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A vectoried computer code is developed for the enumeration of walks through the matr power method
for diected graphs. Application of this code to several graphs is considered. It is shown that the coeffcients
in the generating functions for signed graphs are much smaler in magntude. It is shown that self-avoidig
walks on some graphs can be enumerated as a liear combination of walk GFs of diected paths and rooted-
diected paths.

INTRODUCTION

The enumeration of walks on graphs and lattices of
cheiical interest has numerous applications in many
areas of chemistry. 

I-II Random walk models are use-

ful in the treatment of difsion, conformations of
flexible polymers, among other applications. Walks
on graphs are also useful in chemical coding, char-
acterization of graphs, applications of extended
Hückel methods to solids through moment gener-
ating functions,14 etc. Randic and co-workers,2,3 as
well as the present authorll have formulated com-
putational technques for enumeratig wal and self-
retug walks for ordinai graphs. _However, wals
on directed graphs, weighted graphs, signed graphs,
and graphs containing complex edge weights have
not been explored at all. We develop here a vecto-
rized computer code for the enumeration of walks
and spectral moments of directed and unsymetri-
cal graphs, in general. The second section describes
the computational techniques and codes while the
thid section comprises results and discussions.

COMPUTATION OF WALKS

A walk on a graph is defined as a sequence of edges
that a walker can traverse continuously staring and
ending on any vertex. The possibilty of repetition
of edges is permitted in a random walk. A self-re-
turing walk is a random walk in which one star

and ends the walk in the same vertex. A self-avoiding
wal is a walk in which no vertex appears more than
once. A wal of length k is a wal consisting of k
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edges of a graph or lattice in a continuous maner.
This is also known as the distace of a wal. Simi-
larly one can define self-avoiding and self-returning
wals of length k. Suppose Nk is the number of walks
of length k, the function W; shown below, is known
as the generating function for the walk

W = L Nkx\
k=O

where x is a dummy variable and xk represents wals
oflength k. Similarly one defines the generating fuc-
tion for self-avoidig wal (SAW) and self-retuing
walk (SRW) as

n-I
SAW = L Lkx\

k=O

SRW = L Mkxk.
k=O

Note that No in W is the number of vertices in the
graph and that SAW does not have a nonvanishing
term beyond xn-i, since one cannot have a self-
avoiding wal of length more than n - 1 on a graph

containingn vertices. Similarly Mo is zero if the graph
in question does not have loops. Hence, we omit the
constant term in W, SRW, and SAW in this manuscript.

The adjacency matrix A of an ordinai graph is

defined as

Aij = t ~ ifi=j
ifi¥-j
and i and j are connected by an edge

In general diferent powers of the adjacency matrix
enumerate walks of diferent lengths.2 The ijth ele-
ment of A k of (A k)ij enumerates the total number(tòf
wals of length k between the vertices i andj. Con-
sequently the trace of A k or trAk is the tota number
of self-retuing wals also known as spectral mo-
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ments. The sum of all the elements of Ak is Nk. In
symbols,

Nk = L (Ak)ij,
ij

Mk = L (Ak)ii = trA\

For symmetrical graphs it can be shown thatl2

W = Põ(l/x)
xPo(l/x)'

where Põ is the characteristic polynomial of A - J,

where J is a matrix in which all entries are unities.
The author used his code to compute character-

istic polynomialsl3 to construct W of graphs beforeY
The coeffcients Mks in SRW (self-returning walk
generating function) are simply SkS, the spectral mo-
ments of graphs. Sk is defined as follows

Sk = trAk = L (Ak)ii'

The spectral moments Sk'S and the coefficients in
the characteristic polynomials are related by the fol-
lowing expressions (see, for example, reference (9))

SI = 0,
m

-mCm - L SkCm-k'
k=1

Thus the spectral moments SkS (same as Mk) can be
recursively obtained using the above relation once
the coeffcients Ck's in the characteristic polynomial
of the graph are determined. Al analytical expres-
sions discussed above are valid only for ordinai
graphs.

