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Computer  Control Algorithms for a Tubular 
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I.  INTRODUCTION 

HE specific  objective of this paper is to present  several 
single  variable and multivariable  discrete  control algo- 

rithms for a  tubular  reactor  used  in  ammonia  synthesis 
and evaluate  their  performance  characteristics. The tubu- 
lar reactor where  the  main  reaction takes place  is  the  heart 
of the  ammonia plant and thus  critically  affects  the eco- 
nomic and safe  operation of the process.  Studies  relating 
to its  optimization and control  therefore  acquire  utmost 
practical  interest. In an earlier  paper [l], the authors have 
developed an optimization  program to determine  the  opti- 
mum temperature profile that maximizes  the  ammonia 
yield. The reactor is  to  be operated at the  “blow-out” 
point  (highest  temperature stable operating  point) to 
achieve  higher  throughput.  However,  the  feed  concentra- 
tion and temperature  disturbances  tend to change  the 
temperature  profile  inside  the  reactor and thus  drive  the 
reactor away from this maximal yield  operating  point. 
Hence,  regulation  of  the  temperature  along  the  length of 
the  reactor  around  the  optimal  profile  in  the  presence of 
disturbance  inputs is important and forms  a  dominant 
design  objective for control  system  design. 

Earlier  control  system  design  studies [2], [3] concerning 
the  ammonia  reactor concentrate on tuning of PID con- 
trollers  using  simplified  models.  We  demonstrate  in this 
paper  that use  of this type of conventional  controllers 
regulate  the  temperatures  only at the  points  where  the 
controllers  are  implemented.  Here, we follow  a  more 
rigorous  approach to obtain linear  continuous  state-space 
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models  from  the  exact  distributed  model  invoking  lineari- 
zation and lumping  approximations.  The  model  has three 
control  inputs  (flow  rates), two disturbance inputs (con- 
centration  and  temperature  variables), and nine state vari- 
ables  (temperatures).  The  model  development is briefly 
discussed  in  Section 11. Also in this  section  a  discrete 
state-space  model is obtained for  subsequent  use.  The 
selection of the  controller  parameters  when  the PI con- 
trollers  are  located at the top end,  bottom  end, and  at 
both  ends of the  reactor is considered  in  Section 111. In 
Section IV we consider  the  feedforward and integral con- 
troller  designs  using  the  discrete quadratic regulator  the- 
ory. 

The  evaluation of the control system  structures  consid- 
ered  in  earlier  sections is done  via  hybrid  simulation. The 
linear  model  is  simulated on the  analog  computer and the 
control law calculations and execution  is done by the 
digital  section. A comparative  study of the  simulation 
results  is  presented in Section V. 

11. REACTOR DESCRIPTION AND MODEL EQUATIONS 

Fig. 1 shows the  schematic of the  ammonia  synthesis 
reactor  under  consideration  which  is  currently  under con- 
tinuous PID control in an operating  plant. The data for 
this reactor is  given in [l]. The converter  consists of two 
parts: 1) the  catalyst  bed  section  shown  in  the  upper  part 
of the  diagram, and 2) the  heat-exchanger  section  shown 
in  the  lower  part of the  diagram. To ensure  stable  condi- 
tions  with  maximum  yield,  it  is  necessary to heat  the  feed 
gases to a  temperature of about 420°C before  they  enter 
the  catalyst bed. This is  economically  achieved by pre- 
heating  the  feed gas first  in  the  bottom  heat  exchanger 
and subsequently  in  the  tubes of the  reacting  section. The 
inlet  gaseous  mixture is split into three  separate  streams: 
1) the  heat  exchanger  flow, 2) the  second  stream  called  the 
heat  exchanger  bypass  flow, and 3) the  third  stream 
known  as  the  direct  bypass  flow. The feed gases flowing 
down  the  catalyst  bed  react to produce  ammonia. The 
outlet  gases  from  the  reacting portion enter  the  tubes of 
the  heat  exchanger and finally  exit  through  the  converter. 
Adequate  instrumentation  exists to measure  the  process 
variables of interest.  The  temperature at five  points  along 
the  length of the  reactor  bed are measured  using  thermo- 
couples. Also the  inlet  flows are measured  using  differen- 
tial  pressure  type  flow  meters. The concentration  variables 
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Fig. 1. Schematic of the synthesis converter. 

are obtained,  however,  off-line  from  periodically  collected 
samples. 

