Computer Enumeration of Walks on Directed Graphs

K. Balasubramanian ${ }^{*}$

Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604

Received 17 May 1990; accepted 19 July 1990

A vectorized computer code is developed for the enumeration of walks through the matrix power method for directed graphs. Application of this code to several graphs is considered. It is shown that the coefficients in the generating functions for signed graphs are much smaller in magnitude. It is shown that self-avoiding walks on some graphs can be enumerated as a linear combination of walk GFs of directed paths and rooteddirected paths.

INTRODUCTION

The enumeration of walks on graphs and lattices of chemical interest has numerous applications in many areas of chemistry. ${ }^{1-11}$ Random walk models are useful in the treatment of diffusion, conformations of flexible polymers, among other applications. Walks on graphs are also useful in chemical coding, characterization of graphs, applications of extended Hückel methods to solids through moment generating functions, ${ }^{4}$ etc. Randic and co-workers, ${ }^{2,}$ as well as the present author have formulated com putational techniques for enumerating walks and sell returning walks for ordinary graphs. However, walks on directed graphs, weighted graphs, signed graphs, and graphs containing complex edge weights have not been explored at all. We develop here a vectorized computer code for the enumeration of walks and spectral moments of directed and unsymmetrical graphs, in general. The second section descibe herd section corsures results and discussions.

COMPUTATION OF WALKS

A walk on a graph is defined as a sequence of edges that a walker can traverse continuously starting and ending on any vertex. The possibility of repetition of edges is permitted in a random walk. A self-re turning walk is a random walk in which one starts and ends the walk in the same vertex. A self-avoiding alk is a walk in which no vertex appears more tha nce. A walk of length k is a walk consisting of

Camille and Henry Dreyfus Teacher-Scholar
edges of a graph or lattice in a continuous manner. edges of a graph or larly one can define self-avoiding and self-returning walks of length k. Suppose N_{k} is the number of walks of length k, the function W, shown below, is known as the generating function for the walk

$$
W=\sum_{k=0}^{\infty} N_{k} x^{k},
$$

where x is a dummy variable and x^{k} represents walks of length k. Similarly one defines the generating function for self-avoiding walk (SAW) and self-returning walk (SRW) as

$$
\begin{aligned}
& \mathrm{SAW}=\sum_{k=0}^{n-1} L_{k} x^{k}, \\
& \mathrm{SRW}=\sum_{k=0}^{\infty} M_{k} x^{k} .
\end{aligned}
$$

Note that N_{o} in W is the number of vertices in the graph and that SAW does not have a nonvanishing term beyond x^{n-1}, since one cannot have a self-
 in question does not have loops. Hence we omit the constant term in W SRW, and SAW in this mase
The adjacency matrix 4 of an ordina sh
A of an ordinary graph is defined as
$A_{i j}= \begin{cases}0 & \text { if } i=j \\ 1 & \text { if } i \neq j\end{cases}$
and i and j are connected by an edge
In general different powers of the adjacency matrix enumerate walks of different lengths. ${ }^{2}$ The $i j$ th element of A^{k} of $\left(A^{k}\right)_{i j}$ enumerates the total number of wequently the k be of A^{k} or A^{k} is the i and j. Conof self-returning walks also known as spectral mo-
ments. The sum of all the elements of A^{k} is N_{k}. In symbols,

$$
\begin{aligned}
& N_{k}=\sum_{i j}\left(A^{k}\right)_{i j}, \\
& M_{k}=\sum_{i}\left(A^{k}\right)_{i i}=\operatorname{tr} A^{\dot{k}},
\end{aligned}
$$

For symmetrical graphs it can be shown that ${ }^{12}$

$$
W=\frac{P_{G}(1 / x)}{x P_{G}(1 / x)},
$$

where $P_{\bar{G}}$ is the characteristic polynomial of $A-J$, where J is a matrix in which all entries are unities. The author used his code to compute characteristic polynomials ${ }^{13}$ to construct W of graphs before. ${ }^{11}$ The coefficients $M_{k} s$ in SRW (self-returning walk gereating function) are simply $s_{k} s$, the spectral moments of graphs. S_{k} is defined as follows