A signed graph is defined as a bidirected graph
for which a signed adjacency matrix is shown below:

AW = ;i)

t-i
ifi=j
if i ¥- j, i and j are connected and i ? j.
if i ¥- j, i and j are conntcted and i -: j.

Note that the adjacency matrix A~Jl is not symmet-
ricaL. The adjacency matrix of a weighted directed
graph can be defined as

~w.=r0 ifi=j.i) L Wij i ¥- j, for an edge from i to j.

The possibilty of nonzero diagonal elements could

also be included in the above definition through
loops.

The powers of adjacency matrices of weighted,
directed, and bidirected graphs (diferent weights for
diferent directions) do not enumerate the "number
of walks" in a strict sense. This is because the ij
matrix element A~j .is given by

Ak = '" a..a. .a.. ...a. )',ij .. iii i¡i2 i2i3 i/i_�
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where the sum is over all such terms staring with
the vertex i and terminating at vertexj. Note that if
all matrix elements are 0 and 1 for ordinai graphs
the above sum gives the number of walks from i to
j of the length k. For a signed graph since some of
the matrix product shown above wil be negative

while the others wil be positive and, consequently,

A~jgives the net effect of all possible walks from i
to j of length k. There are some advantages to the
evaluation of such generating functions since the
coeffcients in general tend to be smaller in magni-

tude. For signed graphs the coeffcients of xk vanish

if k is odd since the sum of contributions of all walks
cancel out. Note that the walks of signed and di-
rected graphs are dependent on labeling of vertices,
in generaL.

There are also other advantages in using weighted
graphs. For some trees and cyclic graphs a combi-
nation of properly weighted directed graphs could
be used to enumerate the number of self-avoiding
walks as we show here.

In the next section, we shall use the term walk-
generating function (WGF) and self-returning walk
generating function (SRWGF) to simply refer to

n

WGF = L Nkx\
k=1

Nk - L L aii¡ai¡i2 . . . . aik_ii'
ij

n

SRWGF = L Mkx\
k=1

Mk - L L aii¡ . . . . aik_¡,i'
i

Thus the coeffcients in WGF and SRWGF do not
necessarily enumerate the number of walks in the
sense they are interpreted for nondirected ordinary
graphs. These coeffcients measure the net effect of
such walks for signed and weighted graphs.

The computation of powers of matrices is eff-
ciently accomplished through the use of vector pro-
cessors. We developed a vectorized Fortran '77 code
and was compiled on an IBM 3090/300 with the vec-
tor option and an optimization level = 3. The DO
loops were properly organized to achieve maximum
vectorization. All matrices were stored as two-di-
mensional arrays. The original adjacency matrix, the
A(k-ii matrix and the Ak matrix were saved in each
iteration k = 1,2, ... etc. The codes thus developed
were tested on several graphs. For all the graphs
considered here, this code took only a few seconds.

RESULTS AND DISCUSSION

Table I compares the results obtained for a series of
ordinai and signed graphs containing eight vertices

shown in Figue 1. Note that the spectral moments
(the number of self-returning walks) differ only in
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Simarly SAW generatig fuctions of cyclic graphs
(Cn) can be obtained using an unidirectional graph
with edges from 1 to 2, 2 to 3, 3 to 4, etc. up to n to
1. If there is no edge from a vertex i to j then aij is
set to zero. The WGF-SRWGF of such a directed Cs
gives SAW as shown below.

