej - 0) on the left, and Dirichlet (Hj = 0) 
on the right. E z and E r which are shown at their maxi
mum values in time are in time-phase, H* leads them in 
time quadrature and there is no power propagation: the 
energy simply switches back and forth between the elec
tric and magnetic fields. On the axis (r-0), the axial 
electric fields can be expressed BB: 

> t £ 2a cos 6 z (Neuman) (3) 

where a n Is the amplitude of the Bgace harmonic of In
dex n, e n z - 6 Qz+ 2rrnz/d, k^, - k 2 - 6g , k-u/c and d la 
the periodic length. Let a be the radius of the Iris 
and b the radius of the cylinder. On axis r-o, 
J o { 0 ) n 1 and the amplitudes all reduce to the a n

, s . 
Furthermore, the fundamental (n - 0) field amplitude at 
any r, for a structure where S c - k - u / c Is equal to 
a oJ o(0), which indicates that a synchronous electron 
undergoes the same average acceleration independently 
of radial position. If one chooses the origin at a 
point of symmetry of the structure (in the middle of a 
cavity or a disk) the a 's are all real. Notice that 
for r = 0, expression (1) assumes a special form when 
z-0 and when z-d/2: 

> t 

a>t -Be4 °7>Sa 
(2) 

° - l 

i.e., the axial traveling-wave E-field goes through an 
er.remum where all the space harmonica are collnear. 
This Is also how at r • a the space harmonics "conspire" 
to make the tangential E-field at the disk edge equal 
to zero, I.e., how they fulfill the function for which 
they were invented in the first place, namely to match 
periodic boundary conditions. Notice also that if the 
phase shift per cell is an exact sub-multiple of 2TF, 
i.e., P 0d-2n/m, then 6 n - B 0(l +mn) . In what follows, 
we will focus on the so-called 2ir/3 mode (m • 3) which 
1B easy to represent schematically and for which there 
1B a large amount of experimental data from the SLAC 
llnac and many others. The results, however, are quite 
general and apply to any 0 od except v. Fig. la Illus
trates the behavior of E , E and H.: two traveling-
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£ 2a sin B z (Dirichlet) (4) 

where the factor of 2 comes from the summation of two 
traveling waves of amplitude a n. These and the corre
sponding Ej and HA are the components calculated by LALA 
and SUPERPISH. Notice that the snapshots of E 2 ^ and 
Ej. s w at the Instants chosen are indistinguishable but 
H^'is different. 

Croup Velocity 

The group velocity for a traveling wave can be ob
tained from the dispersion diagram (v -dw/dfl) or from 
the energy velocity (Vg-P/W^) where P is the power 
flow and W^y is the energy stored per unit length. In 
order to calculate v R with some accuracy from the first 
expression, which 1B generally done for the standing-
wave case, one needs to compute several frequencies on 
the u - e 0 d diagram, typically for 8 0d " 0 , n/3, TT/2, 2n/3 
and IT, and then fit the data to some smooth curve. If 
however we want to obtain v_ by calculating the fields 
at only one frequency, namely the operating frequency, 
then the second expression is to be used. For a given 
z, we have: 

8 "n 

*Unit' 
length 

DISTSUHrm 

(5) 
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length 
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Plgure 1 
It turns out that LALA and SUPERFISH already give W s w , 
the energy stored for the SW case. The denominator 
Wpy is simply Hgy/2: this can be shown rigorously or 
seen by superposition since over a wavelength, the 
energy stored from a TW coming from the left added to 
that Jrora a TU coming from the right results in twice 
Che energy stored. The expression in the numerator 
can in principle be calculated at any cross-sectional 
plane (S) since, by continuity, energy cannot accumu
late and the net power flow over a period must be In
dependent of the plane of integration. What we need 
to know are the simultaneous values of £ r T U and HA ̂ y 
at their time maxima in one plane. These quantities 
can be extracted from the SW plots. To do so, a"trick" 
Is needed. If two traveling waves of the proper phase 
add up to a standing wave (Eqs. (3), (4)), there must 
conversely be two standing waves which add up to a 
traveling wave. Referring to Fig. Id, we see that If 
for example we shift the diagram of Fig.^lc to the left 
by z »-d, we have a second SW solution \uj which looks 
just like the first one ( A ) ; 

. . „J»f-
5 2a cosS (z+d) 

both of which are made up of one TU going left and one 
going right. The "trick" la to add them with the proper 
phases to have the TW's going left cancel and those go
ing right add. This can be achieved by multiplying 
l b y e J ( M - » « > and % by e ^ ' 2 . Then: 

A e J < M - 2>+ B e j 2 - 2 sin B, dY* a e > L* n 

and it follows that the amplitude and phase of the TW 
are: 

|TU|', 

tan 9 (z) 
B - A cos B d 

(8) 

where A and B are functions of z. Eqs. (7), (6) are gen
eral and apply to any field component, E r , E z or H*, at 
any z. Hence, given exact SW field values, e.g., as 
shown in Fig. 2a and 2b, one can now obtain exact TW 
plots as in Fig. lb. Eq, (7) gives the maximum TW am
plitude at any z and thus yields the Ej. and H^'s needed 
for Eq. (5). Notice furthermore that Eqa. (7) and (8) 
can be obtained from A and 6 plots in either the Ncuraan 
or Dirichlet configurations. In what follows, we shall 
narrow down the discussion to planes of symmetry half
way through a cavity or a disk where Eqs. (7) and (8) are 
simplified. 