$$
S_{k}=\operatorname{tr} A^{k}=\sum_{i}\left(A^{k}\right)_{i i}
$$

The spectral moments S_{k} 's and the coefficients in the characteristic polynomials are related by the following expressions (see, for example, reference (9))

$$
S_{1}=0, \quad-m C_{m}=\sum_{k=1}^{m} S_{k} C_{m-k} .
$$

Thus the spectral moments $S_{k} s$ (same as M_{k}) can be recursively obtained using the above relation once the coefficients C_{k} 's in the characteristic polynomial of the graph are determined. All analytical expressions discussed above are valid only for ordinary graphs
A signed graph is defined as a bidirected graph for which a signed adjacency matrix is shown below: $A_{i j}^{(\mathrm{s})}=$
$\begin{cases}0 & \text { if } i=j \\ 1 & \text { if } i \neq j\end{cases}$
$\left\{\begin{aligned} 1 & \text { if } i \neq j, i \text { and } j \text { are connected and } i>j . \\ -1 & \text { if } i \neq j, i \text { and } j \text { are conneted and } i<j .\end{aligned}\right.$
Note that the adjacency matrix $A_{i j}^{(s)}$ is not symmetrical. The adjacency matrix of a weighted directed graph can be defined as

$$
A_{i j}^{w}= \begin{cases}0 & \text { if } i=j . \\ w_{i j} & i \neq j, \text { for an edge from } i \text { to } j .\end{cases}
$$

The possibility of nonzero diagonal elements could also be included in the above definition through loops.
The powers of adjacency matrices of weighted, directed, and bidirected graphs (different weights for different directions) do not enumerate the "number of walks" in a strict sense. This is because the $i j$ matrix element $A_{i j}^{k}$, is given by

$$
A_{i j}^{k}=\sum a_{i i_{1}} a_{i i_{2} 2} a_{i_{2} i_{3}} \ldots a_{i_{i_{-1}-1}}
$$

where the sum is over all such terms starting with the vertex i and terminating at vertex j. Note that if all matrix elements are 0 and 1 for ordinary graphs j of the length k. For a signed graph since some of the matrix product shown above will be negative the matrix product shown above will be negative while the others will be positive and, consequently
$A_{i j}^{k}$ gives the net effect of all possible walks from i $A_{i j}$ jives the net effect of all possible walks from
to j of length k. There are some advantages to the evaluation of such generating functions since the coefficients in general tend to be smaller in magni tude. For signed graphs the coefficients of x^{k} vanish if k is odd since the sum of contributions of all walks cancel out. Note that the walks of signed and directed graphs are dependent on labeling of vertices, in general.
There are also other advantages in using weighted graphs. For some trees and cyclic graphs a combi nation of properly weighted directed graphs could be used to enumerate the number of self-avoidin walks as we show here.
In the next section, we shall use the term walk generating function (WGF) and self-returning walk enerating function (SRWGF) to simply refer to

$$
\begin{aligned}
\mathrm{WGF} & =\sum_{k=1}^{n} N_{k} x^{k}, \\
N_{k} & =\sum_{i j} \sum a_{i i_{1}} a_{i i_{2}} \ldots . a_{i_{k-1}, j}, \\
\text { SRWGF } & =\sum_{k=1}^{n} M_{k} x^{k}, \\
M_{k} & =\sum_{i} \sum a_{i i_{1}} \ldots . a_{i_{k}-1, i} .
\end{aligned}
$$

Thus the coefficients in WGF and SRWGF do not necessarily enumerate the number of walks in the sense they are interpreted for nondirected ordinary raphs. These coefficients measure the net effect of uch walks for signed and weighted graphs
The computation of powers of matrices is effi essors. We developed a vectorized Fortran '77 pro nd was compiled on an IBM 3090/300 with the vec tor option and an optimization level $=3$ The DO loops were properly organized to achieve maximum vectorization. All matrices were stored as two-di mensional arrays. The original adjacency matrix the $A^{(k-1)}$ matrix and the A^{k} matrix were saved in each iteration $k=1,2, \ldots$ etc. The codes thus developed were tested on several graphs. For all the graphs considered here, this code took only a few seconds.