SAW = 2(WGF-SRWGF) = 16x + 16x2
+ 16x3 + 16x4 + 16x5 + 16x6 + 16x7

Figue 2 shows a directed square lattice graph. As
seen from Figue 2, all edges are unidirectional. This
means if there is an edge from i to j the matrix
element aij = 1 and the element aji = O. First 16
coeffcients in the WGF and SRWGFs are shown

5 6Table I. WGF and SRWGF for both regular and signed graphs containg eight vertices.aWGF SRWGF 16 7
Graph
(Fig. 1)

I

Signed graph

- 14x2 + 38x' -
116x" + 374x"

Ordinar graph

14x2 + 38x' + 116x"

+ 374x"

Ordiar graph

14x + 26x2 + 48x3
+ 90x' + 168x5 + 316x"
+ 592x7 + 1114x"
14x + 28x2 + 52x3
+ 140x' + 196x5 +
392x" + 742x7 + 1484x"

14x + 30x2 + 60x3
+ 126x' + 258x5 +

. 538x" + 1110x7 + 2308xB
14x + 30x2 + 62x3
+ 130x' + 272x5 +
570x" + 1194x7 + 2502x"

14x + 32x2 + 60x3
+ 138x' + 264x5 +
606x" + 11 70x7 + 2682x"

14x + 34x2 + 70x3
+ 162x' + 342x5 +
784x6 + 1666x7 + 3808x"
16x + 32x2 + 64x3
+ 128x' + 256x5 +
512x" + lO24x7 + 2048x"

aFor al signed graphs vertices were labeled sequentially for the largest paths and then branchig vertices in the order
of increasing vertex numbers they are attached to.

Signed graph

-2x2 + 2x' + 4X'i
+ lOx" 15 8

- 14x2 + 42x' -

140x" + 490x"
14x2 + 42x' + 140x6
+ 490x8

- 4x2 + 8x' - 24x"

+ 84x8
II

14 9
14x2 + 46x' + 176x"

+ 718x"

- 14x2 + 46x' -

176x" + 718x"
-6x2 + lOx' - 26x"
+ 88x"

II

- 14x2 + 46x' -
182x" + 766xB

14x2 + 46x' + 182x"

+ 766xB
- 6x2 + lOx' - 30x"
+ 114x"

IV 13 10

12 II
14x2 + 50x' + 200x6

+ 842 x"

- 14x2 + 50x' -

200x" + 842x"
-8x2 + 26x' - lO2x"
+ 426x"

v Figue 2. A directed square lattice.

- 14x2 + 54x' -242x'i

242x6 + 1142x"
14x2 + 54x' + 242x6
+ 1142x"

- 10x2 + 30x' -
116x" + 512x8

VI Table II. Wal generating fuctions and spectral moments of an ordiar and

signed square lattce Figue 3.

First 36 coefficients in the YGF of the signed lattice- 16x2 + 48x' -

160x" + 54x8
16x2 + 48x' + 160x"
+ 576x8

- 8x2 + 16x' - 48x6

+ 160x8
VI

0.0
288.0

0.0
-122424.0

0.0
92921072.0

0.0
-81204846832.0

0.0
74706758257384.0

0.0
-70561564162709040.0

-64.0
0.0

14552.0
0.0

-9939368.0
0.0

8427265752.0
0.0

-7653034773952.0
0.0

7176356509174024.0
0.0

0.0
-1888.0

0.0
1085360.0

0.0
-880695112.0

0.0
786670439280.0

0.0
-731333896332248.0

0.0
694993818269838920.0

I signs for ordinar and signed graphs in Table i. How-
ever, the actual walk generating functions difer sig-
nifcantly for ordinar and signed graphs. Note that

a walk from a" vertex i to j (i :; J) is considered
positive while a wal from i to j (i -c J) is negative
because of weights + 1 and - 1, for these two edges.
Consequently, the coeffcients of al terms with odd

powers are zero as there are equal and opposite
contributions for every term since A1j = - AJi if k
is odd.