A nonlinear  distributed  model of the  reactor  described 
above is developed  using mass and energy  balance  princi- 
ples and consists of five partial differential  equations and 
two  algebraic mixing equations (see Appendix I>. The 
boundary  conditions  associated  with  these  differential 
equations  are time  varying and some  are  specified at a = 0 
and some at a = 1, where a is  the  normalized  distance 
variable.  The  method  followed to derive  the  model  equa- 
tions is the  same  as  in [5]. Because of the  time  varying 
split  boundary  conditions,  development of converging 
iterative  solutions to the  model  equation  is  a  formidable 
task  even  when  using  hybrid  computers  which  are  best 
suited for this purpose.  Furthermore,  control  system  de- 
sign  using  this  model  is  mathematically  intractable.  Thus, 
we resort to model  simplification  via  linearization and 
lumping.  The  model  equations  are  linearized around the 
steady-state  operating  point  corresponding to maximum 
yield. The steady-state flow rates and the  optimum tem- 
perature  profile that maximizes  the  yield of the  reactor are 
given  in [l]. We further  simplify this linearized  distributed 
model of the  reactor and heat  exchanger  combination  by 
discretizing  the  length of the  reactor  into five equal seg- 
ments and the  heat  exchanger  into two equal  segments. 
The steady-state  temperature  profile of this lumped  model 
is obtained and compared  with that obtained  from  the 
nonlinear  steady-state  model [ 11. Based  on the  error  in  the 
temperature  profile,  it is  observed  that no significant 
improvement  in  model  accuracy  can  be  obtained  by  in- 
creasing  the  number of segments  beyond  seven, and the 
lumped  model  is  unstable  when  the  number of segments is 
reduced  to  three.  Thus,  the  number of segments  is  fixed to 
be  seven.  The  details of these  aspects  may  be found in [4]. 
This linear  model  is  simulated on the analog  processor to 
represent  the  process  dynamics.  Gould et al. [ 111 consider 
the  linearized  form of system  equations to derive  a 
"Taylor  diffusion  model"  which  approximates  the  system 
by a  single  constant-coefficient  diffusion  equation.  The 
eigenfunctions of the  Taylor  diffusion  model are used  to 
approximate  those of the  original  system. By neglecting 

the  high-order  mode  content,  the  dynamic  system  is  ap- 
proximated by a finite dimensional state model.  Even 
though  they  consider  two  modes and  one manipulated 
variable,  there  is no demonstration of a  test to check  the 
accuracy of the  linear  model. It is  somewhat  difficult to 
use  this  technique to diffusionless  processes and systems 
with  appreciable  time  delay. The choice of the  optimum 
number of modes is not  easy.  Moreover,  their study deals 
with  continuous  proportional control of the reacting por- 
tion  only. 

The discretized  ordinary differential equations obtained 
above  can  be  rearranged  in the state-space  form 

i( t )  =Ax(  t )  + Bu( t )  + Dd( t )  (1) 

where x ( t )  is a 9 X 1 state vector  representing  the  incre- 
mental  temperature  along  the  reactor-heat  exchanger, u(t) 
is a  3 X 1 manipulated  variable  representing  the  three flow 
rates, and d(t) is a 2 X 1 disturbance  vector of inlet  tem- 
perature and ammonia  composition. 

In other  words 

The matrices A ,  By and D are  given in Appendix 11. 
In computer  control  systems,  the  control input gener- 

ated by the  computer  remains constant between  the  sam- 
pling  instants.  Using this fact,  the  discrete  model is  de- 
rived  from  its  continuous counterpart for  the  chosen  sam- 
pling  time of 30 s. The discrete  model is governed  by 

x ( k + l ) = @ x ( k ) + A u ( k ) + O d ( k )  (3) 

Y ( k )  = W k )  

where 

eAT 0, iTeA'Bd7 A and eATDd7 0. I T  
In (3), kT is  the  sampling instant and T is  the  sampling 

period. The matrices @, A, and 0 are as given  in  Appendix 
11. 

111. DESIGN OBJECTIVES AND CONTROLLER DESIGN 

As mentioned  in  the introduction, the control system 
should  be  capable of maintaining the temperature  profile 
of the  reactor  close to the  steady-state  optimal  case  in  the 
face of disturbance. In terms of the incremental  model 
[see (3)], this  would  imply that the  states xI to x5 should 
be  regulated around the  origin.  Thus,  the  specific  design 
problem  is  one of choosing  either  feedforward or integral 
control laws that achieve  asymptotic  disturbance  rejection 
and good  transient  behavior.  However, for the  existence 
of such  controllers  the  linear  model  (3)  has  to  satisfy  the 
conditions [6] of  1) stabilizability, 2) the  number of out- 
puts to be  regulated  being  equal to or less than the 
number of control inputs, and 3) no transmission zeros 
lying  on  the  unit  circle.  Since the control input vector is  of 
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dimension  three, we can choose  only  three of the  five 
states  representing  the  reactor  temperatures  as  the con- 
trolled  variables.  However, for every  choice of three  out of 
five of these  states  as outputs, the plant model has zeros 
on the  unit  circle.  Using  the  design approach suggested  in 
[6], it is not  possible  to  force  the  steady-state  offsets at 
three  points  along  the  reactor  length to be  zero. Staats et 
al. [9] have  proposed a technique to design  continuous 
regulators using the  transmission  zeros at the  origin. It is 
observed  that [lo] for the  continuous  system  the  above 
design  yields a regulator  which  can  maintain  the  tempera- 
tures at zero at three  points,  whereas  the  continuous 
counterpart of the approach followed  in this paper can 
maintain  temperatures at zero at two  points, and  at the 
third  point  the  deviation  is within specified  limits.  The 
alternate approach adopted in this paper is computation- 
ally simpler. 