RESULTS AND DISCUSSION

Table I compares the results obtained for a series of ordinary and signed graphs containing eight vertices shown in Figure 1. Note that the spectral moments (the number of self-returning walks) differ only in

Table I. WGF and SRWGF for both regular and signed graphs containing eight vertices. ${ }^{a}$

Graph (Fig. 1)	WGF		SRWGF	
	Ordinary graph	Signed graph	Ordinary graph	Signed graph
I	$\begin{aligned} & 14 x+26 x^{2}+48 x^{3} \\ & +90 x^{4}+168 x^{3}+316 x^{6} \\ & +592 x^{7}+1114 x^{8} \end{aligned}$	$\begin{aligned} & -2 x^{2}+2 x^{4}+4 x^{6} \\ & +10 x^{8} \end{aligned}$	$\begin{aligned} & 14 x^{2}+38 x^{4}+116 x^{6} \\ & +374 x^{8} \end{aligned}$	$\begin{aligned} & -14 x^{2}+38 x^{4}- \\ & 116 x^{6}+374 x^{8} \end{aligned}$
II	$\begin{aligned} & 14 x+28 x^{2}+52 x^{3} \\ & +140 x^{4}+196 x^{5}+ \\ & 392 x^{6}+742 x^{7}+1484 x^{8} \end{aligned}$	$\begin{aligned} & -4 x^{2}+8 x^{4}-24 x^{6} \\ & +84 x^{8} \end{aligned}$	$\begin{aligned} & 14 x^{2}+42 x^{4}+140 x^{6} \\ & +490 x^{8} \end{aligned}$	$\begin{aligned} & -14 x^{2}+42 x^{4}- \\ & 140 x^{6}+490 x^{8} \end{aligned}$
III	$\begin{aligned} & 14 x+30 x^{2}+60 x^{3} \\ & +126 x^{4}+258 x^{5}+ \\ & 538 x^{6}+1110 x^{7}+2308 x^{8} \end{aligned}$	$\begin{aligned} & -6 x^{2}+10 x^{4}-26 x^{6} \\ & +88 x^{8} \end{aligned}$	$\begin{aligned} & 14 x^{2}+46 x^{4}+176 x^{6} \\ & +718 x^{8} \end{aligned}$	$\begin{aligned} & -14 x^{2}+46 x^{4} \\ & 176 x^{6}+718 x^{8} \end{aligned}$
IV	$\begin{aligned} & 14 x+30 x^{2}+62 x^{3} \\ & +130 x^{4}+272 x^{5}+ \\ & 570 x^{6}+1194 x^{7}+2502 x^{8} \end{aligned}$	$\begin{aligned} & -6 x^{2}+10 x^{4}-30 x^{6} \\ & +114 x^{8} \end{aligned}$	$\begin{aligned} & 14 x^{2}+46 x^{4}+182 x^{6} \\ & +766 x^{8} \end{aligned}$	$\begin{aligned} & -14 x^{2}+46 x^{4}- \\ & 182 x^{6}+766 x^{8} \end{aligned}$
v	$\begin{aligned} & 14 x+32 x^{2}+60 x^{3} \\ & +138 x^{4}+264 x^{5} \\ & 606 x^{6}+1170 x^{7}+2682 x^{8} \end{aligned}$	$\begin{aligned} & -8 x^{2}+26 x^{4}-102 x^{6} \\ & +426 x^{8} \end{aligned}$	$\begin{aligned} & 14 x^{2}+50 x^{4}+200 x^{6} \\ & +842 x^{8} \end{aligned}$	$\begin{aligned} & -14 x^{2}+50 x^{4}- \\ & 200 x^{6}+842 x^{8} \end{aligned}$
vi	$\begin{aligned} & 14 x+34 x^{2}+70 x^{3} \\ & +162 x^{4}+342 x^{5}+ \\ & 784 x^{6}+1666 x^{7}+3808 x^{8} \end{aligned}$	$\begin{aligned} & -10 x^{2}+30 x^{4} \\ & 116 x^{6}+512 x^{8} \end{aligned}$	$\begin{aligned} & 14 x^{2}+54 x^{4}+242 x^{6} \\ & +1142 x^{8} \end{aligned}$	$\begin{aligned} & -14 x^{2}+54 x^{4}-242 x^{6} \\ & 242 x^{6}+1142 x^{8} \end{aligned}$
VII	$16 x+32 x^{2}+64 x^{3}$ $512 x^{6}+1024 x^{7}+2048 x^{8}$	$\begin{aligned} & -8 x^{2}+16 x^{4}-48 x^{6} \\ & +160 x^{8} \end{aligned}$	$\begin{aligned} & 16 x^{2}+48 x^{4}+160 x^{6} \\ & +576 x^{8} \end{aligned}$	$\begin{aligned} & -16 x^{2}+48 x^{4}- \\ & 160 x^{6}+544 x^{8} \end{aligned}$