Consider a directed chain of length 8 (Ls). Label
the vertices 1-8 sequentialy from left to right. Let
the edges be diected from i to j if and only if j :;
i. This means, for example, the matrix element a12

is 1 but a21 is O. The resulting adjacency matrix is
unsymetrical as expected. The powers of this ma-
trix A enumerate exactly hal of the self-avoiding
walks (SAW) and in general this is the case for any
Ln graph. For the directed Ls graph thus obtaed

2W = SAW = 14x + 12x2 + lOx3
+ 8x4 + 6x5 + 4x6 + 2x7

The enumeration of self-avoiding wals can in gen-
eral be a difcult problem. Randic et al.3 have for-
mulated an algorithm based on growing paths from
nonequivalent vertices of graphs. This algorithm

works reasonably well for graphs which do not con-
tain several rings. For lattice graphs and corrlex
polycyclic graphs this algorithm can experience a
combinatorial explosion. There is in general no poly-
nomial algorithm to compute self-avoiding walks. It
is hoped that the present study based on matrix pow-
ers of directed graphs would lead to finding SAWs
as combination of generating functions of diected
graphs.

IT

First 36 spectral moments of the signed square lattice

0.0
768.0

0.0
-436720.0

0.0
332651088.0

0.0
-277102859472.0

0.0
243358540192920.0

0.0
-221700022093408552.0

-120.0
0.0

49776.0
0.0

-35943776.0
0.0

29246452648.0
0.0

-25292741018600.0
0.0

22793564085322064.0
0.0

0.0
-5928.0

0.0
3929784.0

0.0
-3107174424.0

0.0
2640656572104.0

0.0
-2350980128975368.0

0.0
2162499752812994880.0

.n ~
nz ~

.,"

r
First 36 C~~fficients in the YGF of the ordinary square 1àttice

120.0
5200.0

238920.0
11132712.0

520511176.0
24357018608.0

1140000681800.0
53359002540304.0

2497556681651424.0
116902632034269848.0

5471841605796314872.0
256119604528111987240.0

416.0
18568.0

859120.0
40098720.0

1875612440.0
87776778392.0

4108389392200.0
192298822608736.0

9000879365019048.0
421302477910682736.0

19719835270901438480.0
923023153701966669000.0

1464.0
66536.0

3091776.0
144462120.0

6758904784.0
316330383696.0

14806049461384.0
693020229440328.0

32438038544485608.0
1518321569834059408.0

71067829310366984328.0
3326460491911600982832.0

y.

ID

First 36 Spectral moments of the ordinary square lattice

0.0
912.0

0.0
1049400.0

0.0
1848602576.0

0.0
3728313849248.0

0.0
7917124500058776.0

0.0
17145199314926894472.0

120.0
0.0

92688.0
0.0

149738072.0
0.0

292655854632.0
0.0

. 614002413827832.0
0.0

1323629434618917840.0
0.0

0.0
8ì12.0

0.0
12365448.0

0.0
23142098592.0

0.0
47752512334440.0

0.0
102293612786053392.0

0.0
222253147896045465840.0

~ 0
Figue 1. Graphs I-VII containing eight ver-
tices (see Table I for walk GFs).
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below for this graph. We omit the constant term for
convenience. This is equal to the number of vertices
for WGF and zero for SRWGF.

WGF = 24x + 34x2 + 50x3 + 70x4 + 102x5
+ 144x6 + 212x7 + 300x8 + 440x9 + 620x10

+ 908xll + 1282x12 + 1882x13 + 2658x14

+ 3898x15 + 5500X16

SRWGF = 4x4 + 12x6 + 44x8 + 80x10
+ 196x12 + 252x14 + 668x16.

Next we consider a few signed square and honey-
comb lattices. It may be recalled that signed graphs
are bidirected graphs with a weight + 1 for an edge
i to j if i ? i and -1 ifj .: i. Note that because of

the introduction of negative weights the coeffcents
in WGF enumerate the "net effect" of walks of var-
ious lengths as opposed to the total number of walks
of length k. Hence, the coeffcients of odd powers
vanish in WGF.