The  only  alternative  then is  to  consider a model  with 
only  two  outputs.  We  choose  the  states x1 and x5 repre- 
senting  the  incremental  temperatures at the  top and 
bottom  ends of the  reactor as the  controlled  variables, 
with  the  hope that if the  offsets at these  points are 
maintained at zero,  then  the  offsets at intermediate  points 
would  lie  within  tolerable  bounds. This is  indeed  con- 
firmed by  the simulation  studies. We carry  out  the  multi- 
loop PI controller,  multivariable  feedforward, and integral 
controller  designs for the  model  with x1 and x5 as  outputs 
and u, and u3 as  control inputs while  keeping u1 at the 
steady-state  optimal  value. 

Specifically,  we  consider  the  design and performance 
comparison  for  the  following cases: 

1) PI and PID controller to control  temperatures at 1) 
a=0.2 and 2) a = l  

2) multiloop PI controller to control  temperatures at 
a=0.2 and a= 1 

3) multivariable  state  feedback  controller  based on 
quadratic regulator  theory 

4) multivariable  feedback-feedforward  controller 
5 )  multivariable  proportional-integral  controller. 
In case l), following  the  practice  at  the plant from 

where  the data is taken,  the  design  is  carried  out  using  the 
ninth-order  state-space  model  with  direct  bypass  flow rate 
(u3) as  the  control input while the other two control  inputs 
are held  constant at their  optimal  steady-state  values. 

A. Discrete PI Controller 

Since  the  practice  in  most of the  ammonia  plants is to 
use  single  variable  continuous  or  discrete  controllers, we 
consider  the  tuning of discrete  controllers  located at the 
top and bottom  ends of the  reactor  using  the  direct  bypass 
rate as the  control input. It is observed  that  this  flow rate 
has  the  maximum  influence on the  temperature  profile of 
the  reactor.  The  other two flow  rates  remain at their 
steady-state  optimal  values. In designing  these  control 
laws,  we consider  the  following  discrete  equivalent of the 
continuous PID controller  employing a rectangular  in- 
tegration  scheme: 

t ' @ O r  

d -0.1 

0 
I 

Kw) 2bo 300 400 sm 
, d.0.2 , 

Time ~socond5) - 
Fig. 2. Response with a  discrete  proportional-integral  controller  at  the 

top  end of the  catalyst bed. 

r n 1 

mn=Kc e n + T / T ,  2 ek+TD/T(en-en- , )  I k=O 

The parameters Kc, T,, and To in (4) need to be  tuned to 
obtain  the  desired  response.  Controller  gains  obtained 
using  the  root  locus  method are chosen as initial  values 
and later  tuned  to  get  acceptable  responses. 

Fig. 2 shows  the  performance of the digtal PI controller 
at the  top  end  of  the  catalyst  bed. A digital PID control 
algorithm  used at the  bottom end of the  catalyst  bed  gives 
rise to the  responses  indicated  in  Fig. 3. These  discrete 
controllers have poor  disturbance  rejection'  property at 
points  other  than  the  points of implementation. It is 
observed  from  simulation  studies that the PID controller 
at the  exit  end of the  reacting  portion  has a slow  speed of 
response (220 s) and results  in a maximum  temperature 
change of 200 percent  (expressed  as a percentage of input 
disturbance of 5OC). The  choice of sampling  time is an 
important  aspect  in  the  design of all discrete  control 
algorithms  since  it can be  regarded as one of the  critical 
control  parameters.  Since  the  temperature  variables  under 
consideration  have  relatively slow  dynamics, a choice of 
30 s for the  sampling  time  has  proven  quite  reasonable. 
From Figs. 4 and 5 ,  one can see  that  for  sampling times of 
the  order 60 and 80  s, the  response  becomes  either  oscilla- 
tory  or  unstable. 

B. Discrete MultiIoop ControlIer 

In many  process  control plants the  practice is to ensure 
asymptotic  regulation  using PI and PID controllers  in 
each  loop.  Following  the  analysis  suggested by  Shinskey 
[7], pairing of the  input and output variables is done and 
catalyst  bed top end temperature is controlled by  the 
direct  bypass  flow rate and the bottom end  one using the 
heat  exchanger  flow  rate. A discrete  version of the  multi- 
loop PI controllers is simulated and the  parameters  are 
tuned  to  get  the  desired  response  with  minimum  tempera- 
ture  offsets  and  overshoots, and fast  settling  times.  Since 
there  are  four  parameters for the two PI controllers 

' f r  y(k)+O, Le.,  the  steady-state perturbed temperatures  at  the 
ou$uGdue to the disturbances should be zero. 
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Fig. 3. 