${ }^{a}$ For all signed graphs vertices were labeled sequentially for the largest paths and then branching vertices in the order of increasing vertex numbers they are attached to.

I
II $0-0-0-0$

III

IV

Z

ZII

VII

Figure 1. Graphs I-VII containing eight ver tices (see Table I for walk GFs).
signs for ordinary and signed graphs in Table I. However, the actual walk generating functions differ sig nificantly for ordinary and signed graphs. Note that walk from a vertex i to $j(i>j)$ is considered positive while a walk from i to $j(i<j)$ is negativ because of weights +1 and -1 , for these two edges Consequently, the coefficients of all terms with odd powers are zero as there are equal and opposite contributions for every term since $A_{i j}^{k}=-A_{j i}^{k}$ if is odd.
Consider a directed chain of length $8\left(L_{8}\right)$. Label he vertices $1-8$ sequentially from left to right. Le . This be directed from i to j if and only if $j>$ is 1 but a_{2} is 0 . example, the matrix element a_{12} unsymmetrical as expected. The powers of this ma rix A enumerate exactly half of the self-avoiding walks (SAW) and in general this is the case for any L_{n} graph. For the directed L_{8} graph thus obtained
$2 W=\mathrm{SAW}=14 x+12 x^{2}+10 x^{3}$

$$
\begin{aligned}
& 12 x^{4}+6 x^{5}+4 x^{6}+2 x^{7}
\end{aligned}
$$

The enumeration of self-avoiding walks can in gen ral be a difficult problem. Randić et al. ${ }^{3}$ have for mulated an algorithm based on growing paths from nonequivalent vertices of graphs. This algorithm tain several rings. For lattice graphs and complex polycyclic graphs this alforithm can experience combinatorial homial algorithm to compute self-avoiding walks. It is hoped that the present study based on matrix pow ers of directed graphs would lead to finding SAWs ers of directed graphs would lead to finding SAWs graphs.

Similarly SAW generating functions of cyclic graph $\left(C_{n}\right)$ can be obtained using an unidirectional graph with edges from 1 to 2,2 to 3,3 to 4 , etc. up to n to set to zero. The WGF-SRWGF of such a directed C_{0} et to zero. The gives SAW as shown below.

SAW $=2$ (WGF-SRWGF) $=16 x+16 x^{2}$
$+16 x^{3}+16 x^{4}+16 x^{5}+16 x^{6}+16 x^{7}$
Figure 2 shows a directed square lattice graph. As seen from Figure 2, all edges are unidirectional. This seen from Figure 2 , all edges are unidirectional. This element $a_{i j}=1$ and the element $a_{j i}=0$. First 16 coefficients in the WGF and SRWGFs are shown

Figure 2. A directed square lattice

Table II. Walk generating functions and spectral moments of an ordinary and
signed square lattice Figure 3 . First 36 coefficients in the UGF of the signed lattice

0.0	-64.0	0.0
288.0	0.0	-1888.0
0.0	14552.0	0.0
-122424.0	0.0	1085360.0
	-9939368.0	0.0
92921072.0	0.0	-880695112.0
-81204846832.0 ${ }^{0.0}$	${ }^{8427265752.0}$	
-81204846832.0 0.0	$\begin{array}{r} 0.0 \\ -7653034773952.0 \end{array}$	786670439280.0
74706758257384.0		-731333896332248.0
	7176356509174024.0	${ }_{694993818269838920.0}^{0.0}$
-70561564162709040.0	0.0	694993818269838920.0