Table II compares the WGFand spectral moments
of a signed square lattice (Fig. 3) and the corre-
spondig ordiar square lattce. The ordiar square
lattice is a bidirectional graph with the same weight
+ 1.0 for both directions. As seen from Table II, the
coeffcients of odd powers of the signed lattice van-
ish while the coeffcients of even powered terms of
the signed lattice are signifcantly smaller as these
measure the net effect of taking walks of various
lengths while for ordinar lattices these are the num-
ber of walks of specifed length. The odd coeffcients
vanish for signed graphs since the matrix product
terms cancel out. Note that the WGF for signed lat-
tice is label-dependent. Interested readers can obtain
the labels used for Table II from the author.

The number of "non-self-retuning" wals can be
evaluated using WGF-SRWFG. The coeffcients of
various terms in WGF-SRWGF trly enumerate non-
self-retuning walks omy for regular lattices. Thus
the coeffcient ofx2 in WGF-SRWGF of the ordinar
lattice in Figue 3 (Table II) is 296 while it is 56 for
a signed lattice.

Table II shows the WGF and SRWGFs of a ho-
neycomb lattice containing 54 vertices (Fig. 4). Note
that since the coeffcients ofWGF ofthis lattice grow

Figue 3. A square lattice containing 36 vertices. For the
WGF, SRWGFs of this reguar and signed lattice see Table
II.
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Table III. The walk GF, SRWGF of an ordinar honeycomb lattice graph and signed
lattice graph in Figue 4.

First 49 Coefficients in the VGF of the ordinary lattice

144.0 396.0 1092.03048.0 8520.0 23952.067404.0 190248.0 537384.0
1520400.0 4303980.0 12195024.0
34566936.0 98032224.0 278091468.0
789114456.0 2239569336.0 6357221520.0

18047469516.0 51240288672.0 145490932872.0
413131015680.0 1173161674668.0 3331534906728.0
9461111559432.0 26868895603920.0 76307011425516.0

216713019869040.0 615474205858104.0 1747987354097952.0
4964429538833100.0 14099463174807672.0 40043996791048344.0

113729614430783760.0 323006083973758284.0 917378655666919104.0
2605476514877159976.0 7399905531735159744.0 21016749890964025644.0
59690501598005305992.0 169529439135407481192.0 481487702415096150096.0

1367493939412230949356.0 3883879336873015091856.0 11030777660087721846360.0
31329004736045445534432.0 88978917233724658427340.0 252713053122361419265176.0
717741839846367542003832.0

Figue 4. A honeycomb lattice containg 54 vertices.
See Table II for WGF, SRWGFs of reguar and signed
lattices.

astronomically a quadrple precision arithmetic was
invoked. Hence, the execution was slowed down since '
vectorization is not possible with the quadrple pre-
cision arithmetic. Yet the CPU time taken was rel-
atively insignifcant for the problem at hand. Again
the general feature of the coeffcients for the hon-

eycomb lattice graph follow~ the square lattice
graph discussed above. The labelig for this lattice
can be obtained from the author.

The code developed above could be potentially
useful for enumerating self-avoiding wals in a faster
manner compared to any known procedure up to
now. The procedure outlined by Randic et al.3 for
finding the number of self-avoiding walks is a non-
polynomial algorithm and thus the CPU time re-
quired grows astronomically for larger complex

graphs containing cycles. However, if matrix power
procedure can be suitably adapted for a combination
of weighted graphs such that the resulting generat-
ing fuction is the self-avoidig wal polynoiial then
it could be very powerfL. For example, consider the
tree in Figue 5. If one enumerates the largest path
(Ln) staring from the vertex labeled lone gets L5.

The SAW of L5 is given by the matrix powers of the
appropriate directed graph discussed before

SAW(L5) = 8x + 6x2 + 4x3 + 2x4.