Fig. 4. 

E t  Tim (seconds) - 
-5.0 

Response  with  a  discrete  proportional-integral-derivative con- 
troller  at  the  bottom  end of the  catalyst bed. Fig. 5. Response  with  a  discrete proportional-integraldefivative 

troller  at  the  bottom  end of the  catalyst bed. 

t 

ds0.2 

Time (seconds) -L 

Response  with a discrete  proportional-integral  controller  at  the 
top  end of the  catalyst bed. 

located at the  top and bottom ends of the  reactor, it is not 
feasible to attempt a  parametric  plot on a  plane to obtain 
the  stability  boundaries. In the absence of any  systematic 
design  procedure,  the  gains that give a  satisfactory  perfor- 
mance are selected  through  extensive  simulation  studies. 
The  responses for the  chosen  gains are plotted in Fig. 6. It 
is found from  the  simulation  studies that the  control 
system  rejects  disturbance at top and bottom  ends of the 
reactor and has  a  settling  time of 80 s. The  absolute  values 
of maximum  temperature  changes  along the length of the 
catalyst  bed  are  smaller  (maximum 70 percent)  compared 
to the  case  where  the  point  controllers  are  used at the  top 
or bottom  end of the  reactor  (maximum  210 and 176 
percent,  respectively). 

IV. DISCRETE QUADRATIC REGULATOR 

The  quadratic  regulator  theory  offers  a  systematic 
method for the  design of feedforward and integral con- 
trollers and this fact has  been  explored  in  a  variety of 
application  areas.  However,  the  control  laws  obtained 
using this theory  would  require  feeding  back of all  the 
state variables and generally  require  use of observers  or 
Kalman  filters  for  their  implementation. For the  reactor 
under  consideration,  however,  all  the state variables are 
available  for  measurement and hence  the  problem of 
estimating  the state does  not  arise. 

lime (seconds) + 

Fig. 6. Response  with  a  discrete  multiloop  controller. 

con- 

Consider  the discretetime linear system 

x(k+l)=@x(k)+Au(k);  y(k)=Cx(k)  x(0)=xo 

where C is such that C,, = C, = 1 and the  rest of the 
elements  are  zero. The objective  here is to find  the  control 
sequence u, such that the following  performance  index is 
minimized 

J =  2 xT(k+  l)Qx(k+ l)+uT(k)Ru(k). ( 5 )  
N- 1 

k=O 

In the  above  formulation Q and R are  symmetric and 
positive  semidefinite and positive  definite  matrices,  re- 
spectively.  The  optimal control law  is  given  by  u(k - 1) = 
- F(k - l)x(k - l), k = 1,2, - - - , N, where  the  matrix F(k 
- 1) is determined  using standard formulas [6]. If N is 
made  sufficiently  large, the feedback  gain  matrix F(k- 1) 
in  the  linear  regulator  becomes  a constant matrix in the 
limit,  permitting  the control law  implementation  with  con- 
stant feedback  gains. Furthermore, since (3) is a  com- 
pletely  controllable  model, an appropriate choice of a Q 
would  yield  a stable closed loop system. In the  present 
problem N ,  Q, and R are 50, 501, and 1, respectively. 
With this choice,  the F matrix for a  satisfactory  response 
(1 10 s settling  time,  maximum  overshoot of 80 percent, 
and maximum  offset of 40 percent)  is  shown in Table I. 
But this pure  proportional  feedback gives  offsets in the 
response.  These can be  eliminated  by  the addition of 
feedforward  control or integral  control  as shown later. 
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TABLE I 
GAIN M A ~ C E S  FOR QUADRATIC  REGULATOR BASED ALGom 

'=-[ti," 1.7,  1.0,  -0.19, -0.41, -0.0042, 0.0, -0.040, -0.037 
Proportional feedback 
F matrix same as above 

1.1,  0.03,  0.19, -0.042, 0.0043, 0.0, 0.051, 

Feedback + feedforward 
-[ -0.13,  0.18,  -0.018,  -0.0008,  0.0086, O.ooo7, 0.0, 0.0088, 

1.2, 0.19,  0.17,  0.0077, -0.087 O.ooO8, 0.0, 0.0076, -0.0067 
~ 2 =  - 1 -0.0014, 0.0031 

0.054. 0.01  1 1 
Pro&rtional + integral 

A. Discrete  Optimal  Feedback  Feedfonvard  Controller 

Here,  given  the  dynamic  system  [see (3)] and the  perfor- 
mance  index  [see (5)], we  seek  a feedforward-feedback 
control  law of the  type uk = - Fxk - Ld, to  achieve  the 
objectives of stability and disturbance  rejection.  Here we 
find F in  the  same  way as in  Section IV for the plant 
model  when  the  disturbances are absent. The L is  found 
such that the  steady-state output is  zero  using  the  formula 

L = [  C(Z-@-AF)-'A]-'C(I-@-AF)-'O. (6)  

The indicated  inverse  in (6) exists if the  system  is  stabiliz- 
able and if it  has no zeros on the  unit  circle  (see [61). As 
discussed  earlier  in  this  section,  these two conditions are 
met  by  the  plant  model (3). Thus, F and L can be 
obtained.  Table I presents  the  elements of L. 