First 36 spectral moments of the signed square lattice

0.0	120.0	0.0
912.0	0.0	8712.0
0.0	92688.0	0.0
1049400.0 0.0	149738072.0	12365448.0
1848602576.0	0.0	23142098592.0
	292655854632.0	0.0
3728313849248.0	0.0	47752512334440.0
$791712450005877{ }^{0.0}$	614002413827832.0	0.0
7917124500058776.0 0.0	1323629434618917840.0	102293612786053392.0 0.0

below for this graph. We omit the constant term for convenience. This is equal to the number of vertices
for WGF and zero for SRWGF for WGF and zero for SRWGF.
WGF $=24 x+34 x^{2}+50 x^{3}+70 x^{4}+102 x^{5}$
$+144 x^{6}+212 x^{7}+300 x^{8}+440 x^{9}+620 x^{10}$ $+908 x^{11}+1282 x^{12}+1882 x^{13}+2658 x^{14}$

$$
+3898 x^{15}+5500 x^{16}
$$

SRWGF $=4 x^{4}+12 x^{6}+44 x^{8}+80 x^{10}$

$$
\begin{aligned}
& 2 x^{6}+44 x^{8}+80 x^{10} \\
& +196 x^{12}+252 x^{14}+668 x^{16} .
\end{aligned}
$$

Next we consider a few signed square and honeycomb lattices. It may be recalled that signed graphs are bidirected graphs with a weight +1 for an edge i to j if $i>i$ and -1 if $j<i$. Note that because of he introduction of negative weights the coefficents in WGF enumerate the "net effect" of walks of various lengths as opposed to the total number of walks of length k. Hence, the coefficients of odd power vanish in WGF.
Table II compares the WGF and spectral moments of a signed square lattice (Fig. 3) and the correspotice is a bidirectional graph with the same weight +1.0 for both directions. As seen from Table II, the coefficients of odd powers of the signed lattice van ish while the coefficients of even powered terms of the signed lattice are significantly smaller as these measure the net effect of taking walks of various lengths while for ordinary lattices these are the number of walks of specified length. The odd coefficients vanish for signed graphs since the matrix product terms cancel out. Note that the WGF for signed lattice is label-dependent. Interested readers can obtain the labels used for Table II from the author.
The number of "non-self-returning" walks can be evaluated using WGF-SRWFG. The coefficients of various terms in WGF-SRWGF truly enumerate non-self-returning walks only for regular lattices. Thu the coefficient of x^{2} in WGF-SRWGF of the ordinary lattice in Figure 3 (Table II) is 296 while it is 56 for a signed lattice.
Table III shows the WGF and SRWGFs of a ho neycomb lattice containing 54 vertices (Fig. 4). Note that since the coefficients of WGF of this lattice grow

Figure 3. A square lattice containing 36 vertices. For the WGF, SRWGFs of this regular and signed lattice see Table

Figure 4. A honeycomb lattice containing 54 vertices.
See Table III for WGF, SRWGFs of regular and signed lattices.
astronomically a quadruple precision arithmetic was invoked. Hence, the execution was slowed down since vectorization is not possible with the quadruple pre cision arithmetic. Yet the CPU time taken was relatively insignificant for the problem at hand. Again the general feature of the coefficients for the honeycomb lattice graph follows the square lattice graph discussed above. The labeling for this lattice can be obtained from the author
The code developed above could be potentially useful for enumerating self-avoiding walks in a faster manner compared to any known procedure up to now. The procedure outlined by Randic et al. ${ }^{3}$ for finding the number of self-avoiding walks is a nonpolynomial algorithm and thus the CPU time required grows astronomically for larger complex graphs containing cycles. However, if matrix power procedure can be suitably adapted for a combination of weighted graphs such that the resulting generating function is the self-avoiding walk polynomial then it could be very powerful. For example, consider the tree in Figure 5. If one enumerates the largest path The SAW of L is given by the matrix powers of the appropriate directed graph discussed before

$$
\operatorname{SAW}\left(L_{5}\right)=8 x+6 x^{2}+4 x^{3}+2 x^{4}
$$

Now we start with the vertex labeled 6 which was not visited before and enumerate the largest possible paths. It can be seen that they are $6-3-4-5$ and $6-3-2-$ for the graph in Figure 5. A restricted SAW for start from the vertex labeled 6 (root). This would be the sum of sixth-row elements in the powers of the

Figure 5. A branched tree containing six vertices. The self-avoiding walk GF (SAW) of this tree can be obtained as a linear combination of the SAW of a path and SAWS of rooted paths.