Now we star with the vertex labeled 6 which was
not visited before and enumerate the largest possible
paths. It can be seen that they are 6-3-4-5 and 6-3-2-

1 for the graph in Figue 5. A restricted SAW for

these two graphs can be obtained such that all walks
star from the vertex labeled 6 (root). This would be
the sum of sixh-row elements in the powers of the

First 53 coefficients in SRVGF of the ordinary lattice

0.0 144.0 0.0. 648.0 0.0 3648.00.0 22968.0 0.0154224.0 0.0 1079496.00.0 7778376.0 0.057258360.0 0.0 428438136.00.0 3247259328.0 0.0
24866881128.0 0.0 192030980040.00.0 1493227064928.0 0.0

11678269142544.0 0.0 91774395035448.0
0.0 724139076916344.0 0.0

5733298732288680.0 0.0 45523925960816232.00.0 362355328593353520.0 0.0
2890192973530857408.0 0.0 23092914702266609208.00.0 184788027980655460272.0 0.0

1480516346318066986416.0 0.0 11874435754527365234568.0
0.0 95323938466295820729024.0 0.0

765807880412372719390896. 0 O~ 0

First 54 Coefficients in the VGF of signed lattice

0.0
140.0

0.0
-15664.0

0.0
3100560.0

0.0
-707160284.0

0.0
171718652564.0

0.0
-4330153718~128.0

~ 0.0
11199417483Kj4872.0

0.0
-2948284844179093460.0¡ 0.0

785989764261069082244.0

-48.0 0.00.0 -588.02904.0 0.00.0 88852.0-519652.0 0.0
0.0 -18761008.0114712316.0 0.0
0.0 4388510200.0-27386424808.0 0.0
0.0 -1081146490940.06831398518040.0 0.0
0.0 275235661534492.0-1753781166456532.0 0.0
0.0 -71657265362655496.0459280822426293668.0 0.0
0.0 18952350966817137136.0-121982397147954303848.0 0.0
0.0 -5069602226982199912692.0

First 54 coefficients in the SRVGF of the signed lattice (fig. 4)

0.0
648.0

0.0
-108624.0

0.0
23981240.0

0.0
-5738467032.0

0.0
1424460990432.0

0.0
-361467127423128.0

0.0
93128384827526752.0

0.0
-24265045239591069824.0

0.0
6377579173459523249504.0

I 2 3 4 5

° ° I ° o.
6

Figue 5. A branched tree contaiing six vertices. The
self-avoidig walk GF (SAW) of this tree can be obtaied
as a liear combination of the SAW of a path and SAWS

of rooted paths.

-144.0 0.00.0 -3360.018712.0 0.00.0 646872.0-3916448.0 0.0
0.0 -148039824.0919483888.0 0.0
0.0 35953419016.0-225993008008.0 0.0
0.0 -9000065170080.056983984551544.0 0.0
0.0 2296721555875032.0-14615032268628000.0 0.0
0.0 -594158930982146936.03795034172724503664.0 0.0
0.0 155297119435234833032.0-994789159187692056624.0 0.0
0.0-40917825524595466717680.0
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adjacency matrix of this graph. Suppose we call this
rooted-self-avoiding walk (RSAW) then

RSA W(L4) = x + 2x2 + 2x3.

Since there are two paths (6,3-4-5 and 6-3-2-1) star-
ing from the vertex 6, SAW of the graph in Figue 5
is given by

SAW (Fig. 5) = SAW (L5) + 2RSAW(L4)

= lOx + 10x2 + 8x3 + 2x4.

The above result can be easily verifed.
Although the above procedure for complex cyclic

graphs can get complicated it may be a better and
effcient alternative to compute the SAW of a given
graph as a linear combination of SAWs of Lns and
rooted paths. Such advancement and extension of
these procedures to complex cyclic graphs could be
the topic of future investigatons.

CONCLUSION

In this investigation we developed a vectorized com-
puter code in FORTRAN 77 to enumerate the walk
generating functions (WGF) and self-retuning walk
generating functions (SRWGF) for directed graphs,
signed graphs and weighted graphs. The code was

BALUBRAIA
Ab Initio Study of Ascorbic Acid Conformations

applied to several graphs and lattices. It was also
shown that the self-avoiding walks on some graphs
can be enumerated as a linear combination ofWGFs
of directed maxmal paths and rooted-directed max-
imal paths.