Fig. 7 shows the  simulation  results.  The  overshoots 
exhibit  a  decreasing  tendency  with  the  increase of the 
elements of the Q matrix,  whereas  they  increase  in  size as 
the  weight on the  control  effort  (elements of R) is in- 
creased.  The  choice of these  diagonal  matrices  with  equal 
constants gives good  response. So different  weights  in  the 
diagonal  elements  were  not  tried. 

B. Discrete  Optimal  Proportional-Integral  Controller 

To eliminate  the  steady-state  offsets  which  arise  when 
proportional  control  is  used on systems  subject to con- 
stant disturbances,  proportional-plus-integral  controllers 
can also  be  used. 

Here we consider  the  design of PI controllers  in  the 
framework of the quadratic  regulator  theory.  Define  the 
discrete  representation of the  integral of y ( t )  in  the  form 
Z(k + 1)=  Z(k)+ TCx(k).  Augmenting this with (3), we 
obtain 
xu(k+ l)=@,x(k)+A,u(k)+O,d(k) 

withx,(k)=[xr(k)ZT(k)IT 

Now,  consider  the  problem of finding  u(k)  which  mini- 
mizes the  performance  index 

N-1 
J =  x , ' (k+l )Q,pu(k+l )+uT(k)Ru(k)  

k=O 

- 
w e w 
LL 
I- 
3 

LL w 
a 

n 
3 c 

FEEDBACK  AND 
FEEDFORWARD  lR=I I  - TEMPERATURE A T d = l . O  

TIME ISEC)  - TIME lSECl - 
12r FEEDBACK t F E E O F O R O W A R 0  

TIME ISEC) - 
Fig. 7. Influence of weighting matrices on response. 

(catotys~ tenporoture at L=I.OI  I : 1.6 
+I.O a.101 

rime (seconds1 - 
Fig. 8. Response with a discrete quadratic regulator  (integral control). 

where Q, = diag(Q, Q,) and Q, is  the  weighting  matrix 
associated  with  the  integral  states. The feedback  control 
law,  then, is  given  by 

u(k)= - I;;x(k)-F,Z(k). 

This control  law  leads  to  a  stable  closed-loop  system [6] 
provided: 1) (@,,A,) is  controllable and 2) (au, Mu) is 
observable,  where Mu is  any  matrix  such that M,' Mu= 



TABLE I1 

(Percentages  are  calculated with respect to an input step of 5°C) 
c4XfPAkXTIVE h3RFORMANCE OF -biPUTl?R CONTROL ALGORITHbiS 

settling 
time  Absolute value of maximum 

Steady  state  offset in temperature  at (seconds) temperature  change at 
SI. a=0.2 a ~ 0 . 6  a=1.0 a=O2 a30.6  a=1.0 
No. Type of  Controller "C "C "C "C "C "C 
1. Digital PI at a = 0.2 3.24  10.44 28 0.60 3.24  10.44 

(f$=15,Tr=150s, 0 (64.8%)  (288%)  (12%)  (64.8%)  (288%) 
T=30 s) 

a= 1 . 4 %  = 1.5,  (32.2%)  (16.6%) ( 2 m )  (120%) (132%) 
Tr=10s,TD=500 
s, T=30 s) 

2.  Digital PID at  1.66 0.83 0 220 10.0 6.0  6.6 

~~ 

3. Discrete  multiloop 0.30 0 80  3.5 2.4 1.6 
control 0 (6% (70% (4%) (32%) 

4.  Discrete  quadratic  0.12 0 110  0.32 0.72 0.6 
feedback + feedforward 0 (2.4%)  (6.4%)  (14.4%)  (12%) 

5. Discrete  quadratic 0.09 0 200 0.64 0.256  1.12 
inteeral 0 1.8%)  (12.8%)  (5.12%)  (22.4%) 

647 

a. The first  condition  is  implied  by  the  properties of  the 
plant  [see  (3)]  model,  namely,  controllability and absence 
of  zeros on the unit circle and these  two  conditions  are 
satisfied by  system (3). The matrices Q and Q1 have  been 
chosen so that  the  second  condition is satisfied. 