Neuman case: With the Neutron boundaries of Eifi. 1c, 
we see that E r jsw = 0 at z-0 and 3d/2 but has finite 
values at z-d/2 and d. At z = d/2, B = 0 and E r T W * 
Er.SwW 2)'/ 5"- A t z = 3 d / 2 . B 3 - A and E r ( T y =» E r j s w O d / 2 W ^ 
Similar observations can be made for HA. For example, 
at Z = 0, B = AcosB 0d and Kj, ̂ y 3 HA, gg(0)/2 and at z = d, 
B « A and I U ( T W = HA S W ( ^ ) . T n e results are summarized 
in Table I. Since the tabulated values are the maxima 
o.c the fields, the results must be self-consistent and 
independent of which mid-cavity or disk one considers. 
For the power calculation, we can take the power flow 
at z-d/2, i.e., t r i T W ^ p T W = E r j S W ( d / ' 2 ) H f f sw(d/2)/s/3~ 
or at z - d, i.e., E r i T W H + > T H = E r > S w{d)H A; s w(d)/V3. 

Dirichlet case: Table II shows very similar re
sults for the Dirichlet case shown in Fig. lc. 

Results 

Table III shows the results that have been obtained 
by computing the properties of four SLAC-type cavities 
and by comparing them with results obtained experimen
tally^ in the early 1960's. The four cavities whose 2b 
and 2a dimensions are shown are equally spaced along a 
constant-gradient 3,05msection. The computed values of 
r/Q, Q and r are obtained from the standing-wave SUPER-
FISH calculations. The values of r/Q for the TW case 
are simply twjee those for the SW case. All values of 
r/Q and r have been corrected for the a Q (velocity of 
light) space harmonic amplitude. The values of Q are 
the same for the SW and the TW cases. The assumed con
ductivity of copper Is 5.8 x 10 mhos/m. We see that in 
general, agreement between computed and experimental re
sults is excellent. For reasons not understood, the 
resonant frequency is almost systematically high by 1 MHz. 
Most other differences including those for the group 
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Campari son of Computed and Experimental R e a u l t e f o r Four SLAC C a v i t i e s 
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(cm) 

2a 
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28 8 . 2 9 6 0 2 . 4 5 0 6 2856 2857 .74 4 0 . 4 0 4 0 . 7 0 13860 13760 56 56 0 .0157 0 . 0 1 6 1 

57 8 . 2 3 9 3 2 .21B5 2856 2 8 5 7 . 4 0 4 2 . 7 7 4 3 . 0 B 13560 13736 58 5 9 . 2 0 . 0 1 1 1 0 . 0 1 1 3 

84 8 . 1 7 7 3 1 .9171 2856 2 8 5 7 . 1 5 4 5 . 4 5 4 6 . 0 7 13200 13710 60 6 3 . 2 0 .0067 0 . 0 0 7 3 

D i r l c h l e t Boundarle B 

1 8 . 3 4 4 2 2 . 6 2 0 1 2856 2 8 5 7 . 0 1 3 8 . 1 3 3 8 . 7 0 14160 13780 54 5 3 . 4 0 . 0 2 0 2 0 . 0 2 0 4 

2B 8.29f>0 2 . 4 5 0 6 2856 2857 .28 4 0 . 4 0 4 0 . 4 0 13B60 13759 56 5 5 . 6 0 .0157 0 . 0 1 6 2 

57 8 . 2 3 9 3 2 . 2 1 8 5 2856 2 8 5 6 . 8 3 4 2 . 7 7 4 2 . 7 6 13560 13734 58 5 8 . 8 0 . 0 1 1 1 0 .0114 

84 8 . 1 7 7 3 1 .9171 2856 2 8 5 6 . 5 6 4 5 . 4 5 4 5 . 7 9 13200 13708 60 6 2 . 8 0 0 .0067 0 . 0 0 6 6 

velocity, are within 1 or 2Z. It ahould alao be remem
bered that the experimental results were certainly - t 
accurate to more than 2%. Slight discrepancies between 
the Neuman and Dirlchlet results can be used as final 
checks to verify the ultimate reliability of the field 
calculations. Pigs. 2a and b give actual computer plotB 
of the maximum amplitude standing-wave snapshots shown 
in Fig. le. Both examples were computed for the di
mensions of the first cavity in Table III. The periodic 
length d is 3.5 cm and the disk thickness 0.584 cm. All 
field amplitudes are in arbitrary units, E being on 
axis, E and H off axis. 

r $ 
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Fig. 2. Standing-wave amplitudes of E z , E r and H in cavity (1) (Bee Table I I I ) as calculated by SUPERFISH. 
E z i s on-axlB, E r and H are of f -ax is . 