Table III. The walk GF, SRWGF of an ordinary honeycomb lattice graph and signed lattice graph in Figure 4.

53 coefficients in SRUGF of the ordinary lattice

0.0	144.0	0.0
648.0	0.0	8.0
0.0	22968.0	0.0
54224.0	0.0	1079496.0
	7778376.0	0.0
57258360.0	0.0	428438136.0
${ }^{586691129} 0$	3247259328.0	
24866881128.0	0.0	192030980040.0
0.0	1493227064928.0	
11678269142544.0	0.0	91774395035448.0
0.0	724139076916344.0	
0.0	362355328593353520.0	45523925960816232.0
2890192973530857408.0	0.0	23092914702266609208.0
	184788027980655460272.0	
1480516346318066986416.0 0.0	95323938466295820729024:0	1874435754527365234568.0 0.0
765807880412372719390896.0	0.0	

First 54 Coefficients in the WGF of signed lattice

First 54 coefficients in the SRGGF of the signed lattice (fig. 4)

adjacency matrix of this graph. Suppose we call this rooted-self-avoiding walk (RSAW) then

$$
\operatorname{RSAW}\left(L_{4}\right)=x+2 x^{2}+2 x^{3} .
$$

Since there are two paths (6-3-4-5 and 6-3-2-1) starting from the vertex 6 , SAW of the graph in Figure 5 is given by
SAW (Fig. 5) $=$ SAW $\left(L_{5}\right)+2 \operatorname{RSAW}\left(L_{4}\right)$

$$
=10 x+10 x^{2}+8 x^{3}+2 x^{4} .
$$

The above result can be easily verified
Although the above procedure for complex cyclic graphs can get complicated it may be a better and efficient alternative to compute the SAW of a given graph as a linear combination of SAWs of $L_{n} s$ and rooted paths. Such advancement and extension of these procedures to complex cyclic graphs could be the topic of future investigatons.

CONCLUSION

In this investigation we developed a vectorized computer code in FORTRAN 77 to eriumerate the walk generating functions (WGF) and self-returning walk generating functions (SRWGF) for directed graphs, signed graphs and weighted graphs. The code was
applied to several graphs and lattices. It was also shown that the self-avoiding walks on some graphs can be enumerated as a linear combination of WGFs of directed maximal paths and rooted-directed maximal paths.

References

1. M. Randić, J. Chem. Inf. Comput. Sci., 18, 101 (1978).
2. M. Randić, J. Comp. Chem., 1, 386 (1980). 3. M. Randić, G.M. Brissey, R.B. Spencer, and C.L. Wilkins, Computer Chem., 3, 5 (1979).
3. M. Randić, and C.L. Wilkins, J. Chem. Inf. Comput. 5. W. Brastow and A. Schinitzel, J. Stort. Phys., 4, 103 (1972).
4. F.T. Wall and DJ. Klein, Proc. Nat. Acad. Sci., 76, 1529 (1979)
5. G.K. Baker, M. M.E. Fisher, Adv. Phys., 9, 315 (1960) 8. G.K. Baker, J. Math. Phys., 7, 2238 (1966).
6. RA. Marcus, J. Chem. Phys., 43, 2643 (1965)
7. E.W. Montroll, in Applied Combinatorial Mathemat ics, E.F. Beckenbach, Ed., Wiley, New York, pp. 96-
8. K.
9. (1985).
10. D.M. Cvetkoví M D Graphs, Academic, Noow York, 1986 . Sachs, Spectra of 13. Kraphs, Academic, New York, 1986.
11. J.K. Burdett, in Graph Theory and Topology in Chem istry, R.B. King and D.H. Rouvray, Eds., Elsevier, New York, 1987, pp. 302-324.