The  gain  matrices Fl and F2 are computed for different 
choices of Q, Q,, and R .  The  choice Q = 10 I ,  Q ,  =0.01 I ,  
and R = I gives  the  best  possible  features, as can be seen 
from  the  hybrid  simulation  results  presented  in  Fig. 8. The 
corresponding  gain  matrices F, and F2 are  tabulated  in 
Table I. Also, it is  observed that increase of the  integral- 
state weight Q, results  in  a  closed-loop  system  with  larger 
overshoots and more  oscillatory  tendency. 

V. CONCLUDING REMARKS 

Comparison of the  performance of various  controllers 
considered  here  leads to the  inference that the  discrete 
quadratic regulator  with  feedforward and feedback con- 
trol gives  the  best  performance  (see Table II). The integral 
controller  suffers  from  the  disadvantages of large  over- 
shoots,  but in situations  where  disturbances cannot be 
measured  accurately or measurement  instrumentation is 
expensive,  the  integral  controller  may  be  the  only  feasible 
approach.  Next,  considering the choice  between  a  multi- 
loop  controller and a quadratic regulator,  it  may  be  ob- 
served  that  the latter tends  to  be  better  in  its  performance 
because of the  flexibility  in  tailoring it to produce  the 
desired  response,  by  a  suitable  choice of the  weighting 
matrices.  Even  though  the  solution  aspects of this  problem 
are  more  complex,  the  process  computer  itself can per- 
form  the  required  "off-line"  computations to provide  the 
control  algorithm. In summary, for the  ammonia  reactor, 
the quadratic regulator  theory  provides  controllers  that 
achieve  faster  regulation in the  face of step  disturbances. 
An alternate competitor,  however,  would  be  the state 

feedback-integral  controllers  designed  using  the  pole 
placement  theory. 

APPENDIX I 
DYNAMIC MODEL OF THE REACTOR 

The  method  used  is the same as that adopted by  Brian 
et al. [5].  However,  since  the  reactor  configuration  under 
consideration  differs  from  the one considered in the above 
cited  reference, appropriate modifications  have  been  in- 
corporated  in  the  model  equations. The proposed  model 
consists of five partial differential  equations and two 
algebraic  equations  with  necessary  boundary and initial 
conditions with  respect to the  space and time  variables, 
respectively.  The  dynamic  model is derived under the 
following  assumptions. 

1) There is no radial variation of temperature in the 
catalyst,  cooling  tube, and walls. 

2) There is no temperature  difference  between  the cata- 
lyst  particles and the  gas  phase. 

3) There is uniformly constant pressure  throughout the 
converter. 

4) There are negligibly  small  values of heat capacities of 
the tube walls in  the  reacting and heat exchanger  section. 

5) There is no heat loss from  the  shell  side of the 
heat-exchanger to the environment. 
6) There is an absence of longitudinal  diffusion of the 

reactants in  the  reactor. 
7) There is no transfer of enthalpy by conduction  within 

the gas phase in the  empty  tube. 
8) There is temperature  independence of the heat capac- 

ity of the gases  in  the  reactor  only. The larger  variation of 
temperature  across  the  heat-exchanger  warrants  the 
calculation of these  parameters  from  the  exact  expressions 
given  by  Shah et al. [8]. 

9) It is assumed that changes  in  flow  rate,  pressure and 
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composition  propagate  instantaneously  throughout  the  re-  The  energy  balance in the tube of the  heat  exchanger is 
actor. As a  direct  consequence of this  assumption, this 
study is  primarily  concerned  with  transient  analysis of the aTi!-  WCpevT  aTG wep, U’S‘( T; - T i )  vT 
reactor  for  changes in the  feed  temperature. a 8 + ( 7 & c ? = - ( s , )  4 

and [8] for  ammonia  reactors. i =  1 

All  these  assumptions  have  been  validated  in  [3],  [5], 

The material  balance in the  catalyst  section  is 

A b ’ ,  t )  cp; 
(5‘) 

_-  
aa F ( l + ~ * )  
ay - - r( T,,y). (l‘) Mixing equations and boundary  conditions at the top 

of the  reactor,  the  energy  balance is 
The  energy  balance in the  empty  tube  section is 

aTT us 6(1+8)(TT(a=o,8))+6py(TF(8))=(Tc(a=o,8)). 
-=- (TT-  TC). (2’) 

FGo ( 0  

The  energy  balance in the  catalyst is and  at the  top of the  heat  exchanger,  the  energy  balance  is 

1 +Y 6(T~(a’=0,0) )+6j3(TF(8))=TT(a=1,8) .  (7’) 

- (AHo - AC( T, - T,)) - - = - - F  ( l  ay aTc (3’)  The boundary  conditions are 
h2s2 ( l+y)2 aa ae * . - ,  

The energy  balance in the  shell of the  heat  exchanger is 

1,e) = ~ ~ ( 8 ) .  ( w 
i= 1 tor-exchanger  combination. In the  above equations 6= 

Equations (1’)-( 10) describe  the  dynamics of the  reac- 

(4) F, /F ,  P=F2/FI3 and Y = F ~ / F ~ .  