Mohammad A. AI-Laham and G.A. Petersson*
Department of Cheistry, Wesleyan University, HaU-Atwater Laboratory, Middletown, Connecticut 06457
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The STO-3G optimized structues of nine dierent staggered conformers of ascorbic acid are presented. The
largest energy diference between the nine local minima is 5.1 kcal/moL. Comparison of the relative energies
of the fully optimed strctures of ascorbic acid conformers with those of nonoptimized conformers shows

that ful optimization is essential to obtai meaningfl results. However, optimation of the rig structue is
alost independent of optimization of the side-chai strctue. One of the STO~3G optimed gas phase
conformers is very close to the X-ray structue of the crysta.

INTRODUCTION

Ascorbic acid or Vitamin C (Fig. 1) has been a mol-
ecule of great biochemical interest since it was iso-
lated and characterized¡ in 1928. The crystal strc-

tue was determined in 1968 by Hvoslef using X-ray
crystallography2a and neutron difaction.2b Little the-
oretical work has been done on ascorbic acid, mainy
because of its size. The most comprehensive work
so far is an STO-3G minimal basis set study without
geometr optimization by Carlson, Cable and Ped-
ersen.3 Other work includes semiempirical4 calcu-
lations on free radicals derived from ascorbic acid
and a-hydroxyetronic acid to help determine the
structue and UV spectrm of ascorbic acid, and to
study then-electrons in the ring. Ab initio SCF
calcul~tions5 on a-hydroxyetronic acid have been
used as a model for the electronic structure of as-
corbic acid. The object of this worj is to study the
importce of fuy optiing the øtctue of a large
molecule such as ascorbic acid/by comparing the

fully' optimized results from this work with the pre-
vious nonoptimized results of Carlson, Cable and
Pedersen.3 In this aricle, we consider the separate
optimization ofthe a-hydroxyetronic acid (ring) and
the '1,2-diol side chain, and we compare the results
with those obtained when we fuly optimized the

molecule as one unit, in order to study the separa-
bilty of calcùlations on large systems.

Accurate ab initio calculations of conformational
geometries and energies require at least a double-
zeta plus polarization basis set and inclusion of cor-

:1:::
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relation effects on at least the second-order Møller:-
Plesset level of theory. A complete optimization of
all ascorbic acid conformers at the MP2/ 6-31 G * level
of theory is not practical at this time. On the other
hand, SCF calculations using the STO-3G minimal
basis set give qualitatively correct results through
accountig for both the electrostatic interactions and
the Pauli repulsive interactions between electrons
(the RMS error in the STO-3G rotational bariers for

ethane, methanol, and acetaldehyde is 0.52 kcal/
mole).6 This level of calculation also allows us to

compare our optimized results with the nonopti-
mized results of Carlson, Cable, and Pedersen.3

The local minima on the ascorbic acid potential
energy surace are related by rotations about the two
dihedral angles, '1¡ (C3-C4-C5-C6 in Figure 1) and '12

(C4-C5-C6-06 in Figure 1). Carlson, Cable, and
Pedersen3 investigated the nine staggered confor-

mations obtained by rotations of 0°, 120°, and 240°

about '1¡ and '12 with respect to the crystal strctue

('1¡ = 187.8° and '12 = 295.3°). We shall use the no-
tation (~'1¡,~'12) to indicate the conformation with
'1¡ = 187.8° + ~'1¡and'12=295.3° + ~'12.Forexample,
the (0,0) conformer is the STO-3G optimized con-
former corresponding to the crystal strctue. We
have not performed a similar systematic investiga-
tion of the possible conformations of the hydroxyl
groups because of the large number of conformers
(324) that would need to be considered. In order to
be consistent with the earlier nonoptimized study
with which we wished to compare our results, we
instead limited our search to findig the global min-

imum for the hydroxyl groups for each of the nine
conformations of the side-chain. We have optimized
al side-chain variables in all conformations, whie
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