Ab Initio Study of Ascorbic Acid Conformations

Mohammad A. Al-Laham and G.A. Petersson*

Department of Chemistry, Wesleyan University, Hall-Atwater Laboratory, Midaletown, Connecticut 06457

Paul Haake

Department of Molecular Biology and Biochemistry and Department of Chemistry, Wesleyan University, HallAtwater Laboratory, Middletown, Connecticut 06457

Received 13 March 1990; accepted 6 July 1990

The STO-3G optimized structures of nine different staggered conformers of ascorbic acid are presented. The largest energy difference between the nine local minima is $5.1 \mathrm{kcal} /$ mol. Comparison of the relative energies
of the fully optimized structures of ascorbic acid conformers with those of nonoptimized conformers shows of the fully optimized structures of ascorbic acid conformers with those of nonoptimized conformers shows
that full optimization is essential to obtain meaningful results. However, optimization of the ring structure is that full optimization is essential to obtain meaningful results. However, optimization of the ring structure is almost independent of optimization of the side-chain structure. One of the STO-3G optimized gas phase conformers is very close to the X -ray structure of the crystal.

INTRODUCTION

Ascorbic acid or Vitamin C (Fig. 1) has been a molcule of great biochemical interest since it was iso ated and characterized ${ }^{1}$ in 1928. The crystal structure was determined in 1968 by Hvoslef using X-ray crystallography ${ }^{2 a}$ and neutron diffraction. ${ }^{2 b}$ Little theoretical work has been done on ascorbic acid, mainly because of its size. The most comprehensive work so far is an STO-3G minimal basis set study withou geometry optimization by Carison, Cable and Ped rsen. Other work includes semiempirical ${ }^{4}$ calcu lations on free radicals derived from ascorbic acid and α-hydroxytetronic acid to help determine the tructure and UV spectrum of ascorbic acid, and to study the π-electrons in the ring. Ab initio SCF calculations ${ }^{5}$ on α-hydroxytetronic acid have been used as a model for the electronic structure of ascorbic acid. The object of this work is to study the mportance of fully optimizing the sucture of a large fully optimized results from this work with the pre vious nonoptimized reśults of Carlson, Cable and Pedersen ${ }^{3}$ In this atticle, we consider the separate optimization of the α-hydroxytetronic acid (ring) and he 12 -diol sidechain, and we compare the results with those obtained when we fully optimized the with those obtained when we fully optimized the bility of calculations on large systems.
Accurate $a b$ initio calculations of conformational geometries and energies require at least a doublezeta plus polarization basis set and inclusion of cor

To whom all correspondence should be addressed.
relation effects on at least the second-order MøllerPlasset level of theory A complete optimization of all ascorbic acid conformers at the MP2 $/ 6-31 \mathrm{G}^{*}$ level all ascorbic acid conformers at the MP2 $/ 6-31 G^{*}$ level
of theory is not practical at this time. On the other hand, SCF calculations using the STO-3G minimal basis set give qualitatively correct results through accounting for both the electrostatic interactions and the Pauli repulsive interactions between electrons (the RMS error in the STO-3G rotational barriers for ethane, methanol, and acetaldehyde is $0.52 \mathrm{kcal} /$ mole). ${ }^{6}$ This level of calculation also allows us to compare our optimized results with the nonoptimized results of Carlson, Cable, and Pedersen. ${ }^{3}$
The local minima on the ascorbic acid potential energy surface are related by rotations about the two dihedral angles, τ_{1} (C3-C4-C5-C6 in Figure 1) and τ_{2} (C4-C5-C6-O6 in Figure 1). Carlson, Cable, and Pedersen ${ }^{3}$ investigated the nine staggered conformations obtained by rotations of $0^{\circ}, 120^{\circ}$, and 240° ($\tau_{1}=1878^{\circ}$ and $\tau_{2}=2953^{\circ}$) We shall use the ($\tau_{1}=18.8$ and $\tau_{2}=29.3$. We shall use the no$\tau_{1} \approx 187.8^{\circ}+\Delta \tau_{1}$ and $\tau_{2} \approx 2953^{\circ}+\Delta \tau_{2}$ For example, the $(0,0)$ conformer is the STO-3G optimized conformer corresponding to the crystal structure We have not performed a similar systematic investigation of the possible conformations of the hydroxyl groups because of the large number of conformers (324) that would need to be considered. In order to be consistent with the earlier nonoptimized study with which we wished to compare our results, we instead limited our search to finding the global minimum for the hydroxyl groups for each of the nine conformations of the side-chain. We have optimized all side-chain variables in all conformations, while