APPENDtx I1 

Continuous  State-Space Model for the Reactor 

In (l), A ,  E ,  and D are  given  by 
- 

- 4.019, 
- 0.346, 
- 7.909, 

-21.816, 
A = - 60.196, 

0, 
0, 
0, 
0, - 

5.12, 
0.986, 

15.407, 
35.606, 
98.188, 
0, 
0, 
0, 
0, 

0, 
0, 

- 4.069, 
- 0.339, 
- 7.907, 
0, 
0, 
0, 
0, 

B =  

- 
0.010, 
0.003, 
0.009, 
0.024, 
0.068, 
0, 
0, 
0, 
0, - 

- 0.01  1, 
- 0.021, 
- 0.059, 
- 0.162, 
- 0.445, 
0, 
0, 
0, 
0, 

-0.151 
0 
0 
0 
0 
0 
0 
0 
0 

D =  

0.25  1, 
0.147, 
0.405, 
1.13, 
3.07, 
0, 

53.2, 
18.8, 
0, 

- 2.082, 
- 2.34, 
- 6.45, 
- 17.8, 
- 53.008, 

94, 
0, 
0, 

12.8, 

- 1438.916 
- 323.846 
- 82.771 
- 22.637 
- 5.456 
0 
0 
0 
0 

0.87 
0.97 
2.68 
7.39 

20.4 
0 
0, 
0 

-31.6 
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In (3), @, A, and 0 are  given by 
- 

0.870  1, 
0.7665 X 10- ' 

- 0.1272, 
- 0.3635, 

@ =  - 0.9600, 
- 0.6644, 
- 0.4  102, 
- 0.1799, 
- 0.345 1, - 

0.1350, 
0.8974, 
0.3575, 
0.6339, 
1.6459, 
1.1296, 
0.6930, 
0.30  17, 
0.5804, 

0.1159~ IO-',  
0.1272~ lo-', 
0.8  170, 
0.7491 X lo-', 

- 0.1289, 
- 0.8889 X 10- ', 
-0.5471 X lo-', 
-0.2393X lo-', 
- 0.4596 X lo-', 

- 0.3722 X 10- I ,  

-0.4016X I O - ' ,  
-0.1028, 
- 0.2735, 

0.7142X lo-', 
0.8447 X IO-', 

0.6059 X IO- I ,  

0.1056, 

0.6649 x IO- I ,  

0.5014X 
0 .5504~  
0.1455 X 

0.7966, 
-0.5597 X 

- 0.3854 X 

-0.2371 X 

-0.1035 X 

- 0.1989 X lop2, 

0.3484 X 10-3, 0.0, 
0.3743 X lop3, 0.0, 
0.9870X 0.0 
0.2653 x I O  - *, 0.0 
0.7108~ 0.0, 

0.1249~ IO-', 0.1063~ lop3 
0.2216~ lo-', 0.0, 

0.1360X lo-', 0.0, 

0.1986X lo-', 0.0, 

0.4242 x 10 - ', 

0.1185~ IO-', 
0.4530X lop2, 

0.3  172 X IO- I ,  

0.8452 X 10- ', 
0.1443, 
0.9997 x 10- ', 
0.2  139, 
0.2191, 

- 
0.4760X -0.5701 x -0.8368 X 

0.8790 x - 0.4773 X - 0.2730 X lod3 
0.1482X -0.1312x lo-', 0.8876x 
0.3892X -0.3513x lo-', 0.2480x 

A =  0.1034X -0.9275X 0.6680X 
0.7203 X - 0.6159 X lop2, 0.3834X lo-' 
0.4454 X lop3, - 0.3683 X lo-', 0.2029 X lo-' 

0.3773X -0.3028~ lo-', 0.1469X lo-' 
0.1971 X -0.1554X lo-', 0.6937X 

- - - 
0.9812X lo-', - 18.4102 
0.3615 X lo-', -21.3259 
0.8133 X 0.57  12 
0.2230 X 10- ', 13.3542 

@= 

0.3818X lo-', 23.0206 
0.5647 x 10- ', 40.0409 

0.2312~ lo-', 12.1964 
0.9947 X lo-', 4.1717 
0.1923X lo-', 8.83  1  1 - - 

649 

0.7249 X 

0.7499 X lo-' 
0.1872X IO- '  
0.4882 X 10- 
0.1259 
0.1016 
0.6967 X lo- '  
0.3554X lo- '  
0.2  152 

APPENDIX 111 F 
LIST OF Syhl~ors F, 

CPi specific  heat of ith  component (kcal/kg-M-K) F3 
F2 

( i =  1 for  hydrogen, 2 for  nitrogen, 3 for FFi 
ammonia,  and 4 for  inerts) 

C,, average  heat  capacity of feed  gas (kcal/kg-M. F(a) 
- 

K) a4 

molar flow rate  of feed (kg-M/h) 
flow in heat  exchanger  shell (kg- M/h) 
flow in heat  exchanger  bypass (kg. M/h) 
flow in direct  bypass (kg-M/h) 
molar flow rate of ith  component in the  feed  gas 

flow rate  at a (Kg-M/h) 
flow rate  of  ith  component  at a (kg-M/h) 

(kg-M/h) 



equilibrium  constant (l/atm) 
pressure  (atm) 
heat  transfer  area in catalyst  bed  (m2) 
heat  transfer  area in heat  exchanger  (m2) 
reference  temperature (25°C) 
catalyst  temperature (K) 
feed temperature  ("C) 
temperature in the tube of catalyst  portion ("C) 
temperature  in  the tube of heat  exchanger ("C) 
temperature in the  shell of heat-exchanger ("C) 
overall  heat  transfer  coefficient in catalyst  bed 
(kcal/h*m2- "C) 
overall  heat  transfer  coefficient in heat ex- 
changer (kcal/h.m2- "C) 
volume of the  catalyst  bed  (m3) 
yield of ammonia (kg. M/h) 
catalyst  activity  factor 
length of the  heat  exchanger  (m) 
reaction rate (kg.M NH,/h.m3 catalyst) 
mole  fraction of ammonia 
mole fraction of hydrogen 
mole fraction of nitrogen 
mole  fraction of inerts 
normalized  distance  (catalyst  section) 
normalized  distance  (heat  exchanger) 
decrease in specific  heat due to  formation of 1 
M of ammonia (kcal/kg.M-K) 
enthalpy of formation of ammonia at 298 K 

average  heat  transfer  coefficient  from  wall- 
empty tube (kcal/h-m2"C) 
average  heat  transfer  coefficient  from  wall-cata- 
lyst  section  (kcal/h.m2. "C) 
nondimensional  unit of time 
weight  of catalyst (kg) 
specific  heat of catalyst (kcal/kg- M . K) 
heat  transfer area between  wall-catalyst  section 

velocity of the  gas  mixture  in  the  shell  side of 
heat  exchanger  (m/s) 
velocity of the  gas  mixture in the  tube of heat 
exchanger  (m/s) 

(kcal/kg. M> 

<m2) 
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tc(i), i= 1,5 incremental  catalyst  temperature at  ith 
location ("C) 

((i), i = 1,2 incremental tube temperature  in  heat ex- 
changer at ith  location ("C) 

ri(i), i =  0,l incremental  shell  temperature  in  heat ex- 
changer at ith  location ( " C )  

t ( l , ~ 2 , ~ 3  incremental flow rates  (manipulated  vari- 
ables) (kg-m/h)  for F,,  F2, and F3, respec- 
tively. 

incremental  feed  composition 
Ir incremental  feed  temperature ("C) 

K c  proportional  gain 
TI. reset  time (s) 

T sampling  time (s) 

To derivative  time (s) 

mll the  manipulated  variable at the  nth  sampling 

en error at the nth sampling  period 
e,- error at the (n - 1)st  sampling  period 

period. 
* inlet  condition. 
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Resource Management for  Large  Systems: 
Concepts,  Algorithms,  and  an  Application 

I. INTRODUCTION 

T HE study of large-scale  systems and decentralized 
control is  becoming  increasingly  important  today [2]. 

Here we study  the  application of decentralization to one 
aspect of such  systems,  namely  the  problem of resource 
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management (RM) in large  systems. RM is  defined  below 
as  a  certain  class of resource-allocation  problems. Our 
motives for studying RM problems are manifold.  Firstly, 
several  large  operational  systems (e.g., computer  networks 
or warehouses)  have  resource-allocation  problems  which 
fall  naturally into the  class of RM problems.  Secondly, 
although  Lagrange  multiplier  techniques for decomposi- 
tion of large  allocation  problems are well known, they 
suffer  from  the  possibility of duality  “gaps,”  which  means 
there  may  not  exist  multipliers  which  generate  the  opti- 
mum. To guarantee  the  absence of “gaps”  various  func- 
tions are required to be  convex,  which  is too  restrictive for 
many  “real-world”  problems. In the case of large RM 
problems  however,  we  show that less  restrictive  conditions 
can  be  formulated.  Thirdly, known large  scale  mathemati- 
cal  programming  algorithms can be  fairly  slow  when 
applied to very  large  allocation  problems [ 151. For large 
RM problems on the  other hand, our experience  has 
shown that more  efficient  algorithms  can  be  constructed, 
even  though  the  problems  are  essentially  integer  program- 
ming in  nature.  Here we describe one such  algorithm and 
attempt to give alternative sets of assumptions which  can 
explain  the  success of this approach even in the  absence 
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